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Abstract

The paper is concerned with the theoretical explanation of the recent empirical success of
solving the low-rank matrix sensing problem via nonconvex optimization. It is known that under
an incoherence assumption (namely, RIP) on the sensing operator, the optimization problem
contains no spurious local minima. This assumption is too strong for real-world applications
where the amount of data cannot be sufficiently high. In this paper, we show that the incoherence
assumption can be significantly relaxed by exploiting the underlying structure of the sensing
operator. In particular, we study sparse operators that have a low-dimensional representation.
We develop general necessary and sufficient conditions for no spurious solutions under incoherence
and structure assumed simultaneously. Using that, we prove that sparsity and structure together
could make the incoherence assumption almost redundant and offer a case study on data analytics
for electric power systems for which the original incoherence assumption is not satisfied.

1 Introduction

Even under ideal conditions of no noise and zero approximation error, many highly-efficient machine
learning techniques involve solving potentially hard or intractable computational problems while
learning the data. In practice, they are approached with heuristic optimization algorithms, based
on relaxations or greedy principals. The lack of guarantees on their output limits their use in
applications with significant cost of an error, impacting our ability to implement progressive data
analysis techniques in crucial social and economic systems, such as healthcare, transport, energy
production and distribution. Commonly, non-convexity is the main obstacle for guaranteed learning
of continuous parameters.

It is well known that even relatively simple in formulation non-convex problems can be N'P-hard
[1]. As a consequence of complicated geometrical structure, a non-convex function may contain
exponential number of saddle points and spurious local minima, and local search algorithms may
become trapped in them. Other heuristics, like generic convex relaxations, may require work in
an unrealistically large dimensional space to guarantee exactness of their solution. Nevertheless,
empirical observations show positive results regarding application of these approaches to the most
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practically important instances. This provokes a large branch of research trying to explain the
experimental results in order to understand the boundaries of applicability of the existing algorithms
and develop new ones. A recent direction in non-convex optimization consists in studying how simple
algorithms can solve potentially hard problems arising in machine learning applications. The most
commonly applied class of such algorithms are the local search methods, which we are going to study.
For a twice continuously differentiable objective function f : R™*" — R that reaches its global
minimum f*, if the point x attains f(z) = f*, then we call it a globally minimum; otherwise, we call
it a spurious point. The point x is said to be a local minimum if f(x) < f(2’) holds for all 2’ within
a local neighborhood of z. If x is a local minimum, then it must satisfy the first- and second-order
necessary condition for local optimality:

V()
V2 f(x)

Conversely, a point x satisfying (1a) is called a first-order critical point, while a point satisfying (1)
is called a second-order critical point. We also call it a solution since the local search algorithms
are guaranteed to converge to a first- or a second-order critical point, and not necessarily a local
minimum; for further details on gradient methods see [2]-[5], and [6]-[9] for the details on trust-region
methods.

Analysis of the landscape of the objective functions around a global optimum may lead to an
optimality guarantee for the local search algorithms initialized sufficiently close to it [10]-[15]. This
approach is easy to take, but good initializations are highly problem-specific and difficult to generalize.
Global analysis of the landscape is harder, but potentially more rewarding. It may help to prove
global convergence of a local search method for an arbitrary initialization.

Both local and global convergence guarantees were developed to justify local search methods in the
applications like dictionary learning [16], basic non-convex M-estimators [17], shallow [18] and deep
[19] artificial neural networks with different activation [20] and loss [21] functions, phase retrieval
[22], [23] and more general matrix sensing [24], [25]. Particularly significant progress has been made
towards understanding different variants of low-rank matriz recovery, although explanations of the
simplest version called matriz sensing are still under active development [24], [26]-[30]. Given a
sensing operator A : §" — R™ and a ground truth matrix z € R™*" (r < n), an instance of the
rank-r matrix sensing problem consists in minimizing over R™*" the nonconvex function

0, (1a)
0.

Y

Fra(@) = [Alzz” — 22T)|? (2)

Recent work has generally found certain incoherence assumption on the sensing operator to be
sufficient for the matrix sensing problem to be “easy”. Precisely, this assumption works with the
notion of RIP

Definition 1 (Restricted Isometry Property). The linear map A : S™ — R™ is said to satisfy 6,-RIP
if there are constants 6, € [0,1) and v > 0 such that

(L= O)IXIE < AP < (1+ )X
holds for all X € S™ satisfying rank(X) <.

Most of the results proving absence of spurious local minima by using this notion (|[2], [24], [26],
[31]-[35]) are based on a norm-preserving argument: the problem turns out to be a low-dimension
embedding of a canonical problem known to contain no spurious local minima. While the approach
is widely applicable in its scope, it turns out to be restrictive in the problem data and does not



provide a way to analyze necessary conditions.
In contrast, [30], [36] introduced an approach of finding a certificate that a particular point cannot
be a spurious local minimum for any instance of the problem

{fz,A(SU) — min : A satisfies d2,-RIP, z € R”XT} , (Problem®P)

TeRMXT

where n and r are implied to be fixed, and m can vary, or m = n? without loss of generality. They
improve the bound established in [36] for the rank-1 case and show that it cannot be improved in
general. The following theorem summarizes these results:

Theorem 1 (|24], [33], [36]).
o If 65, < 1/5, every instance of (Problem™Y) has no spurious second-order stationary point.

e Ifr =1 and 63 < 1/2, then every instance of (Problem®Y¥) has no spurious second-order
stationary point.

o Ifr =1 and 0y > 1/2, then there exists an instance of (Problem™F) with a spurious second-
order stationary point.

Non-existence of a spurious second-order stationary point effectively means that any algorithm
that converges to a second-order critical point is guaranteed to recover zz! exactly. One example of
such an algorithm is the stochastic gradient descent (SGD) which is known to avoid saddle or even
spurious local minimal points [37], and widely used in machine learning [38], [39].

Theorem 1 disclosures the limits on the guarantees that the notion of RIP can provide with. However,
linear maps from applications like Power System analysis typically have the RIP constant higher
than 0.9, and the non-convex matrix sensing still manages to work on some of the instances. This
distance between theory and practice motivates the following question.

What is the alternative property practical problems are satisfying that makes them
easy to be solved via simple local search?

We propose and test a possible answer to this question. In Section 2 we motivate it with real-worlds
and synthetic examples, providing more insights into why this question should be asked. Section
3 provides with the formal definitions and the general framework that we introduce in our intent
to answer the main question. Section 4 applies the introduced framework to particular problems,
showing both positive and negative theoretical results, testing the hypothesis. In Section 5 we present
numerical results of successful application of the framework to the real-world problems appearing in
Power Systems analysis. All the proofs, technical details and lemmas are collected in the Appendix.

Notation

R™ and R™ " denote the sets of real n-dimensional vectors and n X r matrices, respectively. S"
denotes the sets of n x n symmetric matrices. tr(A), ||A||r and (A, B) are the trace of a square
matrix A, its Frobenius norm and the Frobenius inner product of matrices A and B of compatible
size. The notation A o B refers to the Hadamard (entrywise) multiplication, and A ® B refers to the
Kronecker product of matrices. The vectorization operator vec : R™*" — R™ stacks columns of the
matrix in the form of a vector. The matricization operator mat(-) is the inverse of vec ().

For a linear operator £ : R™" — R™, the adjoint operator is denoted with £7 : R™ — R ",
The matrix L € R"™*™" such that £L(z) = Lvec (z) is called the matriz representation of the linear
operator. Bold letters are reserved for matrix representations of corresponding linear operators.
Sparsity pattern S of a set of matrices X C R™*" is a subset of {1,..., max{n,m}}? such that



1,7) € S if and only if there is X € X such that X;; # 0. Given a sparsity pattern S, define its
J
matrix representation S € S™*" such that

g _ 0 if (4,7) €S,
YL it (i) €S,

The orthogonal basis of a given m x n matrix A (with m > n) is a matrix P = orth(A)
consisting of rank (A) orthonormal columns that span range(A):

P = orth(A) — PPTA = A, p'p = Irank(A)'

c RmX rank(A)

Positive part means (-); = max{0, -}, and eigenvalues in an arbitrary order are denoted by A;(+).

2 DMotivating Example

In this section we motivate our developments by considering an example from the area of electric
power grid control. The state of a power system can be modeled with a vector of complex voltages
on the nodes (buses) of the network. Monitoring the state of a power system is obviously a necessary
requirement for its efficient and safe operation. Since the voltages cannot be measured directly,
this crucial information has to be inferred from other measurable parameters, such as the power
that is generated and consumed on buses or transmitted through the lines. The power network
can be modeled with a number of parameters grouped into the admittance matrix Y € C™**"™. The
state estimation problem consists in recovering the target voltages vector v € C™ from the available
measurements. In the noiseless scenario, they are given with m real numbers of the form

v My, Yie{l,...,m}, (3)

where M; = M;(Y) € C™ " are sparse Hermitian matrices representing power-flow measurements.
The sparsity pattern of the measurement matrices is determined by the topology of the network,
while the nonzero values are known functions of the entries of Y. While the total number of nonzero
elements in matrices M; exceeds the total number parameters contained in Y, we can think of
Y — {M;}]", as an embedding from a low-dimensional space. For a detailed discussion on the
problem formulation and approaches to its solution see e.g. [40].

To put the problem into the form of low-rank matrix recovery, introduce a sparse matrix A = A(Y) €
C™*"* with i-th row equal to vec(M;)T. The measurements vector can be written as Avec(vo?). To
find v from the measurements, we consider solving the non-convex optimization problem:

minimize||Avec (zz? — voT)|? (4)
zeCn

In practice, it is usually solved with local search methods, which converge to a second-order critical
point at best. Since f(z) = ||Avec (zzT — vol)|% = (z2T — voT, AT Avec (zaT — voT)), the set of
critical points in the problem is defined by the linear map represented with the matrix H = AT A,
which thus is the key subject of the study. Let’s consider an example of a question that might arise
in this setting

Example 1. After applying a local search algorithm to the problem mingegn ||Avec (zz” — yyT)||
with H= ATA of the form

301 0 O

1 2 0 O

H= 0 0 30 1
0 0 1 2
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Figure 1: Examples of structure patterns of operators A and H in power system applications. The
positions of repeated nonzero entries of a matrix are marked with the same markers.
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is it reasonable to expect that for an arbitrary starting point, the end point x4 is such that x.x 2z

While not immediately obvious, due to the structure of the operator, the answer to this question
is positive, although the RIP constant of the underlying operator is bigger than 0.59, which does not
allow to apply the Theorem 1. Problems arising in power systems analysis are based on operators
that also possess a specific structure. An example of a structure of matrix A is given on Fig. 1la,
and the structure of corresponding H is described on Fig. 1b. The respective power network will be
considered in more details in Section 5. As discussed previously, given H, it is practically important
to know if there exist v,z € C" such that x is a stationary point of (4) while zz” # vv”. Absence
of these points proves that a local search method recovers v exactly, certifying safety of its use.
Formally, the answer can be provided by the following problem having optimal solution equal to

Zero:
maximize ||A(zz? — voT)|?
v,x€C™

subjectto V,f(xz) =0
Vif(z) =0

However, it is an N'P-hard in general and doesn’t have a scalable solution. Even if we solved it,
the sensing operator A could change over time without changing its structure, but we had to solve
it over again. One way around it is to develop a sufficient condition for H satisfying a particular
property. RIP is one example of a property, but, as we mentioned, it does not completely explain
the empirical results.

3 Introduce kernel structure

Consider a linear operator A : S™ — R" with the matrix representation A € RmX”2, a sparsity

pattern S4 and a low-dimensional structure captured by A = A(w),w € R%, d < m. We assume



that ||A(zzT — 227)|| = 0 if and only if 227 = 227, which translates into A satisfying rank-2r RIP
with some constant. The motivating example in Section 2 could be stated entirely with real-valued
vectors and matrices, so this construction includes it as a partial case.

We define the nonconvex objective

R 5 R such that f(z) = ||A(za? — z2T)|?

parametrized by A and z € R™*". Its value is always nonnegative by construction, and the global
minimum 0 is attained. To emphasize dependence on parameters, we will write them in the subscript.
Another way to express the objective is

f(x) = (wal — 227 H(xa® — 227)).

Here # = AT A is the linear kernel operator that has matrix representation H = AT A and sparsity
pattern Sy, which is well understood. Namely, (i,j) € Sy if and only if there exists k such that
(k,i) € Syq and (k,j) € Sa. Sparsity of H is controlled by the out-degree of the graph represented
by S 4, and tends to be pretty low in applications like power systems. Besides sparsity, H inherits
the low-dimensional structure from A, which can be expressed by H = H(w). This structure can be
further relaxed to a linear one. Space of matrices that obey a sparsity pattern is also linear, so we
further consider a linear constraint on the kernel operator.

Definition 2 (Kernel Structure Property). The linear map A : S™ — R™ is said to satisfy T-KSP
if there is a linear structure operator T : S"* — R? such that

T(ATA)=0
where A is the matrix representation of A.

In this paper, we assume 7T to consist of sparsity operator S(H) = S o H and a low-dimensional
embedding operator W, which substitutes the constraint H = H(w), so that 7 = (S, W).
Notice that a particular sensing operator A can be kernel structured with respect to an entire
family of structure operators, and we can possibly pick any of them for our benefit in the following
discussion.
After fixing the kernel structure of the sensing operators, we can state the problem we are now
dealing with:

{faA(a:) — mig(l . A satisfies d9,-RIP, and T-KSP, z € Z} , (Problem®SP+RIP)
re

The class of problems in the form (Problem™T) is a subclass of problems (Problem®SP+RIP) with 7
being the trivial operator. For (Problem®SP*RIP) we come up with both necessary and sufficient
conditions of having no spurious second order stationary point, and consequently a spurious local
minima. They are given with the following theorems.

Theorem 2 (Necessary condition). For X', Z C R"*" there are no spurious second-order stationary
points in any instance of the (Problem™SPTRIPY only if

. T .
dop < LCuin LMI* (x,2;T) (5)
zxl#£z2T



Here LMI” is a convex programming problem that can be put in the form

LM (o5 T) =  maximize it ML) = ME() + TTA).
VERMTVE0ACR! T (AL () — MI(V) + TT(V)

(6)

with L, .(H) = V. n(z); M. (H) = V2f.3(x). Since f.3(z) is linear in H, the operators L, .
and M, . are both linear with the exact form stated in the appendix.

Theorem 3 (Sufficient condition). For X', Z C R™ "™ there are no spurious second-order stationary
points in any instance of the (Problem®SPTRIPY 4

dor < min LMlIp(x,z;T) (7)
reX ,z€Z
xxT#z2T

LMIp(z, 2z) = minimum ¢
0ER,H

subject to Ly .(H)=0; My.(H)>=0; T(H)=0
(1=86)P'P < PTHP < (1+6)PTP

where P is the linear operator from R7ek([* 2D to R™” which is represented by the matrix P =
orth([z z]) ® orth([x z]). As follows from the results of [36], the necessary and sufficient conditions
stated in the theorems 2 and 3 coincide for the partial case X = Z = R™*" and the trivial structure
operator. Further in the paper, we also discuss another structure for which the necessary condition
also plays the role of sufficient.

4 Theoretical applications

In this section we discuss applications and limitations of the notions and theory presented above.
We work with examples of (Problem®SP+RIP) o investigate the spurious solutions of their instances.

4.1 Sparse structure and normalization

In this subsection we are concerned with the question on how much sparsity alone (7 = S) can
impact the best bound on RIP that certifies global convergence. By Theorem 1, in rank-1 case, this
bound is equal to % After shrinking the problem by enforcing sparsity, it is natural to expect that
the bound goes up, becoming less restrictive. However, this is not the case with sparsity.

Let n = 2,r = 1, and consider the smallest sparsity pattern possible for # = AT A > 0. It consists
exclusively of elements (7,7), and thus enforces H to be diagonal. Consider the point = with respect
to the instance of the problem given by z and A as in the example below:

Example 2.

r=(1,1); z=(2-Vv2); A = diag(v3,1,1,V3)

The z is spurious for f, a, since f, a(z) = 24, however, it satisfies the second-order necessary

conditions:

Vioa(z)=0, Vf alz)=16 [ 1 1 ] =0



which makes it a spurious second-order stationary point. Notice that # = A’ A is indeed diagonal.

Moreover, for all X € S?, the operator A satisfies a tight bound || X||% < | A(X)||* = | [ \{g \}?: ] o

X|| < 3||X||%. Therefore, the biggest d for this instance is equal to 1/2, which coincides with the
upper bound for unstructured problems. Somewhat counterintuitively, the tight bound established
in [30], [36] holds even when a very restrictive sparsity pattern of the kernel operator is enforced. In
general, tighter sparsity constraint entails a less restrictive bound on incoherence.

Proposition 1. If sparsity pattern S has a sub pattern S’ meaning that S’ C S, then LMIp(x, 2; W, S’) <
LMIp(z, 2; W, S) for any x,y € R™*". Thus, the necessary bound on incoherence for H with S’ is
not more restrictive than the bound for H with S.

In other words, bound on sparsity of the kernel operator can only push the necessary bound
on RIP higher up. Consequently, Example 2 proves that there is no sparsity pattern of cardinality
> 3 that can itself compensate the lack of isometry. Note that the example is given for the case
n = 2,7 = 1, but there is a straightforward extension to an arbitrary n by adding 0 components to x
and z.

It is common in practice to normalize the rows of the sensing matrix before proceeding to recovery. In
T M,z
(A
A would take the form A = diag(1,1,1,1). The corresponding instance of the problem is known to
have no spurious stationary points. Thus, normalization helps to improve the isometry property of
the sensing operator and removed all spurious second-order stationary points out of the corresponding

instance of the problem.

the context of power systems, it is expressed as ! Mz — . For Example 2, after normalization,

4.2 Sparsity + implicit structure

Unlike sparsity alone, sparsity pattern coupled with a certain type of low-dimensional structure
assumed simultaneously can push the bound on RIP arbitrary close to 1. Assume r = 1. We illustrate
this with the following proposition.

Proposition 2. For the kernel structure operator such that
o sparsity structure: H = diag(Hi1,...,Hpy) € s
o low-dimensional inherent structure: Hy = Hjj;, 1,5 € {1,...,n},

for any z € R™, 65 € [0,1), it holds that every instance of the (Problem®SP+RIP) has no spurious
second-order stationary points over R™.

Under no structure assumption, the sharp upper bound on the RIP of the sensing operator is
equal to %, while this result states that an assumption on KSP can make any upper bound on RIP
redundant. It also gives an example of the problem where the necessary and sufficient conditions,
given by Theorems 2 and 3, coincide.

5 Numerical results

Our main motivation and aim is the explanation of numerical success of non-convex matrix recovery
in problems with structured sensing operator. Now we show how the general theory developed in
Section 3 can be applied to a real-world example of such a problem, namely the power system state
estimation discussed in Section 2.



In this section, we work with networks provided in the package MATPOWER 7.0b1 [41]. Keeping
the structure of a network, we set the parameters of the lines equal to each other for simplicity
(7’5 = O,LL’S = 1,bc = 0,7’ = 1,95hift = 0)

We focus our attention on the networks from case9 and casel4 of MATPOWER package. For
case9, the number of buses is n = 9, and there are m = 63 possible power measurements that can
be collected. We generate the sensing operator Ag to represent them all as discussed in Section 2.
Although the matrix AJ has complex entries, the corresponding kernel operator HJ is represented
with a real matrix due to the properties of the measurements. Both matrices Ag and Hg are
visualized on Figure 1. Repetition of the non-zero entries of H) can be considered as a form of
low-dimensional structure, along with sparsity. Based on that, we form the linear operator 769. All
the matrices in its kernel subspace are rank deficient. In this case, Theorem 2 can only provide
us with the trivial upper bound on the RIP: § < 1. However, this operator will allow us to use
Theorem 3 to bound the RIP constant from below, which turns out to be productive. Although the
power system state estimation aims to find a complex vector, it is straightforward to verify that
(a +ib,H(a 4 ib)) = (a,Ha) 4+ (b, —Hb) for any real vectors a and b. Therefore, it is enough to
consider the problem in (7) over X = Z = R” to make the claim regarding X = Z = C".

In general, optimization problems (5) and (7) are hard to solve, moreover, we found that the
landscape of the objective is mostly flat. Thus, we use Monte-Carlo simulations in order to obtain a
numerical estimation of their solution.

A numerical test on 160,000 trials on independent x, z uniformly distributed over [—1,1]°, showed
no values of LMIp smaller than 1. By Theorem 3, this gives us an idea that with no regard for
the RIP constant, there must be no spurious local min for any operator of the given
structure. In particular, for Ag since, as we discuss further, it likely satisfies RIP with
a constant strictly smaller than one. This is analogous to the statement of Proposition 2, but
for a real-world system.

In practice, some of the power measurements might be unavailable, which makes the problem harder.
We further look for the limits of applicability of our method, applying it to these harder problems. In
the next computational experiment, we randomly choose a nested sequence of subsets {S; C 1..m}}i1
of power flow measurements to be ignored. Each subset is of cardinality |S;| = ¢, which means
that the corresponding sensing operator .A? is represented by a matrix of the size (63 — ¢) x 81.
To get robust and statistically justified results, we approximate the minimum of LMIp over the
Monte-Carlo sample with an a-quantile, where o = 0.0003 is chosen for convenience. For each value
of £ € 0..11, we generate 30,000 samples of x, z from the standard Gaussian distribution and evaluate
LMIp(z, 2;7,”), where T is formed for H) = AT A by the same principle as 7 is formed from
HJ. The resulting estimation of the a-quantile is shown on figure 2a with the red solid line. The
shaded region around corresponds to 95% confidence interval. The blue dashed line corresponds to
the Monte-Carlo estimation of the best rank-2 restricted isometry constant, feasible for A?. It is
estimated based on 10,000, 000 couples of Gaussian-generated vectors that formed rank-2 matrices.
Maximal and minimal singular values were estimated as 0.9995 and 0.0005-quantiles, and the shaded
region around corresponds to the 95%-confidence interval for the estimation. Since Monte-Carlo
approach provides us with estimations on extreme quantiles for the given distribution of the samples,
it is reliable enough approximation for our purposes, given the large sample size we use.

While it might appear to be constant, the blue curve slowly grows and reaches do = 1 for larger £.
The red curve naturally goes down, reflecting increasing hardness of the problem. Besides ¢ = 0, the
red curve stays above the blue one for ¢ = 1, going under afterwards. Thus, our approach justifies
the application of the local search method to problems with sensing operators possessing structure
similar to one of AJ or A, and fails if we continue removing measurements. Since the condition we
are applying is just sufficient, it does not mean that other operators necessarily generate problem
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Figure 2: RIP bound, sufficient for global convergence (solid) and the RIP constant of the sensing
operator (dashed) on the number of ignored measurements in case9 (a) and casel4 (b)

with spurious solutions, but it can be possible to prove or disprove this fact by using other structure
operators T .

In its turn, case14 has n = 14 buses, and m = 98 possible measurements. Similarly, we choose a
nested sequence of subsets of measurements {S, C 1..m}}i1 to be excluded and form corresponding
A% and H% for £ = 0..11. Just like in case9, we define 7214 such that each matrix in its kernel is
forced to have repeated entries if corresponding entries were repeated in H%. Figure 2b presents a
similar picture to the one for case9. It is obtained by the same method with all constants preserved.
Important difference of case9 is that already for ¢ = 0 the estimation has nondegenerate confidence
interval, although it is very small (~ 0.01). The picture allows us to make positive conclusion
regarding structure of A(1)4, but does not provides us with guarantees for larger /.

Note that the proposed method, based on Theorem 3, allows to develop a guarantee of absence of
spurious solution that is strictly better than the previous bound de = % by [36] for every ¢, although
it is just a sufficient condition. All the presented simulations were done with MATLAB modeling
toolbox CVX [42], [43] with SDPT3 [44], [45] as the underlying solver. All optimization algorithms
parameters are left at their default values.
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Appendix

Proof of Theorems 2 and 3

Following [36], we will construct the proof by nonexistence of a counterexample. Specifically, given
T, for a point z and a parameter value z, we hope to find a value 83" that makes true the claim

There exists A that satisfies T-KSP and d9,-RIP such that x

is a second-order stationary point of f, 4 if an only if da, > d5".
With that in mind, we construct the function §(z, z) by the following optimization procedure:
0 = ini 0
(,2) minimum - dy
subject to L, .(ATA) =0

M, (AT A) = 0

T(ATA) =0

A satisfies do,-RIP.

Here the first two constraints represent the requirement that = is a second-order stationary point
of f, 4, the third constraint takes care of the KS property, and the last one of the RI property. It
is straightforward to verify that this function takes the value of the desired d5.°. Minimization of
557 over {z € X,z € Z : zaT # 227} gives 85, such that the (Problem®SP*RIP) with 5. has an
instance with a spurious second-order stationary point if and only if d2, > 03,.

Suppose we were able to find d5.° and 85" such that 657 < 65" < 857" for all z € X,z € Z, then

* . x,z . T,z . T2 _ %
0"= min 4,7 < min " < min 0y = 0*.
reX ,2EZ reX 2EZ reX z€Z
xxl#z2T T #£22T xxT#£z2T

This inequality shows that do, > 93, is a sufficient, and dq, < @ is a necessary conditions for absence

of spurious second order stationary point in the instances of the problem (ProblemKSP“UP).
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Now we will show that we can take LMIp(x, 2;T) = &5 and LMIZ (z, 2; T) = @ To do that, we
formulate two problems that define a function LMI and re-define LMIp:

LMI(z, z) = minimum ¢

dERH
subject to Ly .(H) =0 (8a)
Mz (H) =0 (8b)
T(H)=0 (8¢)
(1=0)I 2H=(1+6)] (8d)
LMIp(z,2) = miéréiﬂrgr’l#m J
subject to L, .(H) =0 (9a)
Mz, (H) = 0 (9b)
TH)=0 (9¢c)
(1=8PTP < PTHP < 1+ 8PP (9d)

where P is the linear operator from R7e([z A? to R™* which is represented by the matrix P =
orth([z z]) ® orth([z z]). It does not depend on H, and, given that both £, . and M, , are linear,
both problems are convex, semidefinite conic programs (SDP).
Claim 1.

LMIp(z,2) < §(x,2) < LMI(z,2)

Proof. Notice that for P = orth([z, 2]), the sequence of inclusions holds
{PYPT .y e sTonk(lz 2D} € {X € S" : rank (X) < 2r} C S™. (10)

Denote (H*,6*) the minimizer of the problem corresponding to LM I(x, z). By (8d), for every X € S™
it holds that
(1= X[F < (X, H (X)) = [A(X)]* < (1+67)IX]7

where operator A* is such that H* = A*T A* exists because H* = 0. If the inequality holds for all
X € 8", it must hold for rank(X) < 2r, as noticed by (10). Thus, we conclude that the pair (A*,6*)
is feasible for the problem defining d(x, z). This proves the upper bound.

Similarly, if (A, 6x) is the minimizer of the problem defining d(x, 2), then by (10), the pair (AL A, )
is feasible for the problem defining LMIp(z, z). It can be verified after rewriting (9d) in the form

(1= 0)IPY P < (PYPT, ATA(PYPT)) = A(PY PT)|I* < (1 + )| PY PT|%

for all Y e ST**(=:2) Tt’s important to notice that this same argument will work with an arbitrary
choice of P € R™*4 with d < 2r. O

The claim finishes the proof of Theorem 3. To finish the proof of Theorem 2, formulate the dual
of the problem defining LMI ::

LMIT(as7 z) = _ maximize tr[Uy — Us] (11a)
y,AU120,U2220,V =0

subject to  tr[U; + Us] = 1, (11b)

Lr-(y) = ML (V) +TH(\) = Ur — Uy (11c)

14



Notice that the problem (6) is the exact reformulation of (11) (see e.g. [36, Lemma 14]), and

LMIT(,I, z) = LMI”(z, z). Both primal and dual problems are bounded and the dual is strictly
feasible. To show the second, introduce

T T)
9

e =vec (zx’ — 2z Xvec (u) = vec (zu’ + uzT) Yu € R™7,

and write the operators explicitly:
Loy :SY — R
LI, R s

Mg, 1S =S

ML s g

L..(H)=2-X"He,
i (y) = ey’ X7 + Xye”
.(H) =2 [I, ® mat(He)] + XTHX,

M1'7 (
Mgz(V = vec (V)el +evec (V)T + XVXT.

)
)
Strictly feasible point of (11) has the components y = 0, A = 0, V = eI, U; = nl — W and
Us = nl +eW where 2n = n=2, 2W = r[vec (I)e’ + evec (I)T] — XX”, and ¢ is sufficiently small to

ensure that both Uy and Uy are PSD. Consequently, Slater’s condition and strong duality holds and
we have LMI7 (2.2) = LMI(z, 2).

Ellipsoid norm

Throughout this subsection we treat the structured case of a block diagonal matrix H = diag(Hi1, . .., Hpn) €
S"* such that H;; = Hjj for any i,j € {1,...,n}, as it appears in Theorem 2. Let’s denote
Hyy =...= Hp, =M = QQ. Then A(X) = QX and h(z) = ||Q(zzT — 2z1)||% = f, u(x) for this

particular choice of H.
First of all, we claim that the kernel operator with this structure has to be defined with a full-rank
matrix @ in order to satisfy RIP for any 7.

Claim 2. For any §, € [0, 1), the matrix ) € S™ satisfies
(1= a)IX[7 < 1QXIF < (1+6,)[|X |7 for any X : rank (X) <7
only if rank (Q) =n

Proof. Suppose u € Ker(Q),u # 0. Take X = uu? and observe that QX = 0, which contradicts
that (1 —6,)[| X3 < QX% 0

This allows us further consider M > 0 exclusively. By expanding h(x + u) :

h(z +u) = h(z) + Tr(22” ((wz? — 227)M + M(zz? — 227))u) +
Tr (u” (w2 — 22T)M + M(za™ — 227)) u + (zu” + ua?)M(zu” + uz™))) + o(|ul?)

we arrive with a more specified expression for the second-order necessary conditions for local
optimality:

(Vh(z),u) = 2(Q(zzT — 227), Q(zu” + uz’)) =0 Yu € R™" (12a)
(V2h(z)u,u) = 2(Q(zzT — 227),uu’) + |Q(zul — uz™)||% >0 Yu € R™" (12b)
The following lemma provides with a certificate that a point cannot be spurious stationary.

Lemma 1. Given z € R™"*", a point x € R™" is not a first-order stationary point of the function h
for any M = 0 if and only if there is A € R™" such that

0 # Sym [(x)\T + D) (zaT — zzT)] =0
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Proof. Rephrase the first order condition (12a):
((asz —220)M + M(zz" — zzT)> z2=0 (13)

If for any M > 0 the equation (13) does not hold, then = cannot be a stationary point for given z
and any M > 0. Consequently, the problem

minimize -«
MeS™,aeR
subject to ((ny —zx )M+ M(yy' — iL‘iL‘T)) y=0 (14a)

M-—al=0, (14b)

is bounded by 0 if and only if the equation (13) does not hold for arbitrary M > 0. If x can be
stationary for some M > 0, then it is unbounded.

The problem (14) is an SDP problem with zero duality gap, since M = 0, & = —1 is a strictly feasible
primal point. Introduce the dual variables A € R™*" for the equality constraint (14a), G € S™ for
the PSD constraint (14b). The dual problem:

max min Tr AT T T x4+
U S L . [((y ") (yy )

Hyy" — w2") AT+ 2y7) = G) M+ a(Tr(G) 1)
The inner optimization problem has a finite solution if and only if

{ N = AT+ My D)y —ax ")+ (yy" -2z )EAT +ayT)
Tr(G) = 1

Rephrase the dual problem:

maximize 0
AER"XT GESn
subject to G = Sym[(yAT + y)(yy" —zz )],
Tr(G) = 1,
G = 0

It is feasible if and only if the primal problem (14) is bounded. Consequently, it is feasible if and
only if the point z € R™*" is not a stationary point of the function h for any M > 0.

To get rid of the condition on trace, just notice that a PSD matrix has nonnegative trace, which is
equal to zero if and only if the matrix is the zero matrix. All the constraints are homogeneous in G,
so the trace can always be normalized to 1. Thus, the dual feasibility is equivalent to the condition
0 # G = 0. This concludes the proof. O

Lemma 2. Given z € R"™", a point x € R™" is not a first-order stationary point of the function h
. . 0 T .
for any M = 0 if there are Ty € R™" and Ty € S" such that for the matrizc T = { ! ] it

-1 Ty
holds that

T

0+# [~z 2] (T"P+ PT) [ T ] =0 (15)

ZT
whereP:[xT}[z x] .
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Proof. Suppose that there exists 1" from the statement of the lemma. Notice that
1 1
leTzT + ingxT + lexT + §a;T2xT =
2 q] O D L] za] O D —zT
T T N ~Tf T at
T T
T T —Z o z
xxt — 22 —[Zl‘]|:xT:|—[Zl‘]|:mT:|
Use it to expand the condition (15) in order to obtain
1 1
0 # Sym[(z(zT1 + §mT2)T + (211 + §J:T2)$T)(x:cT — 221 =0,
Conclusion immediately follows by applying Lemma 1 with A = 217 + %xT h. O

Proof of Proposition 2

We start by proving that any point except for 0 and £z cannot be a first-order stationary point of
the function h.
Assume x ¢ {0,+z}. By Lemma 2, it is sufficient to prove that there are @ and 8 in R such that the

0 «a ] satisfies

matrix T = [ o B

T

0#G=[-2 m](TTP+PT)[ T ]zo

T
where P = [ ;T ] [z z]. Consider three situations of x and z :

Case 1 x =yz:

G= -z 2] (T"P + PT) [ _;FT ] = 2y(v* = 1)(2a + By) 22T 22T

For a = v(y? — 1) and 8 = 0, it holds that G = (2v(7* — l)zzT)2 > 0. The matrix is nonzero for
x & {0,£z}.

Case 2 272 =0

: 121 0
The matrix P takes the form P =

0 |x||2},soforoz:0andﬂ:1,

G = 2||z|*zzT =0

The matrix is nonzero for x # 0.
Case 30 < (z72)? < |[2[3]3
201
By scaling, we can assume without loss of generality that 27z = 1, thus P = [ ”21”2 |22 } It
2
is sufficient to show that T7P + PT > 0 to guarantee G to be nonzero PSD. To show this, use
Sylvester’s criterion. The upper left corner of this matrix is equal to —2a.

det(T" P + PT) =(=(lz]3 — llyl13)* = 9)a® — 2(l|=[13 + llylI3)aB — 5>
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For o = —1, discriminant of this quadratic polynomial with respect to 3 is equal to D = 16(]|z||3]|x||3—
1). By the strict Cauchy-—Schwarz inequality in the assumption of the case, D > 0. Thus, there
exists 8 such that the matrix is positive definite. Conclude that none of z ¢ {0, +z} satisfies the
first order condition (1a).

Assume x = 0. The quadratic form on the Hessian at this point

(V2h(0)u, u) = —2(Qzz", uu™)

takes a negative value on u = z. Thus, it does not satisfy the second-order condition (1b).
The points x = £z are not spurious points, which concludes the proof.

5.1 Proof of Proposition 1

Let S and S’ be the matrix representation of S and S’ accordingly. S’ C S means that S = S’ U 2
and S’ = S + S2. It’s straightforward to verify that for any R € S"” there exists T € S* such that
SoT +S20R =80 T. The opposite is also true: for any T € S"* there exists R € S such that
SoT+S20R=S80T.

LMIp(z, z;W,S8") =

L Sy (=N(LE(y) = ME (V) + W (u) + 80 T)),
minimize d T T T ; =
yeRm <7 Vi=0ueR!, Tesn? Y iy (FN(LL (y) — ML (V) +WT(u) +8' o T)) 4
. S (N (LR (y) = M (V) + W (1) + So T + S8 oR)),
minimize d T7 T7 T A <
yeRnxr V-0,ueR!, Tesn? Resn? ) iy (+Xi(LT(y) = ML (V) + WT(u) + So T+ S2oR)) 4
. S (LT (y) = MEL(V) + WT (1) + S0 T +5%00))
minimize p] T T - X =
YERMX" V=0,ucR!, TS Zi:l(—i_)‘i([’w,z(y) - Mm,z(v) +W (u) +SoT+8%0 0))+

LMIp(z, z; W, S)
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