
1

Systemizing Interprocedural Static Analysis of Large-Scale
Systems Code with Graspan

ZHIQIANG ZUO∗, State Key Laboratory for Novel Software Technology, Nanjing University, China

KAI WANG, University of California, Los Angeles, USA

AFTAB HUSSAIN and ARDALAN AMIRI SANI, University of California, Irvine, USA

YIYU ZHANG and SHENMING LU, State Key Laboratory for Novel Software Technology, Nanjing

University, China

WENSHENG DOU, University of Chinese Academy of Sciences and State Key Lab of Computer Sciences,

Institute of Software, Chinese Academy of Sciences, China

LINZHANG WANG and XUANDONG LI, State Key Laboratory for Novel Software Technology,

Nanjing University, China

CHENXI WANG and GUOQING HARRY XU, University of California, Los Angeles, USA

There is more than a decade-long history of using static analysis to find bugs in systems such as Linux.

Most of the existing static analyses developed for these systems are simple checkers that find bugs based on

pattern matching. Despite the presence of many sophisticated interprocedural analyses, few of them have been

employed to improve checkers for systems code due to their complex implementations and poor scalability.

In this paper, we revisit the scalability problem of interprocedural static analysis from a “Big Data” perspec-

tive. That is, we turn sophisticated code analysis into Big Data analytics and leverage novel data processing

techniques to solve this traditional programming language problem. We propose Graspan, a disk-based parallel
graph system that uses an edge-pair centric computation model to compute dynamic transitive closures on
very large program graphs. We develop two backends for Graspan, namely Graspan-C running on CPUs

and Graspan-G on GPUs, and present their designs in the paper. Graspan-C can analyze large-scale systems

code on any commodity PC, while, if GPUs are available, Graspan-G can be readily used to achieve orders of

magnitude speedup by harnessing a GPU’s massive parallelism.

We have implemented fully context-sensitive pointer/alias and dataflow analyses on Graspan. An evaluation

of these analyses on large codebases written in multiple languages such as Linux and Apache Hadoop

demonstrates that their Graspan implementations are language-independent, scale to millions of lines of code

and are much simpler than their original implementations. Moreover, we show that these analyses can be

used to uncover many real-world bugs in large-scale systems code.

∗
Corresponding author.

Authors’ addresses: Zhiqiang Zuo, zqzuo@nju.edu.cn, State Key Laboratory for Novel Software Technology, Nanjing

University, China; Kai Wang, wangkai@cs.ucla.edu, University of California, Los Angeles, USA; Aftab Hussain, aftabh@ics.

uci.edu; Ardalan Amiri Sani, ardalan@ics.uci.edu, University of California, Irvine, USA; Yiyu Zhang; Shenming Lu, State Key

Laboratory for Novel Software Technology, Nanjing University, China; Wensheng Dou, wensheng@iscas.ac.cn, University of

Chinese Academy of Sciences and State Key Lab of Computer Sciences, Institute of Software, Chinese Academy of Sciences,

China; Linzhang Wang, lzwang@nju.edu.cn; Xuandong Li, lxd@nju.edu.cn, State Key Laboratory for Novel Software

Technology, Nanjing University, China; Chenxi Wang, wangchenxi@cs.ucla.edu; Guoqing Harry Xu, harryxu@cs.ucla.edu,

University of California, Los Angeles, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0734-2071/2021/1-ART1 $15.00

https://doi.org/10.1145/3466820

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3466820

1:2 Z. Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang, X. Li, C. Wang, and G. Xu

CCS Concepts: • Computer systems organization→ Special purpose systems; Reliability; • Theory of
computation→ Program analysis; • Computing methodologies→Massively parallel algorithms.

ACM Reference Format:
Zhiqiang Zuo, Kai Wang, Aftab Hussain, Ardalan Amiri Sani, Yiyu Zhang, Shenming Lu, Wensheng Dou,

Linzhang Wang, Xuandong Li, Chenxi Wang, and Guoqing Harry Xu. 2021. Systemizing Interprocedural Static

Analysis of Large-Scale Systems Code with Graspan. ACM Trans. Comput. Syst. 1, 1, Article 1 (January 2021),

39 pages. https://doi.org/10.1145/3466820

1 INTRODUCTION
Static analysis has been used to find bugs in systems software for more than a decade now [10, 16, 17,

21, 24, 32, 36, 37, 39, 46, 85, 89, 103, 129, 139]. Based on a set of systems rules, a static checker builds

patterns and inspects code statements to perform “pattern matching”. If a code region matches one

of the patterns, a violation is found and reported. Static checkers have many advantages over recent,

more advanced bug detectors based on SAT solvers or symbolic execution [21]: they are simple,

easy to implement, and scalable. Furthermore, they produce deterministic and easy-to-understand

bug reports compared to, for example, a symbolic execution technique, which often produces

non-deterministic bug reports that are difficult to reason about [35].

1.1 Problems
Unfortunately, the existing static checkers use many heuristics when searching for patterns, re-

sulting in missing bugs and/or reporting false warnings. For example, Chou et al. [30] and Palix et

al. [89] developed nine checkers to find bugs in the Linux kernel. Most of these checkers generate

both false negatives and false positives. For instance, their Null checker tries to identify NULL

pointer dereference bugs by inspecting only the functions that directly return NULL. However, a

NULL value can be generated from the middle of a function and propagated a long way before it

is dereferenced at a statement. Such NULL value propagation will be missed entirely by the Null
checker.

As another example, the Inull/NullRef checker [30, 89] checks whether a pointer dereference
such as 𝑎 = 𝑏−> 𝑓 is post-dominated by a NULL test on the pointer such as if(𝑏). The heuristic
here is that if the developer checks whether 𝑏 can be NULL after dereferencing 𝑏, the dereferencing

can potentially be on a NULL pointer. However, in many cases, the dereferencing occurs in one

of the many control flow paths and in this particular path the pointer can never be NULL. The

developer adds the NULL test simply because the NULL value may flow to the test point from a

different control branch.

Our key observation in reducing the number of false positives and negatives reported by these

checkers is to leverage interprocedural analysis. Among the aforementioned nine checkers, six

that check flow properties can be easily improved (e.g., producing fewer false positives and false

negatives) using an interprocedural analysis, as shown in Table 1.

While using interprocedural analyses to improve bug detection appears to be obvious, there

seems to be a large gap between the state of the art and the state of the practice. On the one hand,

the past decade has seen a large number of sophisticated and powerful analyses developed by

program analysis researchers. On the other hand, none of these techniques are widely used to find

bugs in systems software.

We believe that the reason is two-fold. First, an interprocedural analysis is often not scalable

enough to analyze large codebases such as the Linux kernel. In order for such an analysis to be

useful, it often needs to be context-sensitive, that is, distinct solutions need to be produced and

maintained for different calling contexts (i.e., a chain of call sites representing a runtime call stack).

However, the number of calling contexts grows exponentially with the size of the program and even

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3466820

Systemizing Interprocedural Static Analysis of Large-Scale Systems Code with Graspan 1:3

Table 1. A subset of checkers used by [21, 30, 89] to find bugs in the Linux kernel, their target problems, their
limitations, the potential ways to improve them using a sophisticated interprocedural analysis; positive/nega-
tive indicates whether the limitation can result in false positives/negatives.

Checker Target Problems Limitations Potential Improvement with Interprocedural Analyses

Block Deadlocks Focus on “direct” invocations of Use a pointer/alias analysis to identify indirect invocations via

the blocking functions (Negative) function pointers of the blocking functions

Null NULL pointer derefs Inspect a closure of functions that Use a dataflow analysis to identify functions where NULL can be

return NULL explicitly (Negative) propagated through dataflows to their return variables

Range Use user data as array Only check indices directly Use a dataflow analysis to identify indices coming transitively from

index without checks from user data (Negative) user data as well

Lock/Intr Double acquired locks Identify lock/interrupt objects Use a pointer/alias analysis to understand aliasing relationships

and disabled interrupts by variable names (Negative) among lock objects in different lock sites

not appropriately restored

Free Use of a freed object Identify freed/used objects Use a pointer/alias analysis to check if there is aliasing between

by var names (Negative) objects freed and used afterwards

Size Inconsistent sizes between Only check alloc sites Use a pointer/alias analysis to identify other vars that point to the
an allocated obj and (Negative) same object with an inconsistent type

the type of the RHS var

Inull/NullRef NULL pointer derefs Report all derefs post-dominated Use a dataflow analysis to filter out cases where the involved

by NULL tests (Positive) pointers must not be NULL

a moderate-sized program can have as large as 10
14
distinct contexts [132], making the analysis

both compute- and memory-intensive. Furthermore, most interprocedural analyses are difficult

to parallelize, because they frequently involve decision making based on information discovered

dynamically. Thus, most of the existing implementations of such analyses are entirely sequential.

Second, the sheer implementation complexity scares practitioners away. Much of this complexity

stems from optimizing the analysis rather than implementing the base algorithm. For example,

in a widely-used Java pointer analysis [116], more than three quarters of the code performs

approximations to make sure some results can be returned before a user-given time budget runs out.

The base algorithm implementation takes a much smaller portion. This level of tuning complexity

simply does not align with the “simplest-working-solution” [64] philosophy of systems builders.

1.2 Insight
Our idea is inspired by the way a graph system enables scalable processing of large graphs. Graph

system support pioneered by Pregel [76] provides a “one-stone-two-birds” solution, in which the

optimization for scalability is mainly achieved by the (distributed or disk-based) system itself,

requiring the developers to only write simple vertex programs using the interfaces provided by the

system.

In this paper, we demonstrate a similar “one-stone-two-birds” solution for interprocedural

program analysis. Our key observation in this work is that many interprocedural analyses can

be formulated as a graph reachability problem [95, 96, 105, 116, 142]. Pointer/alias analysis and

dataflow analysis are two typical examples. In a pointer/alias analysis, if an object (e.g., created
by a malloc) can directly or transitively reach a variable on a directed graph representation of the

program, the variable may point to the object. In a dataflow analysis that tracks NULL pointers,

similarly, a transitive flow from a NULL value to a variable would make NULL propagate to the

variable. Therefore, we turn the programs into graphs and treat the analyses as graph traversal.

This approach opens up opportunities to leverage parallel graph processing systems to analyze

large programs efficiently.

This direction is particularly promising due to the following three benefits:

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 Z. Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang, X. Li, C. Wang, and G. Xu

• High Scalability: Sophisticated analysis algorithms can be reduced to simple andmechanical

data computations that can be automatically parallelized by the underlying system. By lever-

aging massive amounts of (CPU, GPU, and disk) resources, the system brings performance

benefit, automatically, to a wide spectrum of program analysis workloads.

• Easy Implementation: The concern about efficiency and scalability is shifted from analysis

developers’ shoulders to the system. The implementation of a client analysis requires only the

development of simple user-defined functions (UDFs), enabling regular developers to easily

prototype and maintain an analysis without worrying about how to tune its performance.

• Multilingual Support: The program under analysis is fed to the system as input data. With

appropriate normalization, programs (or different components in the same program) written

in different languages can be transformed into a graph with a unified format, allowing them

to be analyzed by the same analysis implementation.

1.3 Existing Systems
Several graph systems are available today. These systems are either distributed (e.g., GraphLab [73],
PowerGraph [43], or GraphX [44]) or single-machine-based (e.g., GraphChi [62], XStream [101],

GridGraph [156], GraphReducer [106], or GTS [59]). Since program analysis is intended to assist

developers to find bugs in their daily development tasks, their machines are the environments in

which we would like our system to run, so that developers can check their code on a regular basis

without needing to access a cluster. Hence, disk-based systems naturally become our choice.

We initially planned to use an existing system to analyze program graphs. We soon realized that

a ground-up redesign (i.e., from the programming model to the engine) is needed to build a system

for analyzing large programs. The main reason is that the graph workload for interprocedural

analyses is significantly different from a regular graph algorithm (such as PageRank) that iteratively

performs computations on vertex values on a static graph. An interprocedural analysis, on the

contrary, focuses on computing reachability by repeatedly adding transitive edges, rather than on

updating vertex values. For instance, a pointer analysis needs to add an edge from each allocation

vertex to each variable vertex that is transitively reachable from the allocation.

More specifically, many interprocedural analyses are essentially dynamic reachability problems

in the sense that the addition of a new edge is guided by a constraint on the labels of the existing

edges. In a static analysis, the label of an edge often represents the semantics of the edge (e.g., an

assignment or a dereference). For two edges 𝑎
𝑙1−→ 𝑏 and 𝑏

𝑙2−→ 𝑐 , a transitive edge from 𝑎 to 𝑐 is

added only if the concatenation of 𝑙1 and 𝑙2 forms a string of a (context-free) grammar.

This constraint-guided reachability problem, in general, requires dynamic transitive closure (DTC)
computation [51, 98, 141], which has a wide range of applications in program analysis and other

domains. The DTC computation dictates two important abilities of the graph system. First, at each

vertex, all of its incoming and outgoing edges need to be visible to perform label matching and edge

addition. In the above example, when 𝑏 is processed, both 𝑎
𝑙1−→ 𝑏 and 𝑏

𝑙2−→ 𝑐 need to be accessed

to add the edge from 𝑎 to 𝑐 . This requirement immediately excludes edge-centric systems such as

XStream [101] from our consideration, because these systems stream in edges in a random order

and, thus, this pair of edges may not be simultaneously available.

Second, the system needs to support a large number of edges added dynamically. The added

edges can be even more than the original edges in the graph. While vertex-centric systems such as

GraphChi [62] support dynamic edge addition, this support is very limited. In the presence of a

large number of added edges, it is critical that the system is able to (1) quickly check edge duplicates

and (2) appropriately repartition the graph. Unfortunately, GraphChi supports neither of these

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Systemizing Interprocedural Static Analysis of Large-Scale Systems Code with Graspan 1:5

features. Other graph systems including evolving and streaming graph systems [122, 123, 159]

cannot support such features either.

1.4 Our Contributions
This paper presents Graspan, the first single machine, disk-based parallel graph processing system

tailored for interprocedural static analyses. Given a program graph and a grammar specification of

an analysis, Graspan offers two major performance and scalability benefits: (1) the core computation

of the analysis is automatically parallelized and (2) out-of-core support is exploited if the graph is

too big to fit in memory. At the heart of Graspan is a parallel edge-pair (EP) centric computation

model that, in each iteration, loads two partitions of edges into memory and “joins” their edge lists

to produce a new edge list. Whenever the size of a partition exceeds a threshold value, its edges are

repartitioned. Graspan supports both in-memory (for small programs) and out-of-core (for large

programs) computation. Joining of two edge lists is fully parallelized, allowing multiple transitive

edges to be simultaneously added.

Graspan provides an intuitive programmingmodel, in which the developer only needs to generate

the graph and define the grammar that guides the edge addition, a task orders-of-magnitude easier

than coming up with a well-tuned implementation of the analysis that would give trouble to skillful

researchers for months.

To understand the performance potential of the proposed idea of “systemized” analyses, we

implemented Graspan with two backends, one on CPU (Graspan-C) and a second on GPU (Graspan-

G). Graspan-C analyzes large-scale systems code on a commodity PC, while Graspan-G utilizes GPU

resources for significantly improved efficiency. The differences in the design and implementation

of the two backends are transparent to users.

Recent work shows the effectiveness of backing static analyses with Datalog [20, 132] or Data-

base [131]. While leveraging Datalog makes analysis implementations easier, the existing Datalog

engines are designed in generic ways, i.e., not considering the characteristics of the program analysis

workload. Furthermore, there does not exist any out-of-core Datalog engine that can process very

large graphs on a single machine. For example, the Linux kernel program graph has more than

1B edges. The fastest shared memory Datalog engine SociaLite [63] quickly ran out of memory

while Graspan-C processed it in several hours (cf. §6.5). While distributed Datalog engines such as

Myria [125] and BigDatalog [111] are available, it is unrealistic to require developers to frequently

access a cluster in their daily development.

We have implemented three client analyses
1
, namely a fully context-sensitive field-insensitive

pointer/alias analysis, a fully context-sensitive field-sensitive pointer/alias analysis and a fully

context-sensitive dataflow analysis on Graspan. Context-sensitivity is achieved by making aggres-

sive inlining [107]. That is, we clone the body of a function for every single context leading to the

function. This approach is feasible only because the out-of-core support in Graspan frees us from

worrying about additional memory usage incurred by inlining. We treat the functions in recursions

context insensitively by merging the functions in each strongly connected component on the call

graph into one function without cloning function bodies.

Results. We have implemented Graspan in three languages: C/C++, Java, and CUDA; these

implementations are all publicly available at https://github.com/Graspan. Graspan can be readily

used as a “backend” analysis engine to enhance the existing static checkers such as BugFinder, PMD,

or Coverity. We have performed a thorough evaluation of Graspan on five programs including the

subjects written in C/C++ — Linux kernel, the PostgreSQL database, the Apache httpd server, and

1
The analyses supported by Graspan are path-insensitive and flow-insensitive except for the IFDS-like [96] dataflow analysis.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://github.com/Graspan

1:6 Z. Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang, X. Li, C. Wang, and G. Xu

Java subjects — the Hadoop Distributed File System (i.e., HDFS) and the Hadoop MapReduce (i.e.,
Hadoop-MapReduce). Our experiments show very promising results:

(1) Scalability. The three client analyses (i.e., context-sensitive field-insensitive pointer/alias
analysis, context-sensitive field-sensitive pointer/alias analysis and context-sensitive dataflow

analysis) running on top of Graspan scale easily to these systems, while their traditional

implementations crashed in the early stage;

(2) Efficiency.Having the GPUs enabled, our GPU-based version Graspan-Gmanaged to achieve

orders of magnitude speedup against Graspan-C;

(3) Development Effort. In terms of lines of code, the Graspan-based implementations of these

analyses are an order-of-magnitude simpler than their traditional implementations;

(4) Effectiveness. Using the results of these interprocedural analyses, the static checkers in

[89] have uncovered a total of 85 potential bugs and 1308 unnecessary NULL tests in Linux,

PostgreSQL and httpd. In addition, four Java bug checkers implemented by Graspan have

discovered totally 103 potential bugs in HDFS and Hadoop-MapReduce.

1.5 Outline
The rest of this paper is organized as follows. §2 introduces the background information regarding

the graph reachability-based analysis. The “systemized” solution is then discussed in §3. In §4, we

elaborate the programming model of Graspan, followed by the detailed descriptions of system

design and implementation in §5. The evaluations are presented in §6. Finally, we discuss the related

work (§7) and conclude the paper (§8).

2 BACKGROUND
While there are many types of interprocedural analyses, this paper focuses on a pointer/alias

analysis and a dataflow analysis, both of which are enablers for all other static analyses. This

section discusses necessary background information on how pointer/alias analysis is formulated

as graph reachability problems. Following Rep et al.’s interprocedural, finite, distributive, subset

(IFDS) framework [96], we have also formulated a fully context-sensitive dataflow analysis as a

grammar-guided reachability problem. However, due to space limitations, the discussion of this

formulation is omitted.

2.1 Graph Reachability
Pioneered by Reps et al. [96, 105], there is a large body of work on graph reachability based program

analyses [18, 60, 92, 121, 136, 138, 146, 148]. The reachability computation is often guided by a

context-free grammar due to the balanced parentheses property in these analyses. At a high level,

let us suppose each edge is labeled either an open parenthesis ‘(’ or a close parenthesis ‘)’. A vertex

is reachable from another vertex if and only if there exists a path between them, the string of labels

on which has balanced ‘(’ and ‘)’.

The parentheses ‘(’ and ‘)’ have different semantics for different analyses. For example, for a C

pointer analysis, ‘(’ represents an address-of operation & and ‘)’ represents a dereference *. A pointer

variable can point to an object if there is an assignment path between them that has balanced &

and *. For instance, a string “&&**” has balanced parentheses while “&**&” does not. This balanced

parentheses property can often be captured by a context-free grammar.

2.2 Pointer Analysis
A pointer analysis computes, for each pointer variable, a set of heap objects (represented by

allocation sites) that can flow to the variable. This set of objects is referred to as the variable’s

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Systemizing Interprocedural Static Analysis of Large-Scale Systems Code with Graspan 1:7

points-to set. Alias information can be derived from this analysis — if the points-to sets of two

variables have a non-empty intersection, they may alias.

Our graph formulation of pointer analysis is adapted from a previous formulation in [153]. This

section briefly describes this formulation. The analysis we implement is flow-insensitive in the

sense that we do not consider control flow in the program. A program consists of a set of pointer

assignments. Assignments can execute in any order, any number of times.

Pointer Analysis as Graph Reachability. For simplicity of presentation, the discussion here

focuses on four kinds of three-address statements (which are statements that have at most three

operands):

Type Stmt Edge

memory allocation 𝑥 =𝑚𝑎𝑙𝑙𝑜𝑐 () 𝑥
𝑀←− 𝐴𝑙𝑙𝑜𝑐 (1)

assignment 𝑥 = 𝑦 𝑥
𝐴←− 𝑦 (2)

store ∗𝑥 = 𝑦 ∗𝑥 𝐴←− 𝑦 (3)

load 𝑥 = ∗𝑦 𝑥
𝐴←− ∗𝑦 (4)

address-of 𝑥 = &𝑦 𝑥
𝐴←− &𝑦 (5)

Complicated statements are often broken down into these three-address statements in the

compilation process by introducing temporary variables. As with other analysis implementations,

arithmetic computation conducted on pointers is not considered. To simplify discussion, we do not

distinguish fields in a struct. That is, an expression 𝑎→𝑓 is handled in the same way as ∗𝑎, with offset
𝑓 being ignored. Field sensitivity can be easily added by following treatments in [116, 117, 136].

For each function, an expression graph – whose vertices represent C expressions (including

pointer variables, dereference expressions, address-of expressions, and malloc invocations) and

edges represent value flow between expressions — is generated; graphs for different functions

are eventually connected to form a whole-program expression graph. Each vertex on the graph

represents an expression, and each edge is of three kinds:

• Dereference edge (D): for each dereference ∗𝑥 , there is a D-edge from 𝑥 to ∗𝑥 ; there is also an

edge from an address-of expression &𝑥 to 𝑥 because 𝑥 is a dereference of &𝑥 .

• Assignment edge (A): for each assignment 𝑥 = 𝑦, there is an A-edge from 𝑦 to 𝑥 ; 𝑥 and 𝑦 can

be arbitrary expressions.

• Alloc edge (M): for each assignment 𝑥 = malloc(), there is an M-edge from a special Alloc

vertex to 𝑥 .

Figure 1 shows a simple program and its expression graph. Each edge has a label, indicating

its type. Solid and dashed edges are original edges in the graph and they are labeled 𝑀 , 𝐴, or 𝐷 ,

respectively. Dotted edges are transitive edges
2
added by Graspan into the graph, as discussed

shortly.

2
We use term “transitive edges” to refer to the edges dynamically added to represent non-terminals rather than the

transitivity of a relation.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 Z. Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang, X. Li, C. Wang, and G. Xu

Program:

1 a = b;
2 b = &c;
3 d = &a;
4 e = malloc(...);
5 *c = e;
6 f = *d;
7 g = *f;
8 h = *g;

&c

c

b a

&a d

*ceA4

*d f

*fg

*gh
M A

A A A

A

A

A

D

D

D D

D

D

OF VF

VF/VA

MA

VF/VA

VF/VA

MA

VF/VA

MA

OF
OF

VF

Fig. 1. A program and its expression graph: solid, horizontal edges represent assignments (A- and M- edges);
dashed, vertical edges represent dereferences (D-edge); dotted, horizontal edges represent transitive edges
labeled non-terminals. A4 indicates the allocation site at Line 4.

Context-Free Grammar The pointer information computation is guided by the following gram-

mar:

𝑂𝑏 𝑗𝑒𝑐𝑡 𝑓 𝑙𝑜𝑤 : OF ::= 𝑀 VF (6)

𝑉𝑎𝑙𝑢𝑒 𝑓 𝑙𝑜𝑤 : VF ::= (𝐴 MA?)∗ (7)

𝑀𝑒𝑚𝑜𝑟𝑦 𝑎𝑙𝑖𝑎𝑠 : MA ::= 𝐷 VA 𝐷 (8)

𝑉𝑎𝑙𝑢𝑒 𝑎𝑙𝑖𝑎𝑠 : VA ::= 𝑉𝐹 MA? VF (9)

This grammar has four non-terminals OF, VF, MA, and VA. For a non-terminal 𝑇 , a path in the

graph is called a𝑇 -path if the sequence of the edge labels on the path is a string that can be reduced

to 𝑇 . In order for a variable 𝑣 to point to an object 𝑜 (i.e., a malloc), there must exist an OF path

in the expression graph from 𝑜 to 𝑣 . The definition of OF is straightforward: it must start with an

alloc (𝑀) edge, followed by a VF path that propagates the object address to a variable. A VF path is

either a sequence of simple assignment (A) edges or a mix of assignments edges and MA (memory

alias) paths.

There are two kinds of aliasing relationships in C: memory aliasing (MA) and value aliasing (VA).

Two lvalue expressions are memory aliases if they may denote the same memory location while

they are value aliases if they may evaluate to the same value.

An MA path is represented by 𝐷 VA 𝐷 . Each edge has an inverse edge with a “bar” label. For

example, for each edge 𝑥
𝐷−→ 𝑦, the edge 𝑦

𝐷−→ 𝑥 exists automatically. 𝐷 represents the inverse of a

dereference and is essentially equivalent to an address-of. 𝐷 VA 𝐷 represents the fact that if (1)

we take the address of a variable 𝑥 and writes it into a variable 𝑦, (2) 𝑦 is a value alias of another

variable 𝑧, and (3) we perform dereferencing on 𝑧, the result is the same as the value in 𝑥 .

A VA path is represented by 𝑉𝐹 MA? VF . This has the meaning that if (1) two variables 𝑥 and 𝑦

are memory aliases, and (2) the values of 𝑥 and 𝑦 are propagated to two other variables 𝑧 and 𝑢,

respectively, through two VF paths, 𝑧 and 𝑢 contain the same pointer value. In other words, the

path – 𝑧 𝑉 𝐹 𝑥 MA 𝑦 VF 𝑢 – induces 𝑧 VA 𝑢.
Note thatMA, VA, and VF mutually refer each other. This definition captures the recursive nature

of a flow or alias path. In this grammar, 𝐷 and 𝐷 are the open and close parentheses that need to

be balanced.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Systemizing Interprocedural Static Analysis of Large-Scale Systems Code with Graspan 1:9

Example. In Figure 1, 𝑒 points to A4, since the 𝑀 edge between them forms an OF path. There

is a VF path from &𝑎 to 𝑑 , which is also a VA path (since VA includes VF). The VA path enables

an MA path from 𝑎 to ∗𝑑 due to the balanced parentheses 𝐷 and 𝐷 . This path then induces two

additional VF/VA paths from 𝑏 to 𝑓 and from &𝑐 to 𝑓 , which, in turn, contribute to the forming of

the VF/VA path from 𝑐 to 𝑔, making ∗𝑐 and ∗𝑔 memory aliases. Hence, there exists a VF path from

𝑒 to ℎ, which, together with the𝑀 edge at the beginning, forms an OF path from A4 to ℎ. This path
indicates that ℎ points to A4. The dotted edges in Figure 1 show these transitive edges.

2.3 Dataflow Analysis
Following Rep et al.’s interprocedural, finite, distributive, subset (IFDS) framework [96], we have also

formulated a fully context-sensitive dataflow analysis as a grammar-guided reachability problem.

Particularly, we adopt this dataflow analysis to track NULL value propagation. Under the IFDS

formulation, each dataflow fact corresponds to one vertex in a program graph. The dataflow transfer

function performed on dataflow facts is interpreted as the relation mapping (edges) between vertices.

As such, a program graph termed as “exploded supergraph” is finally generated. Performing the

dataflow analysis is equivalent to the reachability computation on the graph. Please refer to [96]

for more technical details.

One slight difference between the IFDS framework and our formulation is that we achieve context

sensitivity also by cloning intraprocedural graphs instead of using the summary-based approach

in [96], which has been demonstrated [132] to fall short in answering many user queries.

3 “BIG DATA” SOLUTION
The traditional way to implement the interprocedural analysis is tomaintain aworklist, each element

of which is a pair of a newly discovered vertex and a stack simulating a pushdown automaton.

The implementation loops over the worklist, iteratively retrieving vertices and processing their

edges. The traditional implementation does not add any physical edges into the graph (due to

the fear of memory blowup), but instead, it tracks path information using pushdown automata.

When a CFL-reachable vertex is detected, the vertex is pushed into the worklist together with the

sequence of the labels on the path leading to the vertex. When the vertex is popped off of the list,

the information regarding the reachability from the source to the vertex is discarded.

This traditional approach has at least two significant drawbacks. First, it does not scale well

when the analysis becomes more sophisticated or the program to be analyzed becomes larger. For

example, when the analysis is made context-sensitive, the grammar needs to be augmented with the

parentheses representing method entries/exists; the checking of the balanced property for these

parentheses also needs to performed. Since the number of distinct calling contexts can be very large

for real-world programs, naïvely traversing all paths is guaranteed to be not scalable in practice.

As a result, various abstractions and tradeoffs [57, 114–116] have been employed, attempting to

improve scalability at the cost of precision as well as implementation straightforwardness.

Second, the worklist-based model is notoriously difficult to parallelize, making it hard to fully

utilize modern computing resources. Even if multiple traversals can be launched simultaneously,

since none of these traversals add transitive edges into the program graph as they are being detected,

every traversal performs path discovery completely independently, resulting in a great deal of

wasted efforts.

A “Big Data” Perspective Our key insight here is that adding physical transitive edges into the

program graph makes it possible to devise a Big Data solution to this static analysis problem for

two reasons. First, representing transitive edges explicitly rather than implicitly leads to addition of

a great number of edges (e.g., even larger than the number of edges in the original graph). This

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Z. Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang, X. Li, C. Wang, and G. Xu

gives us a large (evolving) dataset to process. Second, the computation only needs to match the

labels of consecutive edges with the productions in the grammar and is thus simple enough to

be “systemized”. Of course, dynamically adding many edges can make the computation quickly

exhaust the main memory. However, this should not be a concern, as there are already many

systems [44, 62, 73, 100, 124, 127] built to process very large graphs (e.g., the webgraph for the

whole Internet).

4 GRASPAN’S PROGRAMMING MODEL
In this section, we describe Graspan’s programming model, i.e., the tasks that need to be done by

the programmer to use Graspan. Analogous to declarative program analysis [111, 140, 151], we

separate the computation back-end from the client-analysis implementations. Due to the general

support for the efficient CFL-reachability computation Graspan performs, Graspan supports any

client analyses that can be formulated as a CFL-reachability problem [95]. In order for users to

implement a particular analysis, an analysis frontend is needed. As shown in Figure 2, we have

implemented two frontends, one for dataflow analysis and a second for pointer/alias analysis. Users

can customize their front-ends for specific analyses, leaving the backend computation to Graspan.

Note that since frontends are separated from the backend analysis engine, users are freed from the

burden of worrying about analysis performance or scalability. There are two main tasks for the

user to build a frontend. The first task is to add a pass in a compiler infrastructure to generate the

graph. The second task is to use the Graspan API to specify a grammar. Next, we will elaborate on

these two tasks. Note that the programming model is applicable to both Graspan-C and Graspan-G.

The differences between the two backends are transparent to users, who can compute with either

of them with the same frontend.

B
ackend

Graspan

Graph
GeneratorGrammar …

Dataflow Analysis Pointer/Alias Analysis Others

Frontend

Graph
GeneratorGrammar

Program Program Program

Fig. 2. Graspan usage; implementing a particular client analysis requires a specific front-end performing
two tasks, namely generating program graph and specifying analysis grammar; our Graspan system as the
backend engine takes the generated program graphs and grammar rules as input and conducts analysis;
users can choose either Graspan-C or Graspan-G according to the particular computing facility.

Generating Graphs. For Graspan to perform an interprocedural analysis, the user first needs to

generate the Graspan graph, which is a specialized program graph tailored for the analysis, by

modifying a compiler frontend. Note that since this task is relatively simple, the developer can

generate the Graspan graph in a mechanical way without even thinking about performance and

scalability. In this subsection, we briefly discuss how we generate the Graspan graph in the context

of the pointer/alias analysis. We finish by generalizing graph generation for other interprocedural

analyses.

For the pointer/alias analysis, we generate the Graspan graph by making two modifications to

the program expression graph described in §2. These modifications include (1) inclusion of inverse

edges and (2) context sensitivity achieved through inlining. For the former, we model inverse edges

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Systemizing Interprocedural Static Analysis of Large-Scale Systems Code with Graspan 1:11

explicitly. That is, for each edge from 𝑎 to 𝑏 labeled 𝑋 , we create and add to the graph an edge from

𝑏 to 𝑎 labeled 𝑋 .

For the latter, we perform a bottom-up (i.e., reverse-topological) traversal of the call graph of the

program to inline functions. For each function, we make a clone of its entire expression graph for

each call site that invokes the function. Formal and actual parameters are connected explicitly with

edges. The cloning of a graph not only copies the edges and vertices in one function; it does so for

all edges and vertices in its (direct and transitive) callees.

For recursive functions, we follow the standard treatment [132] – strongly connected components

(SCC) are computed and then functions in each SCC are collapsed into one single function, and

treated context insensitively. Clearly, the size of the graph grows exponentially as we make clones

and the generated graph is often large. However, the out-of-core support in Graspan guarantees

that Graspan can analyze even such large graphs effectively. For each copy of a vertex, we generate

a unique ID in a way so that we can easily locate the variable its corresponds to and its containing

function from the ID. In the Graspan graph, edges carry data (i.e., their labels) but vertices do not.

Finally, the graph is dumped to disk in the form of an edge list.

In general, the approach of aggressive inlining provides complete information that an analysis

intends to uncover. Among all the existing analysis implementations, only Whaley et al. [132] could

handle such aggressive inlining but they only clone variables (not objects) and have to use a binary

decision diagram (BDD) to merge results. In addition, no evidence was shown that their analysis

could process the Linux kernel. On the contrary, Graspan processes the exploded kernel graph in a

few hours on a single machine.

Although this subsection focuses on the generation of pointer analysis graphs, graphs for other

analyses can be generated in a similar manner. Here we briefly summarize the steps. First, vertices

and edges need to be defined based on a grammar; this step is analysis-specific. Second, if inverse

edges are needed in the grammar, they need to be explicitly added. Finally, context sensitivity can

be generally achieved by function inlining. The developer can easily control the degree of context

sensitivity by using different inlining criteria. For example, we perform full context sensitivity and

thus our inlining goes from the bottom functions all the way up the top functions of the call graph.

But if one wishes to perform only one-level context sensitivity, each function only needs to be

inlined once.

Specifying Grammar. Once the program graph is generated, the user needs to specify a grammar

that guides the addition of transitive edges at run time. Unlike any traditional implementation of

the analysis, Graspan adds transitive edges (e.g., dotted edges in Figure 1) to the graph in a parallel

manner. Specifically, for each production in the grammar, if Graspan finds a path whose edge labels

match the RHS terms of the production, a transitive edge is added covering the path and labeled

with the LHS of the production.

Since Graspan uses the edge-pair-centric model, it focuses on a pair of edges at a time, which

requires each production in the grammar to have no more than two terms on its RHS. In other

words, the length of a path Graspan checks at a time must be ≤ 2.

For example, the above mentioned pointer analysis grammar cannot be directly used, because the

RHSes of VF, MA, and VA all have more than two terms. This means that to add a new VF edge, we

may need to check more than two consecutive edges, which does not fit into Graspan’s EP-centric

model. Fortunately, every context free grammar can be normalized into an equivalent grammar

with at most two terms on its RHS [96], similar to the Chomsky normal form. After normalization,

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 Z. Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang, X. Li, C. Wang, and G. Xu

our pointer analysis grammar becomes:

𝑂𝑏 𝑗𝑒𝑐𝑡 𝑓 𝑙𝑜𝑤 : OF ::= 𝑀 VF (10)

𝑇𝑒𝑚𝑝 : T1 ::= 𝐴 | 𝐴 MA (11)

𝑉𝑎𝑙𝑢𝑒 𝑓 𝑙𝑜𝑤 : VF ::= VF T1 | 𝜖 (12)

𝑀𝑒𝑚𝑜𝑟𝑦 𝑎𝑙𝑖𝑎𝑠 : MA ::= T2 𝐷 (13)

𝑇𝑒𝑚𝑝 : T2 ::= 𝐷 VA (14)

𝑉𝑎𝑙𝑢𝑒 𝑎𝑙𝑖𝑎𝑠 : VA ::= T3 VF (15)

𝑇𝑒𝑚𝑝 : T3 ::= 𝑉𝐹 MA | 𝑉𝐹 (16)

At the center of Graspan’s programming model is an API:

addConstraint(Label lhs, Label rhs1, Label rhs2)

which can be used by the developer to register each production in the grammar. lhs represents the
LHS non-terminal while rhs1 and rhs2 represent the two RHS terms. If the RHS has only one term,

rhs2 should be NULL.

Graspan Applicability. How many interprocedural analyses can be powered by Graspan? First,

we note that pointer analysis and IFDS-like dataflow analysis are already representatives of a large

number of analysis algorithms that can be formulated as a grammar-guided graph reachability

problem [95]. Second, work has been done to establish the convertibility from other types of

analysis formulation (e.g., set-constraint [60] and pushdown systems [12, 13, 13]) to context-free

language reachability. Analyses under these other formulations can all be parallelized and made

scalable by Graspan.

Note that Graspan currently does not support analyses that require constraint solving, such as

path-sensitive analysis and symbolic execution. Future work can add support for constraint-based

analyses by encoding constraints into edge values such as [158]. Two edges match if a satisfiable

solution can be found for the conjunction of the constraints they carry. Moreover, Graspan currently

only supports IFDS problems; we leave dataflow analyses and other flow-sensitive analyses that

can not be formulated as IFDS problems to future work.

Algorithm 1: An out-of-core algorithm for CFL-reachability computation

1 begin
2 /*Preprocessing*/

3 initializePartitions()

4 /*Iterative computation*/

5 for 𝑛𝑢𝑙𝑙 ≠ ⟨𝑖, 𝑗⟩ ← schedule() do
6 𝑝𝑖 ← load(𝑖) // Disk->Memory

7 𝑝 𝑗 ← load(𝑗) // Disk->Memory

8 compute(𝑝𝑖 , 𝑝 𝑗)
9 store(𝑝𝑖) // Memory->Disk

10 store(𝑝 𝑗) // Memory->Disk

11 /*Postprocessing*/

12 postprocess()

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Systemizing Interprocedural Static Analysis of Large-Scale Systems Code with Graspan 1:13

5 GRASPAN DESIGN AND IMPLEMENTATION
At the core of Graspan is an out-of-core algorithm for performing CFL reachability, which is

illustrated by Algorithm 1. It consists of three main phases: preprocessing, computation, and

postprocessing. A preprocessing step is firstly launched to divide the input graph into multiple

partitions (Line 3). The main analysis computation is comprised of multiple supersteps. At each
superstep (Lines 5 - 10), the scheduler is first invoked to decide which two partitions to load and

process (Line 5). The system then loads the specified partitions into memory (Lines 6 and 7), and

performs CFL-reachability computation on them (Line 8), which corresponds to Algorithm 3 or 4.

At the end of the superstep, the updated partitions are written back to disks (Lines 9 and 10). The

iterative process continues until it is terminated by the scheduling algorithm (Line 5) — no new

edges can be generated. Finally, a postprocessing step is performed, after the computation, to parse

and report the analysis results. (Line 12).

We have implementedAlgorithm 1 on both CPU andGPU. By taking into account the architectural

differences between CPU and GPU, we devise distinct data representations and parallel operations

to support CFG-reachability computation on those devices, resulting in Graspan-C (§5.3) and

Graspan-G (§5.4). These backends share the same preprocessing (§5.1), scheduling (§5.2), and

postprocessing (§5.6) steps although the computing engine implementations are different.

10 2

4 3 5 6

A B

A C D
C

B

D
B

C A

D

B
D

B

A

B A

Partition 0

Src Dst Label

0 1 A

4 A

6 B

1 2 B

3 D

2 3 C

Partition 1

Src Dst Label

3 2 D

4 C

5 B

6 A

4 1 C

5 B

Partition 2

Src Dst Label

5 1 D

2 B

3 A

6 D

6 2 B

4 A

(a) (b)

Fig. 3. (a) An example graph, and (b) its partitions.

5.1 Preprocessing
Preprocessing partitions the Graspan graph generated for an analysis. The graph is in the edge-list

format on disk. Similar to graph sharding in GraphChi [62], partitioning in Graspan is done by first

dividing vertices into logical intervals. However, unlike GraphChi that groups edges based on their

target vertices, one interval in Graspan defines a partition that contains edges whose source vertices
fall into the interval. Edges are sorted on their source vertex IDs and those that have the same

source are stored consecutively and ordered on their target vertex IDs. The fact that the outgoing
edges for each vertex are sorted enables quick edge addition, as we will discuss shortly. Figure 3(a)

shows a simple directed graph. Suppose Graspan splits its vertices into three intervals 0–2, 3–4,

and 5–6; Figure 3(b) shows the partition layout.

When a new edge is found during processing, it is always added to the partition to which the

source of the edge belongs. Graspan loads two partitions at a time and joins their edge-lists (§5.3

and §5.4), a process we refer to as a superstep. Given that only two partitions reside in memory at a

given time, the size and hence the total number of partitions are determined automatically by the

amount of memory available to Graspan.

Preprocessing also produces three pieces of meta-information: a degree file for each partition,

which records the (incoming and outgoing) degrees of its vertices, a global vertex-interval table

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 Z. Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang, X. Li, C. Wang, and G. Xu

(VIT), which specifies vertex intervals, and a destination distribution map (DDM) for each partition

𝑝 that maps, for each other partition 𝑞, the number of edge pairs potentially matched between 𝑝

and 𝑞. DDM[p, q] is calculated by summing up the outgoing degree of the vertices in partition 𝑞

that are out-neighbors of vertices in partition 𝑝 . The DDM is essentially a matrix, with each cell

containing a count.

Graspan uses the degree file to calculate the size of the array to be created to load a partition.

Without the degree information, a variable-size data structure (e.g., ArrayList) has to be used,

which would incur array resizing and data copying operations. The VIT records the lower and

upper-bounds for each interval (e.g., (0, [0, 10000]), (1, [10001, 23451]), etc.). Graspan maintains the

table because the intervals will be redefined upon repartitioning. The DDMmeasures the “matching”

degree between two partitions and will be used by the Graspan scheduler to determine which two

to load.

Note that Graspan supports both in-memory and out-of-core computations. For small graphs

that can be held in memory, our preprocessing only generates two partitions, both of which are

resident in memory. Since the VIT and the DDM are reasonably small in size, they are kept in

memory throughout the processing.

5.2 Scheduling
When a new superstep starts, two new partitions will be selected by the scheduler to join. Since

a partition on which the computation was done in the previous superstep may be chosen again,

Graspan delays the writing of a partition back to disk until the new partitions are chosen by the

scheduler. If a chosen partition is already in memory, significant amounts of disk I/O can be saved.

Algorithm 2: DDM updating

1 for each partition 𝑝 ∈ [0, 𝑛) do
2 for each partition 𝑞 ∈ [0, 𝑛) do
3 if inMemory(p) & inMemory(q) then
4 if repartition happened then
5 compute the exact number of pairs potential matched

6 else
7 DDM [𝑝, 𝑞] ← 0

8 else if inMemory(p) & newEdges(p) & onDisk(q) then
9 num← calculate the number of edges in 𝑝 whose target vertices belong to 𝑞

10 DDM [𝑝, 𝑞] ← num × totalEdges(𝑞)/totalVertices(𝑞)
11 else if onDisk(p) & inMemory(q) & newEdges(q) then
12 if repartitioning has happened on 𝑝 then
13 DDM [𝑝, 𝑞] ← DDM [𝑝, 𝑞]/numPartitions

14 else if onDisk(p) & onDisk(q) then
15 /*no updating is needed*/

The insight here is that regardless of the order in which supersteps are performed, the total

number of added edges remains identical. To reduce the number of supersteps needed and thus the

I/O cost, the partitions where more edges are likely to be added should be scheduled at a higher

priority.

To this end, we develop a novel scheduling algorithm with two objectives: (1) maximize the

number of edge pairs that can potentially match and (2) favor the reuse of in-memory partitions.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Systemizing Interprocedural Static Analysis of Large-Scale Systems Code with Graspan 1:15

For (1), the scheduler consults the DDM. As mentioned earlier, each cell of the DDM contains

the number of edge pairs that can match between two partitions. Our scheduler selects a pair of

partitions that have the largest DDM [𝑝, 𝑞] + DDM [𝑞, 𝑝] score. If multiple pairs of partitions have

the same score (e.g., in a user-defined range), Graspan picks the one that involves an in-memory

partition.

At the beginning, the DDM is initialized during preprocessing. Given partition 𝑝 and𝑞,DDM [𝑝, 𝑞]
is calculated as follows: for each edge 𝑥 → 𝑦 in partition 𝑝 , if the target vertex𝑦 belongs to partition

𝑞, the outgoing degree of vertex 𝑦 in partition 𝑞 is added to the value stored in DDM [𝑝, 𝑞]. In this

way, the initial value of each DDM cell indicates the maximum number of edges that can possibly

match between two partitions. As the computation proceeds, edges in each partition are changed.

The DDM has to be updated at the end of each superstep. Algorithm 2 lists the pseudo-code that

updates the DDM. Essentially, for each partition pair of 𝑝 and 𝑞, four cases need to be considered,

depending on whether the partition is in memory or on disk.

• Both 𝑝 and 𝑞 are in memory: if the computation is completed, DDM [𝑝, 𝑞] is set to zero; if the

computation is interrupted due to repartitioning, the DDM has to be recomputed.

• 𝑝 is in memory with new edges added and 𝑞 is on disk: in this case, we are not able to compute

the exact number without loading 𝑞 into memory. Thus, we estimate the value by multiplying

the number of edges in 𝑝 whose target vertices belong to 𝑞 and the average out-degree of

vertices in 𝑞.

• 𝑝 is on disk and 𝑞 is in memory with new edges added: if 𝑝 is repartitioned, we simply divide

DDM [𝑝, 𝑞] by the number of partitions.

• Neither 𝑝 nor 𝑞 resides in memory: in this case, the current superstep has not perform any

computation on 𝑝 or 𝑞; hence, 𝐷𝐷𝑀 [𝑝, 𝑞] remains the same.

5.3 Edge-Pair Centric Computation on CPUs
We devised edge-pair centric (EP-centric) computation model for iterative edge induction at each

superstep. To accelerate the computation, we leveraged modern parallel computing facilities —

multi-core CPUs and many-core GPUs, and developed two parallel versions, Graspan-C for CPUs

and Graspan-G for GPUs. This section presents the design and implementation details of Graspan-C

with regard to the in-memory data structure for graph representation and the parallel edge addition.

We discuss Graspan-G shortly in §5.4.

1 A 4 A

2 B 3

3 C

6 B 2 C 3

2 A

0

2

1 Edge
destination

t0

t1

t2

B

D

Edge label

Grammar : C := AB D := BC B := AD A := CD

2 D 4 C3
t3

1 C 5 B 3 A4
t4

5 B 6 A

5 C

Partition 0

Partition 1

Old edges (O) Delta since last iteration (D)Vertices (V)

Fig. 4. The CPU in-memory representation of edge lists at the end of the first iteration.

In-Memory Edge Representation. When two partitions are loaded into memory, we need to

design an in-memory data structure for storing these partitions. For program analysis workloads,

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 Z. Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang, X. Li, C. Wang, and G. Xu

Algorithm 3: The parallel EP-centric computation on CPUs

Input: Partition 𝑝1, Partition 𝑝2
1 Combine the vertices of 𝑝1 and 𝑝2 into 𝑉

2 Combine the edge lists of 𝑝1 and 𝑝2 into 𝐸

3 for each edge list 𝑣 : (𝑒1, 𝑒2, . . . , 𝑒𝑛) ∈ 𝐸 do in parallel
4 Set Ov to ()
5 Set Dv to (𝑒1, 𝑒2, . . . , 𝑒𝑛)
6 while there exists at least one vertex 𝑣 whose 𝐷𝑣 is NOT empty do
7 for each vertex 𝑣 : (𝑂𝑣, 𝐷𝑣) do in parallel
8 mergeResultv ← ()
9 /*Merge 𝑂𝑣 with only 𝐷𝑣 of other vertices*/

10 List listsToMerge← {𝑂𝑣}
11 Let 𝑉1 be the intersection of the target vertices of 𝑂𝑣 and 𝑉

12 foreach vertex 𝑢 ∈ 𝑉1 do
13 Add 𝐷𝑢 into listsToMerge

14 /*Merge the sorted input lists into a new sorted list*/

15 mergeResultv ←MatchAndMergeSortedArrays(listsToMerge)

16 /*Merge 𝐷𝑣 with 𝑂𝑣 ∪ 𝐷𝑣 of other vertices*/
17 listsToMerge← {𝐷𝑣,mergeResultv}
18 Let 𝑉2 be the intersection of the target vertices of 𝐷𝑣 and 𝑉

19 foreach vertex 𝑢 ∈ 𝑉2 do
20 Add 𝑂𝑢 and 𝐷𝑢 into listsToMerge

21 /*Merge the sorted input lists into a new sorted list*/

22 mergeResultv ←MatchAndMergeSortedArrays(listsToMerge)

23 for each vertex 𝑣 : (𝑂𝑣, 𝐷𝑣) do in parallel
24 /*Update 𝑂𝑣 and 𝐷𝑣*/

25 𝑂𝑣 ←MergeSortedArrays(𝑂𝑣, 𝐷𝑣)

26 𝐷𝑣 ← mergeResultv −𝑂𝑣

the input graphs are (1) large – the Linux kernel program graph has more than one billion edges;

(2) sparse – its density is low; and (3) dynamic – edges are constantly added into graphs. The

representation has to concisely represent the sparse graph with many edges and support efficient

dynamic updates. As such, existing graph representations such as adjacency matrix (tailored for

dense graphs) or compressed row storage (for static graphs), are inadequate. In Graspan-C, we use

an adjacency list to efficiently represent and manipulate a program graph.

The edge list of a vertex 𝑣 is represented as two arrays of (vertex, label) pairs, as shown in

Figure 4. The first array (𝑂𝑣) contains “old” edges that have been inspected before and the second

(𝐷𝑣) contains edges newly added in the current iteration. The goal is to avoid repeatedly matching

edge pairs (discussed shortly).

Parallel Edge Addition. Algorithm 3 shows a BSP-like algorithm for the parallel EP-centric

computation. With two partitions 𝑝1 and 𝑝2 loaded, we first merge them into one single partition

with combined edge lists (Lines 1 – 2). Initially, for each vertex 𝑣 , its two arrays 𝑂𝑣 and 𝐷𝑣 are set

to empty list and the original edge list of 𝑣 , respectively (Line 4 and Line 5). The loop between

Line 7 and Line 22 creates a separate thread to process each vertex 𝑣 and its edge list, computing

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Systemizing Interprocedural Static Analysis of Large-Scale Systems Code with Graspan 1:17

transitive edges with two main components. After edge addition, both 𝑂𝑣 and 𝐷𝑣 are updated. The

entire process is performed iteratively until the fixed point is reached — no new edges can be added

any more (i.e., 𝐷𝑣 is empty for all vertices 𝑣).

The first component (Lines 9 – 15) attempts to match each “old” edge in 𝑂𝑣 that goes to vertex 𝑢

with each “new” edge of 𝑢 in 𝐷𝑢 . The second component (Lines 16 – 22) matches each “new” edge

in 𝐷𝑣 with both “old” and “new” edges in𝑂𝑢 and 𝐷𝑢 of vertex 𝑢. The idea is that we do not need to

match an “old” edge of 𝑣 with an “old” edge of 𝑢, because this work has been done in a previous

iteration. 𝑂𝑣 and 𝐷𝑣 are updated at the end of each iteration.

An important question is how to perform edge matching. A straightforward approach is that,

for each edge 𝑣
𝐿1−→ 𝑢, we inspect each of 𝑢’s outgoing edges 𝑢

𝐿2−→ 𝑥 , and add an edge 𝑣
𝐾−→ 𝑥 if

a production 𝐾 ::= 𝐿1 𝐿2 exists. However, this simple approach suffers from significant practical

limitations. First, before the edge is added into 𝑣 ’s list, we need to scan 𝑣 ’s outgoing edges one more

time to check if the same edge already exists. Checking and avoiding duplicates is very important –

duplicates may cause the analysis either not to terminate or to suffer from significant redundancies

in both time and space.

Doing a linear scan of the existing edges is expensive – it has an O(|𝐸 |2) complexity to add edges

for each vertex, where |𝐸 | is the total number of edges loaded. An alternative is to implement an

“offline” checking mechanism that removes duplicates when writing updated partitions to disk.

While this approach eliminates the cost of online checks, it may prevent the computation from

terminating — if the same edge is repeatedly added, missing the online check would make the loop

at Line 7 keep seeing new edges and run indefinitely.

Our algorithm performs quick edge addition and online duplicate checks. Our key insight is that

edge addition can be done in batch much more efficiently than individually. To illustrate, consider

Figure 3(a) where vertex 0 initially has two outgoing edges 0→ 1 and 0→ 4. Adding new edges

for vertex 0 is essentially the same as merging the (outgoing) edges of vertex 1 and 4 into vertex 0’s

edge list and then filtering out those that have mismatched labels.

In Algorithm 3, to add edges for vertex 𝑣 , we first compute set𝑉1 by intersecting the set of target

vertices of the edges in 𝑂𝑣 and the set 𝑉 of all vertices in the loaded partitions (Line 11). 𝑉1 thus

contains the vertices whose edge lists need to be merged with 𝑣 ’s edge list. If an out-neighbor of

𝑣 is not in 𝑉 , we skip it in the current superstep — this vertex will be processed later in a future

superstep in which its partition is loaded together with 𝑣 ’s partition.

Next, we add 𝑂𝑣 into a list listsToMerge together with 𝐷𝑢 of each vertex 𝑢 in 𝑉1 (Lines 10 –

13), and merge these lists into a new sorted list (Line 15). Since all input lists are already sorted,

function MatchAndMergeSortedArrays can be efficiently implemented by repeatedly checking

the grammar, finding the minimum (using an O(log |𝑉 |) min-heap algorithm [15]) among the

elements in a slice of the input lists and copying it into the output array. This whole algorithm

has an O(|𝐸 |log |𝑉 |) complexity, which is more efficient, both theoretically and empirically, than

scanning edges individually (O(|𝐸 |2)) because |𝑉 | is much smaller than |𝐸 |. Furthermore, edge

duplicate checking can be automatically done during the merging — if multiple elements have the

same minimum value, only one is copied into the output array. Label matching is performed before

copying — an edge is not copied into the output if it has an inconsistent label.

Lines 16 – 22 perform the same logic by computing a new set of vertices𝑉2, and merging 𝐷𝑣 and

all the edges (i.e.,𝑂𝑢 ∪𝐷𝑢) of each vertex 𝑢 ∈ 𝑉2. At Line 22, all the new edges to be added to vertex

𝑣 are in mergeResult𝑣 . Finally, to prepare for the next iteration, 𝑂𝑣 and 𝐷𝑣 are merged (Line 25) to

form a new 𝑂𝑣 , which is then updated (Line 26) with the newly added edges (excluding those that

already exist in 𝑂𝑣). We separate the computation (Lines 7–22) from the updates (Lines 23–26) to

ensure that both 𝑂𝑣 and 𝐷𝑣 are read only during the parallel computation, avoiding data races.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 Z. Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang, X. Li, C. Wang, and G. Xu

Example. Figure 4 shows the in-memory edge lists at the end of the first iteration of the loop at

Line 7 in Algorithm 3. In the next iteration, thread 𝑡0 would merge𝑂0 with 𝐷1 and 𝐷4, and 𝐷0 with

𝑂2 ∪ 𝐷2 and 𝑂3 ∪ 𝐷3. 𝑂0 and 𝑂1 (and 𝑂4) do not need to be merged again as this has been done

before.

Another advantage of this algorithm is that it runs completely in parallel without needing any

synchronization. While the edge list of a vertex may be read by different threads, edge addition can

only be done by one single thread, that is, the one that processes the vertex.

When a superstep is done, the updated edge lists need to be written back to their partition files.

In addition, the degree file is updated with the new vertex degree information. The (in-memory)

DDM needs to be updated with the new edge distribution information.

5.4 Edge-Pair Centric Computation on GPUs
We additionally devise a GPU-based backend to accelerate closure computation on machines

equipped with GPUs. The high-level architecture of Graspan-G is shown in Figure 5. Its workflow

follows Algorithm 1, where in each superstep two partitions are loaded from the disk through the

main memory to a GPU. Once the computation finishes on the GPU, the partitions are written back

to the disk through the main memory. The supersteps iterate until the scheduler terminates the

computation. In this design, edge induction is shifted to the GPU, while the CPUs are responsible

for other components including preprocessing, loading/storing, and scheduling. In the following,

we first discuss the necessary background about the microarchitecture of GPUs, and then elaborate

the EP-centric model on a GPU.

EP-Centric Computation

load store

GPU

CPU/Memory

DiskPartitions

Fig. 5. The high-level architecture of Graspan-G

GPU Architecture. We take the NVIDIA GPU as an example to briefly describe the microarchitec-

ture of modern graphics processors for general purpose computation. A typical general-purpose

GPU consists of multiple identical computation units called streaming multiprocessors (SMs). Each

SM contains the instruction unit for instruction fetching, multiple processing elements (PE) for

parallel execution, and the shared memory (mostly an L1 cache) for data exchange among threads

running on the SM. Within a SM, each PE is able to run an independent thread. One SM often con-

tains 32 PEs. Thus, a logical group of 32 threads — that constitute a warp — can run simultaneously

on one SM. To use a GPU, a multi-thread program is partitioned into blocks of threads that are

distributed to SMs. Since PEs on one SM have to share a single instruction unit, they must either

execute the same instruction on individual data items (one per cycle) or wait. If threads in a warp

execute different instructions, e.g., branch divergence occurs, the warp is automatically subdivided

by the hardware into sets of threads executing the same instruction. These sets are then serially

executed until reconvergence, which often leads to performance degradation.

Another feature that significantly affects performance is memory coalescing. When threads in

a warp simultaneously access words (in the main memory) that are aligned in a single 128-byte

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Systemizing Interprocedural Static Analysis of Large-Scale Systems Code with Graspan 1:19

segment, the hardware coalesces the 32 word accesses into one memory transaction which is as

fast as accessing one word. However, if addresses scatter in memory, multiple memory transactions

have to be launched. In general, the more distributed the addresses are, the lower the throughput.

Such hardware characteristics need to be considered in the design of Graspan-G. In particular, by

tailoring the in-memory data structure and edge addition algorithm for GPUs, Graspan-Gminimizes

branch divergence and increases memory throughput.

0 ...0000100null

sparse bitvector

0
t0

1
t1

2
t2

Old edges (O) Delta since last iteration (D)Vertices (V)

Grammar : C := AB D := BC B := AD A := CD

3
t3

4
t4

Part 0

Part 1

A B C D

0 ...1000000null

0 ...0001000null

0 ...1000000null 0 ...0010000null 0 ...0000100null0 ...0100000 null

0 ...0001000null0 ...0000100null

0 ...0000010null0 ...0100000null

0 ...0010010null 0 ...0100100null0 ...0001000null

0 ...0001000null

A B C D

base bits next

Fig. 6. The sparse bit vector representation of edge lists on GPUs at the end of the first iteration.

In-Memory Edge Representation. Considering GPU’s hardware characteristics, the graph repre-

sentation discussed earlier for Graspan-C is no longer suitable. In Graspan-C, each source vertex is

assigned to a thread responsible for adding new edges associated with that vertex. One naïve way

to leverage this design on GPU is to distribute 32 source vertices to a warp (with 32 GPU threads),

where each thread processes one source vertex (i.e., the whole computation indicated by Lines

7-22 in Algorithm 3). This is, however, inefficient because (1) the control flow within each thread

frequently diverges and (2) the edge lists to be merged scatter in memory. An alternative is to let

each merge task (i.e., functionMatchAndMergeSortedArrays) executed by a warp. Although

this approach can increase memory throughput, it does not reduce the high frequency of branch

divergence caused by duplicate checks and label matching.

To efficiently use GPU, we need a data structure tailored for its parallelism model. The data

structure should better support fine-grained parallelization with minimized control-flow divergence.

To this end, we propose to use a bit vector to represent an edge list. Moreover, different from the

CPU-based edge representation where edge IDs and labels are stored together, we separate IDs

and labels in this GPU-based representation. For each vertex, its edges are stored in a set of bit

vectors, each of which contains edges with the same label. In Figure 6, the grammar has four labels

and hence each vertex has at most four bit vectors, each corresponding to a label. By putting the

edges with the same label in the same bit vector, we are able to merge these edges efficiently by

performing bit-wise union between vectors, effectively avoiding explicit label checking that leads

to divergence. With this data structure, each warp is given a task that merges multiple bit vectors

via bit-wise operations, as discussed shortly in Algorithm 4.

Although bit vectors are suitable for GPU’s parallelism model, they generally have low space

efficiency especially for sparse graphs (i.e., most elements of a vector are zero). This not only

wastes the GPU cycles, but also introduces significant I/O in our out-of-core design. To tackle this

problem, we use a sparsity-friendly variant, called sparse bit vector [78], that is designed specifically
to represent sparse data. Internally, a sparse bit vector is a linked list of bit vectors, each element

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 Z. Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang, X. Li, C. Wang, and G. Xu

of which consists of three fields: base (indicates the range of integers possibly contained in the

current element), bits (indicates whether a particular integer belongs to the set or not), and next
(a pointer to the next element). Each sparse bit vector uses 32 words (i.e., 128 bytes) — base and
next are of one-word length each, while the bits part spans 30 words. The assignment of parallel

tasks is done in a warp-centric manner. Each vertex is assigned to a warp. The sparse bit vector

associated with the vertex is accessed and processed by a warp. The 32-word width fits the GPU

architecture well. Loading one element of the sparse bit vector from the main memory requires

only one memory transaction. Each of the 30 threads (except the first and last thread) in a warp

performs the same operation over each word in the bits field, achieving high thread convergence.

Since a graph often does not exhibit good spatial locality, we further relax the restriction of the

32-word length requirement by using a variable-length sparse bit vector whose element size can

be adjusted to be 2
𝑖
words based on the number of edges each vertex has in our program graph.

Each vertex is then assigned to a virtual warp [49] for parallel processing, which provides increased

flexibility and efficiency.

Algorithm 4: The parallel EP-centric computation on GPUs

Input: Partition 𝑝1, Partition 𝑝2
1 Combine the vertices of 𝑝1 and 𝑝2 into 𝑉

2 Combine the edge lists of 𝑝1 and 𝑝2 into 𝐸

3 for each edge list 𝑣 : (𝑒1, 𝑒2, . . . , 𝑒𝑛) ∈ 𝐸 do in parallel
4 Set Ov to ()
5 Set Dv to (𝑒1, 𝑒2, . . . , 𝑒𝑛)
6 while there exists at least one vertex 𝑣 whose 𝐷𝑣 is NOT empty do
7 for each vertex 𝑣 : (𝑂𝑣, 𝐷𝑣) do in parallel
8 BitVector mergeResultv ← ()
9 /*Merge 𝑂𝑣 with only 𝐷 of other vertices*/

10 foreach each vertex𝑤 ∈ 𝑂𝑣 .𝐴 do /*each edge v->w labeled with A in 𝑂𝑣*/

11 if the rule C ::= A B exists then
12 /*bitwise union two bitvectors in parallel by a GPU warp*/

13 𝑚𝑒𝑟𝑔𝑒𝑅𝑒𝑠𝑢𝑙𝑡𝑣 .𝐶 ← 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑏𝑖𝑡𝑤𝑖𝑠𝑒_𝑢𝑛𝑖𝑜𝑛(𝑚𝑒𝑟𝑔𝑒𝑅𝑒𝑠𝑢𝑙𝑡𝑣 .𝐶, 𝐷𝑤 .𝐵)

14 /*Merge 𝐷𝑣 with 𝑂 ∪ 𝐷 of other vertices*/

15 foreach each vertex𝑤 ∈ 𝐷𝑣 .𝐴 do /*each edge v->w labeled with A in 𝐷𝑣*/

16 if the rule C ::= A B exists then
17 /*bitwise union bitvectors in parallel by a GPU warp*/

18 𝑚𝑒𝑟𝑔𝑒𝑅𝑒𝑠𝑢𝑙𝑡𝑣 .𝐶 ← 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑏𝑖𝑡𝑤𝑖𝑠𝑒_𝑢𝑛𝑖𝑜𝑛(𝑚𝑒𝑟𝑔𝑒𝑅𝑒𝑠𝑢𝑙𝑡𝑣 .𝐶, 𝑂𝑤 .𝐵, 𝐷𝑤 .𝐵)

19 for each vertex 𝑣 : (𝑂𝑣, 𝐷𝑣) do in parallel
20 /*Update 𝑂𝑣 and 𝐷𝑣 in parallel by a GPU warp*/

21 𝑂𝑣 ← 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑏𝑖𝑡𝑤𝑖𝑠𝑒_𝑢𝑛𝑖𝑜𝑛(𝑂𝑣, 𝐷𝑣)
22 𝐷𝑣 ← 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑏𝑖𝑡𝑤𝑖𝑠𝑒_diff (𝑚𝑒𝑟𝑔𝑒𝑅𝑒𝑠𝑢𝑙𝑡𝑣, 𝑂𝑣)

Parallel Edge Addition. At the heart of Graspan-G is a GPU-based algorithm for parallel edge

addition. Briefly, under the sparse bit vector data structure, Graspan-G assigns to each warp the

task of merging multiple bit vectors, which can be efficiently implemented via the bit-wise union.

Label matching is done before parallel merging, while duplicate checking is enabled by the union

operation.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Systemizing Interprocedural Static Analysis of Large-Scale Systems Code with Graspan 1:21

Algorithm 4 describes the GPU version of the EP-centric computation. Graspan-G loads two

partitions into GPU’s memory and merges them into a single partition with combined edges lists

(Lines 1 - 2), similarly to Algorithm 3. For each vertex, we create the “old” (𝑂𝑣) and “delta” (𝐷𝑣)

vectors. The “old” vector is set empty while the “delta”is initialized to be the original edge list

(Lines 4 and 5). Next, we assign each vertex a virtual warp. During the processing of each vertex 𝑣 ,

a temporary bit vector𝑚𝑒𝑟𝑔𝑒𝑅𝑒𝑠𝑢𝑙𝑡 𝑣 is first instantiated to maintain the newly generated edges

(Line 8). We induce edges in two steps, where the first step attempts to merge the old vector 𝑂𝑣
with the delta vectors 𝐷 of other vertices (Lines 10 - 13), and the second step merges the delta

vector 𝐷𝑣 with both the old and delta vectors 𝑂 ∪ 𝐷 of other vertices (Lines 15 - 18).

In each step, we apply all grammar rules for each vertex. For example, given a vertex 𝑣 and a

rule C ::= A B, we traverse the set of A-neighbors of 𝑣 (Line 10). The traversal performs decoding

the bit vector representing the outgoing edge list. For each A-neighbor vertex, say𝑤 , a bit-wise

union is performed by a warp over the bit vector containing all its B-neighbors (i.e., 𝐷𝑤 .𝐵) and the

temporary bit vector (i.e., mergeResultv .𝐶) that stores the newly generated C-neighbors of 𝑣 (Line

13). Similarly, the bit-wise union operation is also applied in the second step to generate new edges

in parallel (Line 18). After the edge induction, both 𝑂𝑣 and 𝐷𝑣 are updated for the next iteration.

𝑂𝑣 and 𝐷𝑣 are unioned to become the new 𝑂𝑣 for the next iteration (Line 21). We replace 𝐷𝑣 with

the newly generated bit vector mergeResult𝑣 , excluding the old vector 𝑂𝑣 (Line 22).

Note that a warp is in charge of the bit-wise union operation over two bit vectors. Due to the

uniform computation logic and the special data layout designed for sequential accesses, Graspan-G

achieves both low thread divergence and high memory throughput. Moreover, the bit-wise diff

operation can be implemented efficiently based on the bit-wise union and bit-wise negation:

parallel_bitwise_diff (𝑎[𝑖], 𝑏 [𝑖]) = parallel_bitwise_union(𝑎[𝑖], parallel_bitwise_neg(𝑏 [𝑖])).

5.5 Repartitioning
If the size of a partition exceeds a threshold (e.g., a parameter), repartitioning occurs. It is easy for

Graspan to repartition an oversized partition since the edge lists are sorted. Graspan breaks the

original vertex interval into two small intervals, and edges are automatically restructured. The goal

is to have the two small vertex intervals to have similar numbers of edges, so that the resulting

partitions have similar sizes. The VIT needs to be updated with the new interval information.

Repartitioning can also be triggered in the middle of a superstep if too many edges are added in

the superstep and the size of the loaded partitions is close to the memory size.

5.6 Postprocessing
Graspan provides an API for the user to iterate over edges with a certain label. For example, for the

pointer analysis, edges with the OF label indicate a points-to solution, while edges with the MA
and VA label represent aliasing variables. Graspan also provides translation APIs that can be used

to map vertices and edges back to variables and statements in the program.

6 EVALUATION
We have implemented the CPU backend Graspan-C in C++ with approximately 4K lines of code.

Graspan-G is implemented with 1.2K lines of C++ together with around 1K lines of CUDA code,

where the functionalities running on CPUs (e.g., preprocessing, graph reading/writing, and reparti-

tioning) are written in C++ and the CUDA code runs GPU computation.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 Z. Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang, X. Li, C. Wang, and G. Xu

Table 2. Characteristics of subject programs: programs analyzed, their versions, numbers of lines of code,
descriptions, and languages used.

Subject Version #LoC Description Language

Linux 4.4.0-rc5 16M Operating system C/C++

PostgreSQL 8.3.9 700K Database system C/C++

httpd 2.2.18 300K Http web server C/C++

HDFS 2.0.3 546K Distributed file system Java

Hadoop-MapReduce 2.7.5 568K Data processing engine Java

6.1 Experimental Setup

Subject Programs & Analyses. We selected five large-scale software systems, including Linux

kernel
3
, PostgreSQL database, Apache httpd server in C/C++, and Apache HDFS, Apache Hadoop-

MapReduce written in Java as our analysis subjects. This set covers programs of different languages

and domains, demonstrating Graspan’s broad generality. We implemented three context-sensitive

interprocedural analyses: field-insensitive Andersen’s inclusion-based pointer/alias analysis, field-

sensitive pointer/alias analysis, and dataflow analysis to track null-pointer propagation. As the

null-pointer analysis is not useful for Java programs where null pointers are explicitly reported, we

ran it only for C/C++ programs. For field-sensitive alias analysis, we only ran it for Java programs.

In Graspan, full context-sensitivity is achieved by cloning function bodies for every single calling

context [107]. Table 2 shows the detailed characteristics of our programs.

For programs in C/C++, we built our frontend based on LLVM Clang. Our graph generators for

the pointer/alias and dataflow analysis have 1.2K and 800 lines of C++ code, respectively. We first

performed the pointer analysis. The dataflow analysis was designed specifically to track NULL

value propagation. It was built based on the pointer analysis because it needs to query pointer

analysis results when analyzing heap loads and stores. For Java programs, we wrote about 700

lines of Java code to develop a graph generator based on the Soot compiler infrastructure
4
. Our

grammar was adapted from [117, 136] for both field-insensitive and field-sensitive alias analyses.

In the field-insensitive analysis, we treated all fields as the same, whereas in the field-sensitive

analysis we distinguished loads and stores if they are performed on different fields.

We used a pre-computed call graph to perform inlining. For C/C++ programs, their call graphs

are generated by using an inclusion-based context-insensitive flow-insensitive pointer analysis

with support for function pointers (available in LLVM). The Java call graph is generated based on

the Spark context-insensitive points-to analysis [66] available in Soot.

Hardware and Software Environment. Since our goal is to enable developers to use Graspan on

development machines, we ran Graspan on a Dell desktop, with a quad-core 3.6GHZ Intel Xeon

W-2123 CPU, 8GB memory, and a Samsung 860 EVO 1TB SSD, running Ubuntu 16.04 LTS. The

GPUs used on the machine is an Nvidia GeForce GTX 1080Ti with 28 SMs, 3584 CUDA cores in

total, and 11GB memory, supported by the CUDA Toolkit 10.2.

Research Questions. Our evaluation focuses on the understanding of the following four research

questions:

• Q1: Can the analyses we implemented find new bugs in large-scale systems? (§6.2)

• Q2: How does Graspan perform in terms of time and space and how much does the GPU-

version speedup the computation? (§6.3)

3
We focus on the code under x86 architecture.

4
https://sable.github.io/soot/

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://sable.github.io/soot/

Systemizing Interprocedural Static Analysis of Large-Scale Systems Code with Graspan 1:23

Table 3. Checkers implemented, their numbers of bugs reported by the baseline checkers (BL), and new bugs
reported by our Graspan analyses (GR) on top of the BL checkers on the Linux kernel 4.4.0-r5; RE shows
total numbers of bugs reported while FP shows numbers of false positives determined manually; to provide a
reference of how bugs evolve over the last decade, we include an additional section BL(2.6.1) with numbers
of true bugs reported by the same checkers in 2011 on the kernel version 2.6.1 from [89]. UNTest is a new
interprocedural checker we implemented to identify unnecessary NULL tests; ‘+’ means new problems found.

Checker BL(4.4.0) GR(4.4.0) BL(2.6.1)
RE FP RE FP RE

Block 0 0 0 0 43

Null 20 20 +108 23 98

Free 14 14 +4 4 21

Range 1 1 0 0 11

Lock 15 15 +3 3 5

Size 25 23 +11 11 3

UNTest N/A N/A +1127 0 N/A

• Q3: How do Graspan-based analysis implementations compare with other analysis imple-

mentations in terms of development effort and performance? (§6.4)

• Q4: How does Graspan compare with other backend systems when processing analysis

workloads? (§6.5)

Since our analyses have already achieved the highest level of context sensitivity, we did not

compare their precision with that of existing analyses. The main goal of this evaluation is to (1)

demonstrate the usefulness of these interprocedural analyses through the detection of new bugs,

and (2) show the efficiency and scalability of Graspan when performing such expensive analyses

that would be extremely difficult to make scalable otherwise.

6.2 Effectiveness of Interprocedural Analyses
To understand the effectiveness of our interprocedural analyses, we re-implemented the seven

static checkers listed in Table 1 in Clang. We used these existing checkers as the baseline to

understand whether the combination of interprocedural pointer/alias and dataflow analyses are

able to improve them in finding new bugs or reducing false positives (as described in Table 1 in

§1). Note that our interprocedural analyses are not limited to these checkers; they can be used in a

much broader context to find other types of bugs as well (e.g., data races, deadlocks, etc.). We would

also like to evaluate our analyses on commercial static checkers such as Coverity and GrammaTech.

Unfortunately, we could not obtain a license that allows us to publish the comparisons, and hence,

we had to develop these checkers from scratch.

We have added a new interprocedural checker UNTest that aims to find unnecessary, over-

protective NULL tests – tests on pointers that must have non-NULL values – before dereferencing

these pointers. Although these checks are not bugs, they create unnecessary code-level basic

blocks that prevent compiler from performing many optimizations such as common sub-expression

elimination or copy propagation, leading to performance degradation. Hence, these checks should be

removed for compiler to fully optimize the program. To this end, we implemented an interprocedural

Must-Not-NULL dataflow analysis. At each NULL test point, the analysis checks if the pointer

involved must not be NULL.

We manually checked all bug reports from both the baseline checkers and our analyses (except

those reported by UNTest as described shortly) to determine whether a reported bug is a real bug.

Since some of these checkers (such as Block, Range, and Lock) are specifically designed for Linux,

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:24 Z. Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang, X. Li, C. Wang, and G. Xu

void* probe_kthread_data(task_struct *task){
void *data = NULL;
probe_kernel_read(&data);

/*data will be dereferenced
after return.*/

return data;
}

long probe_kernel_read(void *dst){
if(...) {

return -EFAULT;
}
return __probe_kernel_read(dst);

}

#define page_private(page)((page)->private)

bool swap_count_continued(...){
head=vmalloc_to_page(...);
if(page_private(head)!= ...){

...
}

}
page*vmalloc_to_page(...){

page *page = NULL;
if (!pgd_none(*pgd)){

//...
}
return page;

}

(a) NULL deref in kernel/kthread.c (b) NULL deref in mm/swapfile.c

Fig. 7. Two representative bugs in the Linux kernel 4.4.0-rc5 that were missed by the baseline checkers.

Table 3 only reports information w.r.t. the Linux kernel. For checkers that check generic properties

(i.e., Null and UNTest), we have also run them on the two other programs; their results are described

later in this section.

For the first six baseline checkers that found many real bugs in older versions of the kernel (used

by [89] in 2011 to check Linux 2.6.x and by Chou et al. [30] in 2001 to check Linux 2.4.x), they could

find only 2 real bugs in Linux 4.4.0-r5 (with the Size checker). This is not surprising because they
were designed to target very simple bug patterns. Given that many static bug checkers have been

developed in the past decade (including both commercial and open source), it is likely that most of

these simple bugs have been fixed in this (relatively) new version of Linux. For example, the Null
checker detected most of the bugs in [89] and [30]. In this current version, while it reported 20

potential bugs, a manual inspection confirmed that all of them were false positives.

UnnecessaryNULLTests. Weused our interprocedural analyses to identify NULL tests (i.e., if(p))
in which the pointers checked must not be NULL. We have identified a total of 1127 unnecessary

NULL tests in Linux, 149 in PostgreSQL, 32 in httpd. These are over-protective actions in coding,

and may result in performance degradation. Because these warnings are too many to inspect

manually, we took a sample of 100 warnings and found these tests are truly unnecessary. This is

the first time that unnecessary NULL tests in the Linux kernel are identified and reported.

New Bugs Found. Our analyses reported 108 new NULL pointer dereference bugs in Linux, among

which 23 are false positives. All of these 85 new bugs involve complicated value propagation logic

that cannot be detected by intraprocedural checkers. Figure 7 shows two example bugs.

in Figure 7 (a), function probe_kthread_data invokes probe_kthread_read to initialize pointer
data. However, in probe_kthread_read, if a certain condition holds, an error code (-EFAULT) is
returned and the pointer never gets initialized. Function probe_kthread_data then returns data
directly without any check and the pointer gets dereferenced immediately after the function

returns to its caller. In Figure 7 (b), page_private may dereference a NULL pointer since function

vmalloc_to_page may return NULL. This bug was missed by the baseline because the origin of

the NULL value and the statement that dereferences it are in separate functions. These types of

bugs can only be found by interprocedural analyses. In fact, we show these two bugs because they

are relatively simple and easy to understand; most of our bugs involve more than 3 functions and

more complicated logic.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Systemizing Interprocedural Static Analysis of Large-Scale Systems Code with Graspan 1:25

Table 4. Statistics of bugs found by our checkers in Java programs; in parentheses are numbers of false
positives.

Subjects I/O misuse lock misuse socket misuse except. mishandle bugs in total

HDFS 1 (1) 1 (1) 4 (4) 43 (9) 49 (15)

Hadoop-MR 0 (1) 0 0 54 (9) 54 (10)

Table 5. A breakdown of new Linux bugs found by our analyses; in parentheses are numbers of false positives.

Modules NULL pointer derefs Unnecessary NULL tests

arch 0 75

crypto 0 15

init 0 1

kernel 4 (2) 65

mm 3 (0) 84

security 0 78

block 6 (2) 31

fs 19 (3) 84

ipc 0 17

lib 0 39

net 10 (8) 269

sound 15 (5) 83

drivers 25 (3) 286

Total 108 (23) 1127

For PostgreSQL and httpd, we detected 33 and 14 new NULL pointer bugs; our manual validation

did not find any false positives among them.

To further validate the effectiveness of Graspan in bug detection, in addition to the checkers

shown in Table 1 for C/C++ program, we implemented four other bug checkers for Java programs,

targeting typestate-related bugs (i.e., I/O misuse, lock misuse, and socket misuse) [38, 118] and

exception mishandling bugs [143]. In Graspan, we formulated these checkers as finite-state property

verification problems, and implemented each as a context-sensitive dataflow analysis [31]. We ran

these checkers on HDFS and Hadoop-MapReduce to report warnings. We manually inspected all

warnings reported to determine if it is a real bug or a false positive warning. Table 4 demonstrates

the statistics of bugs discovered. For the Java I/O checker, one bug was found in HDFS due to

missing of a close. Two false positives were reported due to lack of support for the try-with-resource
language feature. The socket checker reported 8 warnings in total, of which 4 are real bugs. The

other 4 false positives were reported due to either our lack of path-sensitivity or mis-recognition

of socket initialization. The exception-handler checker, which detects mishandling of exceptions,

successfully identified more than 100 cases where explicitly thrown exceptions never have handlers.

Meanwhile, 25 false warnings were reported because of our lack of path-sensitivity.

Linux Bug Breakdown. Table 5 lists the new bugs and NULL tests in Linux into modules. We

make two observations on this breakdown. First, the code quality of the Linux kernel has been

improved significantly over the past decade. Note that the bugs we found are all complicated bugs

detected by our interprocedural analyses; the baseline checkers could not find any (shallow) bug in

this version of the kernel. Second, consistent with the observations made in both [30] and [89],

drivers is still the directory that contains most (NULL Pointer) bugs. This is not surprising as drivers
is still the largest module in the codebase. On the other hand, drivers is also the module of which

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:26 Z. Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang, X. Li, C. Wang, and G. Xu

developers are most cautious (perhaps due to the findings in [30] and [89]), demonstrated by the

most unnecessary NULL tests it contains.

Table 6. Graspan performance: reported are the numbers of vertices and edges before (IS) and after (PS) being
processed by Graspan, numbers of partitions eventually (#P), numbers of supersteps taken (#SS), and total
running time (T); (a), (b) and (c) report the results for field-insensitive pointer/alias analysis, field-sensitive
pointer/alias analysis, and dataflow analysis, respectively.

(a) Field-Insensitive Pointer/Alias Analysis

Program IS=(E,V) PS=(E,V) Graspan-C Graspan-G
#P #SS T #P #SS T

Linux (249.5M, 52.9M) (1.1B, 52.9M) 12 20 1.1 hrs 14 32 10.9 mins

PostgreSQL (25.0M, 5.2M) (862.2M, 5.2M) 8 9 4.4 hrs 8 10 3.3 mins

httpd (8.2M, 1.7M) (904.3M, 1.7M) 6 9 2.6 hrs 7 10 1.5 mins

HDFS (10.2M, 5.3M) (1.8B, 5.3M) 9 13 9.9 hrs 7 8 55 secs

Hadoop-MR (41.9M, 20.5M) (99.2M, 20.5M) 4 8 6.9 mins 5 6 2.0 mins

(b) Field-Sensitive Pointer/Alias Analysis

Program IS=(E,V) PS=(E,V) Graspan-C Graspan-G
#P #SS T #P #SS T

HDFS (13.5M, 7.2M) (741.8M, 7.2M) 5 7 1.2 hrs 9 6 21.2 mins

Hadoop-MR (10.4M, 6.2M) (297.3M, 6.2M) 4 10 1.0 hrs 7 5 1.8 mins

(c) Dataflow Analysis

Program IS=(E,V) PS=(E,V) Graspan-C Graspan-G
#P #SS T #P #SS T

Linux (69.4M, 63.0M) (137.5M, 63.0M) 10 26 50.9 mins 12 28 3.2 mins

PostgreSQL (34.8M, 29.0M) (56.1M, 29.0M) 4 11 12.7 mins 5 9 2.8 mins

httpd (10.0M, 5.3M) (19.3M, 5.3M) 2 1 60 secs 2 1 14 secs

6.3 Graspan Performance

Overall Performance. Table 6 reports various statistics of Graspan’s executions. Note that there
is a large difference between the initial size and the post-processing size of each graph. For example,

in Linux, the number of edges increases 3-5 times after the computation, while for httpd, the

Graspan graph for pointer analysis increases more than 100 times. The computation time depends

on both program characteristics and analysis type. For example, while the pointer analysis graph

for httpd has a large number of edges added, its dataflow analysis graph does not change as much

and thus Graspan-C finishes the computation quickly in 60 seconds. We found that this is because

our dataflow analysis only tracks NULL values and in httpd the distances over which NULL can

flow are often short.

We have also attempted to run these graphs in memory on the desktop we used and all of them

except the dataflow analysis of httpd ran out of memory. While the initial size of each graph is

relatively small, when edges are added dynamically, the graph soon becomes very big and Graspan

needs to repartition it many times to prevent the computation from running out of memory.

Breakdown. Figure 8 reports the breakdown of Graspan’s running time into preprocessing, com-

putation and I/O (i.e., disk writes/reads). For Graspan-C (Figure 8a), the EP-centric computation

clearly dominates the execution. While Graspan leverages disk support, the I/O cost is generally low

because (1) the optimization is conducted to minimize the number of partition reads/writes; (2) most

disk accesses are sequential accesses. The I/O time in pointer analysis of Linux (Linux-P) takes 5.4%

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Systemizing Interprocedural Static Analysis of Large-Scale Systems Code with Graspan 1:27

of the total time as it needs more supersteps for completion. Preprocessing is generally efficient; the

highest value 4.0% comes from the pointer analysis on Hadoop-MapReduce (Hadoop-P) because
Hadoop-P has a large input graph before computation.

8.1% 8.4% 1.4%
9.6% 2.6%

22.5% 17.3% 15.0%

60.9%
73.6%

78.6%
78.5%

61.4%

67.4%

44.7%

70.0%

31.0%
18.0% 20.0%

11.9%

36.0%

10.0%

38.0%

15.0%

0%

20%

40%

60%

80%

100%

preprocess computation I/O

2.1% 0.1% 0.1% 0.3% 0.0% 1.5% 0.0% 4.0%

92.5% 99.8% 98.4% 96.1% 99.4% 96.7% 98.7% 94.5%

5.4% 0.1% 1.5% 3.6% 0.6% 1.8% 1.2% 1.6%

0%

20%

40%

60%

80%

100%

preprocess computation I/O

(a) Graspan-C

8.1% 8.4% 1.4%
9.6% 2.6%

22.6% 17.3% 15.0%

59.3%

83.4%

71.7%

83.6%

67.9%

63.6%
56.3% 61.5%

32.5%

8.2%

26.9%

6.9%

29.6%
13.9%

26.4% 23.4%

0%

20%

40%

60%

80%

100%

preprocess computation I/O

2.1% 0.1% 0.1% 0.3% 0.0% 1.5% 0.0% 4.0%

92.5% 99.8% 98.4% 96.1% 99.4% 96.7% 98.7% 94.5%

5.4% 0.1% 1.5% 3.6% 0.6% 1.8% 1.2% 1.6%

0%

20%

40%

60%

80%

100%

preprocess computation I/O

(b) Graspan-G

Fig. 8. The breakdown of Graspan’s running time into preprocessing, computation and I/O (i.e., disk read-
s/writes): (a) and (b) report results for Graspan-C and Graspan-G, respectively. P and D represent field-
insensitive pointer/alias analysis and dataflow analysis.

Table 7. A comparison on the performance of Graspan, on-demand pointer analysis (ODA) [153] implemented
in standard ways, as well as SociaLite [63] and Soufflé [56] processing our program graphs in Datalog, and
Doop [20]. P and D represent field-insensitive pointer/alias analysis and dataflow analysis, respectively. OOM
means out of memory.

Analysis Graspan-C Graspan-G Speedup ODA [153] SociaLite [63] Soufflé [56] Doop [20]
Linux-P 68.4 mins 10.9 mins 6.3 OOM OOM OOM -

PostgreSQL-P 265.3 mins 3.3 mins 80.4 > 1 day OOM OOM -

httpd-P 156.0 mins 1.5 mins 104.0 > 1 day > 1 day OOM -

HDFS-P 594.8 mins 55 secs 648.9 - OOM OOM OOM

Hadoop-P 6.9 mins 2.0 mins 3.5 - > 1 day 32 secs OOM

Linux-D 50.9 mins 3.2 mins 15.9 - OOM 2.2 mins -

PostgreSQL-D 12.7 mins 2.8 mins 4.5 - OOM 41 secs -

httpd-D 60 secs 14 secs 4.3 - 4 hrs 11 secs -

Figure 8b demonstrates the performance breakdown of Graspan-G. Although the computation

is still the largest contributor, its percentage decreases compared to that of Graspan-C. This can

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:28 Z. Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang, X. Li, C. Wang, and G. Xu

be easily understood as the computation time is significantly reduced while other parts almost

remain. In fact, the I/O time even slightly increases as bit vectors may consume more space for

sparse graphs. The time spent on preprocessing does not change much. Since the total running

time decreases, the relative percentage of preprocessing becomes higher.

Graspan-C vs. Graspan-G. The Speedup section of Table 7 reports the speedups achieved by

Graspan-G over Graspan-C on each analysis workload. With GPUs enabled, Graspan runs orders

of magnitude faster. For example, for the field-insensitive pointer analysis of HDFS (HDFS-P),
Graspan-G takes less than a minute to add more than a billion new edges; Graspan-C, in contrast,

takes almost 10 hours.

0%

10%

20%

30%

0%

10%

20%

30%

0%

5%

10%

15%

20%

0%

10%

20%

30%

40%

0%

50%

100%

150%

0%

10%

20%

30%

40%

0%

10%

20%

30%

40%

Linux-P

Linux-D

PostgreSQL-P

PostgreSQL-D

httpd-P

httpd-D

Hadoop-P

HDFS-P

0%

20%

40%

60%

Fig. 9. Percentages of added edges across supersteps. P and D represent field-insensitive pointer/alias analysis
and dataflow analysis, respectively. For the dataflow analysis of httpd (httpd-D), only one superstep is needed;
100% edges are added within the first superstep.

Edges Added. Figure 9 depicts the percentages of added edges across supersteps, measured as the

number of added edges divided by the number of edges in each original graph for Graspan-C. In

general, an extremely large number of edges are added within the first 10 supersteps (e.g., more

than 500M for Linux), and as the computation progresses, fewer edges are added.

6.4 Comparisons with Other Analysis Implementations

Data Structure Analysis [65]. To understand whether Graspan-based analyses are more scalable

and efficient than traditional analysis implementations, we wanted to compare our analyses with

existing context-sensitive pointer/alias and dataflow analyses. While we had spent much time

looking for publicly available implementations, we could not find anything available except the data-

structure analysis (DSA) [65] in LLVM itself. DSA (implemented in 2007) is much more complicated

than our pointer/alias analysis implementation — it has more than 10K lines of code while our

pointer/alias analysis (i.e., the graph generation part) only has 1.2K lines of code. According to a

response from the LLVM mailing list [7], DSA was buggy and removed from LLVM since version

3.3. We tried to use LLVM 3.2 but it could not compile any version of the Linux kernel due to lack

of patches.

On-Demand Pointer Analysis [153]. As no other implementations were available, we imple-

mented the context-sensitive version of Zheng and Rugina’s C pointer analysis [153] ourselves.

We took the expression graph generated by our frontend and used a worklist-based algorithm

to compute transitive closures, following closely the original algorithm described in [153]. The

ODA section of Table 7 reports its performance. For all but httpd, ODA either ran out of memory

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Systemizing Interprocedural Static Analysis of Large-Scale Systems Code with Graspan 1:29

or took a very long time (longer than one day) on the same desktop where we ran Graspan. For

example, when processing Linux, it ran out of memory in 13 minutes. When we moved it onto a

server with 32 2.60GHZ Xeon(R) processors and 32GB memory, it took this implementation 3.5

days to analyze Linux and it consumed 29GB out of the 32GB memory. On the contrary, Graspan

finished processing Linux in a few hours with less than 6GB memory on the desktop with a much

less powerful CPU.

Doop [20]. Doop is an analysis framework supporting k-limited context-sensitive pointer analysis

for Java programs. It analyzes a program by translating it into relational data facts and leveraging a

Datalog engine to perform the analysis. We ran a 2-callsite-context-sensitive analysis on HDFS and

Hadoop-MapReduce using Doop. As shown in the last column of Table 7, Doop quickly crashed

due to out-of-memory errors. This confirms with the observation made in the program analysis

community — memory is one of the major bottlenecks for scaling an analysis to large programs [10].

6.5 Comparisons with Other Backend Engines

Datalog. Since Datalog has been used to power static analyses, it is important to understand the

pros/cons of using Graspan v.s. a Datalog engine as the analysis backend. While there are many

Datalog engines available [6, 63, 111, 125], SociaLite [63], LogicBlox [6], and Soufflé [8] are designed

for shared-memory machines while others [111, 125] are distributed engines running on large

clusters. Since a distributed engine is often not a choice for code checking in daily development

tasks, we focused our comparison against shared-memory engines. LogicBlox is a commercial

tool that has been previously used to power the Doop pointer analysis framework [20] for Java.

However, it was the same licensing issue that prevented us from publishing comparison results

with LogicBlox. Hence, this subsection compares Graspan only with SociaLite, an early Datalog

engine developed by Stanford, as well as Soufflé [8], the Datalog engine of choice for program

analysis researchers.

The SociaLite section of Table 7 reports SociaLite’s performance on the same desktop. SociaLite

programs were easy to write — it took us less than 50 LoC to implement either analysis. However,

SociaLite clearly could not scale to graphs that cannot fit into memory. For both pointer/alias and

dataflow analysis, it ran out of memory for Linux and PostgreSQL. For httpd, although SociaLite

processed the graphs successfully, it was much slower than Graspan.

The Soufflé section of Table 7 reports the performance of Soufflé under the same configuration.

Soufflé failed to complete pointer analysis for almost all the subjects. For small analysis workloads

where the program data can fit into memory, it outperforms Graspan. This is reasonable since

Graspan is designed for scaling large-scale analysis workloads. Its out-of-core design inherently

introduces extra costs, e.g., preprocessing, partitioning, and disk I/O.

GraphChi. To understand whether other graph systems can efficiently process the same (program

analysis) workload, we ran GraphChi — a disk-based graph processing system — because GraphChi

is the only available system that supports both out-of-core computation and dynamic edge addition.

GraphChi provides an API add_edge for the developer to add an edge; it maintains a buffer for

newly added edges during computation and uses a threshold to prevent the buffer from growing

aggressively. When the size of the buffer exceeds the threshold, the edge adding thread goes to

sleep and the function always returns false. The thread periodically wakes up and checks whether

the main data processing thread comes to the commit point, at which the edges in the buffer

can be flushed out to disk. GraphChi does not check edge duplicates and thus its computation

would never terminate on our workloads. We added a naïve support that checks, before an edge

is added, whether the same edge exists in the buffer. Note that this support does not solve the

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:30 Z. Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang, X. Li, C. Wang, and G. Xu

entire problem because it only checks the buffer but duplicates may have been flushed to shards.

Checking duplicates in shards would require a re-design of the whole system.

We ran GraphChi on the same desktop to process the Linux dataflow graph. GraphChi ran into

assertion failures in 133 seconds with around 65M edges added. This is primarily because GraphChi

was not designed for the program analysis workload that needs to add an extremely large number

of edges (with many duplicates) dynamically.

Graph Systems on GPUs. We wanted to compare Graspan-G against existing GPU-based graph

processing systems. However, we could not find a reasonable baseline because (1) existing GPU-

based systems (e.g., Medusa [154], TOTEM [42], GunRock [130]) focus on in-memory computation;

they cannot process large program graphs which do not fit into the GPU memory; and (2) these

systems are tailored to processing static graphs and can hardly support the dynamic transitive

closure computation in program analysis workloads.

7 RELATED WORK

Static Bug Finding. Static analysis has been used extensively in the systems community to

detect bugs [1, 10, 16, 17, 21, 24, 32, 33, 36–39, 46, 69, 70, 85, 89, 102, 103, 129, 139] and security

vulnerabilities [23, 25, 55]. Engler et al. [37] use a set of nine checkers to empirically study bugs in

OS kernels. Palix et al. [89] implemented the same checkers using Coccinelle [88]. Commercial static

checkers [2–5] are also available for finding bugs and security problems. Most of these checkers

are based on pattern matching. Despite their commendable bug finding efforts, false positive and

negatives are inherent with these checkers.

Interprocedural analyses such as pointer and dataflow analysis can significantly improve the

effectiveness of the checkers, but their implementations are often not scalable. There exists a body

of work that makes program analysis declarative [20, 132] — analysis designers specify rules in

Datalog and these rules are automatically translated into analysis implementations. However, the

existing Datalog engines perform generic table joining and do not support disk-based computation

on a single machine. While declarative analyses reduce the development effort, they still suffer

from scalability issues. For example, although the pointer analysis from Whaley et al. [132] can

scale to reasonably large Java programs (e.g., using BDD), it only clones pointer variables, not

objects. Furthermore, there is no evidence that they can perform fully context-sensitive analyses

on codebases as large as the Linux kernel on a commodity PC.

Grammar-Guided Reachability. There is a large body of work that can be formulated as

a context-free language (CFL) reachability problem. CFL-recognition was first studied by Yan-

nakakis [140] for Datalog query evaluation. Work by Reps et al. [50, 93, 95–97] proposes to

model realizable paths using a context-free language that treats method calls and returns as

pairs of balanced parentheses. CFL-reachability can be used to formulate a variety of static

analyses, such as polymorphic flow analysis [92], shape analysis [94], points-to and alias anal-

ysis [18, 26, 116, 117, 117, 121, 136, 138, 146, 148, 153], and information flow analysis [72]. The

works in [60, 61, 77] study the connection between CFL-reachability and set-constraints, show the

similarity between the two problems, and provide implementation strategies for problems that

can be formulated in this manner. Kodumal et al. [61] extend set constraints to express analyses

involving one context-free and any number of regular reachability properties. CFL-reachability

has also been investigated in the context of recursive state machines [13], streaming XML [12],

and pushdown languages [14]. Recent work uses CFL-reachability to formulate pointer and alias

analysis [18, 116, 117, 121, 136, 138, 146–148, 153]. and specification inference [18].

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Systemizing Interprocedural Static Analysis of Large-Scale Systems Code with Graspan 1:31

Context-Sensitive Analyses. Generally, there are two dominant approaches to context-sensitive

interprocedural analysis: the summary-based approach and the cloning-based approach [107]. The

summary-based approach constructs a summary (transfer) function for each procedure, and directly

applies the summary to the specific inputs at the call site invoking the function. Wilson et al.
[82, 133] proposes to construct partial transfer functions to represent function summary as input-

output value pairs for each procedure. The output value of a summary function can be directly

exploited when the identical input pattern is encountered again for the same procedure. However,

as a massive number of states need to be maintained, its scalability is still severely limited by the

huge space consumption. Reps et al. proposes the IFDS [96] and IDE [105] dataflow frameworks,

which is a variant of the summary-based approach. They concentrate on a particular subclass of

interprocedural analysis problems, called the interprocedural, finite, distributive, subset problems
(IFDS problems, for short). While these frameworks can be instantiated to solve many analysis

problems, they require the dataflow transfer function to be distributive over the meet operator

(usually set union or intersection). However, most sophisticated analysis problems do not have such

a property, e.g., pointer/alias analysis. Although the summary-based approach is scalable to certain

extent, it suffers from more drawbacks. First, due to the lack of explicit representation of calling

contexts, the summary-based approach fails to provide complete analysis information for each

particular context. To answer the query like “to which memory locations does a pointer variable

point under a particular context?”, it has to recompute the pointer results along the calling context.

Furthermore, it is difficult to precisely model heap effects. The cloning-based approach [34, 132]

provides complete information. However, it requires each procedure to be re-analyzed under each

calling context and hence is hard to scale.

Over the past decade, a body of work has been done to adjust the level of context sensitivity [52,

53, 67, 68, 74, 80, 114, 115, 135, 137, 149], explore different forms of sensitivity [57, 81], or leverage

pre-processing analysis [87, 109, 113], so as to find sweatspots between scalability, generality, and

usefulness. These techniques are largely orthogonal with Graspan, which can use them to perform

selective inlining when generating graphs.

Parallel and Distributed Static Analyses. Researchers have proposed parallel and distributed

static analysis algorithms and tools for increased efficiency and scalability. Mendez-Lojo et al.

[79] propose a parallel points-to analysis based on constraint graph rewriting. A follow-up work

[78] proposes a GPU-based algorithm. Nagaraj and Govindarajan [84] extend the graph-rewriting

formulation and propose a parallel algorithm for the staged flow-sensitive pointer analysis. By

leveraging data sharing and query scheduling, Su et al. [120] develop a parallel CFL-based pointer

analysis to avoid redundant graph traversals. Their follow-up work [119] devises an algorithm for

the heterogeneous CPU-GPU environment. Zhao et al. [150] attempt to parallelize an interprocedu-

ral flow-sensitive points-to analysis in the traditional task-parallel manner. Rodriguez et al. [99]

propose an actor model-based parallel algorithm for dataflow analysis. Albarghouthi et al. [11]

parallelize the demand-driven top-down interprocedural analysis with MapReduce. Garbervetsky

et al. [41] propose a distributed program analysis framework on the basis of actor model where they

implement a call-graph analysis. Blaß and Philippsen [19] describe an approach for parallelizing

interprocedural dataflow analysis efficiently on a GPU. Google uses the distributed static analyses to

analyze their large-scale codebase [104]. However, due to the challenges of performing interproce-

dural analysis on large-scale codebases, only simple (intra-procedural) analyses are applied. INFER

[27] is a tool developed by Facebook based on bi-abduction to check memory safety properties for

C code. For scalability, INFER only supports interprocedural analysis within each compilation unit.

Although these techniques were all designed for scalability, they suffer from several drawbacks.

First, they were tailored for specific analysis algorithms and thus are not generally applicable.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:32 Z. Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang, X. Li, C. Wang, and G. Xu

Second, they all assume that memory is sufficient. However, as pointed out in [10], memory is the

major bottleneck for scaling analysis to large programs. Graspan aims to overcome these challenges,

providing general support for sophisticated analysis algorithms without putting the burden of

memory on analysis developers’ shoulders.

Systems for Static Analyses. A recent line of work attempts to develop Big Data systems for

scaling sophisticated static analysis. BDDBDDB [132] and Doop [20] are the early pioneers that

run sophisticated static analysis on Datalog engines. These Datalog engines (even including a

recent one Soufflé [56]) do not provide out-of-core disk support and they are fundamentally limited

by the size of main memory. None of them were able to scale a fully context-sensitive analysis

to large-scale systems like Linux on the commodity desktop we used. Grapple [158] is a graph

system designed for constraint-based path-sensitive static analysis. Chianina [159] is dedicated to

scaling flow-sensitive analyses. BigSpa [45, 157] supports scalable context-sensitive analyses in a

distributed setting. This work extends our previous work [126] that scales context-free language

(CFL) reachability based analyses to large programs with disk support. With GPUs enabled, our

system achieves much higher efficiency than the original Graspan system [126] that processes

program graphs only with CPUs.

Graph Systems. State-of-the-art graph systems include disk-based systems, shared-memory

systems, distributed systems, and GPU-based systems.

Single-machine graph processing systems [9, 48, 62, 71, 75, 91, 101, 124, 127, 128, 152, 156] have

recently become popular because they enable big data to be processed locally, removing developers’

burden of cluster management and maintenance. A wide set of single-machine systems were

developed, including Ligra [112], Galois [86], GraphChi [62], X-Stream [101], GridGraph [156],

GraphQ [127], MMap [71], FlashGraph [152], TurboGraph [48], Mosaic [75], RStream [128], and so

on. Ligra [112] as a shared-memory system, is suitable for implementing parallel graph traversal

algorithms. For graphs that fit in shared memory, Ligra shows significant performance advantages.

Work from [86] presents the design and implementation of the lightweight Galois infrastructure for

graph analytics. By leveraging specially designed schedulers and data structures, Galois achieves

excellent performance. GraphChi [62] introduces shards and proposes a parallel sliding algorithm to

reduce disk I/O for out-of-core graph processing. To minimize random disk accesses, X-Stream [101]

adopts an edge-centric model via streaming. GridGraph [156] adopts a grid representation for

large-scale graphs by partitioning vertices and edges to 1D chunks and 2D blocks respectively. Work

from [124] employs dynamic shards to reduce disk I/O. FlashGraph [152] implements a semi-external

memory graph system that stores vertices in memory and edge-lists on SSDs. TurboGraph [48]

manages adjacency lists in pages and leverages a cache to reduce disk I/O. Grapple [158], inspired

by Graspan’s design is a disk-based system designed for scalable constraint-based path-sensitive

analysis of large programs.

Pregel [76], as the pioneering work of distributed graph systems, proposes a synchronous

vertex-centric abstraction for large-scale graph processing. Following it, many other distributed

systems [22, 28, 29, 43, 73, 83, 100, 108, 123, 134, 145, 155] have been developed based on the same

graph-parallel abstraction. GraphLab [73] is a distributed framework for performing machine

learning and data mining algorithms on large-scale graphs. As an extension, PowerGraph [43]

considers the structure of power-low graphs, thus achieving efficient graph partitioning and

computation. Cyclops [28] supports synchronously computing over a distributed immutable view,

granting a vertex with read-only access to all its neighboring vertices. Chaos [100] extends the

streaming partitions introduced by X-Stream to multiple machines in a cluster, and enables the

parallel execution of streaming partitions. PowerLyra [29] is a graph system that differentiates

the computation and partitioning on high-degree and low-degree vertices on skewed graphs.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Systemizing Interprocedural Static Analysis of Large-Scale Systems Code with Graspan 1:33

Gemini [155] is a distributed system that adapts Ligra’s hybrid push-pull computation model

to a distributed form for computation-centric processing. CUBE [145] presents a new 3D task

partitioning algorithm to reduce network traffic for certain machine learning and data mining

applications. Built on top of Spark [144], GraphX [44] provides the high-level graph abstraction and

“think like a vertex” interface for graph computation using low-level dataflow operators. Moreover,

KickStarter [123] and Naiad [83] are the graph systems focusing on streaming graphs.

Thanks to the massive parallelism provided by a GPU, utilizing GPUs to accelerate graph

processing has been shown to be a promising direction. Multiple GPU-based graph systems [40,

42, 54, 58, 59, 90, 106, 110, 130, 154] have been developed recently. Medusa [154] is a GPU-based

graph-processing system providing a set of simplified programming interfaces. Since it requires

loading the entire graph into the GPU memory, only small graphs that fit in the device memory

can be processed. TOTEM [42] is a hybrid GPU-CPU system that divides a graph into two parts,

assigned, respectively, to CPU and GPU for processing. CuSha [58] is a framework that supports

the vertex-centric computation model. It exploits concatenated windows (CW) and g-shards graph

representations to accelerate the computation. GunRock [130] adopts a bulk-synchronous and

data-centric abstraction. It finds a sweatspot between performance and expressiveness by coupling

high-performance GPU computing primitives with a high-level programming model. Frog [110] is

a light-weight asynchronous processing framework with a preprocessing/hybrid coloring model. It

employs a graph coloring algorithm to ensure that no adjacent vertices are divided into the same

color-chunk. Vertices within each partition can be updated in parallel without modifying the data in

adjacent vertices. In addition, several out-of-GPU-memory graph processing systems [47, 59, 106]

are proposed to overcome the GPU memory capacity limitation, thus scaling to large-scale graphs.

Note that all of the above graph systems are designed for general-purpose graph applications

mostly focusing on static graphs, while Graspan is a disk-based graph system tailored for dynamic

transitive closure computation with broad applications in program analysis.

8 CONCLUSION
Graspan is the first attempt to turn sophisticated code analysis into scalable Big Data analytics,

opening up a new direction for scaling various sophisticated static program analyses (e.g., symbolic

execution, theorem proving, etc.) to large systems. To offer the performance flexibility, we develop

two backends for Graspan, namelyGraspan-C running on CPUs andGraspan-G onGPUs. Graspan-C

can analyze large-scale systems code on any commodity PC, while, if GPUs are available, Graspan-

G can be readily used to achieve orders of magnitude speedup by harnessing a GPU’s massive

parallelism.

ACKNOWLEDGMENT
This work was partially supported by the National Natural Science Foundation of China (No.

61632015, 62032010 and 61802168), and the Natural Science Foundation of Jiangsu Province (No.

BK20191247). Wensheng Dou was supported by the Frontier Science Project of Chinese Academy of

Sciences (No. QYZDJ-SSW-JSC036). The UCLA authors were supported in part by the US National

Science Foundation under grants CNS-1613023, CNS-1703598, CNS-1763172, CNS-2006437, CNS-

2007737, and CNS-2106838, and the US Office of Naval Research under grants N00014-16-1-2913

and N00014-18-1-2037.

REFERENCES
[1] 2015. The FindBugs Java Static Checker. http://findbugs.sourceforge.net/.

[2] 2016. The Coverity code checker. http://www.coverity.com/.

[3] 2016. The GrammaTech CodeSonar Static Checker.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

http://findbugs.sourceforge.net/

1:34 Z. Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang, X. Li, C. Wang, and G. Xu

[4] 2016. The HP Fortify Static Checker.

[5] 2016. The KlocWork Static Checker.

[6] 2016. The LogicBlox Datalog Engine. http://www.logicblox.com/.

[7] 2016. Personal communication with John Criswell.

[8] 2020. The Soufflé Datalog Engine. https://souffle-lang.github.io/.

[9] Zhiyuan Ai, Mingxing Zhang, Yongwei Wu, Xuehai Qian, Kang Chen, and Weimin Zheng. 2017. Squeezing out All

the Value of Loaded Data: An Out-of-core Graph Processing System with Reduced Disk I/O. In USENIX ATC. 125–137.
[10] Alex Aiken, Suhabe Bugrara, Isil Dillig, Thomas Dillig, Brian Hackett, and Peter Hawkins. 2007. An Overview of the

Saturn Project. In PASTE. 43–48.
[11] AwsAlbarghouthi, Rahul Kumar, Aditya V. Nori, and SriramK. Rajamani. 2012. Parallelizing Top-down Interprocedural

Analyses. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation
(Beijing, China) (PLDI ’12). ACM, 217–228. https://doi.org/10.1145/2254064.2254091

[12] Rajeev Alur. 2007. Marrying Words and Trees. In PODS. 233–242.
[13] Rajeev Alur, Michael Benedikt, Kousha Etessami, Patrice Godefroid, Thomas Reps, and Mihalis Yannakakis. 2005.

Analysis of Recursive State Machines. ACM Trans. Program. Lang. Syst. 27, 4 (2005), 786–818.
[14] Rajeev Alur and P. Madhusudan. 2004. Visibly Pushdown Languages. In STOC. 202–211.
[15] M. D. Atkinson, J.-R. Sack, N. Santoro, and T. Strothotte. 1986. Min-max Heaps and Generalized Priority Queues.

Commun. ACM 29, 10 (1986), 996–1000.

[16] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. 2004. SLAM and static driver verifier: Technology

transfer of formal methods inside microsoft. In IFM. 1–20.

[17] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani. 2001. Automatic Predicate Abstraction of C

Programs. In PLDI. 203–213.
[18] Osbert Bastani, Saswat Anand, and Alex Aiken. 2015. Specification Inference Using Context-Free Language Reacha-

bility. In POPL. 553–566.
[19] Thorsten Blaß and Michael Philippsen. 2019. GPU-Accelerated Fixpoint Algorithms for Faster Compiler Analyses

(CC 2019). Association for Computing Machinery, New York, NY, USA, 122–134.

[20] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specification of Sophisticated Points-to

Analyses. In OOPSLA. 243–262.
[21] Fraser Brown, Andres Notzli, and Dawson Engler. 2016. How to Build Static Checking Systems Using Orders of

Magnitude Less Code. In ASPLOS. 143–157.
[22] Yingyi Bu, Vinayak Borkar, Jianfeng Jia, Michael J. Carey, and Tyson Condie. 2014. Pregelix: Big(Ger) Graph Analytics

on a Dataflow Engine. Proc. VLDB Endow. 8, 2 (Oct. 2014), 161–172.
[23] Suhabe Bugrara and Alex Aiken. 2008. Verifying the Safety of User Pointer Dereferences. In IEEE S&P. 325–338.
[24] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and Automatic Generation of High-

coverage Tests for Complex Systems Programs. In OSDI. 209–224.
[25] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler. 2006. EXE: Automatically

Generating Inputs of Death. In CCS. 322–335.
[26] Cheng Cai, Qirun Zhang, Zhiqiang Zuo, Khanh Nguyen, Guoqing Xu, and Zhendong Su. 2018. Calling-to-Reference

Context Translation via Constraint-Guided CFL-Reachability. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Philadelphia, PA, USA) (PLDI 2018). Association for Computing

Machinery, New York, NY, USA, 196–210. https://doi.org/10.1145/3192366.3192378

[27] Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter Hooimeijer, Martino Luca, Peter O’Hearn,

Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez. 2015. Moving Fast with Software Verification. In NASA
Formal Methods. Cham, 3–11.

[28] Rong Chen, Xin Ding, Peng Wang, Haibo Chen, Binyu Zang, and Haibing Guan. 2014. Computation and Communica-

tion Efficient Graph Processing with Distributed Immutable View. In HPDC. 215–226.
[29] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. PowerLyra: Differentiated Graph Computation and

Partitioning on Skewed Graphs. In EuroSys. 1:1–1:15.
[30] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler. 2001. An Empirical Study of Operating

Systems Errors. In SOSP. 73–88.
[31] Manuvir Das, Sorin Lerner, and Mark Seigle. 2002. ESP: Path-sensitive program verification in polynomial time. In

PLDI. 57–68.
[32] Robert DeLine and Manuel Fähndrich. 2001. Enforcing High-level Protocols in Low-level Software. In PLDI. 59–69.
[33] Nurit Dor, Stephen Adams, Manuvir Das, and Zhe Yang. 2004. Software validation via scalable path-sensitive value

flow analysis. In ISSTA. 12–22.
[34] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. 1994. Context-sensitive Interprocedural Points-to Analysis in

the Presence of Function Pointers. In Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

http://www.logicblox.com/
https://doi.org/10.1145/2254064.2254091
https://doi.org/10.1145/3192366.3192378

Systemizing Interprocedural Static Analysis of Large-Scale Systems Code with Graspan 1:35

Design and Implementation (Orlando, Florida, USA) (PLDI ’94). ACM, New York, NY, USA, 242–256. https://doi.org/

10.1145/178243.178264

[35] Dawson Engler. [n.d.]. Making finite verification of raw C code easier than writing a test case. In RV. Invited talk.

[36] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. 2000. Checking System Rules Using System-specific,

Programmer-written Compiler Extensions. In OSDI. 1–1.
[37] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. 2001. Bugs As Deviant Behavior: A

General Approach to Inferring Errors in Systems Code. In SOSP. 57–72.
[38] Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. 2006. Effective typestate verification in

the presence of aliasing. In ISSTA. 133–144.
[39] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. 1999. A Theory of Type Qualifiers. In PLDI. 192–203.
[40] Zhisong Fu, Michael Personick, and Bryan Thompson. 2014. MapGraph: A High Level API for Fast Development of

High Performance Graph Analytics on GPUs (GRADES’14). Association for Computing Machinery, New York, NY,

USA, 1–6.

[41] Diego Garbervetsky, Edgardo Zoppi, and Benjamin Livshits. 2017. Toward Full Elasticity in Distributed Static Analysis:

The Case of Callgraph Analysis. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering
(Paderborn, Germany) (ESEC/FSE 2017). ACM, New York, NY, USA, 442–453. https://doi.org/10.1145/3106237.3106261

[42] Abdullah Gharaibeh, Elizeu Santos-Neto, Lauro Beltrão Costa, and Matei Ripeanu. 2013. Efficient Large-Scale Graph

Processing on Hybrid CPU and GPU Systems. CoRR abs/1312.3018 (2013). arXiv:1312.3018 http://arxiv.org/abs/1312.

3018

[43] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. 2012. PowerGraph: Distributed

Graph-parallel Computation on Natural Graphs. In OSDI. 17–30.
[44] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin, and Ion Stoica. 2014. GraphX:

Graph Processing in a Distributed Dataflow Framework. In OSDI. 599–613.
[45] Rong Gu, Zhiqiang Zuo, Xi Jiang, Han Yin, Zhaokang Wang, Linzhang Wang, Xuandong Li, and Yihua Huang. 2021.

Towards Efficient Large-Scale Interprocedural Program Static Analysis on Distributed Data-Parallel Computation.

IEEE Trans. Parallel Distrib. Syst. 32, 4 (April 2021), 867–883. https://doi.org/10.1109/TPDS.2020.3036190

[46] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. 2002. A System and Language for Building System-

specific, Static Analyses. In PLDI. 69–82.
[47] Wei Han, Daniel Mawhirter, BoWu, and Matthew Buland. 2017. Graphie: Large-Scale Asynchronous Graph Traversals

on Just a GPU. In 2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT).
233–245. https://doi.org/10.1109/PACT.2017.41

[48] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim, Jinha Kim, and Hwanjo Yu. 2013.

TurboGraph: A Fast Parallel Graph Engine Handling Billion-scale Graphs in a Single PC. In KDD. 77–85.
[49] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. 2011. Accelerating CUDA Graph Algorithms

at MaximumWarp (PPoPP ’11). Association for Computing Machinery, New York, NY, USA, 267–276. https://doi.org/

10.1145/1941553.1941590

[50] Susan Horwitz, Thomas Reps, and Mooly Sagiv. 1995. Demand interprocedural dataflow analysis. In FSE. 104–115.
[51] G. F. Italiano. 1986. Amortized Efficiency of a Path Retrieval Data Structure. Theor. Comput. Sci. 48, 2-3 (1986),

273–281.

[52] Minseok Jeon, Sehun Jeong, and Hakjoo Oh. 2018. Precise and Scalable Points-to Analysis via Data-Driven Context

Tunneling. Proc. ACM Program. Lang. 2, OOPSLA, Article 140 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276510

[53] Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh. 2017. Data-Driven Context-Sensitivity for Points-to

Analysis. Proc. ACM Program. Lang. 1, OOPSLA, Article 100 (Oct. 2017), 28 pages. https://doi.org/10.1145/3133924

[54] Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick, Mattan Erez, and Alex Aiken. 2017. A Distributed

Multi-GPU System for Fast Graph Processing. Proc. VLDB Endow. 11, 3 (Nov. 2017), 297–310.
[55] Rob Johnson and David Wagner. 2004. Finding User/Kernel Pointer Bugs with Type Inference. In USENIX Security.

9–9.

[56] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On Synthesis of Program Analyzers. In Computer
Aided Verification, Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer International Publishing, Cham, 422–430.

[57] George Kastrinis and Yannis Smaragdakis. 2013. Hybrid Context-sensitivity for Points-to Analysis. In PLDI. 423–434.
[58] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. 2014. CuSha: Vertex-Centric Graph Processing on

GPUs (HPDC ’14). Association for Computing Machinery, New York, NY, USA, 239–252.

[59] Min-Soo Kim, Kyuhyeon An, Himchan Park, Hyunseok Seo, and Jinwook Kim. 2016. GTS: A Fast and Scalable Graph

Processing Method Based on Streaming Topology to GPUs (SIGMOD ’16). Association for Computing Machinery,

New York, NY, USA, 447–461.

[60] John Kodumal and Alex Aiken. 2004. The Set Constraint/CFL Reachability Connection in Practice. In PLDI. 207–218.
[61] John Kodumal and Alex Aiken. 2007. Regularly annotated set constraints. In PLDI. 331–341.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/178243.178264
https://doi.org/10.1145/178243.178264
https://doi.org/10.1145/3106237.3106261
https://arxiv.org/abs/1312.3018
http://arxiv.org/abs/1312.3018
http://arxiv.org/abs/1312.3018
https://doi.org/10.1109/TPDS.2020.3036190
https://doi.org/10.1109/PACT.2017.41
https://doi.org/10.1145/1941553.1941590
https://doi.org/10.1145/1941553.1941590
https://doi.org/10.1145/3276510
https://doi.org/10.1145/3133924

1:36 Z. Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang, X. Li, C. Wang, and G. Xu

[62] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-scale Graph Computation on Just a PC. In

OSDI. 31–46.
[63] Monica S. Lam, Stephen Guo, and Jiwon Seo. 2013. SociaLite: Datalog Extensions for Efficient Social Network Analysis.

In ICDE. 278–289.
[64] Butler W. Lampson. 1983. Hints for Computer System Design. In SOSP. 33–48.
[65] Chris Lattner, Andrew Lenharth, and Vikram Adve. 2007. Making context-sensitive points-to analysis with heap

cloning practical for the real world. In PLDI. 278–289.
[66] Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java Points-to Analysis Using SPARK (CC’03). Springer-Verlag,

Berlin, Heidelberg, 153–169.

[67] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018. Precision-guided Context Sensitivity for Pointer

Analysis. Proc. ACM Program. Lang. 2, OOPSLA, Article 141 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276511

[68] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018. Scalability-first Pointer Analysis with Self-tuning

Context-sensitivity. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). ACM, New

York, NY, USA, 129–140. https://doi.org/10.1145/3236024.3236041

[69] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2004. CP-Miner: A Tool for Finding Copy-paste and

Related Bugs in Operating System Code. In OSDI. 20–20.
[70] Zhenmin Li and Yuanyuan Zhou. 2005. PR-Miner: Automatically Extracting Implicit Programming Rules and Detecting

Violations in Large Software Code. In FSE. 306–315.
[71] Zhiyuan Lin, Minsuk Kahng, Kaeser Md. Sabrin, Duen Horng (Polo) Chau, Ho Lee, , and U Kang. 2014. MMap: Fast

Billion-Scale Graph Computation on a PC via Memory Mapping. In BigData. 159–164.
[72] Ying Liu and Ana Milanova. 2008. Static analysis for inference of explicit information flow. In PASTE. 50–56.
[73] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and Joseph M. Hellerstein. 2012.

Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud. Proc. VLDB Endow. 5, 8
(2012), 716–727.

[74] Jingbo Lu and Jingling Xue. 2019. Precision-preserving Yet Fast Object-sensitive Pointer Analysis with Partial Context

Sensitivity. Proc. ACM Program. Lang. 3, OOPSLA, Article 148 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360574

[75] Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woonhak Kang, Mohan Kumar, and Taesoo Kim. 2017. Mosaic:

Processing a Trillion-Edge Graph on a Single Machine. In EuroSys. 527–543.
[76] GrzegorzMalewicz, MatthewH. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, Grzegorz Czajkowski,

and Google Inc. 2010. Pregel: A system for large-scale graph processing. In SIGMOD. 135–146.
[77] David Melski and Thomas Reps. 2000. Interconvertibility of a Class of Set Constraints and Context-Free-Language

Reachability. Theoretical Computer Science 248 (2000), 29–98.
[78] Mario Mendez-Lojo, Martin Burtscher, and Keshav Pingali. 2012. A GPU Implementation of Inclusion-based Points-to

Analysis. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(New Orleans, Louisiana, USA) (PPoPP ’12). ACM, 107–116. https://doi.org/10.1145/2145816.2145831

[79] Mario Méndez-Lojo, Augustine Mathew, and Keshav Pingali. 2010. Parallel Inclusion-based Points-to Analysis. In

Proceedings of the ACM International Conference on Object Oriented Programming Systems Languages and Applications
(Reno/Tahoe, Nevada, USA) (OOPSLA ’10). ACM, 428–443. https://doi.org/10.1145/1869459.1869495

[80] Matthew Might, Yannis Smaragdakis, and David Van Horn. 2010. Resolving and Exploiting the k-CFA Paradox:

Illuminating Functional vs. Object-oriented Program Analysis. In Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation (Toronto, Ontario, Canada) (PLDI ’10). ACM, New York, NY, USA,

305–315. https://doi.org/10.1145/1806596.1806631

[81] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized Object Sensitivity for Points-to Analysis

for Java. ACM Trans. Softw. Eng. Methodol. 14, 1 (Jan. 2005), 1–41. https://doi.org/10.1145/1044834.1044835

[82] Brian R. Murphy andMonica S. Lam. 1999. Program Analysis with Partial Transfer Functions. In Proceedings of the 2000
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based Program Manipulation (Boston, Massachusetts,

USA) (PEPM ’00). ACM, New York, NY, USA, 94–103. https://doi.org/10.1145/328690.328703

[83] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martín Abadi. 2013. Naiad: A

Timely Dataflow System. In SOSP. 439–455.
[84] Vaivaswatha Nagaraj and R. Govindarajan. 2013. Parallel Flow-Sensitive Pointer Analysis by Graph-Rewriting (PACT

’13). IEEE Press, 19–28.

[85] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: Type-safe

Retrofitting of Legacy Software. ACM Trans. Program. Lang. Syst. 27, 3 (2005), 477–526.
[86] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Lightweight Infrastructure for Graph Analytics. In

SOSP. 456–471.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3276511
https://doi.org/10.1145/3236024.3236041
https://doi.org/10.1145/3360574
https://doi.org/10.1145/2145816.2145831
https://doi.org/10.1145/1869459.1869495
https://doi.org/10.1145/1806596.1806631
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/328690.328703

Systemizing Interprocedural Static Analysis of Large-Scale Systems Code with Graspan 1:37

[87] Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. 2014. Selective Context-Sensitivity

Guided by Impact Pre-Analysis (PLDI ’14). Association for Computing Machinery, New York, NY, USA, 475–484.

[88] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller. 2008. Documenting and Automating Collateral

Evolutions in Linux Device Drivers. In EuroSys. 247–260.
[89] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia Lawall, and Gilles Muller. 2011. Faults in Linux:

Ten Years Later. In ASPLOS. 305–318.
[90] Y. Pan, Y. Wang, Y. Wu, C. Yang, and J. D. Owens. 2017. Multi-GPU Graph Analytics. In 2017 IEEE International

Parallel and Distributed Processing Symposium (IPDPS). 479–490.
[91] Roger Pearce, Maya Gokhale, and Nancy M Amato. 2010. Multithreaded asynchronous graph traversal for in-memory

and semi-external memory. In SC. 1–11.
[92] J. Rehof and M. Fähndrich. 2001. Type-Based Flow Analysis: From Polymorphic Subtyping to CFL-Reachability. In

POPL. 54–66.
[93] Thomas Reps. 1994. Solving demand versions of interprocedural analysis problems. In CC. 389–403.
[94] Tom Reps. 1995. Shape analysis as a generalized path problem. In PEPM. 1–11.

[95] Thomas Reps. 1998. Program Analysis via Graph Reachability. Information and Software Technology 40, 11-12 (1998),

701–726.

[96] T. Reps, S. Horwitz, and M. Sagiv. 1995. Precise Interprocedural Dataflow Analysis Via Graph Reachability. In POPL.
49–61.

[97] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. 1994. Speeding up slicing. In FSE. 11–20.
[98] Liam Roditty and Uri Zwick. 2004. A Fully Dynamic Reachability Algorithm for Directed Graphs with an Almost

Linear Update Time. In STOC. 184–191.
[99] Jonathan Rodriguez and Ondřej Lhoták. 2011. Actor-based Parallel Dataflow Analysis. In Proceedings of the 20th

International Conference on Compiler Construction: Part of the Joint European Conferences on Theory and Practice of
Software (Germany) (CC’11/ETAPS’11). 179–197.

[100] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel. 2015. Chaos: Scale-out Graph

Processing from Secondary Storage. In SOSP. 410–424.
[101] Amitabha Roy, IvoMihailovic, andWilly Zwaenepoel. 2013. X-Stream: Edge-centric Graph Processing Using Streaming

Partitions. In SOSP. 472–488.
[102] Cindy Rubio-González, Haryadi S. Gunawi, Ben Liblit, Remzi H. Arpaci-Dusseau, and Andrea C. Arpaci-Dusseau.

2009. Error Propagation Analysis for File Systems. In PLDI (Dublin, Ireland). 270–280.
[103] Cindy Rubio-González and Ben Liblit. 2011. Defective Error/Pointer Interactions in the Linux Kernel. In ISSTA.

111–121.

[104] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jaspan. 2018. Lessons from Building

Static Analysis Tools at Google. Commun. ACM 61, 4 (March 2018), 58–66. https://doi.org/10.1145/3188720

[105] Mooly Sagiv, Thomas Reps, and Susan Horwitz. 1996. Precise interprocedural dataflow analysis with applications to

constant propagation. Theoretical Computer Science 167, 1-2 (1996), 131–170.
[106] Dipanjan Sengupta, Shuaiwen Leon Song, Kapil Agarwal, and Karsten Schwan. 2015. GraphReduce: Processing

Large-Scale Graphs on Accelerator-Based Systems. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Austin, Texas) (SC ’15). Association for Computing Machinery, New

York, NY, USA, Article 28, 12 pages. https://doi.org/10.1145/2807591.2807655

[107] M. Sharir and A. Pnueli. 1981. Two Approaches to Interprocedural Data Flow Analysis. In Program Flow Analysis:
Theory and Applications, S. Muchnick and N. Jones (Eds.). Prentice Hall, 189–234.

[108] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and Feifei Li. 2016. Fast and Concurrent RDF Queries with

RDMA-Based Distributed Graph Exploration. In USENIX ATC. 317–332.
[109] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang. 2018. Pinpoint: Fast and Precise

Sparse Value Flow Analysis for Million Lines of Code. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Philadelphia, PA, USA) (PLDI 2018). ACM, 693–706. https:

//doi.org/10.1145/3192366.3192418

[110] X. Shi, X. Luo, J. Liang, P. Zhao, S. Di, B. He, and H. Jin. 2018. Frog: Asynchronous Graph Processing on GPU with

Hybrid Coloring Model. IEEE Transactions on Knowledge and Data Engineering 30, 1 (2018), 29–42.

[111] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie, and Carlo Zaniolo. 2016. Big Data

Analytics with Datalog Queries on Spark. In SIGMOD. 1135–1149.
[112] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Processing Framework for Shared Memory. In

PPoPP. 135–146.
[113] Yannis Smaragdakis, George Balatsouras, and George Kastrinis. 2013. Set-based Pre-processing for Points-to Analysis.

In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages
& Applications (Indianapolis, Indiana, USA) (OOPSLA ’13). ACM, New York, NY, USA, 253–270. https://doi.org/10.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3188720
https://doi.org/10.1145/2807591.2807655
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/2509136.2509524
https://doi.org/10.1145/2509136.2509524

1:38 Z. Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang, X. Li, C. Wang, and G. Xu

1145/2509136.2509524

[114] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick Your Contexts Well: Understanding Object-

sensitivity. In POPL. 17–30.
[115] Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014. Introspective Analysis: Context-sensitivity,

Across the Board. In PLDI. 485–495.
[116] Manu Sridharan and Rastislav Bodik. 2006. Refinement-Based Context-Sensitive Points-To Analysis for Java. In PLDI.

387–400.

[117] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodik. 2005. Demand-driven points-to analysis for Java. In

OOPSLA. 59–76.
[118] R E Strom and S Yemini. 1986. Typestate: A Programming Language Concept for Enhancing Software Reliability.

IEEE Trans. Softw. Eng. 12, 1 (Jan. 1986), 157–171. https://doi.org/10.1109/TSE.1986.6312929

[119] Yu Su, Ding Ye, and Jingling Xue. 2013. Accelerating inclusion-based pointer analysis on heterogeneous CPU-GPU

systems. In 20th Annual International Conference on High Performance Computing, HiPC 2013, Bengaluru (Bangalore),
Karnataka, India, December 18-21, 2013. 149–158. https://doi.org/10.1109/HiPC.2013.6799110

[120] Yu Su, Ding Ye, and Jingling Xue. 2014. Parallel Pointer Analysis with CFL-Reachability. In 43rd International
Conference on Parallel Processing, ICPP 2014, Minneapolis, MN, USA, September 9-12, 2014. 451–460. https://doi.org/10.

1109/ICPP.2014.54

[121] Hao Tang, Xiaoyin Wang, Lingming Zhang, Bing Xie, Lu Zhang, and Hong Mei. 2015. Summary-Based Context-

Sensitive Data-Dependence Analysis in Presence of Callbacks. In POPL. 83–95.
[122] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2016. Synergistic Analysis of Evolving Graphs. ACM Trans. Archit. Code

Optim. 13, 4, Article 32 (2016), 32:1–32:27 pages.
[123] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. KickStarter: Fast and Accurate Computations on Streaming Graphs

via Trimmed Approximations. In ASPLOS.
[124] Keval Vora, Guoqing Xu, and Rajiv Gupta. 2016. Load the Edges You Need: A Generic I/O Optimization for Disk-based

Graph Processing. In USENIX ATC. 507–522.
[125] Jingjing Wang, Magdalena Balazinska, and Daniel Halperin. 2015. Asynchronous and Fault-Tolerant Recursive

Datalog Evaluation in Shared-Nothing Engines. PVLDB 8, 12 (2015), 1542–1553.

[126] Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and Ardalan Amiri Sani. [n.d.]. Graspan: A Single-machine

Disk-based Graph System for Interprocedural Static Analyses of Large-scale Systems Code. In Proceedings of the
Twenty-Second International Conference on Architectural Support for Programming Languages and Operating Systems
(Xi’an, China) (ASPLOS ’17). 389–404. https://doi.org/10.1145/3037697.3037744

[127] Kai Wang, Guoqing Xu, Zhendong Su, and Yu David Liu. 2015. GraphQ: Graph Query Processing with Abstraction

Refinement—Programmable and Budget-Aware Analytical Queries over Very Large Graphs on a Single PC. In USENIX
ATC. 387–401.

[128] Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang Nguyen, and Guoqing Harry Xu. 2018. RStream: Marrying

Relational Algebra with Streaming for Efficient Graph Mining on A Single Machine. In OSDI’18. USENIX Association,

Carlsbad, CA, 763–782.

[129] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama. 2013. Towards Optimization-safe

Systems: Analyzing the Impact of Undefined Behavior. In SOSP. 260–275.
[130] YangzihaoWang, Yuechao Pan, AndrewDavidson, YuduoWu, Carl Yang, LeyuanWang,MuhammadOsama, Chenshan

Yuan, Weitang Liu, Andy T. Riffel, and John D. Owens. 2017. Gunrock: GPU Graph Analytics. ACM Trans. Parallel
Comput. 4, 1, Article 3 (Aug. 2017), 49 pages.

[131] Cathrin Weiss, Cindy Rubio-González, and Ben Liblit. 2015. Database-backed Program Analysis for Scalable Error

Propagation. In ICSE. 586–597.
[132] John Whaley and Monica Lam. 2004. Cloning-based context-sensitive pointer alias analysis using binary decision

diagrams. In PLDI. 131–144.
[133] Robert P. Wilson and Monica S. Lam. 1995. Efficient Context-sensitive Pointer Analysis for C Programs. In Proceedings

of the ACM SIGPLAN 1995 Conference on Programming Language Design and Implementation (La Jolla, California,

USA) (PLDI ’95). ACM, New York, NY, USA, 1–12. https://doi.org/10.1145/207110.207111

[134] Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao, Youshan Miao, Lan Wei, Haoxiang Lin, Yafei Dai, and Lidong Zhou.

2015. GraM: Scaling Graph Computation to the Trillions. In SoCC. 408–421.
[135] Guoqing Xu and Atanas Rountev. 2008. Merging equivalent contexts for scalable heap-cloning-based context-sensitive

points-to analysis. In ISSTA. to appear.

[136] Guoqing Xu, Atanas Rountev, and Manu Sridharan. 2009. Scaling CFL-reachability-based points-to analysis using

context-sensitive must-not-alias analysis. In ECOOP. 98–122.
[137] Guoqing Xu, Dacong Yan, and Atanas Rountev. 2012. Static Detection of Loop-Invariant Data Structures. In ECOOP

2012 – Object-Oriented Programming, James Noble (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 738–763.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/2509136.2509524
https://doi.org/10.1145/2509136.2509524
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1109/HiPC.2013.6799110
https://doi.org/10.1109/ICPP.2014.54
https://doi.org/10.1109/ICPP.2014.54
https://doi.org/10.1145/3037697.3037744
https://doi.org/10.1145/207110.207111

Systemizing Interprocedural Static Analysis of Large-Scale Systems Code with Graspan 1:39

[138] Dacong Yan, Guoqing Xu, and Atanas Rountev. 2011. Demand-driven Context-sensitive Alias Analysis for Java. In

ISSTA. 155–165.
[139] Junfeng Yang, Can Sar, and Dawson Engler. 2006. EXPLODE: A Lightweight, General System for Finding Serious

Storage System Errors. In OSDI. 10–10.
[140] Mihalis Yannakakis. [n.d.]. Graph-theoretic Methods in Database Theory. In Proceedings of the Ninth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems (PODS ’90).
[141] Daniel M. Yellin. 1993. Speeding Up Dynamic Transitive Closure for Bounded Degree Graphs. Acta Inf. 30, 4 (1993),

369–384.

[142] S. Yong, S. Horwitz, and T. Reps. 1999. Pointer Analysis for Programs with Structures and Casting. In PLDI. 91–103.
[143] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle Zhang, Pranay U. Jain, and Michael

Stumm. 2014. Simple Testing Can Prevent Most Critical Failures: An Analysis of Production Failures in Distributed

Data-Intensive Systems. In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14).
USENIX Association, Broomfield, CO, 249–265. https://www.usenix.org/conference/osdi14/technical-sessions/

presentation/yuan

[144] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,

Scott Shenker, and Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for in-Memory

Cluster Computing (NSDI’12). USENIX Association, USA, 2.

[145] Mingxing Zhang, Yongwei Wu, Kang Chen, Xuehai Qian, Xue Li, and Weimin Zheng. 2016. Exploring the Hidden

Dimension in Graph Processing. In OSDI. 285–300.
[146] Qirun Zhang, Michael R. Lyu, Hao Yuan, and Zhendong Su. 2013. Fast Algorithms for Dyck-CFL-reachability with

Applications to Alias Analysis. In PLDI. 435–446.
[147] Qirun Zhang and Zhendong Su. 2017. Context-Sensitive Data Dependence Analysis via Linear Conjunctive Language

Reachability. In POPL. 344–358.
[148] Qirun Zhang, Xiao Xiao, Charles Zhang, Hao Yuan, and Zhendong Su. 2014. Efficient Subcubic Alias Analysis for C.

In OOPSLA. 829–845.
[149] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. 2014. On Abstraction Refinement for

Program Analyses in Datalog. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Edinburgh, United Kingdom) (PLDI ’14). ACM, New York, NY, USA, 239–248. https:

//doi.org/10.1145/2594291.2594327

[150] Jisheng Zhao, Michael G. Burke, and Vivek Sarkar. 2018. Parallel Sparse Flow-Sensitive Points-to Analysis (CC 2018).
Association for Computing Machinery, New York, NY, USA, 59–70.

[151] Yue Zhao, Guoyang Chen, Chunhua Liao, and Xipeng Shen. 2016. Towards Ontology-Based Program Analysis.

In 30th European Conference on Object-Oriented Programming (ECOOP 2016) (Leibniz International Proceedings in
Informatics (LIPIcs), Vol. 56), Shriram Krishnamurthi and Benjamin S. Lerner (Eds.). Dagstuhl, Germany, 26:1–26:25.

https://doi.org/10.4230/LIPIcs.ECOOP.2016.26

[152] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E Priebe, and Alexander S Szalay. 2015. FlashGraph:

processing billion-node graphs on an array of commodity SSDs. In FAST. 45–58.
[153] Xin Zheng and Radu Rugina. 2008. Demand-driven Alias Analysis for C. In POPL. 197–208.
[154] Jianlong Zhong and Bingsheng He. 2014. Medusa: Simplified Graph Processing on GPUs. IEEE Trans. Parallel Distrib.

Syst. 25, 6 (June 2014), 1543–1552. https://doi.org/10.1109/TPDS.2013.111

[155] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini: A Computation-Centric Distributed

Graph Processing System. In OSDI. 301–316.
[156] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large Scale Graph Processing on a Single Machine

Using 2-Level Hierarchical Partitioning. In USENIX ATC. 375–386.
[157] Zhiqiang Zuo, Rong Gu, Xi Jiang, Zhaokang Wang, Yihua Huang, Linzhang Wang, and Xuandong Li. 2019. BigSpa: An

Efficient Interprocedural Static Analysis Engine in the Cloud. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS’19).

[158] Zhiqiang Zuo, John Thorpe, Yifei Wang, Qiuhong Pan, Shenming Lu, Kai Wang, Harry Xu, Linzhang Wang, and

Xuandong Li. 2019. Grapple: A Graph System for Static Finite-State Property Checking of Large-Scale Systems Code.

In Proceedings of the Fourteenth European Conference on Computer Systems (Dresden, Germany) (EuroSys ’19). ACM.

[159] Zhiqiang Zuo, Yiyu Zhang, Qiuhong Pan, Shenming Lu, Yue Li, Linzhang Wang, Xuandong Li, and Guoqing Harry

Xu. 2021. Chianina: An Evolving Graph System for Flow- and Context-Sensitive Analyses of Million Lines of C Code.

In Proceedings of the 42nd ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI
2021). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3453483.3454085

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan
https://doi.org/10.1145/2594291.2594327
https://doi.org/10.1145/2594291.2594327
https://doi.org/10.4230/LIPIcs.ECOOP.2016.26
https://doi.org/10.1109/TPDS.2013.111
https://doi.org/10.1145/3453483.3454085

	Abstract
	1 Introduction
	1.1 Problems
	1.2 Insight
	1.3 Existing Systems
	1.4 Our Contributions
	1.5 Outline

	2 Background
	2.1 Graph Reachability
	2.2 Pointer Analysis
	2.3 Dataflow Analysis

	3 ``Big Data'' Solution
	4 Graspan's Programming Model
	5 Graspan Design and Implementation
	5.1 Preprocessing
	5.2 Scheduling
	5.3 Edge-Pair Centric Computation on CPUs
	5.4 Edge-Pair Centric Computation on GPUs
	5.5 Repartitioning
	5.6 Postprocessing

	6 Evaluation
	6.1 Experimental Setup
	6.2 Effectiveness of Interprocedural Analyses
	6.3 Graspan Performance
	6.4 Comparisons with Other Analysis Implementations
	6.5 Comparisons with Other Backend Engines

	7 Related Work
	8 Conclusion
	References

