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Abstract

This paper proposes near-optimal algorithms for the pure-exploration linear bandit
problem in the fixed confidence and fixed budget settings. Leveraging ideas from
the theory of suprema of empirical processes, we provide an algorithm whose
sample complexity scales with the geometry of the instance and avoids an explicit
union bound over the number of arms. Unlike previous approaches which sample
based on minimizing a worst-case variance (e.g. G-optimal design), we define an
experimental design objective based on the Gaussian-width of the underlying arm
set. We provide a novel lower bound in terms of this objective that highlights its
fundamental role in the sample complexity. The sample complexity of our fixed
confidence algorithm matches this lower bound, and in addition is computationally
efficient for combinatorial classes, e.g. shortest-path, matchings and matroids,
where the arm sets can be exponentially large in the dimension. Finally, we propose
the first algorithm for linear bandits in the the fixed budget setting. Its guarantee
matches our lower bound up to logarithmic factors.

1 Introduction

The pure exploration stochastic multi-armed bandit (MAB) problem has received attention in recent
years because it offers a useful framework for designing algorithms for sequential experiments. In
this paper, we consider a very general formulation of the pure exploration MAB problem, namely,
pure exploration (transductive) linear bandits [12]] : given a set of measurement vectors X C R?, a
set of candidate items Z C R<, and an unknown parameter vector § € R?, an agent plays a sequential
game where at each round she chooses a measurement vector z € X and observes a stochastic
random variable whose expected value is =" . The goal is to identify z, € arg max,c z 216, This
problem generalizes many well-studied problems in the literature including best arm identification
[L1L 214 231 1250 6], Top-K arm identification [22} 28} 9], the thresholding bandit problem [27]],
combinatorial bandits [[10} 113, (8,15, 20]], and linear bandits where X = Z [30}33,31].

The recent work of [12] proposed an algorithm that is within a log(|Z|) multiplicative factor of
previously known lower bounds [30]] on the sample complexity. This term reflects a naive union
bound over all informative directions {z. — z : z € Z \ {z.}}. Although one might be inclined to
dismiss log(] Z|) as a small factor, in many practical problems it can be extremely large. For example,
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in Top-K log(|Z|) = O(klog(d)) which would introduce an additional factor of k that does not
appear in the upper bounds of specialized algorithms for this class [22} 8] [25]. As another example, if
Z consists of many vectors pointing in nearly the same direction, log(| Z|) can be arbitrarily large,
while we show that the true sample complexity does not depend on log(|Z|). Finally, in many
applications of linear bandits such as content recommendation | Z| can be enormous and thus the
factor log(| Z|) can have a dramatic effect on the sample complexity.

The high-level goal of this paper is to study how the geometry of the measurement vectors X and
the candidate items Z influences the sample complexity of the pure exploration transductive linear
bandit problem in the moderate confidence regime. We appeal to the fundamental TIS-inequality [19]
which describes the deviation of the suprema of a Gaussian process from its expectation, leading us to
propose an experimental design based on minimizing the expected suprema. We make the following
contributions. First, we show a novel lower bound for the non-interactive oracle MLE algorithm,
which devises a fixed sampling scheme using knowledge of §. While this non-interacting lower bound
is not a lower bound for adaptive algorithms, it is suggestive of what union bounds are necessary
and can be a multiplicative dimension factor larger than known adaptive lower bounds. Second, we
develop a new algorithm for the fixed confidence setting (defined below) that nearly matches the
performance of this oracle algorithm. Moreover, this algorithm recovers many of the state-of-the-art
sample complexity results for combinatorial bandits as special cases. Third, applied specifically to
the combinatorial bandit setting, we develop a practical and computationally efficient algorithm. We
include experiments that show that our algorithm outperforms existing algorithms, often by an order
of magnitude. Finally, we show that our techniques extend to the fixed budget setting where we
provide the first fixed budget algorithm for transductive linear bandits. This algorithm matches the
lower bound up to a factor that in most standard settings is bounded by log(d).

2 Preliminaries

In the (transductive) linear bandit problem, the agent is given a set X C R? and a set of items
Z c R4, Ateach round ¢, an algorithm A selects a measurement X; € X which is measurable with
respect to the history F;_1 = (X, Ys)s<¢ and observes a noisy observation ; = X 6+ 1 where
6 € R? is the unknown model parameter and 7 is independent mean-0 Gaussian nois a We assume
that argmax , ZzTG = {z.}, and the goal is to identify z,. We consider two distinct settings.

Definition 1. Fixed-Confidence: Fix X, Z,0 C R%. An algorithm A is §-PAC for (X, Z,0) if 1)
the algorithm has a stopping time T wrt (Fi)en and 2) at time T it makes a recommendation z € Z
and for all § € © it satisfies Py(Z = z.) > 1 — 6.

Definition 2. Fixed-Budget: Fix X, Z,0 C R? and a budget T. An algorithm A for fixed-budget
returns a recommendation z € Z after T rounds.

Linear bandits is popular for applications such as content recommendation, digital advertisements, and
A/B testing. For instance, in content recommendation X = Z C R may be sets of feature vectors
describing songs (e.g., beats per minute, genre, etc.) and § € R¢ may represent an individual user’s
preferences over the song library. An important sub-class of linear bandits is known as combinatorial
bandits which is a focus of this work.

Combinatorial Bandits: In the combinatorial bandit setting, X = {eq,...,eq} (Where e; is the
i-th canonical basis vector) and Z C {0, 1}9. We will sometimes overload notation by treating Z as
a collection of sets, e.g., for z € Z writing i € z iff e] 2 = 1. We next give some examples of the
combinatorial bandit setting.

Example 1 (MATROID). M = (S, T) is a matroid where S is a set of ground elements and T C 2° is
a collection of independent sets. This setting includes best arm identification, Top-K arm identification,
identifying the minimum spanning tree with largest expected reward in a graph, and other important
applications (see [/|] for a list of applications).

Example 2 (MATCHING). For a balanced bipartite graph with d edges and 2+/d vertices let Z

denote the set of \/d! perfect bipartite matchings. The goal is to identify the matching z € Z that
maximizes 0 z.

'Our results still apply in the case where the noise is sub-Gaussian, but for simplicity here we assume that
the noise is Gaussian (see the Supplementary Material).



In some of these settings, | Z| is exponential in the dimension d. For example, in the problem of
= (+/d)!. In this setting a naive evaluation of

argmax, =20 by enumerating Z becomes impossible even if 6 were known. For such problems,
we assume access to a linear maximization oracle

ORACLE(w) = argmax z ' w, (1)
zEZ

which is available in many cases, including matroids, MATCHING, and identifying a shortest path in a
directed acyclic graph (DAG). We will characterize the computational complexity of an algorithm in
terms of the number of calls to the maximization oracle.

3 Review of Gaussian Processes

We now discuss how our work departs from previous approaches to the pure exploration linear
bandit problem. Consider for a moment a fixed design where n > d measurements x1, . .., x, were
decided before observing any data, and subsequently for each 1 < i < n we observe y; = z,/ 6 + n;
with 1; ~ A(0,1). In this setting the maximum likelihood estimator (MLE) is given by ordinary

least squares as § = (31, ;2] )~ Y, y;x;. Substituting the value of y; into this expression,
we obtain 6 = 6 + (Xr o xT)_1/2 7 in distribution where n ~ N(0,1;). After collecting
{(zi,y:)}, and computing 8, the most reasonable estimate for z, = argmax.czz'0 is just
Z = argmax,czz T9. The good event that Z = z, occurs if and only if (z, — z)TG > 0 for
all z € Z\ {z,}. Since @ is a Gaussian random vector, for each z € Z, (z, — 2)T (8 — 6) ~
N, (ze —2) T (X0 ziz]) - (z+ — z)). If we apply a standard sub-Gaussian tail-bound with a
union bound over all z € Z \ {z,}, then we have with probability greater than 1 — ¢ that

(20 = 2) 70> (52— 2) 70 — /2] 2 — #I[% - os(|21/9) 2)

forall z € Z \ {z,} simultaneously, where we have taken A = }""" | z;z; and used the notation
|z||3 = = T Wz for any square W. Thus, we conclude that if n and {1, ..., ,} are chosen such
(22? eya])—1 108(I1Z1/0)
= (G-—2) 707

(2. —2) 70 > 0forall 2 € Z\ {2} and consequently, Z = z,. This simple argument is the core of
all approaches to pure exploration linear bandits until this paper [30, 23} 33} [12]. However, applying
a naive union bound over all z € Z can be extremely weak and does not exploit the geometry of Z

that induces many correlations among the random variables (z, — z) " (é\ —0).

2|z —=|l

that max, ¢ z > 1 then with probability at least 1 — & we will have that

At the heart of our approach is the following concentration inequality for the suprema of a Gaussian
process (Theorem 5.8 in [2]).

Theorem 1 (Tsirelson-Ibragimov-Sudakov Inequality [19]). Let S C R? be bounded. Let (V) cs
be a Gaussian process such that E[V] = 0 for all s € S. Define 0* = sup,cs E[V.2]. Then, for all
u >0,

2
IP’(|supV ]EsupV| >u) < 2exp <2u > .
o2

seS

Setting S = Z, we can apply this to the Gaussian process V, := (z, — z)T(é —0) = (2 —
2) (30, ] )Y/ %n where, again, n ~ N(0, I;). We then have with probability at least 1 — &

(2 — z)T§2 (2. —2) 0 —E, | sup (2. —2) A7/
z€2Z\{z.}

¢2 sup [|z. — 2|3, log(})

z€EZ

forall z € Z \ {z.} simultaneously. This bound naturally breaks into two components. The second-

term is the high-probability term, and as the discussion above implies, naturally motivates the experi-

mental design objective ming, ..., Max e z\(z,}]/2+ — zH%Z" 2i2T)-1 from past works on linear-
i=1"t"q

bandit pure exploration. The first term, E, . n(0,1,) [SUPzez\{z*}(Z* —2)7 (Z?:l xlx;r) -1/2 7]} is



the Gaussian-width of the set { (>, z;z, ) e (2« — 2)}2e2\{=.} [32]. This term represents the
penalty we pay for the union bound over the possible values of Z and reflects the underlying geometry
of our arm set. For moderately sized values of § € (0, 1) such as the science-stalwart § = 0.05, the
Gaussian width term can be substantially larger than the high probability term. Analogous to above,
this motivates choosing z1, - - - , x,, to minimize the Gaussian width term.

Relaxation to Continuous Experimental Designs. In practice, optimizing over all finite sets of
X of size n to minimize an experimental design objective is NP-hard. Define A := {\ € RIX!
> A =1, \; > 0} to be the simplex over elements X' and define A(\) = Y_, 1 Azzz where
A € A denotes a convex combination of the measurement vectors. Defining the design that minimizes
the high probability term motivates the definition
* . * * ||Z* — Z”Z()‘)_l
J )\122 p*(A) where P () S T )

On the other hand, minimizing the Gaussian width term motivates the definition

* . * * (Z* - Z)TA(A)71/27’ 2
= inf h =E, . .
5 jnf N where 75 (N) n N(O’I)[zez’l\l?z*} 07 (2 — 2) ]

While the above suggests the importance of the quantities p* and v*, we will show later how they are
intrinsic to the problem hardness. For now, we point out that these quantities are easily relatable.

Proposition 1. There exists universal constants ¢, ¢’ > 0 such that for any X and Z we have

e =212 )1

cp* —infrz,, infrea OG22 < 7" < min(c'log(|2])p*, dp*).

2
Typically, inf,,, infyca |\(ng (jlf(z)); < p*, in which case p* < ~*. While there are instances

where v* = ©(dp*), the upper bound is not necessarily tight.

Proposition 2. There exists an instance of transductive linear bandits where v* > cdp®, and a
separate instance for which v* < ¢’ log(d)p* where ¢, ¢’ > 0 are universal constants.

4 Towards the true sample complexity

This section formally justifies the quantities p* and v* defined above. The following result holds for
any X and Z and was first proven in this generality in [[12], extending [30} 29} 8]].
Theorem 2 (Lower bound for any adaptive algorithm [12]). For any é € (0,1), any 6-PAC algorithm

*

wrt (X, Z,R%) with stopping time T satisfies Eg[r] > log (545 )p*.

Mirroring the approaches developed in [24, 18, [14]], it is possible to develop an algorithm that satisfies

Ege ([%]) = p*, demonstrating the tightness of TheoremEin the regime of § tending towards
0. However, for fixed 6 € (0, 1), algorithms for linear bandits to date have only been able to match
this lower bound up to additive factors of dp* or log(| Z|)p* [24,[12] (note, this does not rule out
optimality as § — 0). In particular, the lower and the upper bounds of linear bandits do not reflect
the underlying geometry of general sets X and Z in union bounds and are loose in general. For
example, in the well-studied case of Top-K, these bounds do not capture some additive factors that
are necessary and achievable in addition to p* alone [28 9]

lims_o

As a step towards characterizing the true sample complexity, we next demonstrate a lower bound that
incorporates the geometry of X’ and Z for, presumably, the best possible non-interactive algorithm.
Precisely, the procedure chooses an allocation {z1,,z,,... } € X, thenobserves {yr,,yr,,...} € R

where y;, ~ N (z] 6,1), and finally forms the MLE § = argming >, (ys, — =].6)? and outputs
7 = argmax,cz 2T0. We emphasize that this procedure can pick any allocation; in particular, it can
use the allocation that achieves p*.

Theorem 3 (Lower bound for non-interactive MLE). Fix X, Z C R? and a problem 6 € R
Let 6 € (0,0.015] and ¢ > 0 be a universal constant. If the non-interactive MLE uses less than

c(v* +1og(1/6)p*) samples on the problem instance (X, Z, ), it makes a mistake with probability
at least 0.



Input: Confidence level § € (0, 1), rounding parameter ¢ € (0, 1) with default value of %;
121 «— Z, k<— 1,6, «— 6/2K*;
B = infaea Eyono,n[max, ez (z — 2/) TAN) T 2] + 210g(%)maxz,z'62 Iz — ZIH2A()\)*1 VL

while | Z;| > 1 do
Let \x and 75, be the solution and value of the following optimization problem

. T _ 1 2
)}ngT(A;Zk) =E,n,n[max; .cz, (z=2") AN 1/277]2—i—2 IOg(a)maxz,z’ezk ||z — Z/|’A(>\)—1

Set Ny +— [2(1 n e)Tk(ﬁ%)Q-‘ V g(e) and find {z1,. .., zn, } «— ROUND(\p, Ny, €);
Pull arms 1, ..., zn, and receive rewards y1, ..., Yn,;

Let O «+— (ONk zox] ) 7PN 2oy, s R

Zpr1 +— Zp \ {2z € 2 : 32/ such that (z' — 2) "6, — s > 0}

k<—k+1
return Z, = {Z}.

Algorithm 1: Fixed Confidence Peace. See text for explanation of ROUND sub-routine.

By Proposition[2} v* can be larger than p* by a multiplicative factor of the dimension d, demonstrating
that the lower bound of Theorem [3 can be much larger than the lower bound of Theorem 2. While
there exists problem instances in which the best known adaptive algorithm can achieve a sample
complexity strictly smaller than the lower bound of Theorem 3| (e.g., best-arm identification), we are
unaware of any settings in which the sample complexity of the best adaptive algorithm improves over
Theoremby more than a factor of log(d), which is typically considered insignificant.

5 Fixed Confidence Setting Algorithms

In this section, we present Algorithm [T} Peace, that achieves the state-of-the-art sample complexity
for (transductive) linear bandits in the fixed confidence setting. In each round k we eliminate from
the set of candidates Z all the elements that are roughly 2~* suboptimal. In each round the query
allocation is fixed according to the best non-adaptive strategy.

Our algorithm must round a design to an integral solution. It uses an efficient rounding procedure
ROUND(\, N, ¢) that for A € A and N > ¢(e) returns £ € NI*| such that > wex ke = N and
7(k; Z") < (14+€)7(NX; Z') [. It suffices to take g(€) = O(d/€?) (see the Supplementary Material).
Define Sy :={2€ Z:0" (2. —2) < B27F}, A, := 0" (2, — 2), and Apyiy := minez\ (2.} A

Theorem 4. With probability at least 1 — 0, Algorithm|[I|terminates and returns z, after a number of
samples no more than

[v* + p* log(log(52-)/8)emin(log( 52-), log (o rmimcarovsy) + edlog(x2).
log(B) = O(log(d)) when X = Z and in combinatorial bandits, and B can be replaced by an upper
bound on max, ¢ z A, when one is known. 7(\; Z) can be optimized using stochastic mirror descent;
we show that after a suitable transformation, it is convex in the combinatorial bandit setting. We
conjecture that it is convex in the general case, as well.

While our upper bound has an extra additive factor of d compared to the lower bound of Theorem [3]
this factor is necessary in many cases. The following theorem shows that in the combinatorial setting,
an additive factor of d is necessary if the agent has no apriori knowledge about 6.

Theorem 5. Consider the combinatorial setting where X = {ey, ... e} and Z C {0,1}%. Let
§ € (0,1/4). Fix 6 € R? such that argmaxzeZzTG is unique. If an algorithm A is 0-PAC wrt

(X, Z,R%), then By [Zle T;] > % where T; denotes the number of times that A pulls e;.

The intuition behind the argument in Theorem E is that if 2(d) directions are not explored with
constant probability, then there is some 6; that the algorithm has no information about with constant
probability. Thus, an adversary can perturb 6; to alter the best z, making the agent incorrect with a
constant probability, which contradicts the §-PAC assumption.



5.1 Computationally Efficient Algorithm for Combinatorial Bandits

A drawback of Algorithm E is that it is computationally inefficient when |Z| is exponentially
large in the dimension. In this section, we develop an algorithm for combinatorial bandits that
is computationally efficient when the linear maximization oracle defined in (1)) is available. We
introduce the following notation for a set Z' C Z:

¥(2") = minE[ sup (z—2") A2 ()%, 3)

€A z,2'€Z’

We also introduce the subroutine UNIQUE(Z, b\k, 27FT"), which uses calls to the linear maximization
oracle to determine whether the gaps are sufficiently well-estimated to terminate (see the Supplemen-
tary Material).

Input: Confidence level § > 0, rounding parameter € € (0, 1) with default value of %,
suffices though this is wildly pessimistic; we recommend using o = 4) ;
o =0€RLT «— Y(Z) V1,0 ¢ 505 ;
for k =0,1,2,...do
Zp +— argmax . z 6Tkrz;
Let A\, 7% be the solution and value of the following optimization problem

Gr—2)TAN) 20
2-FT 4+ 07 (3 — 2)

Set N +— « [Tk lOg(l/ék)(l +4 Gﬂ V q(e) and find {a:l, - 7iL'Nk} — ROUND()\k, Nk);
Pull arms 1, ..., zn, and receive rewards y1,...,Yn,;

Let Opy1 «— (Zivz"l zoxd )t Zi\;kl TsYs

if UNIQUE(Z, §k, 27*T) then return Zj
Algorithm 2: Fixed Confidence Peace with a linear maximization oracle.

a>0(a=42941

“

inf E, max,cz
inf E, N(0,1)[max¢

The objective (@) in Algorithm |2 acts a surrogate for v* that becomes increasingly accurate over
the course of the game. Enough samples are taken at round k to ensure with high probability
@(Ek —z)~ A, forall z € Z suchthat A, > 27kT. Thus, at round k, @]) behaves approximately

_ -1/ .
as B, (0,1 [Max.ez %_W]Q. As such, (@) ensures that (i) Algorithm |2 does not take

too many sample at any round and (ii) enough samples are taken to estimate A, for each z € Z ata
progressively finer level of granularity.

In the Supplementary Material, we provide procedures for computing v(Z) and (4)) only using calls to
the linear maximization oracle. The main challenge is to compute an unbiased estimate of the gradient
of the objective in (@) (for an appropriate first-order optimization procedure such as stochastic mirror
descent), which we now sketch. Since the expectation in (4)) is non-negative, it suffices to optimize
the square root of the objective function in @). Writing g(X\;7; 2) = %
may exchange the gradient with respect to A and the expectation over 7, to (k)btain an unbiased
estimate, it suffices to draw n ~ N (0, I), and compute Vymax,czg(A;7; z). Since for a collection
of differentiable functions {h1,...,R;}, a sub-gradient V,max;h;(y) is simply V,ho(y) where
ho(y) = arg max; h;(y), it suffices to find arg max, c = g(A; n; z). We reformulate this optimization
problem as the following equivalent linear program:

, since we

min s subject to max.cz(Z, — z) T AAN)"Y2) —s27FT + 6] (3, — 2)] <0 (5)
A call to the linear maximization oracle can check whether the constraint in (3) is satisfied so the
above linear program can be solved using binary search and multiple calls to the maximization oracle.

It would be ideal to also design a surrogate for p* that can be optimized using linear maximiza-
tion oracle calls in a similar way to (). Unfortunately, the above technique appears to fail since
(2x=2) ’2
2-kT48] (3 —2) AN -1
maximization oracle calls. Fortunately, leveraging properties of Gaussian width, we show that

optimizing () leads to only a small loss in sample complexity.

max,ecz H contains quadratic terms that cannot be optimized using linear



Input: € € (0, 1) with default value of -, budget 7" such that T > g(¢) [log, (v(Z))] ;
IR +— [logs(v(2))], N «— |T/R], 20 +— Z,k +— 0;
while ¥ < Rand |Z;| > 1do
Let Ag achieve the minimum in y(Z}) and find {x1,...,zn} +— ROUND(Ag, N, €);
Pull arms 1, . .., 2 and obtain rewards y1, ..., yn;
Set Oy, +— (XN zex )P YN 2oy
Compute an ordering 7 over 2, such that <§k, 2y (3) = Zmp,(i+1) ) = O foralld;
Let ix11 be the largest integer for which v({zx, (1), - 2ry, (150) }) < V(Z6)/2;
Zpy1 {Zﬂ'k(l)7 R Zﬂk(ik+1)};
k<«—Fk+1;
~
return arg max;c z, 0 2

Algorithm 3: Fixed Budget Peace

Theorem 6. Consider the combinatorial bandit setting. With probability at least 1 — 46 Algorithm 2]
terminates and returns z, after at most

(7" + p") log(log(v(Z2)/Amin)/0) + d]clog(v(Z2)/Amin)
samples and if § € (2%,, 1), then with probability at least 1 — 49, the number of oracle calls is upper

bounded by

~ dmax,czA, + T

a3 1 Z)/Amin)®
O([d+10g( 5 2 Og(’Y( )/ )

A2 52 )

min

) log(d)

Theorem@nearly matches the sample complexity of Theorem The latter scales like v*+p* log(1/4)
whereas the former scales like (v* + p*) log(1/0), reflecting a tradeoff of statistical efficiency for
computational efficiency. It is unknown if this tradeoff is necessary.

6 Fixed Budget Setting

Next, we turn to the fixed budget setting, where the goal is to minimize the probability of returning a
suboptimal item z € Z\ {z.} given a budget of T total measurements. Algorithm[3]is a generalization
of the successive halving algorithm [23] and the first algorithm for fixed-budget linear bandits. It
divides the budget into equally sized epochs and progressively shrinks the set of candidates Zj. In
each epoch, it computes a design that minimizes (2}, ) and samples according to a rounded solution.
At the end of an epoch, it sorts the remaining items in Z by their estimated rewards and eliminates

enough of the items with the smallest estimated rewards to ensure that y(Z41) < @

Theorem 7. Suppose that v({z,z.}) > 1 forall z € Z\ {z.}. Then, if T > cmax([p* +
~v*], d) log(v(Z)), Algorithm|3|returns Z € Z such that

T

P(Z # 2,) < 2 [log(v(Z))] exp(—c,[p* ] los((2))

).

We note that the combinatorial bandit setting satisfies the assumption that y({z, z.}) > 1 forall z €
Z \ {z.}, but this lower bound is unessential and the algorithm can be modified to accommodate an-
other lower bound. Theorem [7]implies that if 7 > O(log(1/8)[p* + v*]log(7(Z)) log(log(v(Z)))),
then Algorithm [3|returns z, with probability at least 1 — §. Finally, log(v(Z)) is O(log(d)) in many
cases, e.g., combinatorial bandits and in linear bandits when X = Z.

7 Discussion and Prior Art

Transductive Linear Bandits: There is a long line of work in pure-exploration linear bandits
[30} 33} [31]] culminating in the formulation of the transductive linear bandit problem in [[12]] where
the authors developed the first algorithm to provably achieve p* log(| Z|/6). The sample complexity
of Theorem[, v* + p*log(1/4), is never worse than [12] since v* < p* log(|Z|) by Proposition/[L.



On the other hand, it is possible to come up with examples where v* does not scale with | Z|, but
just p* (see experiments). While our algorithms work for arbitrary X', Z C R?, problem instances of
combinatorial bandits most clearly illustrate the advances of our new results over prior art.

Combinatorial Bandits: The pure exploration combinatorial bandit was introduced in [[10]], and
followed by [13]]. These papers are within a log(d) factor of the lower bound for the setting where Z

is a matroid. If A; = 7 2, — max,cz.c.0' 2 wheni ¢ 2, and 0 2, — max.cz.z.0 2z otherwise,
then a lower bound is known to scale as zg; A;?log(1/6). The following result shows that * is
within log(d) of the lower bound, implying that our sample complexity scales as 25:1 A% log(d/s).
Proposition 3. Consider the combinatorial bandit setting and suppose that Z is a matroid. Then,
v* < clog(d) E?:1 A2 for some absolute constant c.

However, in the general setting where Z is not necessarily a matroid, [8]] points out a class with
| Z| = 2 where the sample complexity of [10}[13] is loose by a multiplicative factor of d. Chen et al.
(8] was the first to provide a lower bound equivalent to p* log(1/4) for the general combinatorial
bandit problem, as well as an upper bound of p* log(|Z|/§). However, as stressed in the current
work, the log(|Z|) term is not necessary in many scenarios; for example, in Top-K, p* log(|Z|) is
larger than the best achievable sample complexity by a multiplicative factor of & [9l [28]. This is
not in contradiction with the lower bound provided in Theorem 1.9 of [8]] which provides a specific
worst-case class of instances where the log(| Z|) is needed.

The next technological leap in combinatorial bandits is the algorithm of [5] (and the follow-up [20]).

They provided an algorithm with a novel sample complexity that replaces log(| Z|) with a more

geometrically inspired term. Define the sphere B(z,7) = {2’ € Z : ||z — 2|, = r}, and the

||zfz'||§log(d\B(z*7 zfz'”Q)\)
2

complexity parameter @; := mMaxX,cz\{z, }:icz. Az . Then [5] provide a

sample complexity scaling like ¢* := >""" | ¢;. The followingzshows that v* is never more than
log log(d) larger than this complexity.

Proposition 4. Consider the combinatorial bandit setting. Then, v* < O(p* log(log(d))).

However, for even these sample complexity results that take the geometry into account, there exist
clear examples of looseness that our approach avoids.

Proposition 5. There exists an instance of Top-K where o* = Q(klog(d)p*) but v* = O(log(d)p*).

In summary, we have the first algorithm with a sample complexity that simultaneously is nearly
optimal for matroids, essentially matches our novel lower bound v* + log(1/9)p* < log(|Z]/6)p*,
and is never worse than the sample complexity ¢* from [5} 20].

Computational Results in Combinatorial Bandits: The algorithm CLUCB from [10] is compu-
tationally efficient and user-friendly. [S]] and [8] provide computationally efficient algorithms, but
their running times scale very poorly with problem-dependent parameters, making these algorithms
impractical and we are unaware of any implementations.

8 Experiments

Combinatorial Bandits: We use 6 = 0.05 on all the experiments and the empirical probability of
failure never exceeded ¢ in all of our experiments. We consider three combinatorial structures. (i)
Matching: we use a balanced complete bipartite graph G = (U UV, E) where |U| = |V| = 14. Note
that | Z| = 14! > 8 - 10'°. We took two disjoint matchings M; and M and set ., = 1 if e € M;
and 0. = 1 — hife € M, for h € {.15,.1,.05,.025}. Otherwise, 6. = 0. (ii) Shortest Path: we
consider a DAG where a source leads into two disjoint feed-forward networks with 26 width-2 layers
that then lead into a sink (see Figure@for an illustration). Note that |Z| > 10%. We consider two
paths P; and P, such that they are in the disjoint feed-forward networks. We set 8, = 1 ife € P,
and0, =1—hife € Pyforh € {.2,.15,.1,.05}. Otherwise, 6, = —1.

(iii) Biclique: In the biclique problem, we are given a complete balanced bipartite graph with v/d
nodes in each group. Z is the set of bicliques with /s nodes from each group in the bipartite
graph. This problem is NP-hard, so there is no linear maximization oracle, and therefore, we
consider a small instance where v/d = 8 and /s = 2. We pick two random non-overlapping
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Figure 1: In row 1, panels (i) and (ii) depict the relative performance of CLUCB and UA to PEACE,
and panel (iii) depicts the relative performance of CLUCB, DisRegion, and UA to PEACE. In row 2,
Panel (i) compares uniform sampling and FBPeace in the fixed budget setting, and panel (ii) compares
the performance of RAGE to Peace on the linear bandits experiment.

bicliques and let B; and B> denote the set of their respective edges. If e € B, we set 6, =
l,and if e € By, weset. = 1 — hfor h € {.1,.8,.6,.4,.2}. Otherwise, we set §. = 0.

As discussed in the related work, all of the algorithms in the literature

are either inefficient or have burdensome running times, with the

sole exception being CLUCB from [[10]. Therefore, for the shortest

path and matching experiments, we compare Algorithm[2]againsta

uniform allocation strategy (UA) and CLUCB. The biclique instance ~Figure 2: Shortest Path Problem
is small enough that Z can be enumerated, so we also compare

against Algorithm 4 from [5] (denoted DisRegion), which achieves

the best sample complexity result from that paper.

The first row of panels in Figure I depicts the ratio of the average performance of the competing
algorithms to the average performance of our algorithm. In the matching experiment, as the gap
between the best matching A7 and the second best matching Ms get smaller, CLUCB pays a cost
of roughly |U|/h? to distinguish M; from My whereas our algorithm pays a cost of roughly 1/h?.
A similar phenomenon occurs in the shortest path problem. In the biclique experiment, as the gap
between the best biclique and the second best biclique decreases, the performance of the competing
algorithms degrades relative to Peace. For example, for large h, Peace and DisRegion have similar
performace but for A = .2, DisRegion requires more than 3 times as many samples as Peace.

Multivariate Testing We consider multivariate testing [[16} [15] in which there are d options, each
having k possible levels. For example, consider determining the optimal content for a display-ad with
slots such as headline, body, etc. and each slot has several variations. A layout is specified by a d-tuple
f=(f1,-,fa) €{1,---, k}? indicating the level chosen for each option. For each option I, 1 <
I <dandlevel f,1 < f <k, there is a weight WJ{ € R, and for each pair of options I, J and factors

fr, f7, there is a weight WfII JfJ € R capturing linear and quadratic interaction terms respectively.

The total reward of a layout f = (fy,-- -, fq) is given by Wy + Z?:l W]{I + 2[11:1 Z?Zl WfIIJfJ
The fixed budget experiment in Figure|l considers a scenario when k = 6 and d = 3 and compares
Algorlthm(FBPeace) to uniform sampling. We set W1 1 = .8and I/V1 1 = .1 and all other weights
to zero, capturing a setting where the three options must be synchronized. At 10000 samples, FBPeace
is 30% more likely to return the true optimal layout.

Linear Bandits. We considered a setting in R?, where X = {e;,cos(37/4)e; + sin(37/4)es} and
Z = {cos(m/4+ ¢i)e1 +sin(m/4+ ¢;)ea} -, where ¢; ~ Uniform([0,.05]). The parameter vector
is fixed at § = e,. In Figure|l we see that as the number of arms increases (from 10? to 10°), the
number of samples by our algorithms is constant, yet grows linearly in log(| Z|) for RAGE [12]. This
reflects the main goal of the paper - optimal union bounding for large classes.



Broader Impact

In this paper, we developed adaptive learning algorithms for linear and combinatorial settings. These
algorithms hold the promise of decreasing the amount of data that is required to make discoveries.
Given the generic nature of these algorithms, it is possible that practitioners will apply these algorithms
towards goals that are ultimately harmful for society. However, we believe that our algorithms also
hold significant promise to benefit society. By making the learning process more data-efficient, we
are optimistic that our algorithms can be applied to accelerate drug discovery, as well as the rate of
scientific discovery in a wide range of fields ranging from biology to the social sciences. Our belief is
that the potential benefits outweigh the potential negative consequences.
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