
Learning Incident Prediction Models Over Large
Geographical Areas for Emergency Response

Systems
Sayyed Mohsen Vazirizade

Vanderbilt University, Nashville, TN
s.m.vazirizade@vanderbilt.edu

Ayan Mukhopadhyay
Vanderbilt University, Nashville, TN
ayan.mukhopadhyay@vanderbilt.edu

Geoffrey Pettet
Vanderbilt University, Nashville, TN

geoffrey.a.pettet@vanderbilt.edu

Said El Said
Tennessee Department of Transportation

said.elsaid@tn.gov

Hiba Baroud
Vanderbilt University, Nashville, TN

hiba.baroud@vanderbilt.edu

Abhishek Dubey
Vanderbilt University, Nashville, TN

abhishek.dubey@vanderbilt.edu

Abstract—Principled decision making in emergency response
management necessitates the use of statistical models that predict
the spatial-temporal likelihood of incident occurrence. These
statistical models are then used for proactive stationing which al-
locates first responders across the spatial area in order to reduce
overall response time. Traditional methods that simply aggregate
past incidents over space and time fail to make useful short-
term predictions when the spatial region is large and focused
on fine-grained spatial entities like interstate highway networks.
This is partially due to the sparsity of incidents with respect
to the area in consideration. Further, accidents are affected
by several covariates, and collecting, cleaning, and managing
multiple streams of data from various sources is challenging for
large spatial areas. In this paper, we highlight how this problem
is being solved for the state of Tennessee, a state in the USA
with a total area of over 100,000 sq. km. Our pipeline, based
on a combination of synthetic resampling, non-spatial clustering,
and learning from data can efficiently forecast the spatial and
temporal dynamics of accident occurrence, even under sparse
conditions. In the paper, we describe our pipeline that uses
data related to roadway geometry, weather, historical accidents,
and real-time traffic congestion to aid accident forecasting. To
understand how our forecasting model can affect allocation
and dispatch, we improve upon a classical resource allocation
approach. Experimental results show that our approach can
significantly reduce response times in the field in comparison
with current approaches followed by first responders.

I. INTRODUCTION

A constant threat that plagues humans across the globe
are incidents like traffic accidents, fires, and crimes. Such
incidents result in loss of life, injuries, and damage to prop-
erties and are collectively labeled as emergencies, which are
defined as incidents that threaten public safety, health, and
welfare. Consider road accidents and calls for emergency
medical services (EMS) as examples. Road accidents alone
account for 1.25 million deaths globally and about 240 million
EMS calls are made in the U.S. each year [1]. The large
number of such incidents makes it imperative that principled
methods be designed to ensure fast and effective response to
incidents. At the same time, it is crucial to design infrastructure

that mitigates and prevents the occurrence of such incidents.
Indeed, it is well-documented that one of the most important
responsibilities of federal, state, and local governments is
mitigating and dealing with such events [2]. As a result, gov-
ernments strive to make systematic plans, allocate resources,
and take preventive measures in order to alleviate threats that
such incidents pose.

Emergency response management (ERM) is defined as
the set of procedures and tools that first responders use
to deal with incidents such as road accidents. It includes
specific mechanisms to forecast incidents, detect incidents,
allocate resources like ambulances, dispatch resources, and
finally mitigate the post-effects of incidents [1]. Arguably, the
most important component of the pipeline is to understand
the spatial and temporal dynamics of incident occurrence.
Gaining such an understanding can aid resource allocation
and dispatch, improve the understanding of factors that cause
accidents, and improve the design of safety codes. While there
are several ways to analyze spatial temporal incidents, learn-
ing data-driven forecasting models is particularly important
since the fundamental goal of understanding the dynamics
of accident occurrence is to aid response and dispatch. As
a result, generative models conditional on relevant covariates
are particularly relevant to the overall ERM pipeline. For
example, consider a forecasting model for accident occurrence
as a function of roadway speed limits. Understanding how
the speed limit affects accidents helps in accurately capturing
first-order effects that impact accidents, and forecasting future
incidents helps shape better policy decisions pertaining to
resource allocation (ambulances, for example) and response.

This paper discusses a framework for predicting extremely
sparse spatial temporal incidents. Over the past year, our
project has focused on developing principled approaches to
address emergency response for Tennessee, a state in the
United States with a population of approximately 6.9 million
and a total area of over 100,000 sq. km. While we have
extensively tackled emergency response in past collaborations
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with several government bodies restricted to cities [3], [4],
[5], [6], [7], planning emergency response in extremely large
geographical areas (an entire state, for example) is significantly
more challenging. The problems are exacerbated when we
limit the area of interest only to interstate highways across
the state, which reduces the number of samples of positive
incidents available across the road network, leading to extreme
sparsity. This imbalance is particularly evident while creating
forecasting models in high temporal resolution. However, our
collaboration with first responders revealed that such forecast-
ing models can be extremely beneficial for resource allocation
and dispatch.

Our contributions in this paper are two-fold: 1) we develop a
pipeline that can effectively forecast incidents that are sparsely
scattered in space and time, which can be used by ERM
pipelines to reduce the average response time to accidents.
We show how a combination of synthetic resampling and
non-spatial clustering can result in the creation of accurate
spatial temporal models for short-term forecasting of road
accidents. 2) Unlike the majority of forecasting models in
literature, we evaluate how our forecasting pipeline affects
response times to accidents. To this end, we modify the
classical p-median problem for resource allocation. Our novel
contribution balances the geographic spread of responders
and their availability. Through extensive simulations, we show
how our forecasting pipeline and allocation algorithm provide
significant reduction in response times.

II. PRIOR WORK

A variety of approaches have been used to understand the
spatial and temporal dynamics of road accidents. One of the
earliest methods, known as ‘crash frequency analysis’, uses
the frequency of incidents in a specific discretized spatial area
as a measure of the inherent risk the area possesses [8]. This
approach also forms the basis of hotspot analysis [9], [10],
which is widely used in practice as a tool to visualize historical
accidents and make predictions. Statistical models have also
been explored in this context. The most widely used approach,
Poisson regression, models the expected value of the count
of incidents in a given time period as a linear combination
of the features. While it does not perform well on data with
dispersion (where mean is not equal to the variance of the data)
and sparse data, hierarchical Poisson models [11], [12], [13],
[14], [15] and zero-inflated models can be used instead [16],
[17], [18], [19]. In recent years, data mining models such as
neural networks [20], [21], [22], [23], [24], [25] and support
vector machines [26], [27], [28] have also been explored. We
refer interested readers to our survey on emergency response
for a detailed analysis of prior work in forecasting, allocation,
and dispatch [1].

Two major shortcomings of prior approaches are — 1) the
inability to deal with large sparsity in data, and 2) the inability
to make accurate short-term predictions. Even zero-inflated
models, the only class of statistical models that have been
shown to work fairly well on sparse spatial temporal data,
fail to perform well when trained on emergency incidents on

Fig. 1: Blue lines represent TN’s roadway network. Yellow segments
represent interstate highway segments under the jurisdiction of TDOT
and are the area of study for this paper.

highways in large geographic areas (large areas often exhibit
> 99% sparsity). We show later how zero-inflated models fail
to work in such scenarios. Also, the majority of prior work
in accident prediction either focuses on the spatial dynamics
of incident occurrence or consider extremely coarse temporal
resolutions. While long-term predictions can be useful to
analyze policies (optimize road construction, for example),
such predictions are not particularly useful for allocating and
dispatching responders. We address these gaps in prior work
by designing a pipeline for spatial temporal incident prediction
that can adapt to extremely sparse data and aid resource
allocation.

III. PROBLEM FORMULATION

Consider a spatial area of interest S, in which incidents
(like accidents) occur in space and time. The decision-maker
observes a set of samples (possibly noisy) drawn from an
incident arrival distribution. These samples are denoted by
{(s1, t1, k1, w1), (s2, t2, k2, w2),
. . . , (sn, tn, kn, wn)}, where si, ti and ki denote the location,
time of occurrence, and reported severity of the ith incident,
respectively, and wi ∈ Rm represents a vector of features
associated with the environment defined by the location and
time of the incident. We refer to this tuple of vectors as D,
which denotes the input data that the decision-maker has ac-
cess to. The vector w can contain spatial, temporal, or spatio-
temporal features and it captures covariates that potentially
affect incident occurrence. For example, w typically includes
features such as weather, traffic volume, and time of day. The
most general form of incident prediction can then be stated
as learning the parameters θ of a function over a random
variable X conditioned on w. We denote this function by
f(X | w, θ). The random variable X represents a measure of
incident occurrence such as a count or presence of incidents
during a specific time period. The goal of the incident pre-
diction problem is to find the optimal parameters θ∗ that best
describe D. This can be formulated as a maximum likelihood
estimation (MLE) problem or an equivalent empirical risk
minimization (ERM) problem.

In our problem setting (the Interstate Highway network of
the state of Tennessee) (Fig. 1), it is intuitive to represent S in
the form of a graph G = (V,E), where V is a set of vertices
and E is a set of edges. Edges represent specific segments of
highways. The prediction problem then reduces to learning f
such that it captures the spatial temporal dynamics of incidents
on E.
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A. Challenges

The problem described in previous section is hard due to
the following challenges.

1) Irregular incident occurrence: It is well-established in lit-
erature that predicting road accidents is extremely difficult
due to inherent randomness of accidents and spatially
varying factors [29], [1]. While accidents are affected by
various features, it is difficult to take all determinants
into account while designing forecasting models. For ex-
ample, consider the condition of a specific road. It is
difficult to observe such features in real-time, thereby
resulting in unobserved heterogeneity in the likelihood of
incident occurrence across a large spatial region. Indeed,
sophisticated models have under-performed in predicting
accidents. For example, an approach particularly important
to practitioners was developed by Bao et al. [25], who used
a spatio-temporal convolution long short-term memory
network (LSTM) to predict short-term crash risks. While
the network structure was a combination of various com-
plex sub-networks, the accuracy of hourly predictions was
limited, highlighting the inherent difficulty of predicting
crash frequency at low temporal and spatial resolutions.

2) Sparsity: It is also crucial to take into account the fre-
quency of incident occurrence. While the frequency of
road accidents is alarming, incidents are actually extremely
sporadic when viewed from the perspective of total time
and space in consideration. For example, there were a
total of approximately 78,000 road accidents reported be-
tween 2017-2020 on interstate highways in Tennessee. Now
consider the goal of learning the dynamics of incident
occurrence. While historical data can be studied using
hotspots to improve policy, short-term forecasting models
are important for deploying ambulances, help-trucks, and
other emergency responders. Based on our conversations
with first-responders, short term deployment often occurs
several times in a day, the most common frequency being
once every four hours. Considering a total of about 5,000
road segments and time slots of four hours, our data shows
> 99% sparsity. We represent this challenge schematically
in Fig. 2 by randomly selecting 180 road segments for
April 2019 and 180 four-hour time slots. Each pixel in
the matrix denotes the presence (white) or absence (black)
of an accident in a segment (denoted by rows) in a span
of four hours (denoted by columns). We see that most of
the matrix consists of black pixels (99.8%), making such
problems extremely difficult from the perspective of data-
driven modeling. In comparison, we have previously shown
how standard statistical models can be used to predict
incidents in small urban areas [3], [4], [5] (such situations
typically exhibit < 90% sparsity).

3) Data Integration: Road accidents are affected by a large
number of determinants which can be spatial, temporal,
or spatial temporal in nature. For example, the geometry
of a specific road segment does not change over time
and is an example of a spatial feature. Time of day,

Fig. 2: Schematic overview of the sparsity of accident occurrence
across space and time. The figure shows randomly selected 180 road
segments for four hour time windows in April 2019.

on the other hand, is an example of a temporal feature.
Some features can be affected by both space and time; for
example traffic congestion in a specific area is determined
by the spatial location of the area as well as time of day.
For predicting accidents in large geographic areas, it is
challenging to collect, clean, understand, and analyze data
from different sources and integrate them into models for
incident prediction.

IV. DATA

Before describing our pipeline for learning the spatial and
temporal dynamics of highway accidents, we describe the
covariates used and their sources (Table I). We highlight
the importance of this stage in real-world machine learning
pipelines; in fact, the availability of multiple streams of data
has been noted as being particularly important for predicting
accidents [1]. Our exercise of collecting data for features that
affect accidents was guided by the invaluable domain expertise
of first responders and our collaborators at the Tennessee
Department of Transportation.

A. Features

This section describes the features we extract from the base
data (Table I) and use as covariates in our pipeline (Table V).
1) Roadway Information: To learn a predictive model for

accidents over a graph of roadways, it is imperative to
first define the edges and the vertices of the graph. We
collect roadway information from INRIX [30], a private
entity that provides location-based data and analytics, such
as traffic and parking, to automakers, cities, and road
authorities worldwide. We retrieved information for about
80,000 roadway segments in the state of Tennessee, out
of which about 5,000 are interstate highway segments. We
also retrieved static features associated with each segment
that are immutable (relatively) over time. For example,
for each road segment, we collected the number of lanes,
length, and coordinates.
In order to evaluate how roadway shape affects accidents,
we introduce a feature called the inverse stretch factor
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TABLE I: Data Features, Size and Sources
Dataset Range Size Rows Features Source Frequency Type Description
- - - - Time of day derived - Temporal We divide each day into six 4-hour time windows.
- - - - Weekend derived - temporal A binary feature that denotes weekdays.

Incident

02/01/2017

21MB 80,000

Past Incidents in the last window derived - Spatio-temporal Number of incidents on the segment in the last time window of 4 hours
to Past Incidents in a day derived - Spatio-temporal Number of incidents on the segment in the last day
05/01/2020 Past Incidents in a week derived - Spatio-temporal Number of incidents on the segment in the last week

Past Incidents in a month derived - Spatio-temporal Number of incidents on the segment in the last month

Weather

02/01/2017

300MB 1,400,000

Visibility Weatherbit 1 hour Spatio-temporal A measure of the distance at which an object or light can be clearly discerned.
to Wind Speed Weatherbit 1 hour Spatio-temporal Speed of wind.
06/01/2020 Precipitation Weatherbit 1 hour Spatio-temporal Amount of precipitation.

Temperature Weatherbit 1 hour Spatio-temporal It is the reported temperature.

Traffic
04/01/2017

1.2TB 30,000,000,000
Congestion derived 5 minutes Spatio-temporal Congestion is the ratio of the difference between free flow speed and the current speed to free flow speed

to Free Flow Speed INRIX 5 minutes spatial The speed at which drivers feel comfortable if there is no traffic and adverse weather condition.
12/01/2020 Traffic Confidence INRIX 5 minutes Spatio-temporal A confidence score regarding the accuracy of the traffic data (we collect this directly from INRIX).

Roadways Static 81MB 80,000
Lanes INRIX static Spatial Number of lanes for a roadway segment.
Miles derived static Spatial Length of a roadway segment.
iSF derived static Spatial Inverse scale factor which represents the the curvature of a roadway segment.

Fig. 3: A combination of the length of a curve (ÂB) and the shortest
path between the two ends of the curve (AB) can be used to denote
its curvature

(iSF), that represents the curvature of road segments. We
show an example for calculating iSF in Fig. 3. For the
segment in consideration (between points A and B), iSF
can be calculated as the length the straight line AB divided
by that of the curve ÂB).

2) Traffic: The correlation of traffic and road accidents is well-
established [1]. We collected traffic data for each of the
road segments through INRIX at a temporal resolution of
5-minute intervals for about three years. Specifically, we
retrieved the free flow speed of traffic, the estimated current
speed of the vehicles, and the confidence scores of the
estimates. Effective congestion can be calculated from our
data as the ratio of the difference between the free flow
speed and the current speed to the free flow speed.

3) Weather: Weather is inherently spatial temporal, and can
play an important role in accident rates [1]. We collected
hourly weather data (temperature, precipitation, visibility,
and wind) from 40 different weather stations in and around
the state of Tennessee. To use weather data to forecast
accidents on a given road segment, we use the weather
station that is the closest to that particular segment.

4) Incidents: We look at every accident reported in Ten-
nessee from January 2017 to May 2020. Incident data for
this project is provided by the Tennessee Department of
Transportation (TDOT). Our data consists of approximately
78,000 accidents. The accuracy of the incident data was
verified with the Enhanced Tennessee Roadway Informa-
tion Management System (E-TRIMS).

V. APPROACH

We now describe how we design a pipeline to predict
roadway accidents in space and time. To begin with, we filter
out road segments that exhibit no accidents or extremely small
number of accidents over the temporal period in consideration

Fig. 4: Overview of our approach. We extract spatial temporal
information from a variety of data sources, focus on heterogeneity
not explicitly modeled in the feature space by identifying clusters,
perform synthetic sampling to address sparsity, and learn models on
incident occurrence.

(about three years). Our analysis is done on 77% of the ob-
served accidents with a total sparsity of 98%. Recall our goal is
to learn a function f (section III) that outputs the likelihood of
incident occurrence on a road segment conditional on a set of
features. A straightforward way to do so is to learn a separate
model over each segment. However, such an approach results
in overfitting; each segment contributes a relatively small
amount of data which ignores structural similarities between
patterns of incident occurrence across the entire spatial region
in consideration. The other approach is to learn one model for
the entire area. However, a universal model fails to capture
any heterogeneity that is not explicitly modeled in the feature
space. In order to balance these considerations, we try to
identify segments that observe similar patterns for incident
occurrence [3], [4]. While it is possible to identify distinct
spatial regions (hotspots) and learn a separate model for each
area, it is possible that there exists generalizable information
in the entire area that is spatially invariant. In order to do
so, we seek to identify common areas irrespective of spatial
contiguity by clustering all the available segments based on
their frequency of incident occurrence. In this study, we used
the well known k-means algorithm [31] to group the segments
into distinct clusters.

Given clusters of roadway segments that share similar
patterns of spatial-temporal incident occurrence, learning the
patterns is still challenging due to the sparsity of the data. To
address this concern we perform synthetic under-sampling and
over-sampling to balance our data. However, naive synthetic
sampling performs poorly in our case since the relative fre-
quencies of incident occurrence are markedly different among
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the clusters. Therefore it is impractical to ‘balance’ data in
each cluster in the same manner. To alleviate this, we start with
the cluster with the highest frequency of incident occurrence
(cluster A, say) and perform synthetic sampling such that the
number of positive data points (spatial segments in temporal
windows that have accidents) is the same as the number of
negative data points (spatial segments in temporal windows
that do not have accidents). Then, we perform synthetic
sampling in the other clusters such that the ratio of accidents
occurring for any given cluster (cluster B, say) to the frequency
in A is the same as in the original dataset.1

Clustering and synthetic sampling provide the foundation
for learning spatial temporal forecasting models over accident
occurrence. We use the following well-known models to this
end.
1) Logistic Regression: There are two classes of approaches

that can be used to forecast the chances of accidents on road
segments. First, one can try to model the count of accidents
as a binary variable and use well-known count-based
regression models like Poisson regression, zero-inflated
Poisson regression, and negative binomial regression [1].
The other approach is to treat the occurrence of accidents
as a dichotomous output and model the likelihood that any
accidents occur. We start with the latter, and use logistic
regression, which models the log-odds of the probability of
incident occurrence as a linear combination of the features
w.

2) Zero-Inflated Poisson Regression: We also use count-
based models to model accident occurrence conditional
on spatial temporal features. While Poisson regression
has been widely used to model accident occurrence [1],
hierarchical Poisson models and zero-inflated models have
demonstrated significantly improved predictive power [17].
Zero-inflated models can be described as having dual states,
one of which is the normal state, and the other the zero
state [32].

3) Random Forests: Random forest classifiers are a decision
tree ensemble method where each tree is constructed from
independently bootstrapped samples [33]. They reduce
model variance and are less likely to overfit compared to
standard decision trees due to bootstrap aggregation and
the use of a random selection of features to split nodes
when constructing each tree (called “feature bagging”). In
addition to synthetic sampling, random forests can address
sparsity using the Balanced Random Forest method [34].
This works by assigning weights to each class inverse-
proportionally to their frequency in the dataset, giving a
heavier penalty to misclassifying the minority class.

4) Artificial Neural Networks: Finally, we also use simple
artificial neural networks to learn a model over incident
occurrence. Neural networks consist of a set of layers,
each of which further consists of neurons or computing
units. The output of each layer is fed as input to the
next layer [35]. Each neuron uses a non-linear function

1we also show results without synthetic sampling and clustering.

(called the activation function) of the sum of its inputs,
and produces an output. The network can be trained by
stochastic gradient descent. We use fully connected layers
in this study. An important note to practitioners is the non-
interpretability of neural networks can be a barrier when
deploying systems in the real-world that affect government
policies.

It is natural to compare forecasting approaches through met-
rics like likelihood values on test data, error rates, precision,
and recall. However, our conversations with first responders
revealed that it is particularly beneficial for them to understand
if forecasting models can rank roadway segments based on
risk. This is intuitive since accurately forecasting the risk
at each segment relative to other segments is important for
allocating resources. Therefore, besides standard statistical
metrics (accuracy, precision, recall, F1-score), we also report
the correlation of each model’s marginal accident likelihood
distribution over space with the real accident distribution. We
report both Pearson and Spearman correlation values.

VI. ALLOCATION AND DISPATCH

The primary purpose of incident prediction models is to
make informed resource allocation decisions. However, prior
literature rarely evaluates ERM pipelines in their entirety.
Our goal in this project is to ensure that helper vehicles and
ambulances controlled by the state of Tennessee save vital
response time when dealing with accidents. Therefore, we seek
to evaluate the impact incident models have on response time
outcomes. Our evaluation process is guided by the following
steps:
1) Understanding existing policies: Through our collabora-

tion with first responders, we first understand how emer-
gency resources are allocated and deployed in practice. We
describe this approach below and use it as our baseline.

2) Resource Allocation: In practice, discrete location models
like the well-known p-median formulation [36], [37], [38],
[39] are widely used to allocated emergency resources [1].
A shortcoming of such approaches is that the service time
of resources (for example, the time that ambulances are
busy responding to accidents) is not taken directly into
account in the allocation process. We introduce a novel
modification to the p-median problem to design a heuristic
approach that bridges this crucial gap.

3) Evaluation: Using the proposed allocation model, we
compare the performance of existing prediction models and
our pipeline by creating a black-box simulator that imitates
emergency response.

A. Resource Allocation

In practice, our interaction with first responders revealed
that resource allocation is based on identifying hotspots of
incident occurrence. First, a map based on historical accidents
is created. Then a group of experienced engineers determine
the location of the responders; typically, responders are placed
in areas with the highest historical accident rates.
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The allocation formulation we use is based on the p-median
problem, which is commonly applied to ambulance allocation.
The objective of the standard p-median problem is to locate
p facilities (i.e. responders) such that the average demand-
weighted distance between edges and their nearest facility is
minimized. One shortcoming of the p-median formulation is
that it does not account for responders becoming unavailable
when attending to incidents. To address this, we modify the
standard p-median formulation by adding a balancing term
to the objective function. Intuitively, this balancing term pe-
nalizes responders that cover disproportionately large demand
compared to other facilities, encouraging multiple responders
to congregate near high demand areas. This effect is schemat-
ically demonstrated in Fig. 5. In the figure, the values in the
cells correspond to the chance of accident occurrence for the
location and the green points show the allocated locations
of responders (p=2 in this case). By considering α = 0
(alternative a), the problem is equivalent to the simple p-
median formulation, which seeks to minimize the weighted
distance between allocations and points of demand. However,
by increasing α (alternative b), the optimizer seeks to avoid
assigning high risk cells to a single responder. Formally, we
solve the following optimization problem:

min
|E|∑
i=1

|L|∑
j=1

aidijYijbj (1a)

s.t.
|L|∑
j=1

Yij = 1, ∀i ∈ {1, . . . , |E|} (1b)

|L|∑
j=1

Xj = p (1c)

Yij ≤ Xj , ∀i ∈ {1, . . . , |E|}, ∀j ∈ {1, . . . , |L|} (1d)
Xj , Yij ∈ {0, 1}, ∀i ∈ {1, . . . , |E|}, ∀j ∈ {1, . . . , |L|} (1e)

where E is the set of demand edges from graph G, L is the set
of possible responder locations, p is the number of responders
to be located, ai is the likelihood of accident occurrence on
edge ei ∈ E, and dij is the distance between edge ei ∈ E
and location lj ∈ L. Yij and Xj are two sets of decision
variables; Xj = 1 if a responder is located at lj ∈ L and
0 otherwise, and Yij = 1 if edge ei ∈ E is covered by a
responder located at lj ∈ L (i.e. the responder at j is the
nearest placed responder to e) and 0 otherwise. The balancing
term we add is denoted by bj = (

∑
e∈E aeYej∑

e∈E ae
)α, and represents

the proportion of total demand covered by a responder located
at j. The influence of the balancing term is controlled by the
hyper-parameter α; intuitively, as α increases, responders are
more ‘tightly packed’ around high demand areas, and if α = 0
our formulation reduces to the standard p-median formulation.
Constraint (1b) expresses that the demand of each edge must
be met, (1c) ensures that p responders are located, and (1d)
shows that edges must be covered only by locations where
responders have been located.

The p-median problem is known to be NP-hard on general
networks [40], therefore heuristic methods are employed to

0.5

0.1

0.9

0.9

0.5

0.1

0.9

0.9

a) b)

Fig. 5: Illustrating the impact of α: a) standard p-median (α = 0).
b) modified p-median with α > 0. Notice as α increases responders
(green dots) are tightly packed around high demand areas.

Algorithm 1: Greedy-Add Algorithm
input : Demand Edges E, Potential Responder

Locations L, Segment Incident Likelihoods
ai ∀ei ∈ E, Segment to Location Distances
d(i, j) ∀ei ∈ E, ∀lj ∈ L, Number of
Responders p, Balance Factor α

output: Responder Locations X
1 Initialize k := 0, Xk := ∅ ;
2 while k < p do
3 k := k + 1;
4 for location lj′ ∈ L, where j′ /∈ Xk−1 do
5 X ′k := Xk−1 ∪ lj′ ;
6 Find nearest facilities yi ∀ei ∈ E, where

yei ∈ X ′k;
7 Compute balance terms

bj := (
∑

ei∈E aiψ∑
ei∈E ai

)α ∀lj ∈ L where ψ := 1 if

yi = lj , ψ := 0 otherwise;
8 Compute Zkj′ :=

∑
ei∈E aed(ei, yi)byei ;

9 end
10 Best location l∗j := argminj Z

k
j ;

11 Xk := Xk−1 ∪ j∗;
12 end
13 Return Xk

find approximate solutions in practice. We use the Greedy-
Add algorithm [41] to optimize the locations of responders.
We show the algorithm in Algorithm 1. First we initialize
the iteration counter k and the set of allocated responder
locations Xk to the empty set (step 1). Then, as long as
there are responders awaiting allocation, we iterate through the
following loop: (1) update counter k current iteration (step 3),
(2) for each potential location not already in the allocation,
compute the modified p-median score (equation 1a) of the
allocation which includes the potential location (steps 5 - 8),
and (3) find the location that minimizes the modified p-median
score (step 10) and add it to the set of allocated responder
locations (step 11). While myopic, this algorithm is scalable
to large allocation problems.

Rather than restricting responders to the roadway segments
E, we allow them to be located anywhere across the state.
To accomplish this, we define the set of possible responder
locations L as a grid of spatial cells over Tennessee. We
define each grid cell as being 0.1 degrees latitude by 0.1
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degrees longitude, which is approximately 9km x 11km in
Tennessee. This results in 1445 possible locations across the
state. The center of each cell is used when calculating the
distance between it and each edge in E.

Given an allocation of responders, we simulate response to
real incidents to evaluate the efficacy of our model. Response
to emergency incidents is typically greedy [1]; the closest
available responder to the scene of the incident is dispatched
to attend to it. This a direct consequence of the critical nature
of the incidents that emergency responders address. We use
a simulator that imitates greedy dispatch and evaluate the
performance of different predictive models.

VII. EXPERIMENTAL EVALUATION

To evaluate our models, we use actual historical incident
data, roadway geometry, traffic data, and weather data. We
train each model based on a rolling temporal window. We
start with a train set of 10 months and use the next month as
the evaluation set. Then, we use a rolling temporal window
and add one month to the training set and use the subsequent
month as the test set. Our code, a synthesized dataset, and
high-resolution figures and tables are all available online (see
the Appendix).

A. Model hyper-parameters

We tune hyper-parameters for each model by cross-
validation. For models based on random forests and neural
networks, we keep the architecture fixed based on the largest
training sample we have; classification thresholds are tuned for
every training window based on a validation set. We describe
our model parameters below:
1) Random forests: Each random forest consists of 250 deci-

sion trees. We use Gini impurity to measure the quality of
a node split, and consider

√
| w | random features for each

split, where w is the total number of features. The following
hyper-parameters are tuned for each model: the maximum
depth of each tree, the minimum number of observations
in a node required to split it, and the minimum number of
samples required to be at a leaf node to split it’s parent.

2) Neural networks: We use a sequential architecture with
fully connected layers. We use a total of three hidden
layers. The size of the first layer equals twice the number
of input features w (the number of neurons in the input
layer). The second and third layers consist of neurons equal
to the size of the input layer. The output layer conists of a
single neuron. We use the ‘ReLU’ activation function [42]
for all hidden layers and the sigmoid activation function
for the output layer. We minimize the cross-entropy loss
between true labels and predicted labels and use the adam
algorithm [43] for training the network.

3) Clustering: We use the k-means algorithm [31] to group the
segments into clusters. We use k = 2. A higher value for
k renders an extremely small number of segments in some
of the clusters, thereby hampering overall performance.
Naturally, we recommend practitioners to tune all hyper-
parameters based on the specific dataset in consideration.

TABLE II: Summary of performance evaluation metrics for
each model in percentage (the performance in each column is
color coded; green is the best and red is the worst)

Model Clustering Resampling Name Accuracy Precision Recall F1-Score Pearson Spearman
Naive Naı̈ve 95.5 3.8 4.2 4.0 82.1 60.8

No resampling LR+NoR+NoC1 94.0 13.8 27.4 18.2 70.4 55.2
RUS LR+RUS+NoC1 93.0 12.8 32.3 18.3 63.1 54.7No cluster
ROS LR+ROS+NoC1 93.0 12.8 32.3 18.3 63.2 54.7
No sample LR+NoR+KM2 93.0 12.5 30.9 17.7 76.6 58.4
RUS LR+RUS+KM2 92.3 12.1 34.4 17.8 74.2 58.1

LR

clustering
ROS LR+ROS+KM2 92.4 12.2 34.2 17.9 74.2 58.1
No resampling NN+NoR+NoC1 94.9 19.2 32.8 24.0 71.7 58.5
RUS NN+RUS+NoC1 95.0 19.2 32.6 24.1 73.2 59.3No cluster
ROS NN+ROS+NoC1 94.9 19.1 32.8 23.9 69.3 54.7
No sample NN+NoR+KM2 95.0 19.0 31.6 23.7 75.6 58.9
RUS NN+RUS+KM2 94.7 18.4 32.7 23.3 73.1 54.6

NN

clustering
ROS NN+ROS+KM2 94.7 18.3 33.1 23.3 74.5 55.4
No resampling RF+NoR+NoC1 95.0 19.0 31.8 23.6 78.7 63.4
RUS RF+RUS+NoC1 95.2 19.3 30.5 23.5 67.4 56.9
ROS RF+ROS+NoC1 95.3 18.6 27.6 22.1 79.2 64.6No cluster

Class weights RF+CW+NoC1 95.4 20.6 30.4 24.4 77.1 62.5
No resampling RF+NoR+KM2 95.1 18.9 30.5 23.2 79.8 62.3
RUS RF+RUS+KM2 95.0 19.4 32.5 24.2 73.8 57.6
ROS RF+ROS+KM2 95.1 18.3 28.7 22.2 80.1 63.6

Tree

clustering

Class weights RF+CW+NoC1 95.4 20.6 30.4 24.4 77.1 62.5
No resampling ZIP+NoR+NoC1 94.4 14.6 26.8 18.9 74.0 58.0
RUS ZIP+RUS+NoC1 94.2 13.9 26.1 18.1 61.1 50.6No cluster
ROS ZIP+ROS+NoC1 94.2 13.9 26.7 18.2 61.2 50.6
No resampling ZIP+NoR+KM2 93.1 13.1 31.9 18.5 77.6 61.8
RUS ZIP+RUS+KM2 93.0 12.7 30.8 17.8 74.2 57.1

ZIP

clustering
ROS ZIP+ROS+KM2 93.0 12.8 30.9 18.0 74.3 57.0

B. Forecasting

We first evaluate the performance of the forecasting
pipeline. We refer to the following abbreviations for brevity:
LR (logistic regression), NN (neural networks), RF (random
forests), ZIP (zero-inflated Poisson), RUS (random under
sampling), ROS (random over sampling), NoC1 (No cluster-
ing) and KM2 (k-means clustering). Our baseline is based
on the actual forecasting model that aids first responders
in Tennessee. We refer to the baseline as the naive model.
The naive model essentially creates an empirical distribution
based on historical incident data. Then, given a segment, a
specific point in time, and the set of covariates induced by
them, a realization of incident occurrence is sampled from the
empirical distribution conditional on the covariates. We present
results for each of the approaches in Table II. To understand
the role and efficacy of each component of the pipeline, we
present results with and without synthetic resampling and
clustering.

We present the major observations first — neural networks
and random forests outperform the naive model, logistic re-
gression, and the zero-inflated Poisson regression model. Also,
based on Table II, we see that while the naive model is fairly
accurate, its accuracy is based on under-predicting accidents,
as shown by its poor F-1 score. Also, clustering (even in
isolation) generally improves the F1-score and accuracy of
the forecasting models (for each method, compare the two
rows that denote no resampling). We further observe a similar
trend with synthetic sampling, which even in isolation usually
results in an improvement in accuracy as well as F1-score (for
each method, see the set of rows that denote no clustering
and compare the rows that show resampling). The efficacy of
the combination of clustering and oversampling is somewhat
unclear though. We observe that typically, the combination
slightly under-performs in comparison to using one of the
two approaches. We present three major takeaways from
this observation — first, synthetic sampling and clustering
enable forecasting in sparse datasets significantly more than
approaches that do not use them. However, we recommend
practitioners to carefully evaluate each component of the
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(a) p = 10 (b) p = 15 (c) p = 20

Fig. 6: Total travel distance of responders per accident (a) 10 responders (b) 15 responders, and (c) 20 responders; for example, for the naive
model, when p = 10 and α = 0, the min., median, and max. of the average travel distance per accident is 2.65 km, 29.57 km, 147.26 km.

TABLE III: Average and maximum number accidents in each 4-h
window that responders are not able to immediately respond because
all responders are busy (the performance in each column is color
coded; green is the best and reed is the worst.) Also, since all values
for p = 0 are zero, it is not included in this table.

average number of unattended accidents maximum number of unattended accidents
p 10 15 10 15
α 0 0.5 1 2 0 0.5 1 2 0 0.5 1 2 0 0.5 1 2
Naı̈ve 0.54 0.49 0.48 0.46 0.02 0.01 0.01 0.01 15.00 14.00 14.00 16.00 2.00 1.00 1.00 2.00
LR+NoR+NoC1 0.54 0.47 0.42 0.42 0.00 0.00 0.01 0.01 16.00 13.00 14.00 12.00 0.00 0.00 1.00 1.00
LR+RUS+NoC1 0.56 0.52 0.46 0.46 0.00 0.00 0.01 0.00 17.00 17.00 15.00 15.00 0.00 0.00 1.00 0.00
LR+ROS+NoC1 0.56 0.51 0.46 0.45 0.00 0.00 0.01 0.00 17.00 17.00 15.00 14.00 0.00 0.00 1.00 0.00
LR+NoR+KM2 0.53 0.41 0.43 0.44 0.02 0.01 0.01 0.01 17.00 12.00 13.00 15.00 3.00 1.00 1.00 2.00
LR+RUS+KM2 0.54 0.48 0.42 0.40 0.01 0.00 0.00 0.01 15.00 15.00 11.00 12.00 1.00 0.00 0.00 1.00
LR+ROS+KM2 0.54 0.48 0.42 0.41 0.01 0.00 0.00 0.01 15.00 15.00 11.00 15.00 1.00 0.00 0.00 1.00
NN+NoR+NoC1 0.45 0.40 0.43 0.40 0.01 0.00 0.01 0.01 12.00 11.00 11.00 11.00 1.00 0.00 1.00 1.00
NN+RUS+NoC1 0.47 0.41 0.43 0.45 0.00 0.01 0.01 0.01 12.00 11.00 11.00 12.00 0.00 1.00 1.00 1.00
NN+ROS+NoC1 0.46 0.41 0.42 0.43 0.00 0.00 0.00 0.01 12.00 11.00 11.00 13.00 0.00 0.00 0.00 1.00
NN+NoR+KM2 0.44 0.40 0.42 0.42 0.00 0.00 0.00 0.00 15.00 12.00 12.00 14.00 0.00 0.00 0.00 0.00
NN+RUS+KM2 0.48 0.45 0.42 0.42 0.01 0.01 0.01 0.02 12.00 11.00 11.00 12.00 1.00 1.00 1.00 2.00
NN+ROS+KM2 0.48 0.41 0.44 0.41 0.00 0.00 0.00 0.01 13.00 11.00 14.00 11.00 0.00 0.00 0.00 1.00
RF+NoR+NoC1 0.51 0.44 0.42 0.42 0.00 0.00 0.00 0.02 13.00 12.00 12.00 11.00 0.00 0.00 0.00 1.00
RF+RUS+NoC1 0.48 0.40 0.38 0.43 0.01 0.01 0.00 0.02 13.00 12.00 13.00 13.00 1.00 1.00 0.00 2.00
RF+ROS+NoC1 0.53 0.46 0.44 0.42 0.01 0.01 0.00 0.00 16.00 13.00 11.00 14.00 1.00 1.00 0.00 0.00
RF+CW+NoC1 0.46 0.41 0.40 0.41 0.01 0.01 0.00 0.01 12.00 11.00 12.00 12.00 1.00 1.00 0.00 1.00
RF+NoR+KM2 0.49 0.42 0.42 0.43 0.01 0.00 0.00 0.01 12.00 13.00 11.00 12.00 1.00 0.00 0.00 1.00
RF+RUS+KM2 0.49 0.40 0.38 0.42 0.00 0.00 0.00 0.00 13.00 10.00 12.00 12.00 0.00 0.00 0.00 0.00
RF+ROS+KM2 0.51 0.45 0.43 0.40 0.01 0.00 0.01 0.01 13.00 13.00 11.00 12.00 2.00 0.00 1.00 1.00
RF+CW+NoC1 0.48 0.38 0.38 0.41 0.01 0.00 0.00 0.01 12.00 10.00 10.00 12.00 1.00 0.00 0.00 1.00
ZIP+NoR+NoC1 0.51 0.45 0.41 0.40 0.02 0.00 0.00 0.01 12.00 15.00 12.00 14.00 3.00 0.00 0.00 1.00
ZIP+RUS+NoC1 0.59 0.53 0.51 0.48 0.01 0.02 0.01 0.00 16.00 17.00 15.00 15.00 2.00 3.00 2.00 0.00
ZIP+ROS+NoC1 0.59 0.53 0.51 0.48 0.01 0.02 0.01 0.00 16.00 17.00 15.00 15.00 2.00 3.00 2.00 0.00
ZIP+NoR+KM2 0.47 0.45 0.42 0.37 0.02 0.00 0.01 0.01 13.00 15.00 12.00 12.00 3.00 0.00 1.00 1.00
ZIP+RUS+KM2 0.55 0.48 0.49 0.46 0.00 0.01 0.00 0.01 16.00 13.00 15.00 12.00 0.00 1.00 0.00 1.00
ZIP+ROS+KM2 0.57 0.49 0.48 0.45 0.00 0.01 0.00 0.01 17.00 13.00 15.00 12.00 0.00 1.00 0.00 1.00

proposed incident prediction pipeline on unseen data (test
set) before deployment. Second, count-based models (zero-
inflated Poisson regression) do not perform as well as binary
classification models on sparse data. Third, it is important to
note that while the resulting F1 scores might seem low in
comparison to approaches on other data-driven problems, we
claim that the improvement is significant in the context of
extremely sparse and inherently random incidents like road
accidents. We show the validity of this claim by simulating
allocation and dispatch to accidents.

C. Allocation and Dispatch

Our final goal is to enable our community partners save
crucial response time to accidents. We now discuss how our
forecasting models aid allocation and dispatch. We evaluate
the entire combination of forecasting and dispatch on 186
temporal windows of 4 hours each, having a total of 1,865
incidents. We also vary the hyper-parameter α and the number
of available responders p (Tennessee currently has 10 respon-
ders, but we perform experiments on other realizations of p

nonetheless). We use two metrics to evaluate performance —
the average distance traveled by the responders and the number
of incidents that cannot be attended due to unavailability of
responders. We present the results in Fig. 6 and Table III.

An important observation is that our allocation approach,
which adds a balancing term to the classical p-median prob-
lem, improves resource allocation in general; indeed, we
observe this improvement in general across the spectrum of
forecasting model used and the number of available respon-
ders. The maximum improvement we observe is a reduction
of 3 km traveled by responders per incident (on average).
This observation is particularly important for practitioners and
first responders — while it is important to allocate resources
in areas with (relatively) high historical rates of occurrence,
assigning a small number of responders to cover large areas
can be detrimental to the overall goal of reducing response
times. Intuitively, our approach penalizes additional burden
on responders. However, we also note that a large penalty
(value of α) can result in increased response times. This
is expected — as α grows, it discourages the geographic
spread of responders. Fig.7 shows the influence of α on the
performance of different models with a varying number of
responders. Our empirical results show that 0.5 ≤ α ≤ 1
results in the optimal allocation of responders.

Fig. 7: Effect the of the hyper parameter α in allocation model on the
performance of different models (the grey lines denote each learned
model).

We also observe that our forecasting pipeline results in
significant savings in response times (upto a maximum long-
term reduction in response times by 10%) (see Figure 6)
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and a reduction in the number of accidents that cannot be
attended to (see Table III). It is important to understand
the importance of this reduction. Prior work reports that a
saving of only ten minutes of response time can reduce deaths
due to road accidents by 33% [44]. Allocating responders
based on the random forest model provides the maximum
reduction in response times (with neural networks being a
close second). We provide three major takeaways based on
our experiments on allocation and dispatch. First, forecasting
models that provide the highest accuracy might not be the
best candidates for allocation. This observation shows the
importance of using a metric that focuses on false negatives
and false positives (like the F-1 score) for sparse emergency
incidents. Second, we point out that while traditional allocation
models based on long-term (temporal) hotspots are widely
used in the field, accurate short-term forecasting models can
result in significant reduction in response times to accidents.
Finally, leveraging the structure of the problem to improve
classical resource allocation formulations can aid emergency
response in the field.

VIII. CONCLUSION

Emergency response to incidents like road accidents is
a major concern for first responders. Standard approaches
to predicting road accident rarely scale to large geographic
areas due to extremely high sparsity in data and difficul-
ties in gathering data. In collaboration with the Tennessee
Department of Transportation, we present a framework for
forecasting extremely sparse spatial and temporal incidents
like road accidents. We show how our approach for fore-
casting, based on a combination of non-spatial clustering,
synthetic resampling, and learning from multiple data sources,
outperforms forecasting methods used in the field. We also
present a novel modification to a classical formulation for
resource allocation. Through extensive simulations, we show
how our pipeline results in significant reduction in response
times to emergency incidents. Our implementation is open-
source and can be used by other organizations that seek to
optimize emergency response.
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APPENDIX

We have made the code used in this study publicly available
at the following link2. While detailed instructions on how to
use the code can be found on the link, there are a few key
files worth mentioning.
• config/params.conf: This file contains metadata and pa-

rameters that must be customized to a user’s specific
deployment. This includes configuration information such
as file paths and dataset information. It also configures
which models to run, model hyperparameters, the fea-
tures to use in regression, clustering parameters, and the
synthetic sampling to apply. More detail on the specific
metadata can be found in the readme file.

• run sample.py: This is the main script for fitting and
evaluating the forecasting models. Based on the metadata
in the params.conf file, this script loads and formats the
data, calls sub-routines for clustering, synthetic sampling,
tuning model specific hyper-parameters, and finally fit the
desired models for each sliding test window. It then eval-
uates each model on a test set and outputs the following
result files to the output/ directory: DF Results.pkl -
pandas dataframe which contains the overall evaluation
metrics (accuracy, etc.) for each of the models averaged
over space and time, DF Test spacetime.pkl - dataframe
containing the models’ predictions for each 4-hour time
window (used for resource allocation), report.html -
html file which visualizes the evaluation results from the
DF results file. There is an example of the html results
visualization provided in the repository.

• allocation/run allocation.py: This script evaluates the
models’ impact when integrated with an allocation model.
It uses the output from run sample.py as prediction
inputs. Given a set of test incidents, the script performs
allocation based on each model’s prediction output
(DF Test spacetime.pkl), and then simulates dispatch to
calculate the distance between incidents and their nearest
responders.

The data used in this study is proprietary, but we release
a synthesized example dataset (in the sample data folder) to
demonstrate the expected data format. The data is formatted as
a csv document; each row represents the features and incident
counts for a 4 hour time window at a particular road segment.
The specific feature names are detailed on the link provided.

2https://github.com/StatResp/smart-comp IncidentPrediction
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