-,‘ frontiers
in Genetics

METHODS
published: 29 April 2021
doi: 10.3389/fgene.2021.615958

OPEN ACCESS

Edited by:
Nikolaos Alachiotis,
University of Twente, Netherlands

Reviewed by:

Liang Zhao,

Hubei University of Medicine, China
Travis Gagie,

University of Helsinki, Finland

*Correspondence:
Jorda Polo
Jorda.polo@bsc.es

Specialty section:

This article was submitted to
Computational Genomics,

a section of the journal
Frontiers in Genetics

Received: 10 October 2020
Accepted: 19 March 2021
Published: 29 April 2021

Citation:

Cadenelli N, Jun S-W, Polo J,

Wright A, Carrera D and Arvind (2021)
Enabling Genomics Pipelines in
Commodity Personal Computers With
Flash Storage.

Front. Genet. 12:615958.

doi: 10.3389/fgene.2021.615958

Check for
updates

Enabling Genomics Pipelines in
Commodity Personal Computers
With Flash Storage

Nicola Cadenelli’, Sang-Woo Jun?, Jorda Polo "™, Andrew Wright?®, David Carrera’ and
Arvind?

" Barcelona Supercomputing Center (BSC), Barcelona, Spain, 2 Computer Science Department, University of California,
Irvine, Irvine, CA, United States, ® Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of
Technology (MIT), Cambridge, MA, United States

Analysis of a patient’s genomics data is the first step toward precision medicine. Such
analyses are performed on expensive enterprise-class server machines because input
data sets are large, and the intermediate data structures are even larger (TB-size) and
require random accesses. We present a general method to perform a specific genomics
problem, mutation detection, on a cheap commodity personal computer (PC) with a
small amount of DRAM. We construct and access large histograms of k-mers efficiently
on external storage (SSDs) and apply our technique to a state-of-the-art reference-
free genomics algorithm, SMUFIN, to create SMUFIN-F. We show that on two PCs,
SMUFIN-F can achieve the same throughput at only one third (36%) the hardware cost
and half (45%) the energy compared to SMUFIN on an enterprise-class server. To the best
of our knowledge, SMUFIN-F is the first reference-free system that can detect somatic
mutations on commodity PCs for whole human genomes. We believe our technique
should apply to other k-mer or n-gram-based algorithms.

Keywords: precision medicine, N-grams, K-mers, flash storage, NVME, asynchronous key-value store

1. INTRODUCTION

As genome sequencing becomes cheaper and more available, analysis of somatic mutations has
become an essential tool in the study and treatment of cancer. Somatic mutations are mutations
acquired by an organism instead of inherited from a parent, and they are identified by comparing
genomes of healthy cells and tumoral cells of the same organism. This results in more accurate
identification of mutations involved in oncogenesis, or the development of tumors. The knowledge
of the mutations present in cancerous tumors can be used to predict the types of cancer a patient
may develop, leading to effective and personalized treatments.

A leading algorithm and implementation for detecting somatic mutations is
SMUFIN (Moncunill et al., 2014; Cadenelli et al., 2017), which detects both point and structural
somatic mutations without full genome reconstruction or alignment against a reference. Since
SMUFIN is reference-free, it avoids costly alignment which often takes up to 70% of genome
analysis pipeline execution times (Wu et al., 2019). Additionally, by not aligning against a reference
genome, SMUFIN can detect complex structural variations more effectively (Moncunill et al.,
2014), work on species where reference genomes may be incomplete or unavailable (Leggett and
MacLean, 2014), and even identify viruses.

Frontiers in Genetics | www.frontiersin.org

1 April 2021 | Volume 12 | Article 615958

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.615958
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.615958&domain=pdf&date_stamp=2021-04-29
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jorda.polo@bsc.es
https://doi.org/10.3389/fgene.2021.615958
https://www.frontiersin.org/articles/10.3389/fgene.2021.615958/full

Cadenelli et al.

Genomics With Commodity Flash Storage

One issue with SMUFIN is that, for a pair of typical
human genome samples, it generates more than a terabyte of
intermediate data structures, and takes over 12 h to complete
on a reasonably powerful enterprise-class server with a 24-core
Xeon CPU and 512 GB of DRAM. If we restrict the memory to
32 GB of DRAM, SMUFIN does not complete in a reasonable
amount of time, i.e., 6-7 days! This performance degradation
makes SMUFIN impractical for ordinary PCs.

We present a method in this paper to run the general
genomics pipeline embedded in SMUFIN on PCs by exploiting
external flash storage, which is a lot cheaper and cooler
than DRAM. Of course the main challenge in using flash
technology is that its access latency and granularity is several
orders of magnitude higher than DRAM. New emerging storage
technologies, e.g., 3DXPoint, have lower latency than flash SSDs
but cost significantly more. The idea of multiple tiers of memory,
from faster and expensive to slower and cheaper, is so intrinsic
in computer systems that the concern of reducing the memory
footprint to use cheaper secondary storage is likely to remain
relevant in the foreseeable future.

This paper describes SMUFIN-F, a modification of the
SMUFIN algorithm, that provides the same output as SMUFIN
but in which all the big data structures reside in secondary storage
(NAND-flash SSDs). SMUFIN-F is designed to overcome flash
storage’s four orders of magnitude longer latency and two orders
of magnitude larger access granularity than DRAM. We deal
with these overheads by restructuring both the creation of the
intermediate data structures and the way they are referenced.
We borrow ideas from GraFBoost (Jun et al., 2018), specifically
the Sort-Reduce method, to make both inter-page and intra-page
accesses to flash storage more sequential. Once the intermediate
data are constructed, we use application-specific information
to execute extremely efficient in-memory caching. Furthermore,
SMUFIN-F is also optimized for newer NVMe devices by
extensively using asynchronous 1/0 to hide access latency, and
using 4KB random reads to minimize read amplification. The
techniques we have used in SMUFIN-F can be used broadly in
other k-mer or n-gram applications.

We show that when we reduce the DRAM from 512 to
32 GB, not only does SMUFIN-F complete execution within a
reasonable amount of time, but it takes only 1.24x longer than
the original SMUFIN using the full 512 GB. We also show that
on an affordable commodity PC with a 6-core i7 CPU and 32 GB
of memory, SMUFIN-F takes 1.87x longer than SMUFIN on
the costly server. Alternatively, we can say that SMUFIN-F can
achieve the same throughput (patients/hour) on two commodity
PCs as SMUFIN on one enterprise server. Since one commodity
PC costs 18% of the enterprise server and consumes only 45%
of the energy, SMUFIN-F on two PCs provides the same
throughput as SMUFIN at one third (36%) the capital cost and
less than half (45%) the operational cost (energy). We believe that
such improvements in the delivery cost will be essential to foster
personalized medicine.

1.1. Related Work
Section 1.1.1 compares the SMUFIN method (not SMUFIN-F
implementation) with other genomics pipelines and software.

The section highlights how other methods tend to be specialized
to identify specific variations and how other reference-free
methods also require significant computational and memory
resources; so much so that some of these methods only target
one human chromosome. Furthermore, this section compares
the k-mer counting algorithm used in SMUFIN to other k-mer
implementations that also aim to reduce their main memory
footprint. Section 1.1.2 analyzes the similarities and differences
of some of the ideas and optimizations used in SMUFIN-F and in
other flash-based databases.

1.1.1. Genomics and K-mer Counting

Methods to find mutations typically align reads from a sequenced
sample to a reference genome. Some of these methods (Lam
et al,, 2008; Li and Durbin, 2009), usually run on powerful
servers for faster execution but, generally, do not use a lot of
memory. However, somatic mutations, mutations that occur
after birth, are particularly challenging because they usually
involve comparing normal and tumoral samples from the same
patient, and reads carrying variations are harder to align (Degner
et al., 2009). Current reference-based approaches tend to be very
specialized and use different algorithms to target a particular kind
of variant (de Ridder et al., 2014). For instance, some (Cibulskis
et al,, 2013; Rimmer et al., 2014; Peterlongo et al., 2017; Prezza
et al., 2020) are designed for single nucleotide variants (SNV)
and INDELs. Others (Chen et al, 2009; Ye et al, 2009;
Stiitz et al., 2012), instead, are designed for structural variants
(SV) with different characteristics. Hence, defining a complete
catalog of variations generally requires complex pipelines with
combinations of multiple methods.

Emerging reference-free methods have the potential to
provide more accurate results, but they also require significant
computational and memory resources. Methods to detect
single nucleotide polymorphisms (SNP) based on De Bruijn
graphs (Salikhov et al., 2013) easily exceed the memory of a server
with 512 GB of DRAM (Igbal et al., 2012; Leggett et al., 2013;
Nordstrom et al., 2013). For instance, the processing of a single
human chromosome (out of 23) can require as much as 105
GB (Uricaru et al., 2015); implying that whole human genome
processing would require much higher amounts of memory.
Some methods use a cascade of Bloom filters to represent De
Bruijn graphs (Compeau et al., 2011; Chikhi and Rizk, 2013) and
manage to keep a significantly lower memory footprint (Uricaru
et al., 2015). As these variant calling methods target a particular
kind of non-somatic mutation they are limited in scope. SMUFIN
is different in that since it is a comprehensive reference-free
method that targets somatic mutations, all kinds of variants, from
SNVs to large SVs. Furthermore, SMUFIN can also be used to
identify viruses.

Counting the frequencies of k-mers is an algorithm that is
widely used in many areas of genomics (Xiao et al., 2018); from
genome assembly and error detection to sequence alignment and
variant calling (Kelley et al., 2010; Li et al., 2010). Others (Mar¢ais
and Kingsford, 2011; Rizk et al., 2013; Audano and Vannberg,
2014; Deorowicz et al., 2015; Li and Yan, 2015; Jiang et al., 2019)
have explored ways to optimize k-mer counting with reduced
memory and storage. While these k-mer counting algorithms

Frontiers in Genetics | www.frontiersin.org

April 2021 | Volume 12 | Article 615958

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Cadenelli et al.

Genomics With Commodity Flash Storage

process a single sample, SMUFIN processes k-mer counters
of normal and tumoral samples of the same patient together,
potentially making the memory footprint even bigger. Finally,
this work goes beyond the mere k-mer counting algorithm, and
it considers a complete genomics application that needs to access
the k-mers histogram. For this reason, the work presented in
this paper can also be applied to other genomics applications
that rely on k-mers; including assembly-based variant calling and
graph-based de-novo assembly.

1.1.2. Flash Storage for Databases

As section 3.3 details, one of the core ideas of SMUFIN-F is to
reduce the memory footprint using flash memory. Flash memory
can improve database and key-value (KV) store performance
transparently by providing faster I/O compared to mechanical
disks (Lee et al., 2008, 2009; Bausch et al., 2011). However, its
true potential is achieved using algorithms (Jung et al., 2012; Lee
et al., 2012; Chen and Ordonez, 2013; Kanza and Yaari, 2016)
and data structures (Agrawal et al., 2009; Shi et al., 2013; Jin
et al,, 2016; Sadoghi et al., 2016) that are aware of underlying
flash characteristics. Thanks to the high bandwidth and low
latency of flash storage compared to magnetic disks, databases
benefit from using them as a cache layer between memory and
disk (Do et al,, 2011; Kang et al., 2012, 2016). Many modern
production databases have been designed to take advantage of the
high bandwidth provided by flash storage (Weil et al., 2006; Nath
and Kansal, 2007; Lim et al., 2011; ScyllaDB, 2017, 2019; Kourtis
et al., 2019). One of the most prominent databases optimized for
fast storage such as flash is RocksDB (2019), which is a widely
used open-source key-value store. MyNVM (Eisenman et al.,
2018) extends MyRocks (2019)—a MySQL storage engine that
integrates with RocksDB—to use a second-layer NVM cache.

Others, like ScyllaDB (2019, 2017) and uDepot (Kourtis et al.,
2019), are key-value stores built from the bottom-up to deliver
the performance of NVM, using a task-based design to support
asynchronous I/O.

Other key-value stores focus on reducing the memory
footprint of the indexes by doing multiple storage accesses
to storage, but that generally increases the look-up latency.
FAWN (Andersen et al.,, 2009) is a distributed KV store that
uses an in-memory hash index to store only a fragment of
the actual key. This reduces the memory requirement but
introduces the chance of requiring two reads from flash.
Similarly, FlashStore (Debnath et al., 2010) stores compact key
signatures instead of full keys to trade RAM usage with false
positive flash read operations. BloomStore (Lu et al., 2012) uses
an index structure based on Bloom filters to efficiently store all
indexes in flash storage. SkimpyStash (Debnath et al., 2011) uses
a hash table directory in DRAM to index key-value pairs stored in
alog-structure on flash, and to use less than one pointer per key it
moves most of the pointers from DRAM to flash using chains of
key-value entries. Here a look-up might translate to multiple flash
look-ups to traverse the chain. Differently from how section 3.3
shows, our key-value store leverages the fact that the entries are
sorted to reduce the size of the index. Besides, since the look-up
time is critical, our key-value store does not admit multiple flash

reads per look-up by design, but due to the usage of Bloom filters,
it admits false positives.

The rest of the paper is organized as follows: section 2 describe
the hardware equipment, the methodology, and the reference
genome used to compare SMUFIN-F against SMUFIN. Section 3
describes the method, presenting the proposed SMUFIN-F.
Section 4 evaluates the results obtained with SMUFIN-F. Finally,
section 5 concludes with a discussion of the work presented.

2. EQUIPMENT

This section describes the hardware configuration, the
methodology, and the reference used to evaluate SMUFIN-F
against the state-of-the-art. Besides, the section offers a
performance comparison of the baseline version of SMUFIN
on various costly enterprise-class server machines with 100s
of GB of DRAM against SMUFIN-F on a cheaper commodity
PC with flash storage. Tablel summarizes the different
hardware configurations.

2.1. Evaluation Setup and Methodology

In “Marenostrum 4,” we execute only the baseline version of
SMUFIN. This system is a multi-node HPC (high performance
computing) system and the current production environment
where the application runs with multiple partitions; each in a
different node. In “FatNode,” an enterprise 2U server, we execute
the baseline, using all the 512 GB of DRAM, and SMUFIN-F,
capping its DRAM budget with cgroups to only 31 GB (leaving
1 GB out of our 32 GB budget for OS and other background
software) and using four PCle NVMe storage devices. We use this
system to show the impact of reducing the DRAM budget, while
using the same CPU. In “Commodity,” a normal commodity PC
with only 32 GB of DRAM and four SATA-III SSDs, we execute
SMUFIN-F to demonstrate how it can run the full SMUFIN
software pipeline on much cheaper PCs. We also evaluate
“CommodityNVMe,” which augments Commodity with two M.2
PCIe NVMe storage devices to accelerate random accesses in
the Label unit. Commodity and CommodityNVMe represent a
potential commodity PC that one can find in a lab or in a medical
practitioner’s desk. In both FatNode and Commodity, storage
is organized into a software RAID-0 using a Linux md driver.
While the power and energy consumption of Marenostrum 4
and FatNode were collected via IPMI (without accounting for
air cooling and GPFS), the consumption of Commodity was
measured using a power meter.

For each combination of system and implementation, we use
different numbers of partitions in order to fit the working set in
the available DRAM budged for each system. Unless differently
specified, we report the aggregated time- and energy-to-solution
metrics of all partitions executed sequentially.

2.2. Reference Genome

In each execution, we use the same parameters and we process
the same personalized genome based on the Hgl9 reference.
This genome is characterized by randomly chosen germlines
and somatic variants as described in Moncunill et al. (2014).
The normal and tumoral samples are stored in gzip compressed

Frontiers in Genetics | www.frontiersin.org

April 2021 | Volume 12 | Article 615958

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Cadenelli et al.

Genomics With Commodity Flash Storage

TABLE 1 | Experimental setups.

Marenostrum 4 FatNode Commodity &
CommodityNVMe
Type HPC/Enterprise server Enterprise server Commodity PC
CPU 2x Xeon Platinum 8160 @2.1 GHz 2x Xeon E5-2680 v3 @2.50 GHz Core i7-8700K @3.70 GHz
(approx. 9,400 USD) (approx. 3,500 USD) (approx. 350 USD)
CPU threads 2x 24 2x 24 12
DRAM 384 GB, 12x 32 GB DDR4-2667 512 GB, 16x 32 GB DDR4-2133 32 GB, 4x 8 GB DDR4-2133
(approx. 4,200 USD) (approx. 3,300 USD) (approx. 200 USD)
14 PB of GPFS 4x 1.5 TB Intel DC P3608 Commodity
elastic storage system PCle NVMe SSDs 4x 1 TB SATA-IIl Samsung 860 EVO
(unknown cost) 4x 850 K random 4 KiB I0PS 4x 98 K random 4 KiB IOPS
Storage (approx. 2,400 USD) (approx. 600 USD)

CommodityNVMe

2x 1TB NVMe Samsung 970 EVO Plus
2x 620 K random 4 KiB IOPS

(approx. 500 USD)

Estimated cost 13,600 USD (without storage)

9,200 USD

1,150 USD or 1,650 USD

FASTAQ files that total 312 GB in size and grow to around 740 GB
once uncompressed. Since improving the quality of results of the
SMUFIN method is out of the scope of this work, the final output
of SMUFIN and SMUFIN-F are exactly the same.

3. METHOD

Section 3.1 introduces the mutation detection problem, first
abstractly, and then within the context of genomics. Section 3.2
describes the SMUFIN implementation and its limitations.
Finally, section 3.3 presents the proposed method: SMUFIN-F;
our modifications to SMUFIN that reduce the required system
resources while offering the same and exact results.

3.1. Detecting Mutations: A Generalized

Problem Formulation

N and T are two vary large sequences of characters, where N is a
random sequence, and T is a mutated version of N produced by
changing, inserting, and deleting potentially large sequences in a
(small) number of places. Given the complete sequences N and
T, we can easily perform a diff of the two sequences to detect the
mutations used to produce T. Unfortunately, we are given only
sampled versions of N and T, i.e., sets Ry and Ry each containing
subsequences of N and T respectively. From Ry and Rr, we want
to detect the mutations used to produce T and show the local
context of each mutation in N and T.

Let us assume the subsequences, or reads, in Ry and Rt are
of uniform length of , and collectively cover each location in N
and T « times on average. If two reads in a read set (Ry or Rr)
have the same k-length character sequence, or k-mer, then the two
reads either cover the same location in the original string, or the
k-mer appears in multiple locations in the original string.

An important component of this fact is that k needs to be long
enough so that the number of occurrences of a k-mer is small
enough to be manageable.

A k-mer that exists only in Ry or only in R, must correspond
to a mutation site or a mutation itself. Because it appears only in
one set, such a k-mer cannot be used to align normal and tumoral
reads even though it covers the mutation site or the mutation
itself. For the alignment of reads across Ry and R, we look for
almost-matching k-mers, that is, k-mers where the middle k — 2
characters match, but at least one of the end characters differs. As
long as k is large enough, the middle k—2 characters of the almost
matching k-mer will only appear in a single location in N and T.
With these almost-matching k-mers, which we call interesting k-
mers, reads from N and T can be aligned together to determine
the mutation site, a.k.a., the break-point, and the structure of the
complete mutation. The detailed process of mutation detection
using interesting k-mers will be introduced in section 3.2.

3.1.1. Read Errors

If the process of producing Ry and Rt from N and T is noisy, then
there is a chance of seeing read errors, i.e., characters in reads that
do not match the corresponding characters in N and T. These
read errors may cause some sequences to be incorrectly classified
as mutations. Since read errors are unavoidable, the algorithm
must deal with it systematically. For example, the presence of read
errors requires more reads to cover each location for accuracy.
Thus, with enough coverage «, if a k-mer is seen in only one read
then it is likely the result of a read error. For us to have confidence
that the detected mutation is not just a read error, interesting k-
mers must be seen multiple times in Ry and/or Rr. k also needs
to be small enough so that the chance of read errors per k-mer is
low enough to be useful.

3.1.2. Applications to Genomics

With human DNA, the strings N and T are genomes which
each consist of approximately 6 billion characters from the four
character alphabet {A, C, G, T}. DNA is structured in a double
helix containing complementary base pairs on the two strands

Frontiers in Genetics | www.frontiersin.org

April 2021 | Volume 12 | Article 615958

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Cadenelli et al.

Genomics With Commodity Flash Storage

with the pairings <A, T> and <C, G>. When a mutation is found
in one strand of the helix, its complement is found in the other
strand. Therefore, N and T can be treated as approximately 12
billion character sequences where half of the sequence is the
complement of the other half.

N and T are sampled by taking DNA from normal cells and
DNA from tumor cells, respectively. This process is not noise-free
due to sequencing errors and possible samples from T that are
contaminated with samples from N. The read sets Ry and R are
produced by sequencing machines which read DNA by breaking
apart the helix, cutting the strands into chunks, and producing
reads on the order of tens to a few hundreds of characters for
next generation sequencing. The reads are always performed in
a deterministic direction in the two strands of the DNA, but
the two strands are read in opposite directions, so a read of
ATCCG on one strand corresponds to its reverse complement,
CGGAT, on the other strand. These reverse complement k-mers
can be aligned with each other during mutation reconstruction
to effectively double the read coverage of the genome.

Due to the noise in R, the process of selecting interesting k-
mers becomes more like a heuristic process than a set of objective
criteria. A k-mer that appears only once in Ry or Rt is more
likely to be a read error than a mutation. Therefore, the number
of times that k-mer is seen in Ry or Rt must be considered when
determining if it is interesting. The heuristic process for selecting
interesting k-mers can vary greatly depending on the intended
use. For example, in a research setting it is beneficial to liberally
mark k-mers as interesting to get as much information about
potential mutations as possible.

While a lot of human DNA appears nearly random, there are
some long sequences that appear in many places within the DNA.
If a k-mer appears in multiple locations and it has the same local
context, i.e., it is part of a larger repetitive sequence, then there
is no change necessary to the algorithm. Fortunately this is very
rare for our chosen k and can be ignored.

3.2. Existing SMUFIN Implementations
SMUFIN (Moncunill et al., 2014; Cadenelli et al., 2017) is an
algorithm for mutation detection between healthy and tumor
genomes. The end goal of SMUFIN is to reveal the exact
mutations found in a tumorous sample, therefore allowing
doctors to produce personalized medicine for those specific
mutations. In its current state, SMUFIN is a research tool used
by scientists, and as a result, it is desirable for SMUFIN to
produce and keep more data to create a more complete picture
of the potential mutations seen in the genome. The analysis
in this paper assumes settings that biologists have used for
exploratory research so far. In the future, different settings may
be used for clinicians using SMUFIN as a tool to produce
personalized medicine.

SMUFIN solves the previously described mutation detection
problem for genomics by using k-mer counting to find interesting
k-mers and then aligning reads along shared interesting k-mers to
reconstruct mutations with their local context. SMUFIN groups
k-mers by their middle k — 2 characters, or stem. Different k-
mers with the same stem likely mark the beginning or end of a
mutation. Additionally, to improve the effective coverage of the

reads, SMUFIN groups together k-mers of reverse complement
stems under a canonicalized version of the stem, or root. This
canonicalization is done by selecting the first of the stem and
its reverse complement in alphabetical order. The hierarchy of
k-mers, stems, and roots can be seen in Figure 1. Conceptually,
SMUFIN is organized into three phases, called units:

K-mer counting: This unit takes sets of normal and tumoral
DNA reads as input and produces a histogram of k-mer counts
for each set of reads. At the end of this unit, imbalances in the
normal and tumoral frequency indicate a candidate break-point
for a mutation. Figure 2 shows a simplified example of k-mer
counting. SMUFIN uses k values in the range of 24 < k <
32. According to the domain experts involved in the original
algorithm construction, this range of k-mers is unique enough to
accurately align to genomes, and at the same time general enough
to accurately pinpoint mutations. For values of k outside this
range, results might become either too general (for k <= 24)
or too selective (for k >= 32), producing results with poor
sensitivity and specificity.

Labeling: This unit constructs the interesting read and k-mer
database. To determine if a read and its k-mers are interesting,
each k-mer in the read must be looked up in the k-mer histogram
along with each k-mer with the same root. Here, a root-indexed
histogram offers data locality for looking up all the k-mers of the
same root.

Grouping: This final unit groups reads from normal and
tumoral DNA to reconstruct candidate mutations. This is done
by looking into the interesting read and k-mer database and
clustering reads containing the same interesting k-mers. Once the
groups of reads are assembled, they are aligned with each other.
Figure 3 shows a simplified example of grouping while Figure 4
offers an excerpt of a real final output of SMUFIN relative to the
reconstruction of one candidate break-point.

3.2.1. Implementation Issues

In a typical genome sequenced by next generation sequencing,
each part of the DNA appears in tens of different reads; resulting
in a sample data set with billions of reads (Illumina, 2019).
For instance, a typical uncompressed SMUFIN input is around
740 GB, and it contains approximately 78 billion different roots.
With as many different items, the size of a root histogram is
almost 10 TB of memory. However, many of these roots appear in
only one read, i.e., singleton roots, usually considered sequencing
noise, e.g., sequencing errors (Bromage and Conway, 2011). The
SMUFIN method throws out all the singleton roots reducing the
size of the histogram down to around 1 TB, which is still larger
than the amount of memory most enterprise machines offer.

To deal with this amount of data, SMUFIN supports
partitioning the root space into disjoint chunks, and running
the Count and Label units of k-mers on a single partition at a
time. Using root partitions in the Label unit produces multiple
databases, one per root partition. To combine these databases
into a single database, a new Merge unit is required which simply
concatenates the k-mer tables together and makes a union of
the information for the reads with the same ID in each read
table. For a typical execution, this database contains up to 150
million reads and 110 million k-mers, and its size is around 200

Frontiers in Genetics | www.frontiersin.org

April 2021 | Volume 12 | Article 615958

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Cadenelli et al.

Genomics With Commodity Flash Storage

Stems
v
Bl A

Root

two different stems that belong to a root.

e - -

v
B8 A

m

FIGURE 1 | Hierarchy of k-mers, stems, and roots showing all the k-mers that map to the root CGTA. There are (4 - 4=) 16 different k-mers that belong to a stem, and

v
TACG

Complement

GB. Figure 5 shows the units and dataflow of SMUFIN assuming
the Count and Label units are partitioned. The root partitions
can be executed sequentially or in parallel across machines. In
the results section, we compare different configurations using
the aggregated metrics of all nodes used. Due to the memory
requirement of the Count and Label units, they are typically
executed using enough partitions to obtain an effective overall
DRAM capacity of 2 TB across partitions. For example, when
running on servers with 512 GB of DRAM we would split Count
and Label into four partitions, each requiring a full pass through
the entire input data set. The algorithm takes 12 h to finish using
512 GB of DRAM; 22 h using 256 GB and 8 partitions; 40 h using
128 GB and 16 partitions; and does not finish in a reasonable
amount of time with only 32 GB of DRAM and 64 partitions.

The software implementation of the Count unit has
been accelerated using GPUs (Cadenelli et al, 2017) and
FPGAs (Cadenelli et al., 2019) to improve the time- and energy-
to-solution. However, these implementations still require 100s
of GB of DRAM for both Count and Filter units. To overcome
this, we have also studied the effect of relying on virtual memory
management to deal with a small amount of DRAM. We
configured the system to use 32 GB DRAM backed by a swap
space on two M.2 NVMe drives. On such a system, SMUFIN did
not finish in a reasonable amount of time, i.e., several days.

3.3. Proposed SMUFIN-F Architecture

We have designed SMUFIN-F, a new implementation of the
original SMUFIN algorithm, such that it uses only a small
amount of DRAM (say 32 GB) and terabytes of NAND-flash
storage for intermediate data structures. SMUFIN-F modifies
both Count and Label units for optimized storage access. In the
Count unit, SMUFIN-F uses the Sort-Reduce (Jun et al., 2017,
2018) algorithm to create a histogram of all k-mers in external
storage rather than a hash table in DRAM. In the Label unit,

SMUFIN-F implements a key-value store optimized for k-mer
access on secondary storage, using a compact, memory resident,
and cache-efficient index structure. To reduce the utilization of
the key-value store, SMUFIN-F uses an application-specific in-
memory cache containing the most-accessed k-mers. After the
Label unit, SMUFIN-F uses the same techniques as SMUFIN to
build the interesting read and k-mer database using RocksDB. The
flow of the new implementation is shown in Figure 6.

3.3.1. K-mer Counting With Sort-Reduce

In order to construct a multi-terabyte histogram of k-mers using
only a small amount of memory, SMUFIN-F performs k-mer
counting in secondary storage using Sort-Reduce (Jun et al., 2017,
2018), which is an algorithm which sequentializes fine-grained
random read-modify-writes into secondary storage. Because
most flash storage devices have coarse, multi-KB, page-level
granularity, updating fine-grained values in secondary storage
incurs a large write amplification. Instead, Sort-Reduce collects
fine-grained updates in a list and sorts them by location to
sequentialize them. During sorting, Sort-Reduce merges update
requests to the same location within the request list, without
waiting to apply it to the storage. This is similar to compaction
of LSM-tree based KV stores (Chang et al., 2006; Google,
2019; RocksDB, 2019), but instead of removing stale items in
the case of a duplicate, items with the same key are merged
together using a user-defined function. This optimization has
significant performance benefits in systems where each location
is the target of multiple updates, as in computing histograms or
graph analytics.

Since the list of update requests is expected to be much
larger than the total capacity of the DRAM, Sort-Reduce uses
a two-phase external sorting technique. In the first phase, Sort-
Reduce repeatedly brings in blocks of key-value pairs as big
as the available DRAM, sorts them, merges requests to the

Frontiers in Genetics | www.frontiersin.org

April 2021 | Volume 12 | Article 615958

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Cadenelli et al. Genomics With Commodity Flash Storage

123456738 Histogram of 6-mers

Normal Read T 10 T 10001 T A0 F Stem LNT
» 10

6-mer #1 10
6-mer #2 10

6-mer #3

@ First Last
12345678

Tumoral Read 1_ Stem

wmutauon -

6-mer #1
6-mer #2

LNT
1 0
11
11
6-mer #3 01

\/ Normal Tumoral
12345678 \

Stem LNT

Tumoral Read 2_

6-mer #1
6-mer #2

With mutatlon
With mutation
6-mer #3

O O =
—_— N = N O

LNT
1 0 Non-singleton Stem

13

Stem

Different k-mers

with same stem 1 2 Non-singleton Stem

1 1 Non-singleton Stem
0 2 Non-singleton Stem
0 1 Singleton Stem

FIGURE 2 | Simplified example of SMUFIN candidate break-point detection. In this example, the stems GTGG and TGGT are potential point of divergence, and their
neighboring bases are candidate break-points for mutations.

Frontiers in Genetics | www.frontiersin.org 7 April 2021 | Volume 12 | Article 615958

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Cadenelli et al. Genomics With Commodity Flash Storage

Normal Read—

Tumoral Read 1—

Tumoral Read 2_
Tumoral Read 1

+ » Normal Read

Tumoral Read 2

Histogram of 6-mers
F Stem LNT
10
1l 2
11
02

FIGURE 3 | Simplified example of SMUFIN candidate break-point reconstruction. In this example, the second base of the aligned block (x) is a candidate break-point
for a single point mutation, where a single nucleotide base is changed. In reality, a candidate break-point might be the beginning or end of a larger mutation, such as a
structural mutation or a virus.

Alignment using nine shared 28-mers

CTGAGTCAGGACAATCGCTTGAACCCAG
bCTGAGTCAGGACAATCGCTTGAACCCA

1
ACTCGGGA TGAGTCAGGACAATCGC

1
12345678901234567890123456789012345678906123|4|s567890123

TACTC?GGA FGCTGAGTCAGGACAATCG

s67890123456789012[34567j8001f2f3456789012345678901234567890123456789012 1

chr20-13406224/1
chr20-10599862/1
chr20-1333816/2
chr20-13406224/1
chr26.b-10791360/2
chr26-20464126/1
chr20.b-14967148/2
chr20.b-19769052/2
€hr20-16246276/1
€hr20-22595998/2
chr20.b-2830376/2

FIGURE 4 | Excerpt of a real SMUFIN output relative to the reconstruction of a candidate break-point using 28-mers.

same destination, and then stores the sorted block back in
external storage. In the second phase, it merges several of these
sorted blocks to produce a bigger sorted-and-reduced block.
The merging process is repeated until the key-value list is
completely sorted.

In order to efficiently perform k-mer counting of two read
sets in storage, SMUFIN-F first modifies the histogram data
structure of SMUFIN to make it more storage-efficient. Since
the root histogram format used in SMUFIN requires 64 counters
(normal and tumoral counters per each of the 16 k-mers in both
stems of the root) per entry and it contains 0 s for most of the
counts, we can reduce the storage requirement of the histogram
by not storing these zero entries. SMUFIN-F accomplishes this

by creating a histogram indexed using k-mers, instead of roots.
Using this format, every entry of the histogram is made of just
two values, normal and tumoral, rather than the 64 using the root
format. To maintain the locality of k-mers with the same root,
the k-mers are sorted using a comparison function that compares
the root first. The implementation of this comparison function is
done by producing an integer key for each k-mer where sorting
on that key results in the desired ordering for all the k-mers.
Using k-mers as the index instead of roots reduces the size of the
histogram by as much as 90%.

Sort-Reduce is used to construct a k-mer indexed histogram
using k-mers as keys and a pair of counters for each k-mer
as values. The two counters represent k-mer counts from the

Frontiers in Genetics | www.frontiersin.org

April 2021 | Volume 12 | Article 615958

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Cadenelli et al. Genomics With Commodity Flash Storage
File T Streaming I/O T (un)serialisation I/O
Compressed Human
, | Input Genomes Readable Output L
J\ (=300 GB, ~4-10° reads, (~100 GB) :
,,/ \\\ ~210-10° k-mer) |
o s I
74 N N\ |
// \
// \ I
\ AN
R //// M /
7
> \\\:~?£ |- Ty T
} : Interesting reads and
Roots Histogram Interesting reads and &
. 0 k-mers database
(~1 TiB, ~10-10° roots) k-mers databases : 5
(200-500 GiB) (~200 GiB, ~150-10°reads
and ~110-10% k-mers)
FIGURE 5 | SMUFIN baseline architecture: overview of units and its data flow. In this example, the applications are executed using two partitions; thus Count and
Label units are executed twice, reading the whole input genomes twice for each unit.

normal sample and the tumoral sample. Each read is split into
k-mers, and a histogram update request for each read k-mer
is entered into Sort-Reduce. During Sort-Reduce execution, the
list of requests is sorted by a k-mer using a custom comparison
function grouping k-mers of the same root next to each other.
Whenever requests to the same k-mer are discovered, they are
merged by adding together the counters of each entry.

It should be noted that while SMUFIN-F uses flash storage
instead of memory for processing, flash lifetime is not a serious
issue due to the read-intensive nature of the Sort-Reduce
algorithm. Sort-Reduce is the only component of SMUFIN-F
which writes to storage, and thanks to the effectiveness of
merging, we measured the actual amount of intermediate data
written to be an order of magnitude less than the original data,
matching the observations from GraFBoost (Jun et al., 2018).

3.3.2. Key-Value Store for Histogram Look-Up

To determine if a read and its k-mers are interesting for the
SMUFIN method, the Label unit performs a look-up in the
histogram for each k-mer in each read. The original SMUFIN
implementation uses a hash table to store the histogram in
DRAM, but naively moving this main data structure from
DRAM to storage incurs a heavy performance penalty. When

using a single NVMe drive with 850 K IOPS, performing a
single look-up in flash storage for each k-mer is projected to
be 11.7x slower than SMUFIN’s Label unit. Even when using
four NVMe drives in parallel and filtering out singleton k-
mers perfectly, we only get an ideal performance of 2x slower.
This is an optimistic projection based on the nominal SSD
throughput and the assumption that singleton k-mers can
be filtered without flash accesses. In reality, we would see
lower performance.

To implement the histogram with significantly less DRAM, we
constructed a key-value store in flash storage taking advantage of
the following application-specific properties of the histogram and
how it is used:

1. We take advantage of the fact that the histogram is fully
constructed and inserted completely into a key-value store
before being accessed. We implement a compact, read-
optimized index structure for immutable storage-resident data
using a page-granularity multi-level index.

. We know that approximately 30% of the roots are singleton
roots, and thus lead to negative look-ups in the Label unit. To
expedite such negative searches, we construct a Bloom filter, as
well as a band-pass filter during the histogram construction to
discard these singletons.

Frontiers in Genetics | www.frontiersin.org

April 2021 | Volume 12 | Article 615958

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Cadenelli et al. Genomics With Commodity Flash Storage

I:I File T Streaming I/O T (un)serialisation I/O ';?';? Multiple I/O
Compressed Human
Roots Histogram T | Input Genomes Readable Output
Key-Value Store J\ (=300 GB, ~4-10° reads, (~100 GB)

(~0.9 TiB, ~7-10%roots) N 721010 k-mer)

—_———— -

7
7
/
| | i
< Merge
Sort-Red.uce I/0 N N /
(~1 TiBs) N 47 ™ 4
ASN 4 N\ s
Pt i \\") -
Roots Histogram Interesting reads and Interesting reads and
Key-Yalue Cachge k-mers databases k-mers database
(10s of GiB, ~2.9-10"roots (200-500 GiB) (~200 GiB, ~150-10°reads
in k-mer format) and ~110-10° k-mers)

FIGURE 6 | Proposed SMUFIN architecture using SMUFIN-F. The DRAM requirement of the most demanding Count and Label unit is reduced to 10s of GB
leveraging Sort-Reduce in the former unit and a key-value store in the latter. The interesting reads and k-mers database are untouched.

3. We know a histogram’s most commonly accessed entries, is viable for SMUFIN-F because there are no updates into the
because the values in the histogram represent the number histogram after the k-mer counting has completed.

of look-ups for each entry. Using this information we can Since the index array is much larger than the L3 cache on a
statically construct a very efficient cache (in DRAM) to store typical processor, each level of the binary search will typically
these entries. cause a cache miss, bringing in an entire cache line typically for

just a single value. One way to reduce cache misses is to create a
multilevel-index with a fixed fan-out k, e.g., 16. Each level of this
k-ary tree uses implicit indices for the next level of the index, i.e.,
the ith key in one level’s array corresponds to the range of keys
from k - i to k - (i + 1) — 1 in the level array below. By using k
consecutive keys for the search in each level, a single cache miss
will bring multiple keys, useful for the search. This will reduce the
plagiarism checks, and spam filtering). overall cache misses observed per look-up and will improve the
The histogram is a sorted list of key-value pairs. A data performance. Since this indexing structure uses array indices as
structure that points to each item individually would be too large implicit pointers to the next level of the index, there is no need for
to fit in DRAM, so we split the list into an array of consecutive pointers as in a B+ tree. An example multi-level index structure
fixed-size chunks, and create a much smaller indexing data can be seen in the lower half of Figure 7.
structure to find the chunk in which a key resides. A good size for To expedite negative look-ups, we first use a band-pass filter
chunks is the size of a flash page, i.e., 4 KB, so accessing a chunk that removes look-up requests that fall outside the range between
only requires one access to flash. We can avoid storing pointersto the lowest and highest keys seen during the construction of the
these chunks by creating an array of keys where the array indices key-value store. The band-pass filter is simple, but effective,
match the chunk indices, and each key is the first key found in especially when the root set is partitioned into many shards.
the corresponding chunk. For 1 TB of key-value data, this array ~ We then use a Bloom filter which is populated during the
of non-singleton roots has about 10 million elements, and can construction of the key-value store. While Bloom filters are
be completely memory—resident. We note that this data structure Commonly used in many key-value stores, it is especially effective

Using these insights, we constructed a key-value store and a key-
value cache for the Label unit. The overall structure of the in-
memory key-value cache and the external key-value store can be
seen in Figure 7. This application-optimized key-value store and
cache may also be useful in other genomics and n-gram based
applications (e.g., matching records from disparate databases,

Frontiers in Genetics | www.frontiersin.org 10 April 2021 | Volume 12 | Article 615958

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Cadenelli et al.

Genomics With Commodity Flash Storage

Key-value Cache for frequent items (10s of GB)

!
1 " |
. 0% Min: 0 > | ©| 8 |Multilevel Index |
| I
Max: 90
: ax 0/1 |2 3 :
! Band-pass filter !
olvn|leo|o ,
: — | \O| © |
| I
| I
! Chunk 0 Chunk 1 Chunk 3 :
:Key—value format: S148[4[A14 2“ :\>P 2" ﬁ 5 E
'<k—mer(8ByteS) Zlalslala =4 2| S :
! VIVIVIVIVIFIY x| o !
2 counters (4 Bytes) > ViV v :

& I

! @ | Ml ,| Bloom | 1 —~18|Multilevel Index
> Max: 99 filter | (an-out=2) :
S Band fil '
-pass filter |

=y _lolele l
é) : VO] >~ :
I |
=r 0T 273 4 sSN\6 7 !
S | —| |l Ne o | 0o | last level !
= ! | L bt =[O index :
¥ Chunk 1 Chunk 7 :
OD| |
S A A A i
o! > > > 1
Al i 2] % :
= Key-value format: v Y v)
& ! < root (8 Bytes), !
— | . . 1
1 64 counters (128 Bytes) > Chunk size (usually 4 KZB) Possible Paddlng 1

- - - - - e G . G G S G G S S S S S G S e S G e S -

FIGURE 7 | Simplified example of the internal data structures of the proposed key-value cache and store. The key-value format of the items differs between the cache
and the store. While the cache uses the space-efficient k-mer format, the store uses the root format to limit each look-up to just one chunk.

for this case because the table is read-only and there is no need to
keep track of deleted items nor to rebuild the filter periodically.
In order to reduce the number of secondary storage access,
we also implement an in-memory application-specific key-value
cache. There are a few items in the histogram that have very
high frequency—typically 5% of the items account for up to
25% of all the positive look-ups. This is due to the fact that
there are patterns of repeated nucleic acid sequences (DNA or
RNA) in a typical genome (Lander et al., 2001; de Koning et al.,
2011). We construct a small, but highly effective in-memory
cache using our application-specific knowledge of the histogram’s
most commonly accessed entries based on its counter values.
Entries with the largest counter values will be accessed the
most. Just like the storage-resident key-value store, the cache

is constructed only once after the histogram construction. The
structure of our key-value cache can be seen in the upper half of
Figure 7.

Since the data is stored in the exact form necessary for use, this
format is actually more efficient for look-ups and usage.

On the other hand, the in-memory key-value cache
needs to be as compact as possible because it all goes in
DRAM. Therefore, the histogram is stored in the same
compact k-mer indexed format used by Sort-Reduce in
the Count unit of SMUFIN-F. The keys in the multilevel-
index remain as roots to simplify the look-up process
because, despite the k-mer-based format used for the
histogram, look-ups are still trying to get all the counters
for a given root.

Frontiers in Genetics | www.frontiersin.org

11

April 2021 | Volume 12 | Article 615958

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Cadenelli et al. Genomics With Commodity Flash Storage
Count 2255 Label Merge [| Group L.ZIDRAM —@&—
40
33.9 Hours 1510
3.6 kWh
35 =
€30 -
é 384
- - [aa]
= 23 O
= =
— [:
220 147 14.7 Hours 256 &,
g 51 4.9 kWh 11.9 Hours 7.4 kWh \ 3
g 53kWh X NN kS
2 I Hours - %3 Hours . \\\\\ \
e 10 ‘\‘Q\“f\\ | 47w \ SRR 128
&= \\ N RER \\OE}S\ B, \\\ \\\&
—~ \\ — N \\\\\\\ o8| N\ NN NG e 5
5 [-}26:1 Hous REELITEIL H 3 Hou — 64
ORRRIRIIRIIRK, :::i:ﬁ:i:&fo:o}o%‘::ﬁ::: -1 32
RIS
SMUFIN in SMUFIN in SMUPFIN-F in SMUPFIN-F in SMUPFIN-F in
MareNostrum 4 FatNode FatNode Commodity = CommodityNVMe
4x NVMe SSDs 4x SATA-III SSDs 2x NVMe SSDs
FIGURE 8 | Time-, energy-to-solution, and memory footprint of the entire SMUFIN and SMUFIN-F pipeline on different hardware configurations.
B B Time-to-Solution 2.85
Energy-to-Solution
Y25+ Mean Power Consumption
b [Capital Cost
ks
£ 2r 1.87
Z
% 15 1.48
=
[95]
8
= 1
= .74 0.66
[3°]
£ 05 :
0.24 0.24
< S ANIRE 0.18
0 ; =
SMUFIN in SMUFIN in SMUFIN-F in SMUFIN-F in SMUFIN-F in
MareNostrum 4 FatNode FatNode Commodity CommodityNVMe
384 GB of DRAM 512 GB of DRAM 32 GB of DRAM 32 GBof DRAM 32 GB of DRAM
4x NVMe SSDs 4x SATA-III SSDs 2x NVMe SSDs
FIGURE 9 | Normalized (to SMUFIN on FatNode) time-to-solution, energy-to-solution, mean power consumption, and capital cost of SMUFIN and SMUFIN-F. Note
that since SMUFIN-F in FatNode uses only 32 GB of DRAM instead of the 512 GB needed by SMUFIN, its capital cost is significantly lower.

Frontiers in Genetics | www.frontiersin.org

12

April 2021 | Volume 12 | Article 615958

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Cadenelli et al. Genomics With Commodity Flash Storage
RocksDB W= Sync. Read A+ D=128 & RocksDB 2]
Y Q Proposed KV-Store []
A e e e 07331
3000 |~ T = 300 [~
Nominal 5
o Best w/ fio é
& 2500 - (QD=128 =250 -
v 64 Threads) 2
~ =
5 2000 S 200 |-
£ 2 174
Q
2 <
o 1500 g 150 -
£ 5
= =
ko) =)
S 1000 2 100
o 3 75
g <
500 &~ 50
13
0 | 029
32 48 64 Commodity FatNode
Number of Threads 4x SSDs 4x NVMes
FIGURE 10 | Throughput comparison of the proposed key-value store (without the KV cache) vs. RocksDB 5.15.10 on FatNode with four NVMes (left). Projection of
the time-to-solution to process the required 149 billion positive look-ups—one per each non-singleton k-mer—during the Label unit at the maximum throughput
achieved by both key-value stores on FatNode and Commaodity (right).

4. RESULTS

This section compares the performance of the baseline version
of SMUFIN on the costly HPC/enterprise-class server machines
with 100s of GB of DRAM against SMUFIN-F on a cheaper
commodity PC with flash storage described in section 2 and
summarized in Table 1. The results show that the proposed
method offers significant cost- and power-performance benefits
against the state-of-the-art on more expensive hardware. Besides,
this section also offers additional experiments to highlight the
benefit of asynchronous 1/0.

4.1. SMUFIN vs SMUFIN-F
Figure 8 shows that the time in the Count unit is not
significantly degraded with the SMUFIN-F implementation that
uses Sort-Reduce. Compared to Marenostrum 4, the memory
footprint is reduced 12-fold, with a loss of performance of
only 4%. Compared to the baseline on FatNode, both proposed
SMUFIN-F executions are able to achieve around 70% of its
performance while reducing the memory capacity 16-fold.
Regarding the Label unit, the SMUFIN-F implementation
using 32 GB of DRAM on FatNode achieves 97 and 75% of the
performance of the baseline SMUFIN running on Marenostrum
4 and FatNode using all available DRAM, respectively. This high
performance retention is largely due to our application-specific
cache, which was able to accommodate 95% of reads in 160 GB,

or five partitions of 32 GB. On the other hand, when executed
on Commodity, with much slower storage and a fourth of the
CPU threads, the performance of the SMUFIN-F Label unit is
5.2x slower than baseline SMUFIN running on FatNode. System
traces indicated that the SATA III SSDs are the bottleneck, and
faster NVMe drives significantly improved read bandwidth from
a steady 800 MiB/s to peaks of 1.5 GiB/s, and reduced time
consumption of the Label unit from 24.57 to 13.40 h. This
upgrade reduces the overall execution time from 33.9 h to around
23, improving the energy-to-solution from 3.6 to 2.4 kWh.

Regarding the Merge and Group units that were left
unchanged, Figure 8 shows that running these units in systems
with less DRAM and a slower CPU yields a marginal performance
loss, if compared to other units. Here, the only noteworthy
difference is that the Group unit, which is I/O intensive, is slower
with the reduced bandwidth of the SATA-III SSDs.

In terms of overall performance, FatNode, Commodity, and
CommodityNVMe, all using only 32 GB of DRAM, were able to
achieve 81, 35, and 53% of performance compared to FatNode
with 512 GB of DRAM, respectively.

4.1.1. Energy Consumption and Cost

The true benefit of SMUFIN-F is in its power and cost
reduction. In fact, Figure 8 also reports that while SMUFIN-F on
CommodityNVMe is 1.87x slower than SMUFIN on FatNode,
it also consumes only 45% of the energy to completion. Even

Frontiers in Genetics | www.frontiersin.org

13

April 2021 | Volume 12 | Article 615958

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Cadenelli et al.

Genomics With Commodity Flash Storage

A B
O oo 2 510 g e e S R
~. T ‘T ''''''''''' N 12 ~ A T T 12
£ 3000 - 2 g3000F Nominal z
S Best w/ fio s O Best w/ fio 4108
—+ Sync. Read = L g 2 108 | Thread =+
% QD2 2 2300 = op=128 S ¢ P00 (QD=128 < 2 Throads %
ZObct E2000 64 Thready S5 Fano| o4 Threwy 1°8 b s
QD=16 ’ED 1500 6 ,E Eu 1500 |- -6 % 16 Threads
sa Z £ Pophmez
o _ ads
A QD=12§ £ 1000 4 g E1000F 435 64Threads ®
S B 3
;“2 500 2 &2 500 42 &
0 & | 0 0 L. = 1 |
24 8 16 32 48 64 1 4 16 64 256 1024 4096
Number of Threads Total Queue Depth (Includes all threads)
C D
A0 e e e e T 400 e T
— Best w/ fio -1 14 Best w/ fio - 14
@ 350 ~ @350 =
5 (QD=32 " Nominal 112 & g (QD=32 Nominal 412 %
= Sync.Read = 300 [~ |6 Thyeads) 5 o 300 16 Thyeads) 3
> QD=2 % 'f 1, 8 _{ 1, ¢ | Thread —+
% QD=4 2250] g S0 .y e —] £ 2 Threads 3
Z8be B0 10%% gaop T35 A Theas &
© QD=32 2 150 |- 406 5 Bisol 106 5 12Threads
@ QD=64 < /m = M 16 Threads
A 8D=128 E 100 | 4042 S0l 04
< <
2 50 102 2 sl 402 %
| | 1 | |
g 0 o 4 16 64 256 1024 4096 °
Number of Threads Total Queue Depth (Includes all threads)
FIGURE 11 | Throughput (A,C) and throughput vs. total queue depth of the proposed KV store (B,D) on FatNode with four NVMes (top) and on Commodity with four
SATA Il SSDs (bottom) running a benchmark with variable queue depths (QD) and numbers of threads. For each run, each CPU thread executes 10 million
randomized positive look-ups on the same KV store populated with 1 billion items (approx. 127 GB). The horizontal dash and dash-dotted lines report the nominal
performance and the best performance achieved with fio using libaio back-end on the same RAID-0, respectively.

the slower Commodity, while being 2.85x slower, consumes only
68% of the energy to completion. During execution, the peak
power for FatNode was 549 W while the two commodity PCs
only reached 120 W. These results are summarized in Figure 9,
which shows the capital cost, power consumption, and energy-to-
solution of each system configuration, normalized to SMUFIN on
FatNode. It shows that not only are SMUFIN-F-based solutions
more affordable, but they also consume significantly less energy
per patient.

From a ROI point of view, SMUFIN-F on CommodityNVMe,
a PC that costs only 18% of FatNode and requires only 45% of the
energy, is only 1.87x slower that the baseline. This cost differential
means we could use two CommodityNVMe to process two
patients’ data in parallel, in less time that it would take on one
FatNode. Today, this would require an investment of only 36%,
i.e., around 3,300 USD rather than 9,200 USD, and it would
consume only 45% of the energy compared to FatNode, 4.8 kWh
against 10.6 kWh for every two patients.

4.2. Key-Value Store Performance
To evaluate of the performance of our external key-value store we
perform two additional experiments:

4.2.1. Comparison Against RocksDB

We compared our key-value store against RocksDB. To get the
best performance from RocksDB, we created the key-value store
by adding the keys sequentially without compression. Then,
for each experiment, the database was opened read-only, auto

compaction was disabled, and level 0 filters and index blocks
were pinned in the cache. Figure 10 offers a comparison of the
throughput between RocksDB and the proposed key-value store.
The figure shows how RocksDB performs very similarly to our
synchronous read implementation; most likely because, in both
cases, the read time is dominated by I/O latency.

Figure 10 also shows the projected execution time of the
Label unit taking into consideration only the time to perform
the 149 billion positive look-ups required for each patient, at
the throughput obtained with the benchmark shown on the
right. On both machines, this chart demonstrates the benefit of
asynchronous I/0 and highlights the need for a DRAM cache.

4.2.2. Saturating 1ibaio Bandwidth

We demonstrate the efficiency of our external key-value store
without in-memory caching using a synthetic 100% random
reads workload, which represents a workload similar to the
look-ups of the Label unit. The benchmark was executed using
different numbers of CPU threads and using synchronous reads
and asynchronous reads with different queue depths (QD). In
each run, each thread performed 10 million positive look-ups
on a pre-built key-value store of 1 billion items (approximately
127 GB). The sizes of keys and values are set to 8 and 128 B
respectively to match SMUFIN. We also compare the results
against the nominal throughput and the best throughput of
libaio measured using £io to emulate the same loads using
random 4 KiB reads.

Frontiers in Genetics | www.frontiersin.org

14

April 2021 | Volume 12 | Article 615958

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Cadenelli et al.

Genomics With Commodity Flash Storage

20 100
Cached items (%) - # - Cached lookups (%) —@— %9
16.5H
-1 80
~15
z 13.8 H - 70
é —
= 460 &
S b
210 - 9.6 H 450 8
S 5
| Q
2 73 H -1 40 3
g > 63H 64H =~
= o] - SRS
o // = 30
et H 20
S H 10
-T X '. 3
mC 0
1/12 2/1.1 3/1.0 4/096 5/0.88 6/0.85
Number of Partitions / Size of the Key-Value Store (TiB)
FIGURE 12 | Time-to-solution and cache effectiveness of the proposed Label unit on FatNode with one to six partitions.

Figure 11A shows that, with four NVMes, our key-value
store achieves a maximum throughput of up to 3.1 M IOPS
(around 12 GiB/s) with QD = 128 and 64 threads, and that
this performance is close to both the performance obtained with
fio and the nominal performance of the drives. The figure also
displays how both queue depth and number of CPU threads
are important to achieve high throughput. Figure 11B shows
how the performance increases as the combined queue depth
increases, and how a reduced number of threads limits one from
benefiting from larger combined queue sizes.

On the other hand, Figure 11C reveals how on Commodity
both £1io and the proposed key-value store are able to reach only
around 60% of the nominal performance of the SATA-IIT SSDs,
possibly due to internal prefetching of the low-cost SSDs and high
latency. Increasing QD only provides benefits up to a combined
queue depth of 128 as seen in Figure 11D, which is exactly the
combined queue depth of the four SSDs used, and deeper queues
show diminishing returns.

4.3. Key-Value Cache Effectiveness

As discussed in section 3.3, we implemented a key-value
cache that stores items that are predetermined to appear most
frequently, in order to reduce the number of storage accesses
and reduce execution time. Cache space can be used even more
effectively when execution is divided into partitions. When the

Label unit divides its input into multiple partitions and executes
them in order, each partition execution will have exclusive
access to the whole cache capacity, resulting in a larger total
number of elements that can be serviced from the cache. Even
though more partitions mean more full scans through the input
reads, Figure 12 shows that the aggregated time-to-solution
on FatNode generally reduces as more partitions are used, by
servicing more look-ups from the cache. This trend continues
up to five partitions, but with six partitions the execution time
stops improving.

5. DISCUSSION

We explored the challenge of reducing the DRAM footprint of a
genomics application from 100s of GB to 32 GB, using NAND-
flash storage as a replacement. The work was motivated by the
need of commodity PCs that are able to perform in-situ genome
analysis in hospitals and clinics; and by the observations that
DRAM is facing scaling problems and its price has not been
decreasing as significantly as before. Firstly, we modified the k-
mer counting algorithm to take advantage of Sort-Reduce to
efficiently build a histogram of k-mer frequency. Secondly, we
designed a key-value store and cache, tailored for the random
read-only workload of the Label unit. We demonstrated via
benchmarks how asynchronous I/O and multiple threads are

Frontiers in Genetics | www.frontiersin.org

15

April 2021 | Volume 12 | Article 615958

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Cadenelli et al.

Genomics With Commodity Flash Storage

key to extract the performance of flash storage. Results and
projections showed how their impact is enormous on workloads
with billions of look-ups such as genomics applications.

We were able to reduce the system requirements for the
entire SMUFIN-F genomics pipeline to the point that it can
run to completion on an affordable commodity PC with 6-
core i7 and 32 GB of memory, something the existing SMUFIN
implementation cannot. On this PC, SMUFIN-F is 1.87x slower
than the enterprise server machine with four times as many cores
and 512 GB of DRAM. This commodity PC costs only 18% of
the cost of the enterprise server we used and requires only 45%
of the energy per patient. As a result, a cluster of SMUFIN-F
systems running on multiple commodity PCs costs only 36%
as much as a bigger enterprise-class server and consumes only
45% the energy while also slightly improving the throughput.
This work will help genomics researchers and ease the adoption
of advanced methods and pipelines at the clinical level, which is
key to eventually enable precision medicine at large scales.

We believe that a similar approach could apply to other data-
intensive applications that scale to multiple nodes just to satisfy
the DRAM requirement.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

REFERENCES

Agrawal, D., Ganesan, D., Sitaraman, R., Diao, Y., and Singh, S. (2009). Lazy-
adaptive tree: an optimized index structure for flash devices. Proc. VLDB
Endow. 2, 361-372. doi: 10.14778/1687627.1687669

Andersen, D. G., Franklin, J., Kaminsky, M., Phanishayee, A., Tan, L., and
Vasudevan, V. (2009). “FAWN: a fast array of wimpy nodes,” in Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP
09 (New York, NY: ACM), 1-14. doi: 10.1145/1629575.1629577

Audano, P., and Vannberg, F. (2014). KAnalyze: a fast versatile pipelined K-mer
toolkit. Bioinformatics 30, 2070-2072. doi: 10.1093/bioinformatics/btul52

Bausch, D., Petrov, I, and Buchmann, A. (2011). “On the performance of
database query processing algorithms on flash solid state disks,” in 2011
22nd International Workshop on Database and Expert Systems Applications
(Toulouse), 139-144. doi: 10.1109/DEXA.2011.60

Bromage, A. J., and Conway, T. C. (2011). Succinct data structures for assembling
large genomes. Bioinformatics 27, 479-486. doi: 10.1093/bioinformatics/btq697

Cadenelli, N. (2019). Hardware/software co-design for data-intensive genomics
workloads (Tesi doctoral thesis). UPC, Departament D’arquitectura de
Computadors. Available online at: http://hdl.handle.net/2117/175258

Cadenelli, N., Jaksi¢, Z., Polo, ., and Carrera, D. (2019). Considerations in using
OpenCL on GPUs and FPGAs for throughput-oriented genomics workloads.
Future Gener. Comput. Syst. 94, 148-159. doi: 10.1016/j.future.2018.11.028

Cadenelli, N., Polo, J., and Carrera, D. (2017). “Accelerating K-mer frequency
counting with GPU and non-volatile memory,” in 2017 IEEE 19th International
Conference on High Performance Computing (HPCC) (Bangkok), 434-441.
doi: 10.1109/HPCC-SmartCity-DSS.2017.57

Chang, F., Dean, J., Ghemawat, S., Hsich, W. C., Wallach, D. A., Burrows, M.,
et al. (2006). “Bigtable: a distributed storage system for structured data,” in
Proceedings of the 7th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 06 (Seattle, WA).

Chen, K., Wallis, J. W., McLellan, M. D., Larson, D. E., Kalicki, J. M., Pohl, C.
S., et al. (2009). Breakdancer: an algorithm for high-resolution mapping of
genomic structural variation. Nat. Methods 6:677. doi: 10.1038/nmeth.1363

AUTHOR CONTRIBUTIONS

A and DC conceived of the presented idea. NC, S-WJ, JP,
AW, and A designed the solution, planned the experiments,
contributed to the interpretation of the results, and drafted
the manuscript. NC, S-WJ, and JP wrote the software
and ran the experiments collecting the data. All authors
reviewed the results and approved the final version of
the manuscript.

FUNDING

This work was supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreements No. 639595); the
Ministry of Economy of Spain under contract TIN2015-65316-
P and Generalitat de Catalunya under contract 2014SGR1051;
the ICREA Academia program; the BSC-CNS Severo Ochoa
program (SEV-2015-0493); MIT via the NSF grant (CCF-
1725303); and travel support was provided by the MIT-Spain la
Caixa Foundation Seed Fund.

ACKNOWLEDGMENTS

The content of this manuscript has been published as part of the
thesis of Cadenelli (2019).

Chen, Z., and Ordonez, C. (2013). “Optimizing olap cube processing on solid
state drives,” in Proceedings of the Sixteenth International Workshop on
Data Warehousing and OLAP, DOLAP ’13 (New York, NY: ACM), 79-84.
doi: 10.1145/2513190.2513197

Chikhi, R., and Rizk, G. (2013). Space-efficient and exact de Bruijn
graph representation based on a Bloom filter. Algor. Mol. Biol. 8:22.
doi: 10.1186/1748-7188-8-22

Cibulskis, K., Lawrence, M. S., Carter, S. L., Sivachenko, A., Jaffe, D., Sougnez,
C., et al. (2013). Sensitive detection of somatic point mutations in impure and
heterogeneous cancer samples. Nat. Biotechnol. 31:213. doi: 10.1038/nbt.2514

Compeau, P. E. C, Pevzner, P. A, and Tesler, G. (2011). Why are de
Bruijn graphs useful for genome assembly? Nat. Biotechnol. 29, 987-991.
doi: 10.1038/nbt.2023

de Koning, A. P. ., Gu, W, Castoe, T. A., Batzer, M. A, and Pollock, D. D. (2011).
Repetitive elements may comprise over two-thirds of the human genome. PLoS
Genet. 7:¢1002384. doi: 10.1371/journal.pgen.1002384

de Ridder, D., Sanchez-Perez, G., Bonnema, G., Lin, K., and Smit, S. (2014). Making
the difference: integrating structural variation detection tools. Brief. Bioinform.
16, 852-864. doi: 10.1093/bib/bbu047

Debnath, B., Sengupta, S., and Li, J. (2010). FlashStore: high throughput
persistent key-value store. Proc. VLDB Endow. 3, 1414-1425.
doi: 10.14778/1920841.1921015

Debnath, B., Sengupta, S., and Li, J. (2011). “Skimpystash: Ram space
skimpy key-value store on flash-based storage” in Proceedings of the
2011 ACM SIGMOD International Conference on Management of Data,
SIGMOD 11 (New York, NY: ACM), 25-36. doi: 10.1145/1989323.19
89327

Degner, J. F., Marioni, J. C., Pai, A. A, Pickrell, J. K, Nkadori, E,
Gilad, Y., et al. (2009). Effect of read-mapping biases on detecting allele-
specific expression from rna-sequencing data. Bioinformatics 25, 3207-3212.
doi: 10.1093/bioinformatics/btp579

Deorowicz, S., Kokot, M., Grabowski, S., and Debudaj-Grabysz, A. (2015). KMC
2: fast and resource-frugal k-mer counting. Bioinformatics 31, 1569-1576.
doi: 10.1093/bioinformatics/btv022

Frontiers in Genetics | www.frontiersin.org

April 2021 | Volume 12 | Article 615958

https://doi.org/10.14778/1687627.1687669
https://doi.org/10.1145/1629575.1629577
https://doi.org/10.1093/bioinformatics/btu152
https://doi.org/10.1109/DEXA.2011.60
https://doi.org/10.1093/bioinformatics/btq697
http://hdl.handle.net/2117/175258
https://doi.org/10.1016/j.future.2018.11.028
https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.57
https://doi.org/10.1038/nmeth.1363
https://doi.org/10.1145/2513190.2513197
https://doi.org/10.1186/1748-7188-8-22
https://doi.org/10.1038/nbt.2514
https://doi.org/10.1038/nbt.2023
https://doi.org/10.1371/journal.pgen.1002384
https://doi.org/10.1093/bib/bbu047
https://doi.org/10.14778/1920841.1921015
https://doi.org/10.1145/1989323.1989327
https://doi.org/10.1093/bioinformatics/btp579
https://doi.org/10.1093/bioinformatics/btv022
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Cadenelli et al.

Genomics With Commodity Flash Storage

Do, J., Zhang, D., Patel, J. M., DeWitt, D. J, Naughton, J. F, and
Halverson, A. (2011). “Turbocharging DBMS buffer pool using SSDs,
in Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data, SIGMOD 11 (New York, NY: ACM), 1113-1124.
doi: 10.1145/1989323.1989442

Eisenman, A., Gardner, D., AbdelRahman, I., Axboe, J., Dong, S., Hazelwood,
K., et al. (2018). “Reducing DRAM footprint with NVM in facebook,” in
Proceedings of the Thirteenth EuroSys Conference, EuroSys '18, (New York, NY:
ACM), 42:1-42:13, doi: 10.1145/3190508.3190524

Google (2019). LevelDB is a Fast Key-Value Storage Library Written at Google That
Provides an Ordered Mapping From String Keys to String Values. Google/leveldb.

Illumina (2019). Sequencing Coverage for NGS Experiments. Available online at:
https://www.illumina.com/science/education/sequencing- coverage.html

Igbal, Z., Caccamo, M., Turner, L, Flicek, P., and McVean, G. (2012). De novo
assembly and genotyping of variants using colored de Bruijn graphs. Nat. Genet.
44, 226-232. doi: 10.1038/ng.1028

Jiang, P., Luo, J., Wang, Y., Deng, P., Schmidt, B., Tang, X,, et al. (2019).
kmcEx: memory-frugal and retrieval-efficient encoding of counted k-mers.
Bioinformatics 35, 4871-4878. doi: 10.1093/bioinformatics/btz299

Jin, P., Yang, C., Jensen, C. S., Yang, P., and Yue, L. (2016). Read/write-
optimized tree indexing for solid-state drives. VLDB J. 25, 695-717.
doi: 10.1007/500778-015-0406-1

Jun, S.-W., Wright, A., Zhang, S., Xu, S., and Arvind (2018). “GraFboost: using
accelerated flash storage for external graph analytics,” in Proceedings of the
45th Annual International Symposium on Computer Architecture, ISCA 18
(Piscataway, NJ: IEEE Press), 411-424. doi: 10.1109/ISCA.2018.00042

Jun, S. W., Wright, A., Zhang, S., Xu, S., and Arvind (2017). Bigsparse: high-
performance external graph analytics. arXiv[Preprint].arXiv:1710.007736..

Jung, M., Prabhakar, R., and Kandemir, M. T. (2012). “Taking garbage collection
overheads off the critical path in SSDs,” in Proceedings of the 13th International
Middleware Conference, Middleware ’12 (New York, NY: Springer-Verlag New
York, Inc.), 164-186 doi: 10.1007/978-3-642-35170-9_9

Kang, W.-H., Lee, S.-W., and Moon, B. (2012). Flash-based extended cache for
higher throughput and faster recovery. Proc. VLDB Endow. 5, 1615-1626.
doi: 10.14778/2350229.2350274

Kang, W.-H., Lee, S.-W., and Moon, B. (2016). Flash as cache extension for online
transactional workloads. VLDB J. 25, 673-694. doi: 10.1007/s00778-015-0414-1

Kanza, Y., and Yaari, H. (2016). External sorting on flash storage: reducing cell
wearing and increasing efficiency by avoiding intermediate writes. VLDB J. 25,
495-518. doi: 10.1007/s00778-016-0426-5

Kelley, D. R., Schatz, M. C, and Salzberg, S. L. (2010). Quake: quality-
aware detection and correction of sequencing errors. Genome Biol. 11:R116.
doi: 10.1186/gb-2010-11-11-r116

Kourtis, K., Ioannou, N., and Koltsidas, I. (2019). “Reaping the performance of
fast NVM storage with udepot,” in 17th USENIX Conference on File and Storage
Technologies (FAST 19) (Boston, MA), 1-15.

Lam, T. W.,, Sung, W. K,, Tam, S. L., Wong, C. K, and Yiu, S. M. (2008).
Compressed indexing and local alignment of DNA. Bioinformatics 24, 791-797.
doi: 10.1093/bioinformatics/btn032

Lander, E. S, Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J.,
Devon, K., et al. (2001). Initial sequencing and analysis of the human genome.
Nature 409, 860-921. doi: 10.1038/35057062

Lee, E--M., Lee, S.-W., and Park, S. (2012). Optimizing index scans on flash
memory SSDs. SIGMOD Rec. 40, 5-10. doi: 10.1145/2094114.2094116

Lee, S.-W., Moon, B., and Park, C. (2009). “Advances in flash memory ssd
technology for enterprise database applications,” in Proceedings of the 2009
ACM SIGMOD International Conference on Management of Data, SIGMOD "09
(New York, NY: ACM), 863-870. doi: 10.1145/1559845.1559937

Lee, S.-W., Moon, B., Park, C., Kim, J.-M., and Kim, S.-W. (2008). “A case
for flash memory ssd in enterprise database applications,” in Proceedings of
the 2008 ACM SIGMOD International Conference on Management of Data,
SIGMOD 08 (New York, NY: ACM), 1075-1086. doi: 10.1145/1376616.13
76723

Leggett, R. M., and MacLean, D. (2014). Reference-free SNP detection:
dealing with the data deluge. BMC Genomics 15(Suppl. 4):S10.
doi: 10.1186/1471-2164-15-54-S10

Leggett, R. M., Ramirez-Gonzalez, R. H., Verweij, W., Kawashima, C. G., Igbal,
Z., Jones, J. D. G., et al. (2013). Identifying and classifying trait linked

polymorphisms in non-reference species by walking coloured de bruijn graphs.
PLoS ONE 8:¢60058. doi: 10.1371/journal.pone.0060058

Li, H,, and Durbin, R. (2009). Fast and accurate short read alignment
with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.
doi: 10.1093/bioinformatics/btp324

Li, R,, Zhu, H,, Ruan, J., Qian, W., Fang, X., Shi, Z., et al. (2010). De novo assembly
of human genomes with massively parallel short read sequencing. Genome Res.
20, 265-272. doi: 10.1101/gr.097261.109

Li, Y., and Yan, X. (2015). MSPKmerCounter: a fast and memory efficient approach
for k-mer counting. arXiv[Preprint].arXiv:1505.06550.

Lim, H., Fan, B., Andersen, D. G., and Kaminsky, M. (2011). “Silt: a memory-
efficient, high-performance key-value store,” in Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, SOSP "11 (New York, NY:
ACM), 1-13. doi: 10.1145/2043556.2043558

Lu, G, Nam, Y. ., and Du, D. H. (2012). “Bloomstore: bloom-filter based memory-
efficient key-value store for indexing of data deduplication on flash,” in 012
IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST) (San
Diego, CA). 1-11. IEEE. doi: 10.1109/MSST.2012.6232390

Margais, G., and Kingsford, C. (2011). A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers. Bioinformatics 27, 764-770.
doi: 10.1093/bioinformatics/btr011

Moncunill, V., Gonzalez, S., Bed, S., Andrieux, L. O., Salaverria, I., Royo, C,,
et al. (2014). Comprehensive characterization of complex structural variations
in cancer by directly comparing genome sequence reads. Nat. Biotechnol. 32,
1106-1112. doi: 10.1038/nbt.3027

MyRocks, (2019). A RocksDB storage engine with MySQL.

Nath, S., and Kansal, A. (2007). “Flashdb: dynamic self-tuning database
for nand flash) in Proceedings of the 6th International Conference on
Information Processing in Sensor Networks (Cambridge, MA: ACM), 410-419.
doi: 10.1145/1236360.1236412

Nordstrom, K. J. V., Albani, M. C,, James, G. V., Gutjahr, C., Hartwig, B., Turck,
F., etal. (2013). Mutation identification by direct comparison of whole-genome
sequencing data from mutant and wild-type individuals using k-mers. Nat.
Biotechnol. 31, 325-330. doi: 10.1038/nbt.2515

Peterlongo, P., Riou, C., Drezen, E., and Lemaitre, C. (2017). Discosnp++: de
novo detection of small variants from raw unassembled read set(s). bioRxiv.
doi: 10.1101/209965

Prezza, N., Pisanti, N., Sciortino, M., and Rosone, G. (2020). Variable-order
reference-free variant discovery with the Burrows-Wheeler Transform. BMC
Bioinformatics 21:260. doi: 10.1186/5s12859-020-03586-3

Rimmer, A., Phan, H., Mathieson, I, Igbal, Z., Twigg, S. R., Wilkie, A. O,
et al. (2014). Integrating mapping-, assembly-and haplotype-based approaches
for calling variants in clinical sequencing applications. Nat. Genet. 46:912.
doi: 10.1038/ng.3036

Rizk, G., Lavenier, D., and Chikhi, R. (2013). DSK: k-mer counting with very low
memory usage. Bioinformatics 29, 652-653. doi: 10.1093/bioinformatics/btt020

RocksDB, (2019). A persistent key-value store.

Sadoghi, M., Ross, K. A., Canim, M., and Bhattacharjee, B. (2016). Exploiting
SSDs in operational multiversion databases. VLDB . 25, 651-672.
doi: 10.1007/s00778-015-0410-5

Salikhov, K., Sacomoto, G., and Kucherov, G. (2013). “Using cascading bloom
filters to improve the memory usage for de Brujin graphs,” in Algorithms in
Bioinformatics, Lecture Notes in Computer Science, eds A. Darling and J. Stoye
(Berlin; Heidelberg: Springer), 364-376. doi: 10.1007/978-3-642-40453-5_28

ScyllaDB (2017). Learn About Different 1/O Access Methods and What We Chose
for Scylla.

ScyllaDB (2019). ScyllaDB is the Real-Time Big Data Database - Take a Test Drive
or Download Now.

Shi, L., Li, J., Xue, C. J., and Zhou, X. (2013). Cooperating virtual memory and write
buffer management for flash-based storage systems. IEEE Trans. Very Large
Scale Integr. Syst. 21, 706-719. doi: 10.1109/TVLSI.2012.2193909

Stiitz, A. M., Schlattl, A., Zichner, T., Korbel, J. O., Rausch, T., and Benes,
V. (2012). DELLY: structural variant discovery by integrated paired-end and
split-read analysis. Bioinformatics 28, i333-1339. doi: 10.1093/bioinformatics/b
ts378

Uricaru, R, Rizk, G., Lacroix, V., Quillery, E., Plantard, O., Chikhi, R., et al. (2015).
Reference-free detection of isolated SNPs. Nucl. Acids Res (Seattle, WA). 43:e11.
doi: 10.1093/nar/gku1187

Frontiers in Genetics | www.frontiersin.org

17

April 2021 | Volume 12 | Article 615958

https://doi.org/10.1145/1989323.1989442
https://doi.org/10.1145/3190508.3190524
https://www.illumina.com/science/education/sequencing-coverage.html
https://doi.org/10.1038/ng.1028
https://doi.org/10.1093/bioinformatics/btz299
https://doi.org/10.1007/s00778-015-0406-1
https://doi.org/10.1109/ISCA.2018.00042
https://doi.org/10.1007/978-3-642-35170-9_9
https://doi.org/10.14778/2350229.2350274
https://doi.org/10.1007/s00778-015-0414-1
https://doi.org/10.1007/s00778-016-0426-5
https://doi.org/10.1186/gb-2010-11-11-r116
https://doi.org/10.1093/bioinformatics/btn032
https://doi.org/10.1038/35057062
https://doi.org/10.1145/2094114.2094116
https://doi.org/10.1145/1559845.1559937
https://doi.org/10.1145/1376616.1376723
https://doi.org/10.1186/1471-2164-15-S4-S10
https://doi.org/10.1371/journal.pone.0060058
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1101/gr.097261.109
https://doi.org/10.1145/2043556.2043558
https://doi.org/10.1109/MSST.2012.6232390
https://doi.org/10.1093/bioinformatics/btr011
https://doi.org/10.1038/nbt.3027
https://doi.org/10.1145/1236360.1236412
https://doi.org/10.1038/nbt.2515
https://doi.org/10.1101/209965
https://doi.org/10.1186/s12859-020-03586-3
https://doi.org/10.1038/ng.3036
https://doi.org/10.1093/bioinformatics/btt020
https://doi.org/10.1007/s00778-015-0410-5
https://doi.org/10.1007/978-3-642-40453-5_28
https://doi.org/10.1109/TVLSI.2012.2193909
https://doi.org/10.1093/bioinformatics/bts378
https://doi.org/10.1093/nar/gku1187
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Cadenelli et al.

Genomics With Commodity Flash Storage

Weil, S. A, Brandt, S. A., Miller, E. L., Long, D. D. E,, and Maltzahn, C. (2006).
“Ceph: A scalable, high-performance distributed file system,” in Proceedings of
the 7th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 06, 307-320.

Wu, L., Bruns-Smith, D., Nothaft, F. A., Huang, Q., Karandikar, S., Le, J.,
et al. (2019). “FPGA accelerated indel realignment in the cloud,” in IEEE
International Symposium on High-Performance Computer Architecture (HPCA)
2019 (Washington, DC). doi: 10.1109/HPCA.2019.00044

Xiao, M., Li, J., Hong, S., Yang, Y., Li, J., Wang, J., et al. (2018). “K-mer counting:
memory-efficient strategy, parallel computing and field of application for
Bioinformatics,” in 2018 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM) (Madrid), 2561-2567. doi: 10.1109/BIBM.2018.8621325

Ye, K., Schulz, M. H., Long, Q., Apweiler, R., and Ning, Z. (2009). Pindel: a
pattern growth approach to detect break points of large deletions and medium

sized insertions from paired-end short reads. Bioinformatics 25, 2865-2871.
doi: 10.1093/bioinformatics/btp394

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Cadenelli, Jun, Polo, Wright, Carrera and Arvind. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org

18

April 2021 | Volume 12 | Article 615958

https://doi.org/10.1109/HPCA.2019.00044
https://doi.org/10.1109/BIBM.2018.8621325
https://doi.org/10.1093/bioinformatics/btp394
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Enabling Genomics Pipelines in Commodity Personal Computers With Flash Storage
	1. Introduction
	1.1. Related Work
	1.1.1. Genomics and K-mer Counting
	1.1.2. Flash Storage for Databases

	2. Equipment
	2.1. Evaluation Setup and Methodology
	2.2. Reference Genome

	3. Method
	3.1. Detecting Mutations: A Generalized Problem Formulation
	3.1.1. Read Errors
	3.1.2. Applications to Genomics

	3.2. Existing SMUFIN Implementations
	3.2.1. Implementation Issues

	3.3. Proposed SMUFIN-F Architecture
	3.3.1. K-mer Counting With Sort-Reduce
	3.3.2. Key-Value Store for Histogram Look-Up

	4. Results
	4.1. SMUFIN vs SMUFIN-F
	4.1.1. Energy Consumption and Cost

	4.2. Key-Value Store Performance
	4.2.1. Comparison Against RocksDB
	4.2.2. Saturating libaio Bandwidth

	4.3. Key-Value Cache Effectiveness

	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

