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Abstract. Constrained learning, a weakly supervised learning task,
aims to incorporate domain constraints to learn models without requiring
labels for each instance. Because weak supervision knowledge is useful
and easy to obtain, constrained learning outperforms unsupervised learn-
ing in performance and is preferable than supervised learning in terms
of labeling costs. To date, constrained learning, especially constrained
clustering, has been extensively studied, but was primarily focused on
data in the Euclidean space. In this paper, we propose a weak supervision
network embedding (WSNE) for constrained learning of graphs. Because
no label is available for individual nodes, we propose a new loss function
to quantify the constraint-based loss, and integrate this loss in a graph
convolutional neural network (GCN) and variational graph auto-encoder
(VGAE) combined framework to jointly model graph structures and node
attributes. The joint optimization allows WSNE to learn embedding not
only preserving network topology and content, but also satisfying the
constraints. Experiments show that WSNE outperforms baselines for
constrained graph learning tasks, including constrained graph cluster-
ing and constrained graph classification.
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1 Introduction

Graph-structured data are becoming increasingly common in many real-world
applications, such as social networks, citation networks, knowledge graphs,
telecommunication networks, and biological networks [4]. In graph-structured
data, nodes represent individual entities, and edges represent relationships and
interactions between entities. For example, in citation networks, each document
denotes a node, and a citation link between two documents is treated as an edge.
Learning node embeddings is one of the most important and active research top-
ics in network feature representation learning. Many models [24] have been pro-
posed to embed each node into a continuous vector space. Because embedding
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Fig. 1. Constrained graph learning. The weak supervision, must-link and cannot-link,
specifies pairwise node constraints. Constrained graph clustering clusters node into
groups, and constrained classification classifies a pair of nodes as either same-group or
different-group.

vectors preserve topology and node content information, they can be directly
used in downstream tasks, such as clustering or classification.

Depending on the availability of node labels, existing node embedding meth-
ods fall into two categories: (1) Strong-supervision: labels are provided to indi-
vidual nodes (or a portion of nodes) for finding embeddings with maximum
separability. (2) Non-supervision: no labels are provided to the learning task, so
embedding aims to find a mapping to an output space without labeled responses.
For strong-supervision methods, they require labeled training data, which often
imply high labeling costs and obstacles. This bottleneck effect manifests itself
in various ways, including the insufficient quantity of labeled data, insufficient
subject-matter expertise to label data, and insufficient time to label and prepare
data. On the other hand, for non-supervision methods, because no labels are
given to the learning algorithms to differentiate samples, it is difficult for them
to find structures satisfying users’ requirements.

In addition to the above strong- vs. non-supervision scenarios, Weak super-
vision in machine learning provides a new setting where no labels are provided
for individual instances, but some noisy, low-quality, conditional constraints over
unlabeled data are available for model learning [1]. Weak supervision learning is
intended to decrease labeling costs and increase the efficiency of human efforts
expended in hand-labeling data while makes the outputs usable and compre-
hensive to specific problems. For example, pairwise constraints, must-link and
cannot-link, are a means of weak supervision that constrain a pair of data points
to belong to the same cluster (must-link) or different clusters (cannot-link). By
integrating such pairwise constraints, constrained clustering is able to learn clus-
ter structures much better than pure clustering methods [2]. A variety of stud-
ies have attempted to learn models using weak supervision [5,12,13,26], some
works [25] have also recently advanced deep learning to weak supervision, but
existing methods are primarily focused on data in the Euclidean space. While
both weakly supervised learning and graph data have been extensively studied,
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to the best of our knowledge, there is no existing work on weakly supervised
learning for graph-structured data, especially for constrained graph learning.

For constrained graph learning, the purpose is to integrate constraints as
weak supervision knowledge to learn graph models. One example is constrained
graph clustering (as shown in Fig. 1, which aims to cluster nodes of an attributed
graph where each node is associated with a set of feature attributes. In spe-
cific applications such as the clustering of faces in videos [23] and the assessing
of interpatient similarity [22] when class labels are not available, constraints
are particularly important for enhancing performance. Another example is con-
strained graph classification (as shown in Fig. 1), which learns a binary classifier
to identify whether two given nodes belong to the same group or not. Like rec-
ommendation systems, the predicted pairwise constraints (pairwise association
rules) are very important in suggesting relevant items to users (as known as
pairwise preference learning) [8].

The above observations motivate our research to propose a weak supervi-
sion node embedding model (WSNE) for constrained graph learning. We con-
sider pairwise node constraints as weak supervision, and the main idea is to
learn optimal node embedding by simultaneously integrating constraint loss and
graph reconstruction loss in a deep graph convolution network (GCN) and vari-
ational graph auto-encoder (VGAE) combined framework. Different from exist-
ing strong-supervision graph embedding methods (including supervised/semi-
supervised), our approach can utilize both constrained and unconstrained nodes
to derive a high-order embedding evaluation criterion. This evaluation crite-
rion estimates the effectiveness of node embedding based upon the high-level
distances of must-link/cannot-link among constrained nodes and the average
squared distances between unconstrained nodes. The GCN framework is used
to learn a target node’s representation by propagating neighbour information in
an iterative manner until a stable fixed point is reached. And the VGAE frame-
work is used to learn latent node representations through reconstructing graph
topology information such as the graph adjacency matrix. To make better use of
the constraints in graph learning, we also propose a novel topology optimization
to fully utilize the potential constraint information during the message pass-
ing process in GCN as the given network topology may induce a performance
degradation if it is directly employed in classification/clustering tasks.

In summary, the main contribution of the paper, compared to existing meth-
ods in the field, is threefold:

– We formulate a new weak-supervision network embedding task to utilize weak
supervision knowledge to find effective latent vector space.

– We propose a new pairwise constraint evaluation criterion to efficiently evalu-
ate the quality of embedding vector on constrained and unconstrained graph
data.

– We develop a new constrained topology optimization method for graph con-
volution layers which take must-link and cannot-link into consideration.
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2 Problem Definition

An undirected connected attributed graph G = {V, E ,A,X} consists of a set of
nodes V with |V| = n, a set of edges E with |E| = m, the adjacency matrix A,
and node attribute matrix X . If there is an edge between node i and node j, the
entry Aij denotes the weight of the edge; otherwise, Aij = 0. For unweighted
graphs, we simply set Aij = 1.

For each node, its content (features) is represented as a vector x ∈ R
n, where

xi denotes feature values of node i (Node attributes, node content, and node
features are equivalent terms in this paper). Therefore, X ∈ R

n×d denotes the
node attribute matrix of the graph, and the columns of X are the d features of
the graph.

Network embedding aims to embed a graph G in a low-dimensional space
Z ∈ R

n×m, where m << d and the columns of Z are the m embedded signals of
the graph. In the context of constrained graph learning, we consider two pairwise
node-level constraints as weak supervision knowledge:

– Must-link: Two nodes belong to be in the same cluster/group, i.e. C+ = {<
i, j > |Ci = Cj}, where Ck means the cluster that node k belongs to.

– Cannot-link: Two nodes do not belong to the same cluster/group, i.e. C− =
{< i, j > |Ci �= Cj}.

Given graph G and weak supervision constraints {C+, C−}, constrained graph
learning aims to solve learning sub-tasks as follows:

– Constrained graph clustering: incorporate pairwise node constraints to
cluster nodes into different groups.

– Constrained graph classification: incorporate constraints {C+, C−} to
learn a binary classifier to classify a pair of nodes as either same-group or
different-group.

For constrained graph learning, our theme is to impose constraints on net-
work embedding process to learn a discriminative representation for each node.
The pairwise constraints {C+, C−} define transitive binary relations over the
nodes. Consequently, when making use of constraints, we take a transitive clo-
sure over the constraints. The full set of derived constraints is then presented to
the learning algorithm.

3 CEL: Constraint Embedding Loss

Because class labels are not available for individual nodes, we have to design a
new approach to utilize constraints {C+, C−} for node embedding learning. In
this section, we address the weak supervision problem discussed in Sect. 1 by
finding optimal node embedding of weak supervision from both must-link and
cannot-link constraints. From the perspective of weak supervision, we assume
that the optimal node embeddings should have the following properties: (1)
Must-link distance: The pairwise must-link nodes should be close to each other
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in the node embedding space; (2) Cannot-link distance: The pairwise cannot-
link nodes should be far away from each other in the node embedding space;
(3) Separability : unconstrained nodes should be able to be separated from each
other in the node embedding space.

Intuitively, (1) and (2) only consider the constraints from constrained pairs
and tend to optimize the node embeddings based on the constraints. This is moti-
vated by the commonly observed phenomenon [17] that nodes close to each other
tend to share common content information. Note (3) incorporates the distribu-
tion of unconstrained nodes, and tends to optimize the node embeddings that
can separate nodes far from each other. It is similar to the PCA’s assumption,
which is expressed as the average squared distance between unlabelled samples.

Based upon the above properties, we derive a new evaluation criterion
LCEL(Z), for a given node embedding matrix Z as follow:

LCEL(Z) =
γ+

2|C+|
∑

<i,j>∈C+

(Zi· − Zj·)2 − γ−

2|C−|
∑

<i,j>∈C−
(Zi· − Zj·)2

− 1
2|Cu|2

∑

<i,j>∈Cu

(Zi· − Zj·)2
(1)

In Eq. (1), Cu = {< i, j > | < i, · >/∈ C+ ∪ C− and < j, · >/∈ C+ ∪ C−} is
the pairwise unconstraint sets. γ+ and γ− are two parameters, which control
the weights of the three types of constraints. Based on the experiments, we
found that applying feature binarization after 0–1 scaling on Z for calculating
LCEL can accelerate the convergence during the training process. By defining a
pairwised constraint matrix P = [Pij ]n×n as

Pij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ+
/|C+| if < i, j >∈ C+

− γ−/|C−| if < i, j >∈ C−

− 1
/
2|Cu|2 if < i, j >∈ Cu

0 otherwise

(2)

We can then rewrite the LCEL(Z) in Eq. 1 as follow:

LCEL(Z) =
1
2

∑

i,j

(Zi· − Zj·)2Pij = tr(Z�(Dp − P )Z) = tr(Z�LpZ) (3)

where tr(·) is the trace of a matrix, Dp is the diagnal matrix whose entries are
column sums of P , i.e. Dp

ii =
∑

j Pij . Lp = Dp − P is a Laplacian matrix.
Therefore, the framework to optimize the node embeddings for graph learning

by considering constraints is to minimize LCEL(Z) during the training process.

4 WSNE for Constrained Graph Learning

The above constraint embedding loss LCEL allows us to quantify embedding
loss without knowing labels of individual nodes. In this paper, we incorporate
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LCEL into a variational graph encoder framework (GVAE) architecture which
uses constrained graph convolution to build the encoder. Our goal is to generate
embedding vectors which optimally preserve graph content and topology, as well
as comply to the given constraints.

Fig. 2. The architecture of the weak supervision node embedding (WSNE) for con-
strained graph learning. The lower tier is the graph convolution based variational auto-
encoder that reconstructs a graph A from Z which is generated by the encoder which
exploits graph structure A and the node content matrix X . The upper tier is the con-
straint embedding loss that evaluate the quality of Z on constrained and unconstrained
graph data. The generated node embedding Z can be used for both constrained graph
clustering and classification as right tier.

Variational Graph Auto-encoder. Graph auto-encoders (GAE) [11,19,21]
are a family of models aiming at embed a graph in a low-dimensional space from
which reconstructing (decoding) the graph should be possible. More precisely,
the node embedding matrix Z is usually the output of a graph neural network
(GNN) [3,6] processing A. To reconstruct the graph, GAE stack an inner product
decoder to this GNN. We have Ā = σ(ZZ�), with σ(·) denoting the sigmoid
function: σ(x) = 1/(1 + e−x). Therefore, the larger the inner product Āij in
the embedding, the more likely nodes i and j are connected in G according to
the GAE. Weights of the GNN are trained by gradient descent to minimize a
reconstruction loss capturing the similarity of A and Ā, usually formulated as a
weighted cross entropy loss.

VGAE extended the variational auto-encoder framework [9] to graph struc-
ture, which uses a probabilistic model involving latent variables zi for each node
i ∈ V, interpreted as node representations in an embedding space. The inference
model, i.e. the encoding part of the VAE, is defined as:

q(Z|X ,A) =
n∏

i=1

q(zi|X ,A) (4)
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where q(zi|X ,A) = N (zi|μi, diag(σ2
i )). Gaussian parameters are learned from

two GNNs, i.e. μ = GNNμ(X ,A), with μ the matrix stacking up mean vectors
μi; likewise, logσ = GNNσ(X ,A). Latent vectors zi are samples drawn from
this distribution. From these vectors, a generative model aims at reconstruct-
ing (decoding) A, leveraging inner products: p(A|Z) =

∏n
i=1

∏n
j=1 p(Aij |zi, zj),

where p(Aij = 1|zi, zj) = σ(zT
i zj). During training, GNN weights are tuned by

maximizing a tractable variational lower bound (ELBO) of the model’s likeli-
hood by gradient descent, with a Gaussian prior on the distribution of latent
vectors, and using the reparameterization trick from [9]. Formally, for VGAE,
we minimize the reconstruction error of the graph data by:

LR(Z) = Eq(Z|X ,A)[log p(A|Z)] − DKL[q(Z|X ,A)||p(Z)] (5)

where DKL(·||·) is the KL divergence of the approximate from the true posterior.

WSNE: Weak Supervision Network Embedding. To better handle weak-
supervision network embedding tasks, we incorporate LCEL into the VGAE
framework, in which the evaluation criterion LCEL acts on the node embed-
ding of the Encoder as part of the loss function to minimize together with the
reconstruction loss. Figure 2 shows an overview of the proposed architecture.
Therefore the whole network parameters are jointly trained by minimizing the
following loss function as

L = LR(Z) + λLCEL(Z) (6)

where LR and LCEL are defined in Eq. (3), respectively. Parameter λ ≥ 0 is a
tradeoff parameter. It is noted that, when λ = 0, the model is regressed to an
original VGAE.

The proposed architecture can be used for both constrained graph clustering
and classification tasks by using the learned node embeddings Z.

Constrained Graph Clustering. We apply the linear kernel K = ZZ�, and
calculate the similarity matrix S = 1

2 (|K|+|K�|), where |·| means taking absolute
value of each element of the matrix. Finally, we perform spectral clustering on
S to obtain clustering results by computing the eigenvectors associated with the
m largest eigenvalues of S and then applying the COP-k-means algorithm on
the eigenvectors to obtain clusters.

Constrained Graph Classification. Given two nodes u and v, we define
a binary operator ⊗ over the corresponding node embeddings Zu· and Zv· in
order to generate a representation g(u, v) ∈ R

m, which is the representation of
the node pair < u, v >. We want our operator to be generally defined for any
pair of nodes, even if an edge does not exist between the pair since doing so
makes the representations useful for must-link/cannot-link prediction where our
test set contains both true (must-link) and false (cannot-link) constraints. In this
paper, we consider the Hadamard product used in [7] as the binary operator, i.e.
[g(u, v)]i = [Zu· ⊗ Zv·]i = Zui × Zvi. The new pairwise representation is then
used to learn a binary classifier for constrained graph classification on the given
constraints.
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5 Constraint Assisted Topology Optimization

The given network topology induce a performance degradation if it is directly
employed in classification/clustering, because it may possess high sparsity and
certain noises. To make the message passing more efficient, in this section, we
optimize the graph topology based upon the constraints and the GCN architec-
ture.

Graph Convolutional Networks. Graph Convolutional Networks (GCNs)
[10] achieve promising generalization in various tasks and our work is built upon
the GCN module. At layer i, taking graph adjacency matrix A and hidden
representation matrix H(i) as input, each GCN module outputs a hidden repre-
sentation matrix H(i+1), which is described as:

H(i+1) = ReLU(D̂− 1
2 ÂD̂− 1

2 H(i)W (i)) (7)

where H(0) = X , ReLU(a) = max(0, a), adjacency matrix with self-loop Â =
A+I (I is an identity matrix), D̂ is the degree matrix of Â, and W (i) is a trainable
weight matrix. Then the output node embedding Z = H(K) and (K + 1) is the
number of layers in the network architecture.

Topology Optimization. Graph convolutional networks collectively aggregate
information from graph structure, and model input and/or output consisting
of elements and their dependency. The graph structure (edges) used in graph
convolution architectures represents a kind of relations between nodes and guides
the message passing among nodes. For example, in citation networks, a citation
link between two documents is treated as an edge. While in social networks,
the edges represent the interactions between users. From this point of view, the
must-link/cannot-link constraints {C+, C−} also represent a high-order relation
between nodes which can be used to build the graph structure for constrained
graph learning.

In order to directly utilize constraints {C+, C−} into graph learning process,
we will update the adjacency matrix A by using must-link and cannot-link con-
straints and use the updated A∗ for graph convolution. The updated A∗ is as
follow:

A∗
ij =

⎧
⎪⎨

⎪⎩

1 if < i, j >∈ C+

0 if < i, j >∈ C−

Aij otherwise

(8)

Using updated A∗ in graph covolutions allows direct message passing between
must-link nodes as they are in the same cluster and should have node embeddings
consisting of elements. Using A∗ also rejects direct message passing between
cannot-link nodes as they are in different clusters and are not recommended to
share similar information. By using A∗, the GCN module should be updated
accordingly as follow:

H(i+1) = ReLU(D̂∗− 1
2 Â∗D̂∗− 1

2 H(i)W (i)) (9)
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Algorithm 1: WSNE for constrained graph learning
Data: A: The adjacency matrix; X : The node attribute matrix; C+ and C−:

The constraints;
Result: Z: The node embedding matrix; M: The cluster partition; and Y: The

binary classification;
1 P ← Generate constraint matrix P through Eq. (2);
2 A∗ ← Constraint assisted topology optimization through Eq. (8);
3 while Convergence do
4 Z ← Generate latent variables Z using Eq. (4) and graph convolution

framework in Eq. (9);
5 LR(Z) ← Eq(Z|X ,A)[log p(A|Z)] − KL[q(Z|X , A)||p(Z)];

6 LCEL(Z) ← tr(Z�LpZ);
7 L ← LR(Z) + λLCEL(Z) update variational autoencoder with its gradient ;

8 end
9 if Constrained graph clustering then

10 Apply the linear kernel K = ZZ�, and calculate the similarity matrix

S = 1
2
(|K| + |K�|) ;

11 Obtain the cluster partition M by performing spectral clustering on S ;

12 end
13 if Constrained graph classification then
14 [g(u, v)] = Zu· × Zv· ;
15 Train a binary classifier on training C+ and C− with new representation

[g(u, v)] and obtain the classification results Y ;

16 end

In this paper, we use graph convolution to process A and VGAE to reconstruct
the graph structure for minimizing the information loss during the node embed-
ding. Algorithm 1 lists detailed procedures of constrained graph learning.

6 Experiments

We evaluate our method on three benchmark graph datasets for both constrained
graph clustering and classification tasks. Cora, Citeseer and Pubmed [10] are
citation networks where nodes correspond to publications and are connected
if one cites the other. The nodes in Cora and Citeseer are associated with
binary word vectors, and nodes in Pubmed are associated with tf-idf weighted
word vectors. Table 1 summarizes the details of the datasets. For Cora and Cite-
seer datasets, we randomly select 400 pairwise constraints (200 must-link pairs
and 200 cannot-link pairs, respectively) as weak supervision. While for Pubmed
dataset, we randomly select 3,000 pairwise constraints with 1,500 must-link pairs
and 1,500 cannot-link pairs, respectively.
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6.1 Constrained Graph Clustering

Baselines. As there is no existing constrained graph clustering method. We
compare both embedding based approaches as well as approaches directly for
graph clustering using constrained k-means for obtaining clustering results.

– COP-k-means: the constrained k-means algorithm [20] uses constraints as
knowledge to restrict the data assignment process of the original k-means
algorithm.

– Spectral Clustering: [18] is an effective approach for learning social embed-
ding.

– DeepWalk: [16] is a network representation approach which encodes social
relations into a continuous vector space.

– GAE/VGAE: [11] are (variational) autoencoder-based unsupervised frame-
works for graph data, which naturally leverages both topological and content
information.

– ARVGA: [15] is an adversarially regularized variational graph autoencoder
for learning the node embedding.

Metrics. We employ three metrics to validate the clustering results: Accuracy
(Acc), Normalized Mutual Information (NMI) and Average Rand index (ARI).

Parameter Settings. For the Cora, Citeseer and Pubmed datasets, we train
all autoencoder-related models for 200 iterations and optimize them with the
Adam algorithm. The learning rate is set to 0.001 and λ = 0.1. The parameters
in LCEL are set to α = β = 1. We construct encoders with a 32-neuron hidden
layer and a 16-neuron embedding layer for all the experiments. For the rest of
the baselines, we retain the settings described in the corresponding papers.

Experimental Results. The constrained graph clustering results on the Cora,
Citeseer and Pubmed data sets are given in Table 2. The results show that by
incorporating the effective constraint embedding loss and constraint assisted
topology optimization into our variational graph convolutional auto-encoder,
WSNE achieve outstanding performance on all three metrics. Compared with
the baselines, WSNE increased the Acc score from around 5.6% compared with
existing node embeding methods incorporating with COP-k-means and 2.6%
increased on the NMI score.

6.2 Constrained Graph Classification

Baselines. Because there is no constrained graph classification method avail-
able for comparison, we use each node embedding method, including DeepWalk,
GAE, VGAE, ARVGA, and WSNE, to find node embedding. After that, we use
embedding to generate vector g(u, v) for node pair < u, v >, using constraints
C+ and C− (as we described in Sect. 4). Then we train binary classifiers using
g(u, v) generated from each embedding method, and report their performance
in Table 3.
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Table 1. Benchmark network statistics

Dataset # Nodes # Edges # Features # Classes

Cora 2,708 5,429 1,433 7

Citeseer 3,327 4,732 3,703 6

Pubmed 19,717 44,338 500 3

Table 2. Constrained graph clustering results on Cora, Citeseer and Pubmed.

Methods CORA CITESEER PUBMED

Acc NMI ARI Acc NMI ARI Acc NMI ARI

COP-k-means 0.397 0.233 0.210 0.423 0.212 0.197 0.563 0.289 0.276

Spectral clustering 0.425 0.287 0.197 0.427 0.239 0.166 0.526 0.247 0.251

DeepWalk + COP-k-means 0.449 0.324 0.142 0.371 0.175 0.096 0.604 0.274 0.203

GAE + COP-k-means 0.557 0.406 0.290 0.451 0.277 0.213 0.627 0.269 0.175

VGAE + COP-k-means 0.570 0.424 0.332 0.471 0.259 0.124 0.615 0.193 0.095

ARVGA + COP-k-means 0.617 0.459 0.373 0.575 0.330 0.326 0.592 0.307 0.221

WSNE 0.652 0.471 0.373 0.636 0.424 0.380 0.655 0.315 0.311

Metrics. We report the results in terms of AUC score (the area under a receiver
operating characteristic curve). The training set for the binary classification
tasks are the provided constraints and the testing set contains 1,000 pairwise
constraints for Cora and Citeseer datasets, and 5,000 pairwise constraints for
Pubmed dataset to verify the performance.

Experimental Results. The constrained graph classification results on the
Cora, Citeseer and Pubmed data sets are given in Table 3. The results show that
WSNE achieves a significant improvement on the AUC score compared to all
other baselines.

Table 3. Constrained graph classification results (AUC) on Cora, Citeseer, and
Pubmed networks.

Methods AUC values

Cora Citeseer Pubmed

DeepWalk 0.679 0.624 0.703

GAE 0.772 0.694 0.797

VGAE 0.790 0.738 0.823

ARVGA 0.793 0.754 0.836

WSNE 0.844 0.802 0.871
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6.3 Embedding Visualization

We also visualize the Cora data in a two-dimensional space by applying the
t-SNE algorithm [14] on the learned embedding. The results in Fig. 3 validate
that by applying weak supervision constraints, WSNE is able to learn a more
discriminative embedding vectors from graph data.

Fig. 3. Visualization comparison of embedding vectors on Cora data (t−SNE). From
left to right: embeddings from DeepWalk, GAE, VGAE, ARVGA, and WSNE. Each
point denotes a node. Nodes are color-coded based on the ground-truth class they
belonging to (there are 7 classes/groups in total). The digit shows the centroid of each
group, reported from t−SNE.

7 Conclusion

In this paper, we study a new research problem of weak supervision network
embedding for constrained graph learning. We argued that existing network
embedding approaches either require label information for individual nodes
(strong-supervision) or do not use node labels (non-supervision). Weak supervi-
sion, such as constraints, are useful domain knowledge, but cannot be utilized
in existing network embedding methods. To address the challenge, we proposed
a new constraint embedding loss to quantify latent embedding vectors’ loss by
using both constrained and unconstrained data. Then we integrated this loss in a
graph convolutional neural network and Graph Auto-Encoders combined frame-
work to jointly model graph structures and node attributes to learn discrimina-
tive embedding vectors. Experiments and comparisons on real-world tasks show
that the proposed method can effectively utilize weak supervision knowledge for
constrained graph clustering and classification tasks.
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