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Abstract

Inspired by the demands of real-time climate and

weather forecasting, we develop optimistic on-

line learning algorithms that require no parame-

ter tuning and have optimal regret guarantees un-

der delayed feedback. Our algorithms—DORM,

DORM+, and AdaHedgeD—arise from a novel

reduction of delayed online learning to optimistic

online learning that reveals how optimistic hints

can mitigate the regret penalty caused by delay.

We pair this delay-as-optimism perspective with

a new analysis of optimistic learning that exposes

its robustness to hinting errors and a new meta-

algorithm for learning effective hinting strategies

in the presence of delay. We conclude by bench-

marking our algorithms on four subseasonal cli-

mate forecasting tasks, demonstrating low regret

relative to state-of-the-art forecasting models.

1. Introduction

Online learning is a sequential decision-making paradigm in

which a learner is pitted against a potentially adversarial en-

vironment (Shalev-Shwartz, 2007; Orabona, 2019). At time

t, the learner must select a play wt from some set of possible

plays W. The environment then reveals the loss function ℓt
and the learner pays the cost ℓt(wt). The learner uses infor-

mation collected in previous rounds to improve its plays in

subsequent rounds. Optimistic online learners additionally

make use of side-information or “hints” about expected fu-

ture losses to improve their plays. Over a period of length T ,

the goal of the learner is to minimize regret, an objective that

quantifies the performance gap between the learner and the

best possible constant play in retrospect in some competitor

set U: RegretT = supu∈U

∑T
t=1 ℓt(wt)−ℓt(u). Adversar-

1Dept. of EECS, Massachusetts Institute of Technology 2Dept.
of AOSE, Woods Hole Oceanographic Institution 3Dept. of ECE,
Boston University 4Atmospheric and Environmental Research
5Dept. of CS, University of Toronto 6Microsoft Research New
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ial online learning algorithms provide robust performance in

many complex real-world online prediction problems such

as climate or weather forecasting.

In traditional online learning paradigms, the loss for round

t is revealed to the learner immediately at the end of round

t. However, many real-world applications produce delayed

feedback, i.e., the loss for round t is not available until round

t +D for some delay period D.1 Existing delayed online

learning algorithms achieve optimal worst-case regret rates

against adversarial loss sequences, but each has drawbacks

when deployed for real applications with short horizons

T . Some use only a small fraction of the data to train

each learner (Weinberger & Ordentlich, 2002; Joulani et al.,

2013); others tune their parameters using uniform bounds on

future gradients that are often challenging to obtain or overly

conservative in applications (McMahan & Streeter, 2014;

Quanrud & Khashabi, 2015; Joulani et al., 2016; Korotin

et al., 2020; Hsieh et al., 2020). Only the concurrent work

of Hsieh et al. (2020, Thm. 13) can make use of optimistic

hints and only for the special case of unconstrained online

gradient descent.

In this work, we aim to develop robust and practical algo-

rithms for real-world delayed online learning. To this end,

we introduce three novel algorithms—DORM, DORM+,

and AdaHedgeD—that use every observation to train the

learner, have no parameters to tune, exhibit optimal worst-

case regret rates under delay, and enjoy improved perfor-

mance when accurate hints for unobserved losses are avail-

able. We begin by formulating delayed online learning as

a special case of optimistic online learning and use this

“delay-as-optimism” perspective to develop:

1. A formal reduction of delayed online learning to opti-

mistic online learning (Lems. 1 and 2),

2. The first optimistic tuning-free and self-tuning algo-

rithms with optimal regret guarantees under delay

(DORM, DORM+, and AdaHedgeD),

3. A tightening of standard optimistic online learning

regret bounds that reveals the robustness of optimistic

algorithms to inaccurate hints (Thms. 3 and 4),

1Our initial presentation will assume constant delay D, but we
provide extensions to variable and unbounded delays in App. O.
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4. The first general analysis of follow-the-regularized-

leader (Thms. 5 and 10) and online mirror descent

algorithms (Thm. 6) with optimism and delay, and

5. The first meta-algorithm for learning a low-regret opti-

mism strategy under delay (Thm. 13).

We validate our algorithms on the problem of subseasonal

forecasting in Sec. 7. Subseasonal forecasting—predicting

precipitation and temperature 2-6 weeks in advance—is a

crucial task for allocating water resources and preparing

for weather extremes (White et al., 2017). Subseasonal

forecasting presents several challenges for online learning

algorithms. First, real-time subseasonal forecasting suffers

from delayed feedback: multiple forecasts are issued before

receiving feedback on the first. Second, the regret horizons

are short: a common evaluation period for semimonthly

forecasting is one year, resulting in 26 total forecasts. Third,

forecasters cannot have difficult-to-tune parameters in real-

time, practical deployments. We demonstrate that our al-

gorithms DORM, DORM+, and AdaHedgeD sucessfully

overcome these challenges and achieve consistently low

regret compared to the best forecasting models.

Our Python library for Optimistic Online Learning under

Delay (PoolD) and experiment code are available at

https://github.com/geflaspohler/poold.

Notation For integers a, b, we use the shorthand [b] ,

{1, . . . , b} and ga:b ,
∑b
i=a gi. We say a function f is

proper if it is somewhere finite and never −∞. We let

∂f(w) = {g ∈ R
d : f(u) ≥ f(w) + 〈g,u − w〉, ∀u ∈

R
d} denote the set of subgradients of f at w ∈ R

d and say f
is µ-strongly convex over a convex set W ⊆ int dom f with

respect to ‖·‖ with dual norm ‖·‖∗ if ∀w,u ∈ W and g ∈
∂f(w), we have f(u) ≥ f(w)+ 〈g,u−w〉+ µ

2 ‖w−u‖2.

For differentiable ψ, we define the Bregman divergence

Bψ(w,u) , ψ(w)− ψ(u)− 〈∇ψ(u),w − u〉. We define

diam(W) = infw,w′∈W ‖w −w′‖, (r)+ , max(r, 0),

and min(r, s)+ , (min(r, s))+.

2. Preliminaries: Optimistic Online Learning

Standard online learning algorithms, such as follow the reg-

ularized leader (FTRL) and online mirror descent (OMD)

achieve optimal worst-case regret against adversarial loss

sequences (Orabona, 2019). However, many loss sequences

encountered in applications are not truly adversarial. Op-

timistic online learning algorithms aim to improve perfor-

mance when loss sequences are partially predictable, while

remaining robust to adversarial sequences (see, e.g., Azoury

& Warmuth, 2001; Chiang et al., 2012; Rakhlin & Sridha-

ran, 2013b; Steinhardt & Liang, 2014). In optimistic online

learning, the learner is provided with a “hint” in the form

of a pseudo-loss ℓ̃t at the start of round t that represents

a guess for the true unknown loss. The online learner can

incorporate this hint before making play wt.

In standard formulations of optimistic online learning, the

convex pseudo-loss ℓ̃t(wt) is added to the standard FTRL

or OMD regularized objective function and leads to op-

timistic variants of these algorithms: optimistic FTRL

(OFTRL, Rakhlin & Sridharan, 2013a) and single-step opti-

mistic OMD (SOOMD, Joulani et al., 2017, Sec. 7.2). Let

g̃t ∈ ∂ℓ̃t(wt−1) and gt ∈ ∂ℓt(wt) denote subgradients of

the pseudo-loss and true loss respectively. The inclusion of

an optimistic hint leads to the following linearized update

rules for play wt+1:

wt+1 = argmin
w∈W

〈g1:t + g̃t+1,w〉+ λψ(w), (OFTRL)

wt+1 = argmin
w∈W

〈gt + g̃t+1 − g̃t,w〉+ Bλψ(w,wt)

with g̃0 = 0 and arbitrary w0 (SOOMD)

where g̃t+1 ∈ R
d is the hint subgradient, λ ≥ 0 is a regular-

ization parameter, and ψ is proper regularization function

that is 1-strongly convex with respect to a norm ‖·‖. The op-

timistic learner enjoys reduced regret whenever the hinting

error ‖gt+1 − g̃t+1‖∗ is small (Rakhlin & Sridharan, 2013a;

Joulani et al., 2017). Common choices of optimistic hints

include the last observed subgradient or average of previ-

ously observed subgradients (Rakhlin & Sridharan, 2013a).

We note that the standard FTRL and OMD updates can be

recovered by setting the optimistic hints to zero.

3. Online Learning with Optimism and Delay

In the delayed feedback setting with constant delay of length

D, the learner only observes (ℓi)
t−D
i=1 before making play

wt+1. In this setting, we propose counterparts of the OFTRL

and SOOMD online learning algorithms, which we call

optimistic delayed FTRL (ODFTRL) and delayed optimistic

online mirror descent (DOOMD) respectively:

wt+1 = argmin
w∈W

〈g1:t−D + ht+1,w〉+ λψ(w)

(ODFTRL)

wt+1 = argmin
w∈W

〈gt−D + ht+1 − ht,w〉+ Bλψ(w,wt)

with h0 , 0 and arbitrary w0, (DOOMD)

for hint vector ht+1. Our use of the notation ht+1 instead

of g̃t+1 for the optimistic hint here is suggestive. Our regret

analysis in Thms. 5 and 6 reveals that, instead of hinting only

for the “future“ missing loss gt+1, delayed online learners

should uses hints ht that guess at the summed subgradients

of all delayed and future losses: ht =
∑t
s=t−D g̃s.

3.1. Delay as Optimism

To analyze the regret of the ODFTRL and DOOMD algo-

rithms, we make use of the first key insight of this paper:
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Learning with delay is a special case of learning

with optimism.

In particular, ODFTRL and DOOMD are instances of

OFTRL and SOOMD respectively with a particularly “bad”

choice of optimistic hint g̃t+1 that deletes the unobserved

loss subgradients gt−D+1:t.

Lemma 1 (ODFTRL is OFTRL with a bad hint). ODFTRL

is OFTRL with g̃t+1 = ht+1 −
∑t
s=t−D+1 gs.

Lemma 2 (DOOMD is SOOMD with a bad hint). DOOMD

is SOOMD with g̃t+1 = g̃t + gt−D − gt + ht+1 − ht =
ht+1 −

∑t
s=t−D+1 gs.

The implication of this reduction of delayed online learning

to optimistic online learning is that any regret bound shown

for undelayed OFTRL or SOOMD immediately yields a

regret bound for ODFTRL and DOOMD under delay. As

we demonstrate in the remainder of the paper, this novel

connection between delayed and optimistic online learning

allows us to bound the regret of optimistic, self-tuning, and

tuning-free algorithms for the first time under delay.

Finally, it is worth reflecting on the key property of OFTRL

and SOOMD that enables the delay-to-optimism reduction:

each algorithm depends on gt and g̃t+1 only through the

sum g1:t + g̃t+1.2 For the “bad” hints of Lems. 1 and 2,

these sums are observable even though gt and g̃t+1 are not

separately observable at time t due to delay. A number of

alternatives to SOOMD have been proposed for optimistic

OMD (Chiang et al., 2012; Rakhlin & Sridharan, 2013a;b;

Kamalaruban, 2016). Unlike SOOMD, these procedures all

incorporate optimism in two steps, as in the updates

wt+1/2 = argminw∈W 〈gt,w〉+ Bλψ(w,wt−1/2) and

wt+1 = argminw∈W 〈g̃t+1,w〉+ Bλψ(w,wt+1/2) (1)

described in Rakhlin & Sridharan (2013a, Sec. 2.2). It is

unclear how to reduce delayed OMD to an instance of one of

these two-step procedures, as knowledge of the unobserved

gt is needed to carry out the first step.

3.2. Delayed and Optimistc Regret Bounds

To demonstrate the utility of our delay-as-optimism perspec-

tive, we first present the following new regret bounds for

OFTRL and SOOMD, proved in Apps. B and C respectively.

Theorem 3 (OFTRL regret). If ψ is nonnegative, then, for

all u ∈ W, the OFTRL iterates wt satisfy

RegretT (u) ≤ λψ(u) + 1
λ

∑T
t=1 huber(‖gt − g̃t‖∗, ‖gt‖∗).

Theorem 4 (SOOMD regret). If ψ is differentiable and

2For SOOMD, gt+ g̃t+1− g̃t = g1:t+ g̃t+1−(g1:t−1+ g̃t).

g̃T+1 , 0, then, ∀u ∈ W, the SOOMD iterates wt satisfy

RegretT (u) ≤ Bλψ(u,w0)+

1
λ

∑T
t=1 huber(‖gt − g̃t‖∗, ‖gt + g̃t+1 − g̃t‖∗).

Both results feature the robust Huber penalty (Huber, 1964)

huber(x, y) , 1
2x

2 − 1
2 (|x| − |y|)2+ ≤ min( 12x

2, |y||x|)

in place of the more common squared error term
1
2‖gt − g̃t‖2∗. As a result, Thms. 3 and 4 strictly improve the

rate-optimal OFTRL and SOOMD regret bounds of Rakhlin

& Sridharan (2013a); Mohri & Yang (2016); Orabona (2019,

Thm. 7.28) and Joulani et al. (2017, Sec. 7.2) by revealing a

previously undocumented robustness to inaccurate hints g̃t.

We will use this robustness to large hint error ‖gt − g̃t‖∗ to

establish optimal regret bounds under delay.

As an immediate consequence of this regret analysis and our

delay-as-optimism perspective, we obtain the first general

analyses of FTRL and OMD with optimism and delay.

Theorem 5 (ODFTRL regret). If ψ is nonnegative, then,

for all u ∈ W, the ODFTRL iterates wt satisfy

RegretT (u) ≤ λψ(u) + 1
λ

∑T
t=1 bt,F for

bt,F , huber(‖ht −
∑t
s=t−D gs‖∗, ‖gt‖∗).

Theorem 6 (DOOMD regret). If ψ is differentiable and

hT+1 , gT−D+1:T , then, for all u ∈ W, the DOOMD

iterates wt satisfy

RegretT (u) ≤ Bλψ(u,w0) +
1
λ

∑T
t=1 bt,O for

bt,O , huber(‖ht −
∑t
s=t−D gs‖∗, ‖gt−D + ht+1 − ht‖∗).

Our results show a compounding of regret due to delay:

the bt,F term of Thm. 5 is of size O(D + 1) whenever

‖ht‖∗ = O(D+ 1), and the same holds for bt,O of Thm. 6

if ‖ht+1 − ht‖∗ = O(1). An optimal setting of λ therefore

delivers O(
√

(D + 1)T ) regret, yielding the minimax opti-

mal rate for adversarial learning under delay (Weinberger

& Ordentlich, 2002). Thms. 5 and 6 also reveal the height-

ened value of optimism in the presence of delay: in addition

to providing an effective guess of the future subgradient

gt, an optimistic hint can approximate the missing delayed

feedback (
∑t−1
s=t−D gs) and thereby significantly reduce the

penalty of delay. If, on the other hand, the hints are a poor

proxy for the missing loss subgradients, the novel huber

term ensures that we still only pay the minimax optimal√
D + 1 penalty for delayed feedback.

Related work A classical approach to delayed feedback

in online learning is the so-called “replication” strategy

in which D + 1 distinct learners take turns observing and

responding to feedback (Weinberger & Ordentlich, 2002;
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Joulani et al., 2013; Agarwal & Duchi, 2011; Mesterharm,

2005). While minimax optimal in adversarial settings, this

strategy has the disadvantage that each learner only sees
T

D+1 losses and is completely isolated from the other repli-

cates, exacerbating the problem of short prediction horizons.

In contrast, we develop and analyze non-replicated delayed

online learning strategies that use a combination of opti-

mistic hinting and self-tuned regularization to mitigate the

effects of delay while retaining optimal worst-case behavior.

We are not aware of prior analyses of DOOMD, and, to our

knowledge, Thm. 5 and its adaptive generalization Thm. 10

provide the first general analysis of delayed FTRL, apart

from the concurrent work of Hsieh et al. (2020, Thm. 1).

Hsieh et al. (2020, Thm. 13) and Quanrud & Khashabi

(2015, Thm. 2.1) focus only on delayed gradient descent,

Korotin et al. (2020) study General Hedging, and Joulani

et al. (2016, Thm. 4) and Quanrud & Khashabi (2015,

Thm. A.5) study non-optimistic OMD under delay. Thms. 5,

6, and 10 strengthen these results from the literature which

feature a sum of subgradient norms (
∑t−1
s=t−D ‖gs‖∗ or

D‖gt‖∗) in place of ‖ht −
∑t−1
s=t−D gs‖∗. Even in the ab-

sence of optimism, the latter can be significantly smaller:

e.g., if the gradients gs are i.i.d. mean-zero vectors, the for-

mer has size Ω(D) while the latter has expectation O(
√
D).

In the absence of optimism, McMahan & Streeter (2014)

obtain a bound comparable to Thm. 5 for the special case of

one-dimensional unconstrained online gradient descent.

In the absence of delay, Cutkosky (2019) introduces meta-

algorithms for imbuing learning procedures with optimism

while remaining robust to inaccurate hints; however, unlike

OFTRL and SOOMD, the procedures of Cutkosky require

separate observation of g̃t+1 and each gt, making them

unsuitable for our delay-to-optimism reduction.

3.3. Tuning Regularizers with Optimism and Delay

The online learning algorithms introduced so far all include

a regularization parameter λ. In theory and in practice,

these algorithms only achieve low regret if the regulariza-

tion parameter λ is chosen appropriately. In standard FTRL,

for example, one such setting that achieves optimal regret

is λ =

√
∑T

t=1 ‖gt‖2
∗

sup
u∈U

ψ(u) . This choice, however, cannot be

used in practice as it relies on knowledge of all future un-

observed loss subgradients. To make use of online learning

algorithms, the tuning parameter λ is often set using coarse

upper bounds on, e.g., the maximum possible subgradient

norm. However, these bounds are often very conservative

and lead to poor real-world performance.

In the following sections, we introduce two strategies for

tuning regularization with optimism and delay. Sec. 4 in-

troduces the DORM and DORM+ algorithms, variants of

ODFTRL and DOOMD that are entirely tuning-free. Sec. 5

introduces the AdaHedgeD algorithm, an adaptive variant

of ODFTRL that is self-tuning; a sequence of regulariza-

tion parameters λt are set automatically using new, tighter

bounds on algorithm regret. All three algorithms achieve the

minimax optimal regret rate under delay, support optimism,

and have strong real-world performance as shown in Sec. 7.

4. Tuning-free Learning with Optimism

and Delay

Regret matching (RM) (Blackwell, 1956; Hart & Mas-

Colell, 2000) and regret matching+ (RM+) (Tammelin et al.,

2015) are online learning algorithms that have strong em-

pirical performance. RM was developed to find correlated

equilibria in two-player games and is commonly used to

minimize regret over the simplex. RM+ is a modification

of RM designed to accelerate convergence and used to ef-

fectively solve the game of Heads-up Limit Texas Hold’em

poker (Bowling et al., 2015). RM and RM+ support neither

optimistic hints nor delayed feedback, and known regret

bounds have a suboptimal scaling with respect to the prob-

lem dimension d (Cesa-Bianchi & Lugosi, 2006; Orabona

& Pál, 2015). To extend these algorithms to the delayed

and optimistic setting and recover the optimal regret rate,

we introduce our generalizations, delayed optimistic regret

matching (DORM)

wt+1 = w̃t+1/〈1, w̃t+1〉 for (DORM)

w̃t+1 , max(0, (r1:t−D + ht+1)/λ)
q−1

and delayed optimistic regret matching+ (DORM+)

wt+1 = w̃t+1/〈1, w̃t+1〉 for h0 = w̃0 , 0, (DORM+)

w̃t+1 , max
(
0, w̃p−1

t + (rt−D + ht+1 − ht)/λ
)q−1

,

Each algorithm makes use of an instantaneous regret vector

rt , 1〈gt,wt〉−gt that quantifies the relative performance

of each expert with respect to the play wt and the linearized

loss subgradient gt. The updates also include a parameter

q ≥ 2 and its conjugate exponent p = q/(q − 1) that is

set to recover the minimax optimal scaling of regret with

the number of experts (see Cor. 9). We note that DORM

and DORM+ recover the standard RM and RM+ algorithms

when D = 0, λ = 1, q = 2, and ht = 0, ∀t.

4.1. Tuning-free Regret Bounds

To bound the regret of the DORM and DORM+ plays, we

prove that DORM is an instance of ODFTRL and DORM+

is an instance of DOOMD. This connection enables us

to immediately provide regret guarantees for these regret-

matching algorithms under delayed feedback and with opti-

mism. We first highlight a remarkable property of DORM

and DORM+ that is the basis of their tuning-free nature.

Under mild conditions:
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The normalized DORM and DORM+ iterates wt

are independent of the choice of regularization

parameter λ.

Lemma 7 (DORM and DORM+ are independent of λ). If

the subgradient gt and hint ht+1 only depend on λ through

(ws, λ
q−1w̃s,gs−1,hs)s≤t and (ws, λ

q−1w̃s,gs,hs)s≤t
respectively, then the DORM and DORM+ iterates (wt)t≥1

are independent of the choice of λ > 0.

Lem. 7, proved in App. E, implies that DORM and DORM+

are automatically optimally tuned with respect to λ, even

when run with a default value of λ = 1. Hence, these

algorithms are tuning-free, a very appealing property for

real-world deployments of online learning.

To show that DORM and DORM+ also achieve optimal

regret scaling under delay, we connect them to ODFTRL

and DOOMD operating on the nonnegative orthant with a

special surrogate loss ℓ̂t (see App. D for our proof):

Lemma 8 (DORM is ODFTRL and DORM+ is DOOMD).

The DORM and DORM+ iterates are proportional to

ODFTRL and DOOMD iterates respectively with W , R
d
+,

ψ(w̃) = 1
2‖w̃‖2p, and loss ℓ̂t(w̃) = 〈w̃,−rt〉.

Lem. 8 enables the following optimally-tuned regret bounds

for DORM and DORM+ run with any choice of λ:

Corollary 9 (DORM and DORM+ regret). Under the as-

sumptions of Lem. 7, for all u ∈ △d−1 and any choice of

λ > 0, the DORM and DORM+ iterates wt satisfy

RegretT (u) ≤ inf
λ>0

λ
2 ‖u‖2p + 1

λ(p−1)

∑T
t=1 bt,q

=
√

‖u‖2
p

2(p−1)

∑T
t=1 bt,q ≤

√
d2/q(q−1)

2

∑T
t=1 bt,∞

where hT+1 , rT−D+1:T and, for each c ∈ [2,∞],

bt,c
(DORM)
= huber(‖ht −

∑t
s=t−D rs‖c, ‖rt‖c) and

bt,c
(DORM+)

= huber(‖ht −
∑t
s=t−D rs‖2c ,

‖rt−D + ht+1 − ht‖c).

If, in addition, q = argminq′≥2 d
2/q′(q′ − 1), then

RegretT (u) ≤
√

(2 log2(d)− 1)
∑T
t=1 bt,∞.

Cor. 9, proved in App. F, suggests a natural hinting strategy

for reducing the regret of DORM and DORM+: predict the

sum of unobserved instantaneous regrets
∑t
s=t−D rs. We

explore this strategy empirically in Sec. 7. Cor. 9 also high-

lights the value of the q parameter in DORM and DORM+:

using the easily computed value q = argminq′≥2 d
2/q′(q′−

1) yields the minimax optimal
√

log2(d) dependence of re-

gret on dimension (Cesa-Bianchi & Lugosi, 2006; Orabona

& Pál, 2015). By Lem. 8, setting q in this way is equivalent

to selecting a robust 1
2‖·‖2p regularizer (Gentile, 2003) for

the underlying ODFTRL and DOOMD problems.

Related work Without delay, Farina et al. (2021) inde-

pendently developed optimistic versions of RM and RM+

by reducing them to OFTRL and a two-step variant of opti-

mistic OMD (1). Unlike SOOMD, this two-step optimistic

OMD requires separate observation of g̃t+1 and gt, mak-

ing it unsuitable for our delay-as-optimism reduction and

resulting in a different algorithm from DORM+ even when

D = 0. In addition, their regret bounds and prior bounds

for RM and RM+ (special cases of DORM and DORM+

with q = 2) have suboptimal regret when the dimension d
is large (Bowling et al., 2015; Zinkevich et al., 2007).

5. Self-tuned Learning with Optimism

and Delay

In this section, we analyze an adaptive version of ODFTRL

with time-varying regularization λtψ and develop strategies

for setting λt appropriately in the presence of optimism

and delay. We begin with a new general regret analysis of

optimistic delayed adaptive FTRL (ODAFTRL)

wt+1 = argmin
w∈W

〈g1:t−D + ht+1,w〉+ λt+1ψ(w)

(ODAFTRL)

where ht+1 ∈ R
d is an arbitrary hint vector revealed before

wt+1 is generated, ψ is 1-strongly convex with respect to a

norm ‖·‖, and λt ≥ 0 is a regularization parameter.

Theorem 10 (ODAFTRL regret). If ψ is nonnegative and

λt is non-decreasing in t, then, ∀u ∈ W, the ODAFTRL

iterates wt satisfy

RegretT (u) ≤ λTψ(u) +
∑T
t=1 min(

bt,F

λt
,at,F ) with

bt,F , huber(‖ht −
∑t
s=t−D gs‖∗, ‖gt‖∗) and (2)

at,F , diam(W)min
(
‖ht −

∑t
s=t−D gs‖∗, ‖gt‖∗

)
.

The proof of this result in App. G builds on a new regret

bound for undelayed optimistic adaptive FTRL (OAFTRL).

In the absence of delay (D = 0), Thm. 10 strictly im-

proves existing regret bounds (Rakhlin & Sridharan, 2013a;

Mohri & Yang, 2016; Joulani et al., 2017) for OAFTRL

by providing tighter guarantees whenever the hinting error

‖ht −
∑t
s=t−D gt‖∗ is larger than the subgradient magni-

tude ‖gt‖∗. In the presence of delay, Thm. 10 benefits

both from robustness to hinting error in the worst case

and the ability to exploit accurate hints in the best case.

The bounded-domain factors at,F strengthen both standard

OAFTRL regret bounds and the concurrent bound of Hsieh

et al. (2020, Thm. 1) when diam(W) is small and will en-

able us to design practical λt-tuning strategies under delay

without any prior knowledge of unobserved subgradients.

We now turn to these self-tuning protocols.
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5.1. Conservative Tuning with Delayed Upper Bound

Setting aside the at,F bounded-domain factors in Thm. 10

for now, the adaptive sequence λt =
√ ∑t

s=1 bs,F

sup
u∈U

ψ(u) is

known to be a near-optimal minimizer of the ODAFTRL

regret bound (McMahan, 2017, Lemma 1). However, this

value is unobservable at time t. A common strategy is to

play the conservative value λt =

√

(D+1)B0+
∑t−D−1

s=1 bs,F

sup
u∈U

ψ(u) ,

where B0 is a uniform upper bound on the unobserved bs,F
terms (Joulani et al., 2016; McMahan & Streeter, 2014). In

practice, this requires computing an a priori upper bound

on any subgradient norm that could possibly arise and often

leads to extreme over-regularization (see Sec. 7).

As a preliminary step towards fully adaptive settings of λt,
we analyze in App. H a new delayed upper bound (DUB)

tuning strategy which relies only on observed bs,F terms

and does not require upper bounds for future losses.

Theorem 11 (DUB regret). Fix α > 0, and, for at,F ,bt,F
as in (2), consider the delayed upper bound (DUB) sequence

λt+1 = 2
α maxj≤t−D−1 aj−D+1:j,F (DUB)

+ 1
α

√
∑t−D
i=1 a2i,F + 2αbi,F .

If ψ is nonnegative, then, for all u ∈ W, the ODAFTRL

iterates wt satisfy

RegretT (u) ≤
(ψ(u)

α + 1
)

(
2maxt∈[T ] at−D:t−1,F +

√
∑T
t=1 a

2
t,F + 2αbt,F

)
.

As desired, the DUB setting of λt depends only on previ-

ously observed at,F and bt,F terms and achieves optimal

regret scaling with the delay period D. However, the terms

at,F , bt,F are themselves potentially loose upper bounds for

the instantaneous regret at time t. In the following section,

we show how the DUB regularization setting can be refined

further to produce AdaHedgeD adaptive regularization.

5.2. Refined Tuning with AdaHedgeD

As noted by Erven et al. (2011); de Rooij et al. (2014);

Orabona (2019), the effectiveness of an adaptive regular-

ization setting λt that uses an upper bound on regret (such

as bt,F ) relies heavily on the tightness of that bound. In

practice, we want to set λt using as tight a bound as possi-

ble. Our next result introduces a new tuning sequence that

can be used with delayed feedback and is inspired by the

popular AdaHedge algorithm (Erven et al., 2011). It makes

use of the tightened regret analysis underlying Thm. 10 to

enable tighter settings of λt compared to DUB, while still

controlling algorithm regret (see proof in App. I).

Theorem 12 (AdaHedgeD regret). Fix α > 0, and consider

the delayed AdaHedge-style (AdaHedgeD) sequence

λt+1 = 1
α

∑t−D
s=1 δs for (AdaHedgeD)

δt , min(Ft+1(wt, λt)− Ft+1(w̄t, λt), 〈gt,wt − w̄t〉,
Ft+1(ŵt, λt)− Ft+1(w̄t, λt) + 〈gt,wt − ŵt〉)+

with w̄t , argminw∈W Ft+1(w, λt), (3)

ŵt , argminw∈W Ft+1(w, λt) +

min( ‖gt‖∗

‖ht−gt−D:t‖∗
, 1)〈ht − gt−D:t,w〉,

and Ft+1(w, λt) , λtψ(w) + 〈g1:t,w〉.
If ψ is nonnegative, then, for all u ∈ W, the ODAFTRL

iterates satisfy

RegretT (u) ≤
(ψ(u)

α + 1
)

(
2maxt∈[T ] at−D:t−1,F +

√
∑T
t=1 a

2
t,F + 2αbt,F

)
.

Remarkably, Thm. 12 yields a minimax optimal

O(
√

(D + 1)T +D) dependence on the delay parameter

and nearly matches the Thm. 5 regret of the optimal constant

λ tuning. Although this regret bound is identical to that in

Thm. 11, in practice the λt values produced by AdaHedgeD

can be orders of magnitude smaller than those of DUB,

granting additional adaptivity. We evaluate the practical

implications of these λt settings in Sec. 7.

As a final note, when ψ is bounded on U, we recommend

choosing α = supu∈U ψ(u) so that
ψ(u)
α ≤ 1. For negative

entropy regularization ψ(u) =
∑d
j=1 uj ln(uj) + ln(d) on

the simplex U = W = △d−1, this yields α = ln(d) and a

regret bound with minimax optimal
√

ln(d) dependence on

d (Cesa-Bianchi & Lugosi, 2006; Orabona & Pál, 2015).

Related work Our AdaHedgeD δt terms differ from

standard AdaHedge increments (see, e.g., Orabona, 2019,

Sec. 7.6) due to the accommodation of delay, the incorpora-

tion of optimism, and the inclusion of the final two terms in

the min. These non-standard terms are central to reducing

the impact of delay on our regret bounds. Prior and con-

current approaches to adaptive tuning under delay do not

incorporate optimism and require an explicit upper bound

on all future subgradient norms, a quantity which is often

difficult to obtain or very loose (McMahan & Streeter, 2014;

Joulani et al., 2016; Hsieh et al., 2020). Our optimistic al-

gorithms, DUB and AdaHedgeD, admit comparable regret

guarantees (Thms. 11 and 12) but require no prior knowl-

edge of future subgradients.

6. Learning to Hint with Delay

As we have seen, optimistic hints play an important role in

online learning under delay: effective hinting can counteract

the increase in regret under delay. In this section, we con-

sider the problem of choosing amongst several competing
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hinting strategies. We show that this problem can again be

treated as a delayed online learning problem. In the fol-

lowing, we will call the original online learning problem

the “base problem” and the learning-to-hint problem the

“hinting problem.”

Suppose that, at time t, we observe the hints g̃t of m differ-

ent hinters arranged into a d×m matrix Ht. Each column

of Ht is one hinter’s best estimate of the sum of missing

loss subgradients gt−D:t. Our aim is to output a sequence

of combined hints ht(ωt) , Htωt with low regret relative

to the best constant combination strategy ω ∈ Ω , △m−1

in hindsight. To achieve this using delayed online learning,

we make use of a convex loss function lt(ω) for the hint

learner that upper bounds the base learner regret.

Assumption 1 (Convex regret bound). For any hint se-

quence (ht)
T
t=1 and u ∈ Ω, the base problem admits the

regret bound RegretT (u) ≤ C0(u)+C1(u)
√
∑T
t=1 ft(ht)

for C1(u) ≥ 0 and convex functions ft independent of u.

As we detail in App. K, Assump. 1 holds for all of the

learning algorithms introduced in this paper. For example,

by Cor. 9, if the base learner is DORM, we may choose

C0(u) = 0, C1(u) =
√

‖u‖2
p

2(p−1) , and the O(D + 1) convex

function ft(ht) = ‖rt‖q‖ht −
∑t
s=t−D rs‖q ≥ bt,q .

3

For any base learner satisfying Assump. 1, we choose

lt(ω) = ft(Htω) as our hinting loss, use the tuning-free

DORM+ algorithm to output the combination weights ωt
on each round, and provide the hint ht(ωt) = Htωt to the

base learner. The following result, proved in App. J, shows

that this learning to hint strategy performs nearly as well as

the best constant hint combination strategy in restrospect.

Theorem 13 (Learning to hint regret). Suppose the base

problem satisfies Assump. 1 and the hinting problem is

solved with DORM+ hint iterates ωt, hinting losses lt(ω) =
ft(Htω), no meta-hints for the hinting problem, and q =
argminq′≥2m

2/q′(q′ − 1). Then the base problem with

hints ht(ωt) = Htωt satisfies

RegretT (u) ≤ C0(u) + C1(u)
√

infω∈Ω

∑T
t=1 ft(ht(ω))

+ C1(u)
(
(2 log2(m)− 1)( 12ξT +

∑T−1
t=1 huber(ξt, ζt))

)1/4

for ξt , 4(D + 1)
∑t
s=t−D ‖γs‖2∞, γt ∈ ∂lt(ωt),

and ζt , 4‖γt−D‖∞
∑t
s=t−D ‖γs‖∞.

To quantify the size of this regret bound, con-

sider again the DORM base learner with ft(ht) =
‖rt‖q‖ht −

∑t
s=t−D rs‖q. By Lem. 26 in App. K,

‖γt‖∞ ≤ d1/q‖Ht‖∞‖rt‖q for ‖Ht‖∞ the maximum ab-

solute entry of Ht. Each column of Ht is a sum D + 1

3The alternative choice ft(ht) =
1

2
‖ht −

∑t

s=t−D
rs‖

2
q also

bounds regret but may have size Θ((D + 1)2).

subgradient hints, so ‖Ht‖∞ is O(D + 1). Thus, for this

choice of hinter loss, the huber(ξt, ζt) term is O((D+1)3),
and the hint learner suffers only O(T 1/4(D + 1)3/4) ad-

ditional regret from learning to hint. Notably, this addi-

tive regret penalty is O(
√

(D + 1)T ) if D = O(T ) (and

o(
√

(D + 1)T ) when D = o(T )), so the learning to hint

strategy of Thm. 13 preserves minimax optimal regret rates.

Related work Rakhlin & Sridharan (2013a, Sec. 4.1)

propose and analyze a method to learn optimism strategies

for a two-step OMD base learner. Unlike Thm. 13, the

approach does not accommodate delay, and the analyzed

regret is only with respect to single hinting strategies ω ∈
{ej}j∈[m] rather than combination strategies, ω ∈ △m−1.

7. Experiments

We now apply the online learning techniques developed

in this paper to the problem of adaptive ensembling for

subseasonal forecasting. Our experiments are based on

the subseasonal forecasting data of Flaspohler et al. (2021)

that provides the forecasts of d = 6 machine learning and

physics-based models for both temperature and precipita-

tion at two forecast horizons: 3-4 weeks and 5-6 weeks. In

operational subseasonal forecasting, feedback is delayed;

models make D = 2 or 3 forecasts (depending on the fore-

cast horizon) before receiving feedback. We use delayed,

optimistic online learning to play a time-varying convex

combination of input models and compete with the best

input model over a year-long prediction period (T = 26
semimonthly dates). The loss function is the geographic

root-mean squared error (RMSE) across 514 locations in

the Western United States.

We evaluate the relative merits of the delayed online learning

techniques presented by computing yearly regret and mean

RMSE for the ensemble plays made by the online leaner

in each year from 2011-2020. Unless otherwise specified,

all online learning algorithms use the recent g hint g̃s,

which approximates each unobserved subgradient at time

t with the most recent observed subgradient gt−D−1. See

App. L for full experimental details, App. N for algorithmic

details, and App. M for extended experimental results.

Competing with the best input model The primary ben-

efit of online learning in this setting is its ability to achieve

small average regret, i.e., to perform nearly as well as the

best input model in the competitor set U without knowing

which is best in advance. We run our three delayed online

learners—DORM, DORM+, and AdaHedgeD—on all four

subseasonal prediction tasks and measure their average loss.

The average yearly RMSE for the three online learning al-

gorithms and the six input models is shown in Table 1. The

DORM+ algorithm tracks the performance of the best input

model for all tasks except Temp. 5-6w. All online learning
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A. Extended Literature Review

We review here additional prior work not detailed in the main paper.

A.1. General online learning

We recommend the monographs of Shalev-Shwartz (2012); Orabona (2019) and the textbook of Cesa-Bianchi & Lugosi

(2006) for surveys of the field of online learning and Joulani et al. (2017); McMahan (2017) for widely applicable and

modular analyses of online learning algorithms.

A.2. Online learning with optimism but without delay

Syrgkanis et al. (2015) analyzed optimistic FTRL and two-step variant of optimistic MD without delay. The work focuses

on a particular form of optimism (using the last observed subgradient as a hint) and shows improved rates of convergence to

correlated equilibria in multiplayer games. In the absence of delay, Steinhardt & Liang (2014) combined optimism and

adaptivity to obtain improvements over standard optimistic regret bounds.

A.3. Online learning with delay but without optimism

Overview Joulani et al. (2013; 2016); McMahan & Streeter (2014) provide broad reviews of progress on delayed online

learning.

Delayed stochastic optimization Recht et al. (2011); Agarwal & Duchi (2011); Nesterov (2012); Liu et al. (2014); Liu &

Wright (2015); Sra et al. (2016) studied the effects of delay on stochastic optimization but do not treat the adversarial setting

studied here.

FTRL-Prox vs. FTRL Joulani et al. (2016) analyzed the delayed feedback regret of the FTRL-Prox algorithm, which

regularizes toward the last played iterate as in online mirror descent, but did not study the standard FTRL algorithms

(sometimes called FTRL-Centered) analyzed in this work.

A.4. Self-tuned online learning without delay or optimism

In the absence of optimism and delay, de Rooij et al. (2014); Orabona & Pál (2015); Koolen et al. (2014) developed

alternative variants of FTRL algorithms that self-tune their learning rates.

A.5. Online learning without delay for climate forecasting

Monteleoni et al. (2011) applied the Learn-α online learning algorithm of Monteleoni & Jaakkola (2004) to the task of

ensembling climate models. The authors considered historical temperature data from 20 climate models and tracked the

changing sequence of which model predicts best at any given time. In this context, the algorithm used was based on a

set of generalized Hidden Markov Models, in which the identity of the current best model is the hidden variable and the

updates are derived as Bayesian updates. This work was extended to take into account the influence of regional neighboring

locations when performing updates (McQuade & Monteleoni, 2012). These initial results demonstrated the promise of

applying online learning to climate model ensembling, but both methods rely on receiving feedback without delay.

B. Proof of Thm. 3: OFTRL regret

We will prove the following more general result for optimistic adaptive FTRL (OAFTRL)

wt+1 = argminw∈W 〈g1:t + g̃t+1,w〉+ λt+1ψ(w), (OAFTRL)

from which Thm. 3 will follow with the choice λt = λ for all t ≥ 1.

Theorem 14 (OAFTRL regret). If ψ is nonnegative and (λt)t≥1 is non-decreasing, then, ∀u ∈ W, the OAFTRL iterates

wt satisfy,

RegretT (u) ≤ λTψ(u) +
∑T
t=1 δt

≤ λTψ(u) +
∑T
t=1 min

(
1
λt

huber(‖gt − g̃t‖∗, ‖gt‖∗), diam(W)min(‖gt − g̃t‖∗, ‖gt‖∗)
)
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for

δt , min(Ft+1(wt, λt)− Ft+1(w̄t, λt), 〈gt,wt − w̄t〉,
Ft+1(ŵt, λt)− Ft+1(w̄t, λt) + 〈gt,wt − ŵt〉)+ with

w̄t , argminw∈W Ft+1(w, λt), Ft+1(w, λt) , λtψ(w) + 〈g1:t,w〉, and

ŵt , argminw∈W λtψ(w) + 〈g1:t +min( ‖gt‖∗

‖g̃t−gt‖∗
, 1)(g̃t − gt),w〉.

Proof. Consider a sequence of arbitrary auxiliary subgradient hints g̃∗
1, . . . , g̃

∗
T ∈ R

d and the auxiliary OAFTRL sequence

w∗
t+1 = argminw∗∈W 〈g1:t + g̃∗

t+1,w
∗〉+ λt+1ψ(w

∗) for 0 ≤ t ≤ T with g̃∗
T+1 , 0 and λT+1 = λT . (4)

Generalizing the forward regret decomposition of Joulani et al. (2017) and the prediction drift decomposition of Joulani et al.

(2016), we will decompose the regret of our original (wt)
T
t=1 sequence into the regret of the auxiliary sequence (w∗

t )
T
t=1

and the drift between (wt)
T
t=1 and (w∗

t )
T
t=1.

For each time t, define the auxiliary optimistic objective function F̃ ∗
t (w) = Ft(w) + 〈g̃∗

t ,w〉. Fixing any u ∈ W, we have

the regret bound

RegretT (u) =
∑T
t=1 ℓt(wt)− ℓt(u) ≤

∑T
t=1〈gt,wt − u〉 (since each ℓt is convex with gt ∈ ∂ℓt(wt))

=
∑T
t=1〈gt,wt −w∗

t 〉
︸ ︷︷ ︸

drift

+
∑T
t=1〈gt,w∗

t − u〉
︸ ︷︷ ︸

auxiliary regret

.

To control the drift term we employ the following lemma, proved in App. B.1, which bounds the difference between two

OAFTRL optimizers with different losses but common regularizers.

Lemma 15 (OAFTRL difference bound). The OAFTRL and auxiliary OAFTRL iterates (4), wt and w∗
t , satisfy

‖wt −w∗
t ‖ ≤ min( 1

λt
‖g̃t − g̃∗

t ‖∗, diam(W)).

Letting a = diam(W) ∈ R ∪ {∞}, we now bound each drift term summand using the Fenchel-Young inequality for dual

norms and Lem. 15:

〈gt,wt −w∗
t 〉 ≤ ‖gt‖∗‖wt −w∗

t ‖ ≤ min
(

1
λt
‖gt‖∗‖g̃t − g̃∗

t ‖∗, a‖gt‖∗
)
.

To control the auxiliary regret, we begin by invoking the OAFTRL regret bound of Orabona (2019, proof of Thm. 7.28), the

nonnegativity of ψ, and the assumption that (λt)t≥1 is non-decreasing:

∑T
t=1〈gt,w∗

t − u〉 ≤ λT+1ψ(u)− λ1ψ(w
∗
1) +

∑T
t=1 Ft+1(w

∗
t , λt)− Ft+1(w̄t, λt) + (λt − λt+1)ψ(w

∗
t+1)

≤ λT+1ψ(u)− λ1ψ(w
∗
1) +

∑T
t=1 Ft+1(w

∗
t , λt)− Ft+1(w̄t, λt).

We next bound the summands in this expression in two ways. Since w∗
t is the minimizer of F̃ ∗

t , we may apply the

Fenchel-Young inequality for dual norms to conclude that

Ft+1(w
∗
t , λt)− Ft+1(w̄t, λt) = F̃ ∗

t (w
∗
t ) + 〈w∗

t ,gt − g̃∗
t 〉 − (F̃ ∗

t (w̄t) + 〈w̄t,gt − g̃∗
t 〉)

≤ 〈w∗
t − w̄t,gt − g̃∗

t 〉 ≤ ‖w∗
t − w̄t‖‖gt − g̃∗

t ‖∗ ≤ a‖gt − g̃∗
t ‖∗.

Moreover, by Orabona (2019, proof of Thm. 7.28) and the fact that w̄t minimizes Ft+1(·, λt) over W,

Ft+1(w
∗
t , λt)− Ft+1(w̄t, λt) ≤ ‖gt−g̃∗

t ‖2
∗

2λt
.

Our collective bounds establish that

δt(g̃
∗
t ) , Ft+1(w

∗
t , λt)− Ft+1(w̄t, λt) + 〈gt,wt −w∗

t 〉
≤ min( 1

2λt
‖gt − g̃∗

t ‖2∗, a‖gt − g̃∗
t ‖∗) + min( 1

λt
‖gt‖∗‖g̃t − g̃∗

t ‖∗, a‖gt‖∗)
≤ 1

2λt
‖gt − g̃∗

t ‖2∗ + 1
λt
‖gt‖∗‖g̃t − g̃∗

t ‖∗.
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To obtain an interpretable bound on regret, we will minimize the final expression over all convex combinations g̃∗
t of gt and

g̃t. The optimal choice is given by

ĝt = gt + c∗(g̃t − gt) for

c∗ , min( ‖gt‖∗

‖g̃t−gt‖∗
, 1) = argmin

c≤1,g̃∗
t=gt+c(g̃t−gt)

1
2λt

‖gt − g̃∗
t ‖2∗ + 1

λt
‖gt‖∗‖g̃t − g̃∗

t ‖∗

= argminc≤1
c2

2λt
‖gt − g̃t‖2∗ + 1−c

λt
‖gt‖∗‖g̃t − gt‖∗.

For this choice, we obtain the bound

(δt(ĝt))+ ≤ 1
2λt

‖gt − ĝt‖2∗ + 1
λt
‖gt‖∗‖ĝt − g̃t‖∗

=
c2
∗

2λt
‖gt − g̃t‖2∗ + 1−c∗

λt
‖gt‖∗‖gt − g̃t‖∗

= 1
2λt

min(‖gt − g̃t‖∗, ‖gt‖∗)2 + 1
λt
‖gt‖∗(‖gt − g̃t‖∗ − ‖gt‖∗)+

= 1
2λt

(‖gt − g̃t‖2∗ − (‖gt − g̃t‖∗ − ‖gt‖∗)2+)
= 1

λt
huber(‖gt − g̃t‖∗, ‖gt‖∗)

and therefore

δt = min(δt(g̃t), δt(gt), δt(ĝt))+ ≤ min( 1
λt

huber(‖gt − g̃t‖∗, ‖gt‖∗), amin(‖gt − g̃t‖∗, ‖gt‖∗)). (5)

Since g̃∗
t is arbitrary, the advertised regret bounds follow as

RegretT (u) ≤ inf g̃∗
1 ,...,g̃

∗
T∈Rd λT+1ψ(u) +

∑T
t=1 δt(g̃

∗
t )

= λT+1ψ(u) +
∑T
t=1 inf g̃∗

t∈Rd δt(g̃
∗
t )

≤ λT+1ψ(u) +
∑T
t=1 min(δt(g̃t), δt(gt), δt(ĝt))+.

B.1. Proof of Lem. 15: OAFTRL difference bound

Fix any time t, and define the optimistic objective function F̃t(w) = λtψ(w) +
∑t−1
i=1〈gi,w〉+ 〈g̃t,w〉 and the auxiliary

optimistic objective function F̃ ∗
t (w) = λtψ(w) +

∑t−1
i=1〈gi,w〉 + 〈g̃∗

t ,w〉 so that wt ∈ argminw∈W F̃t(w) and w∗
t ∈

argminw∈W F̃ ∗
t (w). We have

F̃ ∗
t (wt)− F̃ ∗

t (w
∗
t ) ≥ λt

2 ‖wt −w∗
t ‖2 by the strong convexity of F̃ ∗

t and

F̃t(w
∗
t )− F̃t(wt) ≥ λt

2 ‖wt −w∗
t ‖2 by the strong convexity of F̃t.

Summing the above inequalities and applying the Fenchel-Young inequality for dual norms, we obtain

λt‖wt −w∗
t ‖2 ≤ 〈g̃∗

t − g̃t,wt −w∗
t 〉 ≤ ‖g̃t − g̃∗

t ‖∗‖wt −w∗
t ‖,

which yields the first half of our target bound after rearrangement. The second half follows from the definition of diameter,

as ‖wt −w∗
t ‖ ≤ diam(W).

C. Proof of Thm. 4: SOOMD regret

We will prove the following more general result for adaptive SOOMD (ASOOMD)

wt+1 = argmin
w∈W

〈gt + g̃t+1 − g̃t,w〉+ λt+1Bψ(w,wt) with arbitrary w0 and g0 = g̃0 = 0 (ASOOMD)

from which Thm. 4 will follow with the choice λt = λ for all t ≥ 1.
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Theorem 16 (ASOOMD regret). Fix any λT+1 ≥ 0. If each (λt+1 − λt)ψ is proper and differentiable, λ0 , 0, and

g̃T+1 , 0, then, for all u ∈ W, the ASOOMD iterates wt satisfy

RegretT (u) ≤
∑T
t=0(λt+1 − λt)Bψ(u,wt)+

∑T
t=1 min

(
diam(W)‖gt − g̃t‖∗, 1

λt+1
huber(‖gt − g̃t‖∗, ‖gt + g̃t+1 − g̃t‖∗)

)
.

Proof. Fix any u ∈ W, instantiate the notation of Joulani et al. (2017, Sec. 7.2), and consider the choices

• r1 = λ2ψ, rt = (λt+1 − λt)ψ for t ≥ 2, so that r1:t = λt+1ψ for t ≥ 1,

• qt = q̃t + 〈g̃t+1 − g̃t, ·〉 for t ≥ 0,

• q̃0(w) = λ1Bψ(w,w0) and q̃t ≡ 0 for all t ≥ 1,

• p1 , r1 − q0 = r1 − q̃0 − 〈g̃1 − g̃0, ·〉 = λ2ψ − λ1Bψ(·,w0)− 〈g̃1 − g̃0, ·〉,

• pt , rt − qt−1 = rt − q̃t−1 − 〈g̃t − g̃t−1, ·〉 = (λt+1 − λt)ψ − 〈g̃t − g̃t−1, ·〉 for all t ≥ 2.

Since, for each t, δt = 0 and ℓt is convex, the ADA-MD regret inequality of Joulani et al. (2017, Eq. (24)) and the choice

g̃T+1 = 0 imply that

RegretT (u) =

T∑

t=1

ℓt(wt)−
T∑

t=1

ℓt(u)

≤ −
T∑

t=1

Bℓt(u,wt) +

T∑

t=0

qt(u)− qt(wt+1) +

T∑

t=1

Bpt(u,wt)

−
T∑

t=1

Br1:t(wt+1,wt) +

T∑

t=1

〈gt,wt −wt+1〉+
T∑

t=1

δt

≤ λ1(Bψ(u,w0)− Bψ(w1,w0)) +

T∑

t=0

〈g̃t+1 − g̃t,u−wt+1〉

+

T∑

t=1

(λt+1 − λt)Bψ(u,wt) +

T∑

t=1

〈gt,wt −wt+1〉 − λt+1Bψ(wt+1,wt)

=

T∑

t=0

(λt+1 − λt)Bψ(u,wt) +

T∑

t=0

〈gt − g̃t,wt −wt+1〉 − λt+1Bψ(wt+1,wt). (6)

To obtain our advertised bound, we begin with the expression (6) and invoke the 1-strong convexity of ψ and the nonnegativity

of Bλψ(w1,w0) to find

RegretT (u) ≤
∑T
t=0(λt+1 − λt)Bψ(u,wt) +

∑T
t=0〈gt − g̃t,wt −wt+1〉 − λt+1Bψ(wt+1,wt)

≤ ∑T
t=0(λt+1 − λt)Bψ(u,wt) +

∑T
t=1〈gt − g̃t,wt −wt+1〉 − λt+1

2 ‖wt −wt+1‖2. (7)

We will bound the final sum in this expression using two lemmas. The first is a bound on the difference between subsequent

ASOOMD iterates distilled from Joulani et al. (2016, proof of Prop. 2).

Lemma 17 (ASOOMD iterate bound (Joulani et al., 2016, proof of Prop. 2)). If ψ is differentiable and 1-strongly convex

with respect to ‖·‖, then the ASOOMD iterates satisfy

‖wt −wt+1‖ ≤ 1
λt+1

‖gt + g̃t+1 − g̃t‖∗.

The second, proved in App. C.1, is a general bound on 〈g,v〉 − λ
2 ‖v‖2 under a norm constraint on v.
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Lemma 18 (Norm-constrained conjugate). For any g ∈ R
d and λ, c, b > 0,

sup
v∈Rd:‖v‖≤min( c

λ ,b)

〈g,v〉 − λ
2 ‖v‖2 = 1

λ min(‖g‖∗, c, bλ)(‖g‖∗ − 1
2 min(‖g‖∗, c, bλ))

≤ min(b‖g‖∗, 1
λ min(‖g‖∗, c)(‖g‖∗ − 1

2 min(‖g‖∗, c)))
= min(b‖g‖∗, 1

2λ (‖g‖2∗ − (‖g‖∗ −min(‖g‖∗, c))2))
= min(b‖g‖∗, 1

2λ (‖g‖2∗ − (‖g‖∗ − c)2+))

≤ min( 1
2λ‖g‖2∗, 1

λc‖g‖∗, b‖g‖∗).

By Lems. 17 and 18 and the definition of a , diam(W), each summand in our regret bound (7) satisfies

〈gt − g̃t,wt −wt+1〉 − λt+1

2 ‖wt −wt+1‖2 ≤ sup
v∈Rd:‖v‖≤min( 1

λt+1
‖gt+g̃t+1−g̃t‖∗,a)

〈gt − g̃t,v〉 − λt+1

2 ‖v‖2

= min
(
a‖gt − g̃t‖∗, 1

2λt+1
(‖gt − g̃t‖2∗ − (‖gt − g̃t‖∗ − ‖gt + g̃t+1 − g̃t‖∗)2+)

)

yielding the advertised result.

C.1. Proof of Lem. 18: Norm-constrained conjugate

By the definition of the dual norm,

sup
v∈Rd:‖v‖≤min( c

λ ,b)

〈g,v〉 − λ
2 ‖v‖2 = sup

a≤min( c
λ ,b)

sup
v∈Rd:‖v‖≤a

〈g,v〉 − λ
2a

2 = sup
a≤min( c

λ ,b)

a‖g‖∗ − λ
2a

2

= 1
λ min(‖g‖∗, c, bλ)(‖g‖∗ − 1

2 min(‖g‖∗, c, bλ)) ≤ min( 1λc‖g‖∗, b‖g‖∗).

We compare to the values of less constrained optimization problems to obtain the final inequalities:

sup
a≤min( c

λ ,b)

a‖g‖∗ − λ
2a

2 ≤ sup
a≤ c

λ

a‖g‖∗ − λ
2a

2 = 1
λ min(‖g‖∗, c)(‖g‖∗ − 1

2 min(‖g‖∗, c))

≤ sup
a>0

a‖g‖∗ − λ
2a

2 = 1
λ

1
2‖g‖2∗.

D. Proof of Lem. 8: DORM is ODAFTRL and DORM + is DOOMD

Our derivations will make use of several facts about ℓp norms, summarized in the next lemma.

Lemma 19 (ℓp norm facts). For p ∈ (1,∞), ψ(w) = 1
2‖w‖2p, and any vectors w,v ∈ R

d and w̃0 ∈ R
d
+,

∇ψ(w) = ∇ 1
2‖w‖2p = sign(w)|w|p−1/‖w‖p−2

p (8)

〈w,∇ψ(w)〉 = ‖w‖2p = 2ψ(w)

ψ∗(v) = sup
w∈Rd

〈w,v〉 − ψ(w) = 1
2‖v‖

2
q for 1/q = 1− 1/p (9)

∇ψ∗(v) = sign(v)|v|q−1/‖v‖q−2
q

ψ∗
+(v) = sup

w∈R
d
+

〈w,v〉 − ψ(w) = sup
w∈Rd

〈w, (v)+〉 − ψ(w) = 1
2‖(v)+‖

2
q

∇ψ∗
+(v) = argmax

w∈R
d
+

〈w,v〉 − ψ(w) = argmin
w∈R

d
+

ψ(w)− 〈w,v〉 = (v)q−1
+ /‖(v)+‖q−2

q (10)

min
w̃∈R

d
+

Bλψ(w̃, w̃0)− 〈v, w̃〉 = λ(〈w̃0,∇ψ(w̃0)〉 − ψ(w̃0)− sup
w̃∈R

d
+

〈w̃,∇ψ(w̃0) + v/λ〉 − ψ(w̃))

= λ(〈w̃0,∇ψ(w̃0)〉 − ψ(w̃0)− ψ∗
+(∇ψ(w̃0) + v/λ))

= λ(ψ(w̃0)− ψ∗
+(∇ψ(w̃0) + v/λ))

= λ(ψ(w̃0)− 1
2‖(∇ψ(w̃0) + v/λ)+‖2q)

= λ( 12‖w̃0‖2p − 1
2‖(w̃

p−1
0 /‖w̃0‖p−2

p + v/λ)+‖2q).
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Proof. The fact (8) follows from the chain rule as

∇j
1
2‖w‖2p = 1

2∇j(‖w‖pp)2/p = 1
p (‖w‖pp)(2/p)−1∇j‖w‖pp = 1

p‖w‖2−pp ∇j

∑d
j′=1 |wj′ |p

= 1
p‖w‖2−pp p sign(wj)|wj |p−1 = sign(wj)|wj |p−1/‖w‖p−2

p .

The fact (9) follows from Lem. 18 as ‖·‖q is the dual norm of ‖·‖p.

We now prove each claim in turn.

D.1. DORM is ODAFTRL

Fix p ∈ (1, 2], λ > 0, and t ≥ 0. The ODAFTRL iterate with hint −ht+1, W , R
d
+, ψ(w̃) = 1

2‖w̃‖2p, loss subgradients

gODAFTRL
1:t−D = −r1:t−D, and regularization parameter λ takes the form

argmin
w̃∈R

d
+

λψ(w̃)− 〈w̃,ht+1 + r1:t−D〉

= argmin
w̃∈R

d
+

ψ(w̃)− 〈w̃, (ht+1 + r1:t−D)/λ〉

= ((r1:t−D + ht+1)/λ)
q−1
+ /‖((r1:t−D + ht+1)/λ)+‖q−2

q by (10)

= ((r1:t−D + ht+1)/λ)
q−1
+ ‖((r1:t−D + ht+1)/λ)

q−1
+ ‖p−2

p since (p− 1)(q − 1) = 1

= w̃t+1‖w̃t+1‖p−2
p

proving the claim.

D.2. DORM+ is DOOMD

Fix p ∈ (1, 2] and λ > 0, and let (w̃t)t≥0 denote the unnormalized iterates generated by DORM+ with hints ht, instantaneous

regrets rt, regularization parameter λ, and hyperparameter q. For p = q/(q − 1), let (w̄t)t≥0 denote the sequence generated

by DOOMD with w̄0 = 0, hints −ht, W , R
d
+, ψ(w̃) = 1

2‖w̃‖2p, loss subgradients gDOOMD
t = −rt, and regularization

parameter λ. We proceed by induction to show that, for each t, w̄t = w̃t‖w̃t‖p−2
p .

Base case By assumption, w̄0 = 0 = w̃0‖w̃0‖p−2
p , confirming the base case.

Inductive step Fix any t ≥ 0 and assume that for each s ≤ t, w̄s = w̃s‖w̃s‖p−2
p . Then, by the definition of DOOMD

and our ℓp norm facts,

w̄t+1 = argmin
w̄∈R

d
+

〈−ht+1 + ht − rt−D, w̄〉+ Bλψ(w̄, w̄t)

= argmin
w̄∈R

d
+

λ(ψ(w̄)− ψ(w̄t)− 〈w̄ − w̄t,∇ψ(w̄t)〉) + 〈−ht+1 + ht − rt−D, w̄〉

= argmin
w̄∈R

d
+

ψ(w̄)− 〈w̄,∇ψ(w̄t) + (rt−D − ht + ht+1)/λ〉

= argmin
w̄∈R

d
+

ψ(w̄)− 〈w̄, w̄p−1
t /‖w̄t‖p−2

p + (rt−D − ht + ht+1)/λ〉 by (8)

= argmin
w̄∈R

d
+

ψ(w̄)− 〈w̄, w̃p−1
t + (rt−D − ht + ht+1)/λ〉 by the inductive hypothesis

= (w̃p−1
t + (rt−D − ht + ht+1)/λ)

q−1
+ /‖(w̃p−1

t + (rt−D − ht + ht+1)/λ)+‖q−2
q by (10)

= (w̃p−1
t + (rt−D − ht + ht+1)/λ)

q−1
+ ‖(w̃p−1

t + (rt−D − ht + ht+1)/λ)
q−1
+ ‖p−2

p since (p− 1)(q − 1) = 1

= w̃t+1‖w̃t+1‖p−2
p ,

completing the inductive step.
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E. Proof of Lem. 7: DORM and DORM+ are independent of λ

We will prove the following more general result, from which the stated result follows immediately.

Lemma 20 (DORM and DORM+ are independent of λ). Consider either DORM or DORM+ plays w̃t as a function of

λ > 0, and suppose that for all time points t, the observed subgradient gt and chosen hint ht+1 only depend on λ through

(ws, λ
q−1w̃s,gs−1,hs)s≤t and (ws, λ

q−1w̃s,gs,hs)s≤t respectively. Then if λq−1w̃0 is independent of the choice of

λ > 0, then so is λq−1w̃t for all time points t. As a result, wt ∝ λq−1w̃t is also independent of the choice of λ > 0 at all

time points.

Proof. We prove each result by induction on t.

E.1. Scaled DORM iterates λq−1w̃t are independent of λ

Base case By assumption, h1 is independent of the choice of λ > 0. Hence λq−1w̃1 = (h1)
q−1
+ is independent of λ > 0,

confirming the base case.

Inductive step Fix any t ≥ 0, suppose λq−1w̃s is independent of the choice of λ > 0 for all s ≤ t, and consider

λq−1w̃t+1 = (r1:t−D + ht+1)
q−1
+ .

Since r1:t−D depends on λ only through ws and gs for s ≤ t−D, our λ dependence assumptions for (gs,hs+1)s≤t; the

fact that, for each s, ws ∝ λq−1w̃s; and our inductive hypothesis together imply that λq−1w̃t+1 is independent of λ > 0.

E.2. Scaled DORM+ iterates λq−1w̃t are independent of λ

Base case By assumption, λq−1w̃0 is independent of the choice of λ > 0, confirming the base case.

Inductive step Fix any t ≥ 0 and suppose λq−1w̃s is independent of the choice of λ > 0 for all s ≤ t. Since

(p− 1)(q − 1) = 1,

λq−1w̃t+1 = (λw̃p−1
t + rt−D − ht + ht+1)

q−1
+ = ((λq−1w̃t)

p−1 + rt−D − ht + ht+1)
q−1
+ .

Since rt−D depends on λ only through wt−D and gt−D, our λ dependence assumptions for (gs,hs+1)s≤t; the fact that, for

each s ≤ t, ws ∝ λq−1w̃s; and our inductive hypothesis together imply that λq−1w̃t+1 is independent of λ > 0.

F. Proof of Cor. 9: DORM and DORM+ regret

Fix any λ > 0 and u ∈ △d−1, consider the unnormalized DORM or DORM+ iterates w̃t, and define w̄t = w̃t‖w̃t‖p−2
p for

each t. For either algorithm, we will bound our regret in terms of the surrogate losses

ℓ̂t(w̃) , −〈rt, w̃〉 = 〈gt, w̃〉 − 〈w̃,1〉〈gt,wt〉

defined for w̃ ∈ R
d
+. Since ℓ̂t(u) = 〈gt,u−wt〉, ℓ̂t(w̄t) = 0, and each ℓt is convex, we have

RegretT (u) =
∑T
t=1 ℓt(wt)− ℓt(u) ≤

∑T
t=1〈gt,wt − u〉 =

∑T
t=1 ℓ̂t(w̄t)− ℓ̂t(u).

For DORM, Lem. 8 implies that (w̄t)t≥1 are ODFTRL iterates, so the ODFTRL regret bound (Thm. 5) and the fact that ψ is

1-strongly convex with respect to ‖·‖ =
√
p− 1‖·‖p (see Shalev-Shwartz, 2007, Lemma 17) with ‖·‖∗ = 1√

p−1
‖·‖q imply

RegretT (u) ≤ λ
2 ‖u‖2p + 1

λ(p−1)

∑T
t=1 bt,q.

Similarly, for DORM+, Lem. 8 implies that (w̄t)t≥0 are DOOMD iterates with w̄0 = 0, so the DOOMD regret bound

(Thm. 6) and the strong convexity of ψ yield

RegretT (u) ≤ Bλ
2 ‖·‖2

p
(u,0) + 1

λ(p−1)

∑T
t=1 bt,q =

λ
2 ‖u‖2p + 1

λ(p−1)

∑T
t=1 bt,q.
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Since, by Lem. 7, the choice of λ does not impact the iterate sequences played by DORM and DORM+, we may take the

infimum over λ > 0 in these regret bounds. The second advertised inequality comes from the identity 1
p−1 = q − 1 and the

norm equivalence relations ‖v‖q ≤ d1/q‖v‖∞ and ‖v‖p ≤ ‖v‖1 = 1 for v ∈ R
d, as shown in Lem. 21 below. The final

claim follows as

infq′≥2 d
2/q′(q′ − 1) = infq′≥2 2

2 log2(d)/q
′

(q′ − 1) ≤ 22 log2(d)/(2 log2(d))(2 log2(d)− 1) = 2(2 log2(d)− 1)

since d > 1.

Lemma 21 (Equivalence of p-norms). If x ∈ R
n and q > q′ ≥ 1, then ‖x‖q ≤ ‖x‖q′ ≤ n(1/q′−1/q)‖x‖q .

Proof. To show ‖x‖q ≤ ‖x‖q′ for q > q′ ≥ 1, suppose without loss of generality that ‖x‖q′ = 1. Then, ‖x‖qq =
∑n
i=1 |xi|q ≤

∑n
i=1 |xi|q

′

= ‖x‖q
′

q′ = 1. Hence ‖x‖q ≤ 1 = ‖x‖q′ .

For the inequality ‖x‖q′ ≤ n1/q
′−1/q‖x‖q , applying Hölder’s inequality yields

‖x‖q
′

q′ =
∑n
i=1 1 · |xi|q

′ ≤ (
∑n
i=1 1)

1− q′

q (
∑n
i=1 |xi|q)

q′

q = n1−
q′

q ‖x‖q′q ,

so ‖x‖q′ ≤ n1/q′−1/q‖x‖q .

G. Proof of Thm. 10: ODAFTRL regret

Since ODAFTRL is an instance of OAFTRL with g̃t+1 = ht+1−
∑t
s=t−D+1 gs, the ODAFTRL result follows immediately

from the OAFTRL regret bound, Thm. 14.

H. Proof of Thm. 11: DUB Regret

Fix any u ∈ W. By Thm. 10, ODAFTRL admits the regret bound

RegretT (u) ≤ λTψ(u) +
∑T
t=1 min( 1

λt
bt,F ,at,F ).

To control the second term in this bound, we apply the following lemma proved in App. H.1.

Lemma 22 (DUB-style tuning bound). Fix any α > 0 and any non-negative sequences (at)
T
t=1, (bt)

T
t=1. If

∆∗
t+1 , 2maxj≤t−D−1 aj−D+1:j +

√
∑t−D
i=1 a2i + 2αbi ≤ αλt+1 for each t

then

∑T
t=1 min(b2t/λt, at) ≤ ∆∗

T+D+1 ≤ αλT+D+1.

Since λT ≤ λT+D+1, the result now follows by setting at = at,F and bt = bt,F , so that

RegretT (u) ≤ λTψ(u) + αλT+D+1 ≤ (ψ(u) + α)λT+D+1.

H.1. Proof of Lem. 22: DUB-style tuning bound

We prove the claim

∆t ,
∑t
i=1 min(bi/λi, ai) ≤ ∆∗

t+D+1 ≤ αλt+D+1

by induction on t.

Base case For t ∈ [D + 1],

∑t
i=1 min(bi/λi, ai) ≤ a1:t−1 + at ≤ 2maxj≤t−1 aj−D+1:j +

√
∑t
i=1 a

2
i + 2αbi = ∆∗

t+D+1 ≤ αλt+D+1

confirming the base case.
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Inductive step Now fix any t+ 1 ≥ D + 2 and suppose that

∆i ≤ ∆∗
i+D+1 ≤ αλi+D+1

for all 1 ≤ i ≤ t. We apply this inductive hypothesis to deduce that, for each 0 ≤ i ≤ t,

∆2
i+1 −∆2

i = (∆i +min(bi+1/λi+1, ai+1))
2 −∆2

i = 2∆imin(bi+1/λi+1, ai+1) + min(bi+1/λi+1, ai+1)
2

= 2∆i−Dmin(bi+1/λi+1, ai+1) + 2(∆i −∆i−D)min(bi+1/λi+1, ai+1) + min(bi+1/λi+1, ai+1)
2

= 2∆i−Dmin(bi+1/λi+1, ai+1) + 2

i∑

j=i−D+1

min(bj/λj , aj)min(bi+1/λi+1, ai+1) + min(bi+1/λi+1, ai+1)
2

≤ 2αλi+1 min(bi+1/λi+1, ai+1) + 2ai−D+1:imin(bi+1/λi+1, ai+1) + a2i+1

≤ 2αbi+1 + a2i+1 + 2ai−D+1:imin(bi+1/λi+1, ai+1).

Now, we sum this inequality over i = 0, . . . , t, to obtain

∆2
t+1 ≤ ∑t

i=0(2αbi+1 + a2i+1) + 2
∑t
i=0 ai−D+1:imin(bi+1/λi+1, ai+1)

=
∑t+1
i=1(2αbi + a2i ) + 2

∑t+1
i=1 ai−D:i−1 min(bi/λi, ai)

≤ ∑t+1
i=1(a

2
i + 2αbi) + 2maxj≤t aj−D+1:j

∑t+1
i=1 min(bi/λi, ai)

=
∑t+1
i=1(a

2
i + 2αbi) + 2∆t+1 maxj≤t aj−D+1:j .

Solving this quadratic inequality and applying the triangle inequality, we have

∆t+1 ≤ maxj≤t aj−D+1:j +
1
2

√

(2maxj≤t aj−D+1:j)2 + 4
∑t+1
i=1 a

2
i + 2αbi

≤ 2maxj≤t aj−D+1:j +
√

∑t+1
i=1 a

2
i + 2αbi = ∆∗

t+D+2 ≤ αλt+D+2.

I. Proof of Thm. 12: AdaHedgeD Regret

Fix any u ∈ W. Since the AdaHedgeD regularization sequence (λt)t≥1 is non-decreasing, Thm. 14 gives the regret bound

RegretT (u) ≤ λTψ(u) +
∑T
t=1 δt = λTψ(u) + αλT+D+1 ≤ (ψ(u) + α)λT+D+1,

and the proof of Thm. 14 gives the upper estimate (5):

δt ≤ min
(

bt,F

λt
,at,F

)

for all t ∈ [T ]. (11)

Hence, it remains to bound λT+D+1. Since λ1 = · · · = λD+1 = 0 and α(λt+1 − λt) = δt−D for t ≥ D + 1,

αλ2T+D+1 =
∑T+D
t=1 α(λ2t+1 − λ2t ) =

∑T+D
t=D+1

(
α(λt+1 − λt)

2 + 2α(λt+1 − λt)λt
)

=
∑T
t=1

(
δ2t /α+ 2δtλt+D

)
by the definition of λt+1

=
∑T
t=1

(
δ2t /α+ 2δtλt + 2δt(λt+D − λt)

)

≤ ∑T
t=1

(
δ2t /α+ 2δtλt + 2δtmaxt∈[T ](λt+D − λt)

)

=
∑T
t=1

(
δ2t /α+ 2δtλt

)
+ 2λT+D+1 maxt∈[T ] δt−D:t−1

≤ ∑T
t=1

(
a2t,F /α+ 2bt,F

)
+ 2λT+D+1 maxt∈[T ] at−D:t−1,F by (11).

Solving the above quadratic inequality for λT+D+1 and applying the triangle inequality, we find

αλT+D+1 ≤ maxt∈[T ] at−D:t−1,F + 1
2

√

4(maxt∈[T ] at−D:t−1,F )2 + 4
∑T
t=1 a

2
t,F + 2αbt,F

≤ 2maxt∈[T ] at−D:t−1,F +
√
∑T
t=1 a

2
t,F + 2αbt,F .
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J. Proof of Thm. 13: Learning to hint regret

We begin by bounding the hinting problem regret. Since DORM+ is used for the hinting problem, the following result is an

immediate corollary of Cor. 9.

Corollary 23 (DORM+ hinting problem regret). With convex losses lt(ω) = ft(Htω) and no meta-hints, the DORM+

hinting problem iterates ωt satisfy, for each v ∈ △m−1,

HintRegretT (v) ,
∑T
t=1 lt(ωt)−

∑T
t=1 lt(v) ≤

√
m2/q(q−1)

2

∑T
t=1 βt,∞ for

βt,∞ =

{

huber(‖
∑t
s=t−D ρs‖∞, ‖ρt−D‖∞), for t < T

1
2‖

∑t
s=t−D ρs‖2∞, for t = T

where ρt , 1〈γt, ωt〉 − γt for γt ∈ ∂lt(ωt) is the instantaneous hinting problem regret.

If, in addition, q = argminq′≥2m
2/q′(q′ − 1), then HintRegretT (v) ≤

√

(2 log2(m)− 1)
∑T
t=1 βt,∞.

Our next lemma, proved in App. J.1, provides an interpretable bound for each βt,∞ term in terms of the hinting problem

subgradients (γt)t≥1.

Lemma 24 (Hinting problem subgradient regret bound). Under the notation and assumptions of Cor. 23,

βt,∞ ≤
{

huber(ξt, ζt) if t < T
1
2ξt if t = T

, for

ξt , 4(D + 1)
∑t
s=t−D ‖γs‖2∞ and

ζt , 4‖γt−D‖∞
∑t
s=t−D ‖γs‖∞.

Now fix any u ∈ W. We invoke Assump. 1, Cor. 23, and Lem. 24 in turn to bound the base problem regret

RegretT (u) =
∑T
t=1 ℓt(wt)− ℓt(u)

≤ C0(u) + C1(u)
√

∑T
t=1 ft(ht(ωt)) by Assump. 1

≤ C0(u) + C1(u)

√

infv∈V

∑T
t=1 ft(ht(v)) +

√

(2 log2(m)− 1)
∑T
t=1 βt,∞ by Cor. 23

≤ C0(u) + C1(u)

√

infv∈V

∑T
t=1 ft(ht(v)) +

√

(2 log2(m)− 1)( 12ξT +
∑T−1
t=1 huber(ξt, ζt)) by Lem. 24.

The advertised bound now follows from the triangle inequality.

J.1. Proof of Lem. 24: Hinting problem subgradient regret bound

Fix any t ∈ [T ]. The triangle inequality implies that

‖ρt‖∞ = ‖γt − 1〈ωt, γt〉‖∞ ≤ ‖γt‖∞ + |〈ωt, γt〉| ≤ 2‖γt‖∞

since ωt ∈ △m−1. We repeatedly apply this finding in conjunction with Jensen’s inequality to conclude

‖∑t
s=t−D ρs‖2∞ ≤ (D + 1)

∑t
s=t−D ‖ρs‖2∞ ≤ 4(D + 1)

∑t
s=t−D ‖γs‖2∞ and

‖ρt−D‖∞‖∑t
s=t−D ρs‖∞ ≤ ‖ρt−D‖∞

∑t
s=t−D ‖ρs‖∞ ≤ 4‖γt−D‖∞

∑t
s=t−D ‖γs‖∞.

K. Examples: Learning to Hint with DORM+ and AdaHedgeD

By Thm. 12, AdaHedgeD satisfies Assump. 1 with ft(ht) = ‖rt‖∗‖ht −
∑t
s=t−D rs‖∗ ≥ a2

t,F+2αbt,F

diam(W)2+2α , C1(u) =
√

diam(W)2 + 2α, and C0(u) = 2 diam(W)maxt∈[T ]

∑t−1
s=t−D ‖gs‖∗.
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By Cor. 9, DORM+ satisfies Assump. 1 with ft(h) = ‖rt−D + ht+1 − ht‖q‖h−∑t
s=t−D rs‖q , C0(u) = 0, andC1(u) =

√
‖u‖2

p

2(p−1) .

These choices give rise to the hinting losses

lDORM+
t (ω) = ‖rt−D + ht+1 − ht‖q‖Htω −∑t

s=t−D rs‖q and (12)

lAdaHedgeD
t (ω) = ‖gt‖q‖Htω −∑t

s=t−D gs‖q when ‖·‖∗ = ‖·‖q for q ∈ [1,∞].

The following lemma, proved in App. K.1, identifies subgradients of these hinting losses.

Lemma 25 (Hinting loss subgradient). If lt(ω) = ‖ḡt‖q‖Htω − vt‖q for some ḡt,vt ∈ R
d and Ht ∈ R

d×m, then

γt =

{ ‖ḡt‖q

‖Htω−vt‖q−1
q

H⊤
t |Htω − vt|q−1 sign(Htω − vt) if q <∞

‖ḡt‖∞ sign(µ)H⊤
t ek if q = ∞

∈ ∂lt(ω) (13)

for k = argmaxj∈[d](Htω − vt)j and µ = maxj∈[d](Htω − vt)j .

Our next lemma, proved in App. K.2, bounds the ∞-norm of this hinting loss subgradient in terms of the base problem

subgradients.

Lemma 26 (Hinting loss subgradient bound). Under the assumptions and notation of Lem. 25, the subgradient γt satisfies

‖γt‖∞ ≤ d1/q‖ḡt‖q‖Ht‖∞ for ‖Ht‖∞ the maximum absolute entry of Ht.

K.1. Proof of Lem. 25: Hinting loss subgradient

The result follows immediately from the chain rule and the following lemma.

Lemma 27 (Subgradients of p-norms). Suppose w ∈ R
d and k ∈ argmaxj∈[d] |wj |. Then

∂‖w‖p ∋







|w|p−1

‖w‖p−1
p

sign(w) if ‖w‖p 6= 0, p ∈ [1,∞)

ek sign(wk) if ‖w‖p 6= 0, p = ∞
0 if ‖w‖p = 0

.

Proof. Since 0 is a minimizer of ‖·‖p, we have ‖u‖p ≥ ‖0‖p + 〈0,u− 0〉 for any u ∈ R
d and hence 0 ∈ ∂‖0‖p.

For p ∈ [1,∞), by the chain rule, if ‖w‖p 6= 0,

∂j‖w‖p = ∂j
(∑n

k=1 |wk|p
)1/p

= 1
p

(∑n
k=1 |wk|p

)(1/p)−1
p|wj |p−1 sign(wj)

=
((∑n

k=1 |wk|p
)1/p

)−(p−1)

|wj |p−1 sign(wj)

=
(

|wj |
‖w‖p

)p−1

sign(wj).

For p = ∞, we have that ‖w‖∞ = maxj∈[n] |wj |. By the Danskin-Bertsekas Theorem (Danskin, 2012) for subdifferentials,

∂‖w‖∞ = conv{∪∂|wj | s.t. |wj | = ‖w‖∞} = conv{∪ sign(wj)ej s.t. |wj | = ‖w‖∞}, where conv is the

convex hull operation.

K.2. Proof of Lem. 26: Hinting loss subgradient bound

If q ∈ [1,∞), we have

‖γt‖∞ =

∥
∥
∥
∥

‖ḡt‖q

‖Htω−
∑t

s=t−D gs‖q−1
q

H⊤
t |Htω −∑t

s=t−D gs|q−1 sign(Htω −∑t
s=t−D gs)

∥
∥
∥
∥
∞

≤ ‖ḡt‖q maxj∈[d] ‖Htej‖q

‖Htω−
∑t

s=t−D gs‖q−1
q

‖Htω −∑t
s=t−D gs‖q−1

q by Hölder’s inequality for (q, p)

≤ d1/q‖ḡt‖q‖Ht‖∞ by Lem. 21.
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If q = ∞, we have

‖γt‖∞ =
∥
∥‖ḡt‖∞ sign(µ)H⊤

t ek
∥
∥
∞ = I[µ 6= 0]‖ḡt‖∞‖Ht‖∞ ≤ d1/q‖ḡt‖∞‖Ht‖∞.

L. Experiment Details

L.1. Subseasonal Forecasting Application

We apply the online learning techniques developed in this paper to the problem of adaptive ensembling for subseasonal

weather forecasting. Subseasonal forecasting is the problem predicting meteorological variables, often temperature and

precipitation, 2-6 weeks in advance. These mid-range forecasts are critical for managing water resources and mitigating

wildfires, droughts, floods, and other extreme weather events (Hwang et al., 2019). However, the subseasonal forecasting

task is notoriously difficult due to the joint influences of short-term initial conditions and long-term boundary conditions

(White et al., 2017).

To improve subseasonal weather forecasting capabilities, the US Department of Reclamation launched the Sub-Seasonal

Climate Forecast Rodeo competition (Nowak et al., 2020), a yearlong real-time forecasting competition for the Western

United States. Our experiments are based on Flaspohler et al. (2021), a snapshot of public subseasonal model forecasts

including both physics-based and machine learning models. These models were developed for the subseasonal forecasting

challenge and make semimonthly forecasts for the contest period (19 October 2019 – 29 September 2020).

To expand our evaluation beyond the subseasonal forecasting competition, we used the forecasts in Flaspohler et al. (2021)

for analogous yearlong periods (26 semi-monthly dates starting from the last Wednesday in October) beginning in Oct. 2010

and ending in Sep. 2020. Throughout, we refer to the yearlong period beginning in Oct. 2010 – Sep. 2011 as the 2011 year

and so on for each subsequent year. For each forecast date t, the models in Flaspohler et al. (2021) were trained only on data

available at time t and model hyper-parameters were tuned to optimize average RMSE loss on the 3-year period preceding

the forecast date t. For a few of the forecast dates, one or more models had missing forecasts; only dates for which all

models have forecasts were used in evaluation.

L.2. Problem Definition

Denote the set of d = 6 input models {M1, . . .Md} with labels: llr (Model1), multillr (Model2),

tuned catboost (Model3), tuned cfsv2 (Model4), tuned doy (Model5) and tuned salient fri (Model6).

On each semimonthly forecast date, each model Mi makes a prediction for each of two meteorological variables (cumulative

precipitation and average temperature over 14 days) and two forecasting horizons (3-4 weeks and 5-6 weeks). For the 3-4

week and 5-6 horizons respectively, the forecaster experiences a delay of D = 2 and D = 3 forecasts. Each model makes a

total of T = 26 semimonthly forecasts for these four tasks.

At each time t, each input model Mi produces a prediction at G = 514 gridpoints in the Western United States: xct,i ∈
R
G = Mi(t) for task c at time t. Let Xc

t ∈ R
G×d be the matrix containing each input model’s predictions as columns. The

true meterological outcome for task c is yct ∈ R
G. As online learning is performed for each task separately, we drop the task

superscript c in the following.

At each timestep, the online learner makes a forecast prediction ŷt by playing wt ∈ W = △d−1, corresponding to a convex

combination of the individual models: ŷt = Xtwt. The learner then incurs a loss for the play wt according to the root

mean squared (RMSE) error over the geography of interest:

ℓt(wt) =
1√
G
‖yt −Xtwt‖2,

∂ℓt(wt) ∋ gt =

{
X⊤

t (Xtwt−yt)√
G‖Xtwt−yt‖2

if Xtwt − yt 6= 0

0 if Xtwt − yt = 0

Our objective for the subseasonal forecasting application is to produce an adaptive ensemble forecast that competes with the

best input model over the yearlong period. Hence, in our evaluation, we take the competitor set to be the set of individual

models U = {ei : i ∈ [d]}.
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by Cor. 29. If λt > 0,

δt = min(δ
(1)
t , δ

(2)
t , δ

(3)
t )+ for

δ
(1)
t = Ft+1(wt, λt)− Ft+1(w̄t, λt)

= λt ln(
∑

j∈[d] wt,j exp((ht,j − gt−D:t,j)/λt)) + 〈gt−D:t − ht,wt〉
= λt ln(

∑

j∈[d] wt,j exp((ht,j − gt−D:t,j − c∗)/λt)) + 〈gt−D:t − ht,wt〉+ c∗,

δ
(2)
t = 〈gt,wt − w̄t〉, and

δ
(3)
t = Ft+1(ŵt, λt)− Ft+1(w̄t, λt) + 〈gt,wt − ŵt〉

= λt ln(
∑

j∈[d] ŵt,j exp((ĥt,j − gt−D:t,j)/λt)) + 〈gt−D:t − ĥt, ŵt〉+ 〈gt,wt − ŵt〉
= λt ln(

∑

j∈[d] ŵt,j exp((ĥt,j − gt−D:t,j − ĉ∗)/λt)) + 〈gt−D:t − ĥt, ŵt〉+ ĉ∗ + 〈gt,wt − ŵt〉.

If λt = 0,

δt = min(δ
(1)
t , δ

(2)
t , δ

(3)
t )+ for

δ
(1)
t = 〈g1:t,wt〉 −minj∈[d] g1:t,j ,

δ
(2)
t = 〈gt,wt − w̄t〉, and

δ
(3)
t = 〈g1:t, ŵt〉 −minj∈[d] g1:t,j + 〈gt,wt − ŵt〉.

Leveraging these results, we present the pseudocode for the AdaHedgeD and DUB instantiations of ODAFTRL in Algo-

rithm 1.

N.2. DORM and DORM+

The DORM and DORM+ algorithms presented in the experiments are implementations of ODAFTRL and DOOMD

respectively that play iterates in W , △d−1 using the default value λ = 1. Both algorithms use a p-norm regularizer

ψ = 1
2‖·‖2p, which is 1-strongly convex with respect to ‖·‖ =

√
p− 1‖·‖p (see Shalev-Shwartz, 2007, Lemma 17) with

‖·‖∗ = 1√
p−1

‖·‖q . For the paper experiments, we choose the optimal value q = infq′≥2 d
2/q′(q′− 1) to obtain ln(d) scaling

in the algorithm regret; for d = 6, p = q = 2. The update equations for each algorithm are given in the main text by DORM

and DORM+ respectively. The optimistic hinters provide delayed gradient hints g̃t, which are then used to compute regret

gradient hints r̃t, where r̃t = 〈g̃t,wt〉 − g̃t and ht =
∑t−1
s=t−D r̃s + 〈g̃t,wt−1〉 − g̃t.

N.3. Adaptive Hinting

For the adaptive hinting experiments, we use the DORM+ as both the base and hint learner. For the hint learner with DORM

base algorithm, the hint loss function is given by (12) with q = 2. The plays of the online hinter ωt are used to generate the

hints ht for the base algorithm using the hint matrix Ht ∈ R
d×m. The j-th column of Ht contains hinter j’s predictions for

the cumulative missing regret subgradients rt−D:t. The final hint for the base learner is ht = Htωt. Psuedo-code for the

adaptive hinter is given in Algorithm 2.

N.4. Proof of Lem. 28: Negative entropy properties

The expression of the Fenchel conjugate for λ > 0 is derived by solving an appropriate constrained convex optimization

problem for w = △d−1, as shown in Orabona (2019, Section 6.6). The value of w∗(θ, λ) ∈ ∂(λψ)∗W(θ) uses the properties

of the Fenchel conjugate (Rockafellar, 1970; Orabona, 2019, Theorem 5.5) and is shown in Orabona (2019, Theorem 6.6).
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Algorithm 1 ODAFTRL with W = △d−1, ψ(w) =
∑d
j=1 wj lnwj + ln(d), delay D ≥ 0, and tuning strategy tuning

1: Parameter α = supu∈△d−1
ψ(u) = ln(d)

2: Initial regularization weight: λ0 = 0
3: if tuning is DUB then

4: Initial regularization sum: ∆0 = 0
5: Initial maximum: amax = 0
6: end if

7: Initial subgradient sum: g1:1 = 0 ∈ R
d

8: Dummy losses and iterates: g−D = · · · = g0 = 0 ∈ R
d, w−D = · · · = w0 = 0 ∈ R

d

9: for t = 1, . . . , T do

10: Receive hint ht ∈ R
d

11: Output wt = argminw∈W Ft−D(w, λt) + 〈ht,w〉 as in Cor. 29

12: Receive gt−D ∈ R
d and pay 〈gt−D,wt−D〉

13: Update subgradient sum g1:t−D = g1:t−D−1 + gt−D
14: if tuning is AdaHedgeD then

15: Compute the auxiliary play w̄t−D = argminw∈W Ft−D+1(w, λt−D) as in Cor. 29

16: Compute the auxiliary regret term δ
(1)
t−D = Ft−D+1(wt−D, λt−D)− Ft−D+1(w̄t−D, λt−D) as in Prop. 30

17: Compute the drift term δ
(2)
t−D = 〈gt−D,wt−D − w̄t−D〉

18: Compute the auxiliary hint (14) ĥt−D , gt−2D:t−D +min( ‖gt−D‖∗

‖ht−D−gt−2D:t−D‖∗
, 1)(ht−D − gt−2D:t−D)

19: Compute the auxiliary play ŵt−D = argminw∈W Ft−D+1(w, λt−D) + 〈ĥt−D − gt−2D:t−D,w〉 as in Cor. 29

20: Compute the regret term δ
(3)
t−D = Ft−D+1(ŵt−D, λt−D)− Ft−D+1(w̄t−D, λt−D) + 〈gt−D,wt−D − ŵt−D〉 as

in Prop. 30

21: Update λt+1 = λt +
1
α min(δ

(1)
t−D, δ

(2)
t−D, δ

(3)
t−D)+ as in (3)

22: else if tuning is DUB then

23: Compute at−D,F = 2min
(
‖gt−D‖∞, ‖ht−D −∑t−D

s=t−2D gs‖∞
)

as in (2)

24: Compute bt−D,F = 1
2‖ht−D −

∑t−D
s=t−2D gs‖2∞ − 1

2 (‖ht−D −
∑t−D
s=t−2D gs‖∞ − ‖gt−D‖∞)2+ as in (2)

25: Update ∆t+1 = ∆t + a2t−D,F + 2αbt−D,F
26: Update maximum amax = max(amax,at−2D:t−D−1,F )
27: Update λt+1 = 1

α (2a
max +

√
∆t+1) as in DUB

28: end if

29: end for

N.5. Proof of Prop. 30: AdaHedgeD δt

First suppose λt > 0. The first term in the min of AdaHedgeD’s δt setting is derived as follows:

δ
(1)
t , Ft+1(wt, λt)− Ft+1(w̄t, λt) by definition (3)

= Ft−D(wt, λt) + 〈ht,wt〉+ 〈gt−D:t − ht,wt〉 − infw∈W Ft+1(w, λt) by definition of w̄t

= Ft−D(wt, λt) + 〈ht,wt〉+ 〈gt−D:t − ht,wt〉+ λtψ
∗
W(−g1:t/λt) by Cor. 29

= λtψ
∗
W(−g1:t/λt)− λtψ

∗
W((−ht − g1:t−D−1)/λt) + 〈gt−D:t − ht,wt〉

because wt ∈ argminw∈W Ft−D(wt, λt) + 〈ht,wt〉
= λt(ln(

∑d
j=1 exp(−g1:t,j/λt))− λt(ln(

∑d
j=1 exp((−g1:t−D−1,j − ht,j)/λt)) + 〈gt−D:t − ht,wt〉 by Lem. 28

= λt ln

(
∑d
j=1

exp(−g1:t,j/λt)∑d
j=1 exp((−g1:t−D−1,j−ht,j)/λt)

)

+ 〈gt−D:t − ht,wt〉

= λt ln

(
∑d
j=1

exp((−g1:t−D−1,j−ht,j)/λt) exp((ht,j−gt−D:t,j)/λt)∑d
j=1 exp((−g1:t−D−1,j−ht,j)/λt)

)

+ 〈gt−D:t − ht,wt〉

= λt ln
(
∑d
j=1 wt,j exp((ht,j − gt−D:t,j)/λt)

)

+ 〈gt−D:t − ht,wt〉 by the expression for wt in Cor. 29.

The expression for the third term in the min of AdaHedgeD’s δt setting follows from identical reasoning.
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Algorithm 2 Learning to hint with DORM+ (q=2) hint learner, DORM+ base learner, and delay D ≥ 0

1: Subgradient vector: g−D, · · ·g0 = 0 ∈ R
d

2: Meta-subgradient vector: γ−D, · · · γ0 = 0 ∈ R
m

3: Initial instantaneous regret: r−D = 0 ∈ R
d

4: Initial instantaneous meta-regret: ρ−D = 0 ∈ R
m

5: Initial hint h0 = 0 ∈ R
d

6: Initial orthant meta-vector: ω̃0 = 0 ∈ R
m

7: for t = 1, . . . , T do

8: // Update online hinter using DORM+ with q = 2
9: Find optimal unnormalized hint combination vector ω̃t = max(0, ω̃t−1 + ρt−D−1)

10: Normalize: ωt =

{

1/m if ω̃t = 0

ω̃t/〈1, ω̃t〉 otherwise

11: Receive hint matrix: Ht ∈ R
d×m in which each column is a hint for

∑t
s=t−D rs

12: Output hint ht = Htωt
13: // Update DORM+ base learner and get next play

14: Output wt = DORM+(gt−D−1,ht)
15: Receive gt−D ∈ R

d and pay 〈gt−D,wt−D〉
16: Compute instantaneous regret rt−D = 1〈gt−D,wt−D〉 − gt−D
17: Compute hint meta-subgradient γt−D ∈ ∂lt−D(ωt−D) ∈ R

m as in (13)

18: Compute instantaneous hint regret ρt−D = 1〈γt−D, ωt−D〉 − γt−D
19: end for

Now suppose λt = 0. We have

δ
(1)
t , Ft+1(wt, λt)− Ft+1(w̄t, λt) by definition (3)

= 〈g1:t,wt〉 − infw∈W Ft+1(w, λt) by definition of w̄t

= 〈g1:t,wt〉 −minj∈[d] g1:t,j by Cor. 29.

Identical reasoning yields the advertised expression for the third term.

O. Extension to Variable and Unbounded Delays

In this section we detail how our main results generalize to the case of variable and potentially unbounded delays. For each

time t, we define last(t) as the largest index s for which g1:s is observable at time t (that is, available for constructing wt)

and first(t) as the first time s at which g1:t is observable at time s (that is, available for constructing ws).

O.1. Regret of DOOMD with variable delays

Consider the DOOMD variable-delay generalization

wt+1 = argmin
w∈W

〈glast(t)+1:last(t+1) + ht+1 − ht,w〉+ Bλψ(w,wt) with h0 , 0 and arbitrary w0.

(DOOMD with variable delays)

We first note that DOOMD with variable delays is an instance of SOOMD respectively with a “bad” choice of optimistic

hint g̃t+1 that deletes the unobserved loss subgradients glast(t+1)+1:t.

Lemma 31 (DOOMD with variable delays is SOOMD with a bad hint). DOOMD with variable delays is SOOMD with

g̃t+1 = g̃t + glast(t)+1:last(t+1) − gt + ht+1 − ht = ht+1 +
∑t
s=1 glast(s)+1:last(s+1) − gs. = ht+1 − glast(t+1)+1:t.

The following result now follows immediately from Thm. 4 and Lem. 31.

Theorem 32 (Regret of DOOMD with variable delays). If ψ is differentiable and hT+1 , glast(T+1)+1:T , then, for all
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u ∈ W, the DOOMD with variable delays iterates wt satisfy

RegretT (u) ≤ Bλψ(u,w0) +
1
λ

∑T
t=1 b

2
t,O, for

b2
t,O , huber(‖ht −

∑t
s=last(t)+1 gs‖∗, ‖glast(t)+1:last(t+1) + ht+1 − ht‖∗).

O.2. Regret of ODAFTRL with variable delays

Consider the ODAFTRL variable-delay generalization

wt+1 = argmin
w∈W

〈g1:last(t+1) + ht+1,w〉+ λt+1ψ(w). (ODAFTRL with variable delays)

Since ODAFTRL with variable delays is an instance of OAFTRL with g̃t+1 = ht+1 −
∑t
s=last(t+1)+1 gs, the following

result follows immediately from the OAFTRL regret bound, Thm. 14.

Theorem 33 (Regret of ODAFTRL with variable delays). If ψ is nonnegative and λt is non-decreasing in t, then, ∀u ∈ W,

the ODAFTRL with variable delays iterates wt satisfy

RegretT (u) ≤ λTψ(u) +
∑T
t=1 min(

bt,F

λt
,at,F ) with

bt,F , huber(‖ht −
∑t
s=last(t)+1 gs‖∗, ‖gt‖∗) and (15)

at,F , diam(W)min
(
‖ht −

∑t
s=last(t)+1 gs‖, ‖gt‖∗

)
.

O.3. Regret of DUB with variable delays

Consider the DUB variable-delay generalization

αλt+1 = 2 max
j≤last(t+1)−1

alast(j+1)+1:j,F +
√
∑last(t+1)
i=1 a2i,F + 2αbi,F . (DUB with variable delays)

Theorem 34 (Regret of DUB with variable delays). Fix α > 0, and, for at,F ,bt,F as in (15), consider the DUB with

variable delays sequence. If ψ is nonnegative, then, for all u ∈ W, the ODAFTRL with variable delays iterates wt satisfy

RegretT (u) ≤
(ψ(u)

α + 1
)

(
2maxt∈[T ] alast(t)+1:t−1,F +

√
∑T
t=1 a

2
t,F + 2αbt,F

)

Proof. Fix any u ∈ W. By Thm. 33, ODAFTRL with variable delays admits the regret bound

RegretT (u) ≤ λTψ(u) +
∑T
t=1 min( 1

λt
bt,F ,at,F ).

To control the second term in this bound, we apply the following lemma proved in App. H.1.

Lemma 35 (DUB with variable delays-style tuning bound). Fix any α > 0 and any non-negative sequences (at)
T
t=1,

(bt)
T
t=1. If (λt)t≥1 is non-decreasing and

∆∗
t+1 , 2maxj≤last(t+1)−1 alast(j+1)+1:j +

√
∑last(t+1)
i=1 a2i + 2αbi ≤ αλt+1 for each t

then

∑T
t=1 min(bt/λt, at) ≤ ∆∗

first(T ) ≤ αλfirst(T ).

Since T ≤ first(T ), λT ≤ λfirst(T ), and last(first(T )) = T , the result now follows by setting at = at,F and bt = bt,F , so

that

RegretT (u) ≤ λTψ(u) + αλfirst(T ) ≤ (ψ(u) + α)λfirst(T ).
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O.4. Proof of Lem. 35: DUB with variable delays-style tuning bound

We prove the claim

∆t ,
∑t
i=1 min(bi/λi, ai) ≤ ∆∗

first(t) ≤ αλfirst(t)

by induction on t.

Base case For t = 1, since last(first(t)) ≥ t, we have

∑t
i=1 min(bi/λi, ai) ≤ a1 ≤ 2maxj≤t−1 alast(j+1)+1:j +

√
∑t
i=1 a

2
i + 2αbi

≤ 2maxj≤last(first(t))−1 alast(j+1)+1:j +

√
∑last(first(t))
i=1 a2i + 2αbi = ∆∗

first(t) ≤ αλfirst(t)

confirming the base case.

Inductive step Now fix any t+ 1 ≥ 2 and suppose that

∆i ≤ ∆∗
first(i) ≤ αλfirst(i)

for all 1 ≤ i ≤ t. Since first(last(i+1)) ≤ i+1 and λs is non-decreasing in s, we apply this inductive hypothesis to deduce

that, for each 0 ≤ i ≤ t,

∆2
i+1 −∆2

i = (∆i +min(bi+1/λi+1, ai+1))
2 −∆2

i = 2∆imin(bi+1/λi+1, ai+1) + min(bi+1/λi+1, ai+1)
2

= 2∆last(i+1) min(bi+1/λi+1, ai+1) + 2(∆i −∆last(i+1))min(bi+1/λi+1, ai+1) + min(bi+1/λi+1, ai+1)
2

= 2∆last(i+1) min(bi+1/λi+1, ai+1) + 2

i∑

j=last(i+1)+1

min(bj/λj , aj)min(bi+1/λi+1, ai+1) + min(bi+1/λi+1, ai+1)
2

≤ 2αλfirst(last(i+1)) min(bi+1/λi+1, ai+1) + 2alast(i+1)+1:imin(bi+1/λi+1, ai+1) + a2i+1

≤ 2αλi+1 min(bi+1/λi+1, ai+1) + 2alast(i+1)+1:imin(bi+1/λi+1, ai+1) + a2i+1

≤ 2αbi+1 + a2i+1 + 2alast(i+1)+1:imin(bi+1/λi+1, ai+1).

Now, we sum this inequality over i = 0, . . . , t, to obtain

∆2
t+1 ≤

∑t
i=0(2αbi+1 + a2i+1) + 2

∑t
i=0 alast(i+1)+1:imin(bi+1/λi+1, ai+1)

=
∑t+1
i=1(2αbi + a2i ) + 2

∑t+1
i=1 alast(i+1):i−1 min(bi/λi, ai)

≤
∑t+1
i=1(a

2
i + 2αbi) + 2maxj≤t alast(j+1)+1:j

∑t+1
i=1 min(bi/λi, ai)

=
∑t+1
i=1(a

2
i + 2αbi) + 2∆t+1 maxj≤t alast(j+1)+1:j .

We now solve this quadratic inequality, apply the triangle inequality, and invoke the relation last(first(t+ 1)) ≥ t+ 1 to

conclude that

∆t+1 ≤ maxj≤t alast(j+1)+1:j +
1
2

√

(2maxj≤t alast(j+1)+1:j)2 + 4
∑t+1
i=1 a

2
i + 2αbi

≤ 2maxj≤t alast(j+1)+1:j +
√
∑t+1
i=1 a

2
i + 2αbi

≤ 2maxj≤last(first(t+1))−1 alast(j+1)+1:j +

√
∑last(first(t+1))
i=1 a2i + 2αbi = ∆∗

first(t+1) ≤ αλfirst(t+1).

O.5. Regret of AdaHedgeD with variable delays

Consider the AdaHedgeD variable-delay generalization

λt+1 = 1
α

∑last(t+1)
s=1 δs for δt defined in (3). (AdaHedgeD with variable delays)
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Theorem 36 (Regret of AdaHedgeD with variable delays). Fix α > 0, and consider the AdaHedgeD with variable delays

sequence. If ψ is nonnegative, then, for all u ∈ W, the ODAFTRL with variable delays iterates satisfy

RegretT (u) ≤
(ψ(u)

α + 1
)

(
2maxt∈[T ] alast(t+1)+1:t,F +

√
∑T
t=1 a

2
t,F + 2αbt,F

)
.

Proof. Fix any u ∈ W, and for each t, define λ′t+1 = 1
α

∑t
s=1 δs so that α(λ′t+1 − λ′t) = δt. Since the AdaHedgeD with

variable delays regularization sequence (λt)t≥1 is non-decreasing, last(T ) ≤ T , and hence λT ≤ λ′T+1, Thm. 14 gives the

regret bound

RegretT (u) ≤ λTψ(u) +
∑T
t=1 δt ≤ λTψ(u) + αλ′T+1 ≤ (ψ(u) + α)λ′T+1

and the proof of Thm. 14 gives the upper estimate (5):

δt ≤ min
(

bt,F

λt
,at,F

)

for all t ∈ [T ]. (16)

Hence, it remains to bound λ′T+1. We have

αλ′T+1
2
=

∑T
t=1 α(λ

′
t+1

2 − λ′t
2
) =

∑T
t=1

(
α(λ′t+1 − λ′t)

2 + 2α(λ′t+1 − λ′t)λ
′
t

)

=
∑T
t=1

(
δ2t /α+ 2δtλ

′
t

)
by the definition of λ′t+1

=
∑T
t=1

(
δ2t /α+ 2δtλt + 2δt(λ

′
t − λt)

)

≤ ∑T
t=1

(
δ2t /α+ 2δtλt + 2δtmaxt∈[T ](λ

′
t − λt)

)

=
∑T
t=1

(
δ2t /α+ 2δtλt

)
+ 2αλ′T+1 maxt∈[T ](λ

′
t − λt)

=
∑T
t=1

(
δ2t /α+ 2δtλt

)
+ 2λ′T+1 maxt∈[T ] δlast(t+1)+1:t

≤ ∑T
t=1

(
a2t,F /α+ 2bt,F

)
+ 2λ′T+1 maxt∈[T ] alast(t+1)+1:t,F by (16).

Solving the above quadratic inequality for λ′T+1 and applying the triangle inequality, we find

αλ′T+1 ≤ maxt∈[T ] alast(t+1)+1:t,F + 1
2

√

4(maxt∈[T ] alast(t+1)+1:t,F )2 + 4
∑T
t=1 a

2
t,F + 2αbt,F

≤ 2maxt∈[T ] alast(t+1)+1:t,F +
√
∑T
t=1 a

2
t,F + 2αbt,F .
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