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ABSTRACT
Functional electrical stimulation (FES) is a potential tech-

nique for reanimating paralyzed muscles post neurological in-
jury/disease. Several technical challenges including difficulty
in measuring and compensating for delayed muscle activation
levels inhibit its satisfactory control performance. In this pa-
per, an ultrasound (US) imaging approach is proposed to mea-
sure delayed muscle activation levels under the implementation
of FES. Due to low sampling rates of US imaging, a sampled-
data observer (SDO) is designed to estimate the muscle acti-
vation in a continuous manner. The SDO is combined with
continuous-time dynamic surface control (DSC) approach that
compensates for the electromechanical delay (EMD) in the tib-
ialis anterior (TA) activation dynamics. The stability analysis
based on the Lyapunov-Krasovskii function proves that the SDO-
based DSC plus delay compensation (SDO-DSC-DC) approach
achieves semi-global uniformly ultimately bounded (SGUUB)
tracking performance. Simulation results on an ankle dorsiflex-
ion neuromusculoskeletal system show the root mean square er-
ror (RMSE) of desired trajectory tracking is reduced by 19.77 %
by using the proposed SDO-DSC-DC compared to the DSC-DC
without the SDO. The findings provide potentials for rehabilita-
tive devices, like powered exoskeleton and FES, to assist or en-
hance human limb movement based on the corresponding muscle
activities in real-time.

Keywords: Functional electrical stimulation, Sampled-data

observer, Dynamic surface control, Ankle dorsiflexion, Ultra-

sound imaging.

1. INTRODUCTION
Ankle dorsiflexion has a critical role in both human balance

and walking [1,2]. Therefore, a weakened function of ankle dor-

siflexion impairs gait of affected persons. Drop foot is a typical

symptom of weakened ankle dorsiflexion after cerebral vascu-

lar accidents and due to neurological disorders such as multiple

sclerosis [3, 4]. Affected persons are unable to exhibit normal

foot ground clearance during the swing phase, resulting in un-

natural steppage gait to avoid tripping/falls [5]. To correct drop

foot, functional electrical stimulation (FES), which is an artificial

technique to apply electrical potentials across skeletal muscles,

can be applied on the tibialis anterior (TA) muscle. Since the

earlier demonstration of FES to correct drop foot by Kantrowitz

et al. [6] and Liberson et al. [7], recent studies [8, 9] have started

its efficacy on a larger clinical population. Typically the TA mus-

cle is artificially activated during the swing phase using discrete

sensors that either detect heel contact or leg inclination [8]. The

applied stimulation is fixed in amplitude or used a fixed pattern,

e.g., trapezoid shape [10]. Although these studies implement

event triggered control, their inability to modulate stimulation

amplitude is a major drawback, given the nonlinear and time-

varying nature of FES.

Closed-loop FES control can provide robust performance

and recreate precise and accurate functional movements, e.g.,

walking [11, 12]. However, electromechanical delay (EMD) im-

poses a major challenge in designing closed-loop FES control.

To address EMD, nonlinear delay compensation (DC) control

methods have recently been proposed [13–15]. However, these
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control methods were designed by considering only the second-

order musculoskeletal dynamics, thereby neglecting the muscle

activation dynamics. In [16], to account for the EMD and activa-

tion dynamics, a proportional-derivative (PD) controller using a

dynamic surface control (DSC) error structure along with a DC

term was developed. However, the control design was based on

the assumption that the muscle activation variable is measurable

in real-time. To address the hard-to-measure muscle activation

dynamics, the authors then proposed a model-based estimator to

predict the muscle activation levels [17]. The model-based esti-

mator was parameterized by using off-line system identification

[18] before performing the controller in tracking experiments,

and there was no muscle physiological state feedback during the

experiments.

Motivation exists to use direct measurement of FES-induced

muscle activation and thus enable FES control based on a more

accurate (third-order) musculoskeletal dynamics. Surface elec-

tromyography (sEMG) can used to represent muscle activation

[19], but due to the presence of stimulation artifacts [20] and

noise interference, sEMG is an unreliable sensing technique for

measuring muscle activation. Recently, ultrasound (US) imag-

ing has been proposed as an alternative non-invasive technology

to directly visualize skeletal muscle contractility. For example,

Zhang et al. [21] combined sEMG signal-induced and US imag-

ing structural features-induced muscle activation levels to predict

volitional isometric ankle dorsiflexion effort based on a modi-

fied Hill-type neuromuscular model. In [22], an adaptive speckle

tracking algorithm to detect the quadriceps contraction strain by

using US imaging was proposed to quantitatively evaluate mus-

cle fatigue induced by FES. Compared to sEMG, the structural

and functional features of US imaging are not affected by stimu-

lation artifacts during FES.

In this paper, we propose to use US imaging to detect FES-

induced muscle activation levels during an ankle trajectory track-

ing task. One of the main challenges is that US image generation

and processing algorithms are computationally intensive. Most

studies process US data offline to investigate muscle contractil-

ity changes due to FES, thus, the real-time use of US data to

monitor muscle activity and aid control performance will be pi-

oneering for FES control. Towards this goal, we assume that

US data is available for closed-loop control, although at a much

lower sampling frequency compared to other kinematic measure-

ments, like signals from inertia measurement units (IMU) or in-

cremental encoders. Therefore, given the US derived signal at

a lower sampling rate, a sampled-measurement data based ob-

server (SDO) is proposed to estimate the TA muscle activation

level in a continuous manner, which meets the control require-

ments of a continuous state feedback.

Contributions on SDO design have been proposed in recent

years. For example, Shen et al. [23] proposed continuous ob-

server for a class of multi-output nonlinear systems with multi-

rate sampled and delayed output measurements, where the ob-

FIGURE 1. THE SCHEMATIC OF FES-INDUCED ANKLE DORSI-
FLEXION SETUP. NOTICE THAT ONLY THE TIBIALIS ANTERIOR IS
BEING STIMULATED MEANING THAT FES CAN ONLY PRODUCE AN-
KLE DORSIFLEXION AND GRAVITY IS RELIED IN TO MOVE THE
FOOT BACK TO THE EQUILIBRIUM POINT θeq.

servation error was proven to be globally exponentially stable.

In our previous work [24], for a volitional ankle neuromuscu-

loskeletal system, a continuous observer was designed based

on multi-rate and delayed measurements from US imaging and

IMUs. Further studies on SDO-based control for nonlinear sys-

tem have also been proposed in recent years [25–27]. In [28],

the authors investigated the problem of output feedback stabi-

lization with a linear continuous-discrete observer for a class of

upper-triangular nonlinear system based on sampled and delayed

single measurement. However, the aforementioned SDO-based

control techniques mainly focused on regulation or stabilization

task, and few contributions have been proposed for trajectory

tracking task.

In this paper, the continuously estimated muscle activation

levels from SDO, based on sampled US imaging measurement, is

combined with a newly designed proportional-integral-derivative

(PID) type DSC-DC controller to perform ankle dorsiflexion

tracking task. The proposed SDO based PID-DSC-DC controller

is compared with a PID-DSC-DC controller with the pure solu-

tion of muscle activation dynamics using the offline identified

model parameters.

2. ANKLE DORSIFLEXION SYSTEM MODEL AND OB-
SERVER MODEL

The dynamic model of the FES-induced ankle dorsiflexion

movement, as shown in Fig. 1, is given as

Jθ̈ +Mv +Me +Mg +d1 = τ (1)

where J ∈ R
+ is the unknown inertia term of the foot along

the dorsiflexion rotation center axis, θ(t) ∈ R, θ̇(t) ∈ R, and
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θ̈(t)∈R denote the angular position, angular velocity, and angu-
lar acceleration of the ankle dorsiflexion, respectively. The con-
stant ankle equilibrium point is represented as θeq ∈ R+, which
is the position that the foot is completely relaxed. The pas-
sive moment Mv(θ̇) ∈ R represents musculoskeletal viscosity,
Me(θ) ∈ R represents musculoskeletal elasticity, and Mg(θ) =
mgl sin(π

2 +θ −θeq) ∈ R is the gravitational term acting on the
ankle. The mass of the foot and the length from foot’s cen-
ter of mass to the ankle rotation center are denoted as m ∈ R+

and l ∈ R+. The explicit definitions of the functions, Mv(θ̇)
and Me(θ), can be obtained from [29, 30]. The term related
to modeling uncertainties and external disturbance is denoted as
d1(t) ∈ R. FES-induced ankle dorsiflexion torque is denoted as
τ(t), r(θ)F(θ , θ̇)a(t) ∈R, where the positive moment arm for
the TA is denoted as r(θ) ∈ R+. F(θ , θ̇) denotes the nonlinear
relationship of muscle force-fascicle length and muscle force-
fascicle velocity [21], and a(t) ∈ [0, 1] is the muscle activation
level whose dynamics is represented by the following continu-
ous differential equation

ȧ =
−a+u(t− τM)

Ta
+d2. (2)

In (2), τM ∈R+ is the EMD caused by FES and is assumed to
be known, Ta ∈ R+ is the muscle activation decay constant, and
d2(t) ∈ R is the modeling uncertainties and disturbance in the
muscle activation model. The normalized FES input u(t) ∈ [0, 1]
is due to the boundedness of the muscle stimulation. From [31],
u(t) is modeled by a piece-wise linear function

u(t) =


0 ū < umin
ū(t)−umin
umax−umin

umin ≤ ū≤ umax

1 ū > umax

(3)

where umin and umax∈ R≥0 are the stimulation threshold and
stimulation saturation, respectively, and ū(t) ∈ R≥0 is the stimu-
lation current amplitude applied on the muscle.

To facilitate the control development and stability analysis,
the musculoskeletal system dynamics in (1) are rewritten to a
state space form as

ẋ =

 x2
−J−1

Γ
(MΓv +MΓe +MΓg +dΓ1− x3)

− x3
Ta
+ u(t−τM)

Ta
+d2

 (4)

where x =
[
θ , θ̇ , a

]T , Γ = rF , JΓ = J
Γ

, MΓv =
Mv
Γ

, MΓe =
Me
Γ

,
MΓg =

Mg
Γ

, and dΓ1 = d1
Γ

. In the meanwhile, the measurement
model is also given as

y =

 x1(t)
x2(t)
x3(tk)

 , k = 0, 1, 2, ... (5)

where angular position θ and velocity θ̇ are measurable by using
IMU or encoders with high sampling frequency, so they satisfy
the requirement as feedback signals in real-time. The muscle ac-
tivation a is measurable by using normalized variables, like pen-
nation angle, fascicle length, and echogenicity from US imag-
ing [21], but with much lower sampling frequency due to the
computationally intensive image processing. The US imaging-
derived muscle activation signals are available at discrete instant
tk, and {tk} is a monotonically increasing sequence and satisfies
limk→∞ tk = ∞. The sampling interval is assumed as a positive
constant value T , including the elapsed time on US image gener-
ation and processing.

The following assumptions are given to finalize the observer
and controller design.

Assumption 1: The nonlinear functions r(θ) and F(θ , θ̇)
are assumed to be nonzero, positive, bounded functions, and
their first-order and second-order time derivative exist and are
bounded. Therefore, Γ is also a nonzero, positive, and bounded
function, and the first-order and second-order time derivative ex-
ist and are bounded.

Assumption 2: The modeling uncertainties and disturbance
d1 in (1) and d2 in (2) are bounded, and their first-order and
second-order time derivative exist and are bounded. So based on
Assumption 1, dΓ1 is also assumed to be bounded and its first-
order and second-order time derivative exist and are bounded.

Assumption 3: Based on Assumption 1, the term JΓ is
bounded and its first-order and second-order time derivative exist
and are bounded.

Assumption 4: The desired ankle trajectory θd∈ R and its
time derivatives, θ̇d and θ̈d , are bounded.

To fulfill the goal of continuous muscle activation feedback,
the proposed SDO for TA muscle activation in (5) during t ∈
[tk, tk+1) is given by

˙̂x3(t) =−
x̂3(t)

Ta
+

u(t− τM)

Ta
+ γε3(tk) (6)

where γ is a positive observation gain that will be subsequently
constrained in stability analysis section. ε3(tk) = x̂3(tk)− x3(tk)
is a constant value during the time interval t ∈ [tk, tk+1), will be
updated at every time point when the US imaging-derived nor-
malized variable is available, and it is assumed to be bounded.
Therefore, the observer model is of a hybrid nature with con-
tinuous and discrete variables. By taking the error between the
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continuous muscle activation dynamics in (4) and the SDO in (6),
the observation error dynamics is given as

ε̇3(t) =−
ε3(t)

Ta
+ γε3(tk)−d2(t). (7)

3. CONTROL DEVELOPMENT WITH SDO
The objective of this paper is to develop a trajectory tracking

controller for FES-actuated ankle neuromusculoskeletal system
that considers the continuous muscle activation and the EMD in
the FES system. This will be achieved by designing a PID con-
troller that uses a DSC framework along with a SDO to address
hard-to-measure problem for muscle activation. In addition, a de-
lay compensation (DC) term is added to address the FES-induced
EMD problem in TA activation dynamics.

The trajectory tracking error for the proposed closed-loop
control system is given as

e(t) = xd(t)− x1(t) (8)

where xd(t) ∈ R is the desired continuously differentiable ankle
dorsiflexion trajectory. For facilitating control design and stabil-
ity analysis, the following two auxiliary error signals e1(t) and
e2(t) ∈ R are defined as

e1(t) = ė0(t)+α0e0(t)
e2(t) = ė1(t)+α1e1(t)

(9)

where α0 and α1 ∈R+ are control gains and e0(t) is another aux-
iliary error signal to incorporate integral control, which is defined
as

e0(t) =
∫ t

0
e(s)ds. (10)

After taking the time derivative of e2(t), multiplying with
JΓ, and using (4), (8)-(10), we get

JΓė2 = JΓẍd + fΓ +dΓ1− x3 + JΓ(α0 +α1)ė+ JΓα0α1e (11)

where fΓ = MΓv +MΓe +MΓg. Assume the desired differentiable
TA muscle activation signal as x3d ∈ R≥0, then the surface error
is defined as

S = x3d− x̂3. (12)

By adding and subtracting x3d , x̂3, and a DC term, eI ∈ R,
multiplied by a constant gain δ ∈R+, where eI(t) =

∫ t
t−τM

u(s)ds
in (11), the rearranged format of (11) can be given as

JΓė2 =−
1
2

J̇Γe2 +S−δeI + ε3 +H̃ +O− x3d− e1 (13)

where the auxiliary signals H̃ (e, e1, e2, eI , xd , ẋd , ẍd , t)∈R and
O (xd , ẋd , ẍd , Γ, t) ∈ R are defined as

H̃ = H −Hd , O = dΓ1 +Hd
H = 1

2 J̇Γe2 + JΓẍd + fΓ +δeI + e1
+JΓ(α0 +α1)ė+ JΓα0α1e

Hd = JΓd ẍd + fΓ (xd , ẋd)

(14)

where JΓd = J
r(xd)F(xd , ẋd)

and fΓ (xd , ẋd) =
Mv(ẋd)+Me(xd)+Mg(xd)

r(xd)F(xd , ẋd)
.

Furthermore, according to the Assumptions 1-4, the two auxil-
iary signals H̃ and O can be bounded as

∣∣H̃ ∣∣≤ ρ (‖z‖)‖z‖ , |O| ≤ ζ . (15)

where ζ ∈ R+ is a known constant, ρ (‖z‖) ∈ R+ is
a positive globally invertible non-decreasing function, and
z(e, e0, e1, e2, eI) ∈ R5 is defined as

z = [e, e0, e1, e2, eI ]
T . (16)

In the expression (13), the desired muscle activation is de-
fined as [17]

x3d = ke2 = kė+(α0 +α1)ke+ kα0α1e0 (17)

where k = k1 + k2 + k3 ∈ R+, which implies a PID type signal
with three different control gains, and the corresponding coeffi-
cients are defined as kp = (α0 +α1)k, kd = k, and ki = kα0α1.

By using the definition in (17), the formula (13) can be
rewritten as

JΓė2 =−
1
2

J̇Γe2 +Sn + ε3 +H̃ +O− ke2− e1 (18)

where Sn = S− δeI , which is the augmented surface error that
contains the DC term δeI . By substituting (12) and (6), the time
derivative of Sn is given as

Ṡn = φ +
x̂3

Ta
+

(
δ − 1

Ta

)
u(t− τM)−δu(t)− γε3 (tk) (19)
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where φ = d
dt (ke2). The DC term eI is proposed to replace

the delayed input in the muscle activation dynamics with a non-
delayed input. By manipulating the non-delayed input, which is
defined as the control law u(t) as

u(t) =
1
δ
[βSn +φ ] (20)

where β ∈ R+ is a control gain, we can get the closed-loop sur-
face error dynamics as below

Ṡn =−βSn +
x̂3

Ta
+

(
δ − 1

Ta

)
u(t− τM)− γε3 (tk) . (21)

4. STABILITY ANALYSIS
Lemma 1. For any given positive definite matrix M ∈Rn×n,

a positive scalar α , and a vector function ν , the following Cauchy
Schwarz inequality always holds as

[∫
α

0
ν(s)ds

]T

M
[∫

α

0
ν(s)ds

]
≤ α

[∫
α

0
ν

T (s)Mν(s)ds
]
.

(22)
The proof for this Lemma can be found in [32].

Theorem 1. Consider the neuromusculoskeletal system in
(4) with a known input delay, by using the sampled US imaging-
based observer for TA muscle activation in (6) and control law
in (20), the ankle dorsiflexion trajectory tracking error is ensured
to be semi-globally uniformly ultimately bounded (SGUUB) pro-
vided that the observer gain γ and control gains α0, α1, k1, k2,
β , and δ satisfy the following sufficient conditions:

α0 ≥ 1
2 , α1 ≥ 1

2 , k1 ≥ 1,

β ≥ 1
2

[
τM + 1

2 + γ + ψ2

2ε
+

√(
τM + 1

2 + γ + ψ2

2ε

)2
+4τM

]
,

0 < γ ≤ 1
2Ta
− 1

2 , κ ≥ 3γT
T 2

a
,

k2 ≥ ρ2(‖z‖)

4min
{

α0− 1
2 ,α1− 1

2 ,k1−1, δ2
2τMβ2

}

where τM is the EMD, γ is the observation update gain, ε is a
arbitrary positive constant, ψ and κ are positive constant values
defined in the subsequent stability analysis.

Proof: Define an augmented vector w(t) ∈ R6 as

w =
[
e0, e1, e2, Sn, ε3,

√
P
]T

.

A positive definite continuously differentiable functional
V1 (w, t) : L×[t0, ∞)→ R+ is defined as

V1 (w, t),
1
2
(
e2

0 + e2
1 + JΓe2

2 +S2
n + ε

2
3
)
+P (23)

and V1 (w, t) can be bounded as

λ ‖w‖2 ≤V1 ≤ λ ‖w‖2 (24)

where λ and λ ∈ R are two positive constants that is used to
bound the Lyapunov functional candidate. Additionally, the
Lyapunov-Krasovskii functional P ∈ R+ in (23) is defined as

P =
δ 2

β 2

∫ t

t−τM

(∫ t

s
u(ω)2dω

)
ds. (25)

Taking the time derivative of (23) and using (7), (9), (10),
(18), and (21) will result in the following expression

V̇1 = −α0e2
0−α1e2

1− ke2
2 + e2

(
Sn + ε3 +H̃ +O

)
+ e0e1− 1

Ta
ε2

3 + γε2
3 − γε3 (ε3− ε3(tk))− ε3d2

+ Sn

[
x̂3
Ta
+
(

δ − 1
Ta

)
u(t− τM)− γε3 (tk)

]
− βS2

n +
δ 2

β 2 τMu2− δ 2

β 2

∫ t
t−τM

u(s)2ds.

(26)

In the time interval t ∈ [tk, tk+1), by substituting
∫ t

tk
ε̇3(s)ds=

ε3(t)− ε3(tk) to (26), and substituting u(t) in (20) to (26), the
following equation results in

V̇1 = −α0e2
0−α1e2

1− ke2
2 + e2

(
Sn + ε3 +H̃ +O

)
+ e0e1− 1

Ta
ε2

3 + γε2
3 − γε3

∫ t
tk

ε̇3(s)ds− ε3d2

+ Sn

[
x̂3
Ta
+
(

δ − 1
Ta

)
u(t− τM)− γε3

]
−βS2

n

+ γSn
∫ t

tk
ε̇3(s)ds+ τMS2

n +
τM
β 2 φ 2 + 2τM

β
Snφ

− δ 2

β 2

∫ t
t−τM

u(s)2ds.

(27)

Based on Young’s inequality, Assumption 1-3, the following
terms will be bounded as

|e0| |e1| ≤ 1
2

(
e2

0 + e2
1
)
, |e2| |Sn| ≤ 1

2

(
e2

2 +S2
n
)

|e2| |ε3| ≤ 1
2

(
e2

2 + ε2
3
)
, |ε3| |Sn| ≤ 1

2

(
ε2

3 +S2
n
)

|ε3| |d2| ≤ 1
2

(
ε2

3 + d̄2
2
)
, |φ | |Sn| ≤ 1

2

(
S2

n +φ 2
)

|ε3|
∣∣∣∫ t

tk
ε̇3(s)ds

∣∣∣≤ 1
2

(
ε2

3 +
(∫ t

tk
ε̇3(s)ds

)2
)

|Sn|
∣∣∣∫ t

tk
ε̇3(s)ds

∣∣∣≤ 1
2

(
S2

n +
(∫ t

tk
ε̇3(s)ds

)2
)

|Sn|
∣∣∣ x̂3

Ta
+
(

δ − 1
Ta

)
u(t− τM)

∣∣∣≤ ψ |Sn| ≤ ψ2S2
n

2ε
+ ε

2 .

(28)
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where d̄2 ∈ R+ is the upper bound magnitude of d2(t), ε ∈ R+

is an arbitrary constant, and ψ ∈ R+ is the upper bound of∣∣∣ x̂3
Ta
+
(

δ − 1
Ta

)
u(t− τM)

∣∣∣. By applying the inequalities in (28),
boundary conditions in (15), and Lemma 1, (27) can be further
bounded as

V̇1 ≤ −
(
α0− 1

2

)
e2

0−
(
α1− 1

2

)
e2

1−
(

1
Ta
−2γ−1

)
ε2

3

−
(

β − τM− 1
2 − γ− τM

β
− ψ2

2ε

)
S2

n− (k−1)e2
2

+ |e2|ζ + |e2|ρ (‖z‖)‖z‖+ ε

2 +
τM
β 2 φ 2 + τM

β
φ 2

+
( 1

2 +3γT 2
)

d̄2
2 −

δ 2

β 2

∫ t
t−τM

u(s)2ds

+ 3γ3T 2ε3(tk)2 + 3γT
T 2

a

∫ t
tk

ε3(s)2ds.

(29)

After adding and subtracting (ρ(‖z‖)‖z‖)2

4k2
and ζ 2

4k3
, and recall-

ing k = k1 + k2 + k3, the further bounding result becomes

V̇1 ≤ −
(
α0− 1

2

)
e2

0−
(
α1− 1

2

)
e2

1−
(

1
Ta
−2γ−1

)
ε2

3

−
(

β − τM− 1
2 − γ− τM

β
− ψ2

2ε

)
S2

n− (k1−1)e2
2

+ (ρ(‖z‖)‖z‖)2

4k2
+ ζ 2

4k3
+ ε

2 +
τM
β 2 φ 2 + τM

β
φ 2

+
( 1

2 +3γT 2
)

d̄2
2 −

δ 2

β 2

∫ t
t−τM

u(s)2ds

+ 3γ3T 2ε3(tk)2 + 3γT
T 2

a

∫ t
tk

ε3(s)2ds.

(30)

Construct the following auxiliary integral functional, which
is also positive definite continuously differentiable, as

V2(t) =
∫ t

t−T

∫ t

ρ

ε3(s)2dsdρ, t ∈ [t0, ∞) (31)

then (31) has a upper bound, which is given as

V2(t)≤ T
∫ t

t−T
ε3(s)2ds. (32)

By taking the time derivative of (31), we have

V̇2 = T ε
2
3 −

∫ t

t−T
ε3(s)2ds. (33)

Now, consider the following Lyapunov-Krasovskii func-
tional candidate

V (t) =V1(w, t)+κV2(t). (34)

where κ ∈ R+ is a constant. From (30), (32), and (33), we can
obtain

V̇ ≤ −
(
α0− 1

2

)
e2

0−
(
α1− 1

2

)
e2

1−
(

1
Ta
−2γ−1

)
ε2

3

−
(

β − τM− 1
2 − γ− τM

β
− ψ2

2ε

)
S2

n− (k1−1)e2
2

+ (ρ(‖z‖)‖z‖)2

4k2
+ ζ 2

4k3
+ ε

2 +
τM
β 2 φ 2 + τM

β
φ 2

+
( 1

2 +3γT 2
)

d̄2
2 −

δ 2

β 2

∫ t
t−τM

u(s)2ds

+ 3γ3T 2ε3(tk)2 +κT ε2
3 −
(

κ− 3γT
T 2

a

)∫ t
t−T ε3(s)2ds.

(35)

Recall eI(t) =
∫ t

t−τM
u(s)ds, by using Lemma 1 again, we

have

e2
I (t) =

(∫ t

t−τM

u(s)ds
)2

≤ τM

∫ t

t−τM

u(s)2ds. (36)

Then by multiplying − δ 2

2τMβ 2 , the following inequality is
given as

− δ 2

2τMβ 2

(
τM

∫ t

t−τM

u(s)2ds
)
≤− δ 2

2τMβ 2 e2
I . (37)

Therefore, (30) results in

V̇ ≤ −
{

ξ − ρ2(‖z‖)
4k2

}
‖z‖2−

(
1
Ta
−2γ−1−κT

)
ε2

3

−
(

β − τM− 1
2 − γ− τM

β
− ψ2

2ε

)
S2

n +
ζ 2

4k3
+ϑ

− δ 2

2β 2

∫ t
t−τM

u(s)2ds+3γ3T 2ε3(tk)2

−
(

κ− 3γT
T 2

a

)∫ t
tk

ε3(s)2ds.

(38)

where ξ = min
{

α0− 1
2 , α1− 1

2 , k1−1, δ 2

2τMβ 2

}
and ϑ =

sup
ė2

{
ε

2 +
τM
β 2 φ 2 + τM

β
φ 2 +

( 1
2 +3γT 2

)
d̄2

2

}
. Given that

∫ t

t−τM

(∫ t

ω

u(ω)2dω

)
ds≤ τM

∫ t

t−τM

u(s)2ds

(38) can be written as

V̇ ≤ −
{

ξ − ρ2(‖z‖)
4k2

}
‖z‖2−

(
1
Ta
−2γ−1−κT

)
ε2

3

−
(

β − τM− 1
2 − γ− τM

β
− ψ2

2ε

)
S2

n +
ζ 2

4k3
+ϑ

− 1
2τM

P+6γ3T 2V1(tk)−
(

κ

T −
3γ

T 2
a

)
V2.

(39)
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According to the definition of z(t) and w(t), (39) can be up-
per bounded as

V̇ ≤−
{

ξ − ρ2 (‖z‖)
4k2

}
‖eI‖2− ξ̄ ‖w‖2 + ς −

(
κ

T
− 3γ

T 2
a

)
V2

(40)
where ς = ζ 2

4k3
+ϑ +6γ3T 2V1(tk), which is bounded by ς̄ ∈ R+,

and ξ̄ (‖z‖) ∈ R+ is defined as

ξ̄ (‖z‖) = min
{

1
Ta
−2γ−1−κT, ξ − ρ2(‖z‖)

4k2
,

β − τM− 1
2 − γ− τM

β
− ψ2

2ε
, 1

2τM

}
.

The expression (40) can be further bounded when it sat-
isfies the condition ξ − ρ2(‖z‖)

4k2
≥ 0, which is true if the con-

dition ‖z‖2 ≤ ρ−2
(

2
√

k2ξ

)
is satisfied, which implies V̇ ≤

−ξ̄ ‖w‖2 + ς̄ −
(

κ

T −
3γ

T 2
a

)
V2. Given the definition of z and w,

a set for initial condition of the augmented vector w(t) can be
defined as

F ,

{
w(t) ∈ R6 |‖w(0)‖<√

λ

λ

[
min

{
1, δ 2

τβ 2

}
ρ−2

(
2
√

k2ξ

)
− ς̄

]}
.

(41)

Based on the conditions in Theorem 1, ξ̄ (‖z‖)≥ 0 always holds
and it can be lower bounded by a positive constant ϖ ≤ ξ̄ (‖z‖)∈
R≥0. Recall the upper bound of V1 in (24), the inequality in (40)
can be rewritten as

V̇ ≤ −ϖ

λ
V1−

(
κ

T −
3γ

T 2
a

)
V2 + ς̄

≤ −ιV + ς̄ .
(42)

where ι is a positive value and defined as ι = min{1, κ, ϖ

λ
, κ

T −
3γ

T 2
a
}. Therefore, for w(0) ∈F , the solution of the linear differ-

ential equation (42) is given as

V (t)≤V (0)e−ιt +
ς̄

ι

(
1− e−ιt) . (43)

From (43), by providing the control gains α0, α1, k1, k2, β , and
δ , as well as the observation gain γ according to the sufficient
conditions in Theorem 1, V (t) decays exponentially to a bound-
ary ς̄

ι
. Because V ∈ L∞, the state variables in the augmented

vector e0, e1, e2, Sn, ε3,
√

P ∈L∞. Recall the lower bound of V1
in (24), further analysis can be done to show the ball radius of

the ‖w‖ convergence is
√

ς̄

λ ι
. Therefore, we can conclude that

the closed-loop system is SGUUB.
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FIGURE 2. SIMULATION RESULTS OF THE CLOSED-LOOP SYS-
TEM WITH DSC-DC CONTROL (BASED ON THE SDO AND PURE SO-
LUTION OF MUSCLE ACTIVATION DYNAMICS).

5. SIMULATION RESULTS
To validate the SDO-DSC-DC controller for the FES-

actuated ankle dorsiflexion neuromusculoskeletal system, simu-
lations were conducted in Simulink with the fixed-step solver of
1 ms. As mentioned in Assumption 1, the signals θ and θ̇ were
sampled at very high frequency 1000 Hz, so they were directly
used as feedback in the closed-loop system synchronously with
the solver. Preliminary real-time US imaging generation and pro-
cessing study has been performed in our lab, and the average
elapsed time for obtaining US imaging-derived muscle activation
signal was around 1 second. Therefore, the US imaging-derived
TA activation measurement was sampled at 1 Hz in simulation.
The model parameters for the second-order ankle dorsiflexion
dynamic model (1) and the first-order muscle activation dynamic
model (2) used in the simulation were identified experimentally
from an able-bodied subject based on the approach described in
[33]. Typically, EMD for human lower limbs varies between the
range of 30 ms and 100 ms [34]. In the controller design, EMD
was set to be a constant 50 ms, while in the ankle dynamic model
it was defined to be a time-varying value between 35 ms and
65 ms with the purpose to test the robustness of the proposed
SDO-DSC-DC controller. The modeling uncertainties and exter-
nal disturbance d1(t) in (1) and d2(t) in (2) are defined as a zero
mean white noise with an standard deviation of 1 Nm and 0.5.

According to [35], the ankle dorsiflexion motion range dur-
ing swing phase mainly located between 0° and 20° (the toe up
direction is positive). Based on this, the desired ankle dorsi-
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FIGURE 3. TA MUSCLE ACTIVATION UPDATE IN THE SDO BY US-
ING US IMAGING-DERIVED DISCRETE MUSCLE ACTIVATION.

flexion trajectory was defined as a sinusoidal signal varying be-
tween this motion range with a frequency of 0.5 Hz and dura-
tion of 20 s. In the simulation, the control gains were designed
as: k = 50, α0 = 3, α1 = 1.2, k1 = 5, k2 = 20, γ = 1, β = 18.14,
and δ = 0.02. Fig. 2 (a) presents the angular position tracking
performance by using the proposed SDO-DSC-DC compared to
the DSC-DC with pure solution of muscle activation dynamics,
as depicted by centered blue line and dashed black line, respec-
tively. The respective tracking errors are also shown in Fig. 2
(b), and the root mean square error (RMSE) is 1.38° vs. 1.72°,
which indicates a improvement of 19.77 % by using SDO-DSC-
DC. Random values between 0 and 1 were generated in Simulink
every second to mimic the discrete muscle activation measure-
ment coming from US imaging. Fig. 3 shows the update term in
(6), which remains as a constant during the time interval of two
successive US imaging-derived muscle activation measurements.
In the simulation, the estimated muscle activation by using the
SDO and the pure solution of muscle activation dynamics with
US imaging-derived updated initial condition are shown in Fig. 2
(c). It is obvious that the muscle activation level is significantly
lower by using SDO compared to the muscle activation calcu-
lated from sole dynamics. The findings imply that the proposed
SDO-DSC-DC can achieve superior ankle dorsiflexion trajectory
tracking performance, and at the same time reduce the muscle
activation level, which is beneficial to suppress the undesired ef-
fects caused by muscle fatigue. Further investigation is needed
to test the performance of muscle fatigue suppression by using
the proposed control method.

6. CONCLUSION
In this paper, we proposed a trajectory tracking controller

for a neuromusculoskeletal system with input delays and discrete
muscle activation measure. A SDO was designed to continu-
ously estimate the muscle activation level based on the discrete
US imaging-derived muscle activation signal, while DSC was
used to avoid the “explosion of terms” during the controller de-
sign. In addition, a DC technique was used to deal with the FES-
induced input delay. Stability analysis was performed by using a

Lyapunov approach, which proved the SGUUB tracking perfor-
mance. Simulation results showed the superior trajectory track-
ing performance by using SDO-DSC-DC compared to DSC-DC
using only the solution of activation dynamics. The future work
will investigate the observation of muscle fatigue and muscle ac-
tivation at the same time based on the proposed SDO, as well
as the experimental implementation and verification for the pro-
posed observer-based DSC-DC controller on human ankle joint.
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