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We investigate forcing properties of perfect tree forcings defined by Prikry to answer 
a question of Solovay in the late 1960’s regarding first failures of distributivity. Given 
a strictly increasing sequence of regular cardinals 〈κn : n < ω〉, Prikry defined the 
forcing P of all perfect subtrees of 

∏

n<ω
κn, and proved that for κ = supn<ω κn, 

assuming the necessary cardinal arithmetic, the Boolean completion B of P is (ω, µ)-
distributive for all µ < κ but (ω, κ, δ)-distributivity fails for all δ < κ, implying 
failure of the (ω, κ)-d.l. These hitherto unpublished results are included, setting the 
stage for the following recent results. P satisfies a Sacks-type property, implying 
that B is (ω, ∞, < κ)-distributive. The (h, 2)-d.l. and the (d, ∞, < κ)-d.l. fail in B. 
P(ω)/fin completely embeds into B. Also, B collapses κω to h. We further prove 
that if κ is a limit of countably many measurable cardinals, then B adds a minimal 
degree of constructibility for new ω-sequences. Some of these results generalize to 
cardinals κ with uncountable cofinality.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

An ongoing area of research is to find complete Boolean algebras that witness first failures of distributive 

laws. In the late 1960’s, Solovay asked the following question: For which cardinals κ is there a complete 

Boolean algebra B such that for all μ < κ, the (ω, μ)-distributive law holds in B, while the (ω, κ)-distributive 

law fails (see [12])? In forcing language, Solovay’s question asks for which cardinals κ is there a forcing 

extension in which there is a new ω-sequence of ordinals in κ, while every ω-sequence of ordinals bounded 
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below κ is in the ground model? Whenever such a Boolean algebra exists, it must be the case that μω < κ, 

for all μ < κ. It also must be the case that either κ is regular or else κ has cofinality ω, as shown in [12].

For the case when κ is regular, Solovay’s question was solved independently using different forcings by 

Namba in [12] and Bukovský in [5]. Namba’s forcing is similar to Laver forcing, where above the stem, 

all nodes split with the number of immediate successors having maximum cardinality. Bukovský’s forcing 

consists of perfect trees, where splitting nodes have the maximum cardinality of immediate successors. 

Bukovský’s work was motivated by the following question which Vopěnka asked in 1966: Can one change 

the cofinality of a regular cardinal without collapsing smaller cardinals (see [5])? Prikry solved Vopěnka’s 

question for measurable cardinals in his dissertation [14]. The work of Bukovský and of Namba solved 

Vopěnka’s question for ℵ2, which is now known, due to Jensen’s covering theorem, to be the only possibility 

without assuming large cardinals.

In the late 1960’s, Prikry solved Solovay’s question for the case when κ has cofinality ω and μω < κ for 

all μ < κ. His proof was never published, but his result is quoted in [12]. In this article, we provide modified 

versions of Prikry’s original proofs, generalizing them to cardinals of uncountable cofinality whenever this is 

straightforward. The perfect tree forcings constructed by Prikry are interesting in their own right, and his 

original results provided the impetus for the recent results in this article, further investigating their forcing 

properties.

Bukovský and Copláková conducted a comprehensive study of forcing properties of generalized Namba 

forcing and of a family of perfect tree forcings in [6]. They found which distributive laws hold, which cardinals 

are collapsed, and proved under certain assumptions that the forcing extensions are minimal for adding new 

ω-sequences. Their perfect tree forcings, defined in Section 3 of [6], are similar, but not equivalent, to the 

forcings investigated in this paper; some of their techniques are appropriated in later sections. A variant 

of Namba style tree forcings, augmented from Namba forcing analogously to how the perfect tree forcings 

in [6] are augmented from those in [5], was used by Cummings, Foreman and Magidor in [8] to prove that 

a supercompact cardinal can be forced to collapse to ℵ2 so that in this forcing extension, �ωn
holds for 

all positive integers n, and each stationary subset of ℵω+1 ∩ cof(ω) reflects to an α with cofinality ω1. We 

point out that the addition of a new ω-sequence of ordinals has consequences for the co-stationarity of the 

ground model in the Pμ(λ) of the extension model. It follows from more general work in [9] that if the 

ground model V satisfies �μ for all regular cardinals μ in forcing extension V [G] and if V [G] contains a new 

sequence f : ω → κ, then for all cardinals μ < λ in V [G] with μ regular in V [G] and λ ≥ κ, (Pμ(λ))V [G] \ V

is stationary in (Pμ(λ))V [G]. It seems likely that further investigations of variants of Namba and perfect 

tree forcings should lead to interesting results.

A complete Boolean algebra B is said to satisfy the (λ, μ)-distributive law ((λ, μ)-d.l.) if for each collection 

of λ many partitions of unity into at most μ pieces, there is a common refinement. This is equivalent to 

saying that forcing with B \ {0} does not add any new functions from λ into μ. The weaker three-parameter 

distributivity is defined as follows: B satisfies the (λ, μ, < δ)-distributive law ((λ, μ, < δ)-d.l.) if in any forcing 

extension V [G] by B \ {0}, for each function f : λ → μ in V [G], there is a function h : λ → [μ]<δ in the 

ground model V such that f(α) ∈ h(α), for each α < λ. Such a function h may be thought of as a covering of 

f in the ground model. Note that the δ-chain condition implies (λ, μ, < δ)-distributivity, for all λ and κ. We 

shall usually write (λ, μ, δ)-distributivity instead of (λ, μ, < δ+)-distributivity. See [11] for more background 

on distributive laws.

In this paper, given any strictly increasing sequence of regular cardinals 〈κn : n < ω〉, letting κ =

supn<ω κn and assuming that μω < κ for all μ < κ, P is a collection of certain perfect subtrees of 
∏

n<ω κn, 

partially ordered by inclusion, described in Definition 2.7. Let B denote its Boolean completion. We prove 

the following. P has size κω and B has maximal antichains of size κω, but no larger. P satisfies the (ω, κn)-

d.l. for each n < ω but not the (ω, κ)-d.l. In fact, it does not satisfy the (ω, κ, κn)-d.l. for any n < ω. It 

does, however, satisfy the (ω, κ, < κ)-d.l., and in fact it satisfies the (ω, ∞, < κ)-d.l., because it satisfies a 

Sacks-like property. On the other hand, the (d, ∞, < κ)-d.l. fails. We do not know if ∞ can be replaced by 
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a cardinal strictly smaller than κω. However, we do know that the (h, 2)-d.l. fails. (h and d are cardinal 

characteristics of the continuum, and ω1 ≤ h ≤ d ≤ 2ω.) In fact, we have that P (ω)/fin densely embeds 

into the regular open completion of P . By similar reasoning, we show that forcing with P collapses κω

to h. Under the assumption that κ is the limit of measurables, we have that every ω-sequence of ordinals 

in the extension is either in the ground model or it constructs the generic filter. If G is P -generic over 

V and H ∈ V [G] is P (ω)/fin-generic over V , then since P (ω)/fin does not add ω-sequences, G /∈ V [H]. 

Thus, P does not add a minimal degree of constructibility. Some of the results also hold for cardinals κ

of uncountable cofinality, and these are presented in full generality. The article closes with an example of 

what can go wrong when κ has uncountable cofinality, highlighting some open problems and ideas for how 

to approach them.

2. Definitions and basic lemmas

2.1. Basic definitions

Recall that given a separative poset P , the regular open completion B of P is a complete Boolean algebra 

into which P densely embeds (after we remove the zero element 0 from B). Every other such complete 

Boolean algebra is isomorphic to B. A set C ⊆ P is regular open iff

1) (∀p1 ∈ C)(∀p2 ≤ p1) p2 ∈ C, and

2) (∀p1 /∈ C)(∃p2 ≤ p1)(∀p3 ≤ p2) p3 /∈ C.

Topologically, giving P the topology generated by basic open sets of the form {q ∈ P : q ≤ p} for p ∈ P , a 

set C ⊆ P is regular open if and only if it is equal to the interior of its closure in this topology. We define 

B as the collection of regular open subsets of P ordered by inclusion. See [11] for more background on the 

regular open completion of a partial ordering.

Given cardinals λ and μ, we say B (or P ) satisfies the (λ, μ)-distributive law ((λ, μ)-d.l.) if and only 

if whenever {Aα : α < λ} is a collection of size ≤ μ maximal antichains in B, there is a single p ∈ B

below one element of each antichain. This is equivalent to the statement 1B � (λ̌μ̌ ⊆ V̌ ). That is, every 

function from λ to μ in the forcing extension is already in the ground model. Note that B and P force 

the same statements, since P densely embeds into B by the mapping p �→ {q ∈ P : q ≤ p}. The (λ, μ)-

d.l. is equivalent to the statement that whenever p ∈ P and ḟ are such that p � ḟ : λ̌ → κ̌, then there 

are q ≤ p and g : λ → κ satisfying q � ḟ = ǧ. We will also study a distributive law weaker than the 

(λ, μ)-d.l.; namely, the (λ, μ, < δ)-d.l. where δ ≤ μ. This is the statement that for each α < λ there is a set 

Xα ∈ [Aα]<δ such that there is a single non-zero element of B below 
∨

Xα for each α < λ. That is, there 

is some p ∈ P such that (∀α < λ)(∃a ∈ Xα) p ∈ a. The (λ, μ, < δ)-d.l. is equivalent to the statement that 

whenever p ∈ P and ḟ satisfy p � ḟ : λ̌ → μ̌, then there exists q ≤ p and a function g : λ → [μ]<δ satisfying 

q � (∀α < λ̌) ḟ(α) ∈ ǧ(α). Finally, if μ is the smallest cardinal such that every maximal antichain in B has 

size ≤ μ, then the distributive law is unchanged if we replace μ in the second argument with any larger 

cardinal, so in this situation we write ∞ instead of μ.

Convention 2.1. For this entire paper, κ is a singular cardinal and 〈κα : α < cf(κ)〉 is an increasing sequence 

of regular cardinals with limit κ such that cf(κ) < κα < κ for all α.

Note that the cardinality of 
∏

α<cf(κ) κα equals κcf(κ), which is greater than κ. We do not assume that 

κ is a strong limit cardinal. However, we do make the following weaker assumption:
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Assumption 2.2.

(∀μ < κ) μcf(κ) < κ.

In a few places, we will make the special assumption that κ is the limit of measurable cardinals.

Definition 2.3. The set N ⊆ <cf(κ)κ consists of all functions t such that Dom(t) < cf(κ) and (∀α ∈

Dom(t)) t(α) < κα. We call each t ∈ N a node. Given a set T ⊆ N (which is usually a tree, meaning 

that it is closed under initial segments), [T ] is the set of all f ∈ cf(κ)κ such that (∀α < cf(κ)) f � α ∈ T . 

Define X := [N ]. Given t1, t2 ∈ N ∪ X, we write t2 � t1 iff t2 is an extension of t1.

Note that |N | = κ and |X| = κcf(κ). We point out that our set X is commonly written as 
∏

α<cf(κ) κα. In 

order to avoid confusion with cardinal arithmetic and to simplify notation, we shall use X as defined above.

Definition 2.4. Fix a tree T ⊆ N . A branch through T is a maximal element of T ∪ [T ]. Given α < cf(κ), 

T (α) := T ∩ ακ is the set of all nodes of T on level α. Given t ∈ T such that t ∈ T (α), then SuccT (t) is the 

set of all children of t in T : all nodes c � t in T (α +1). The word successor is another word for child (hence, 

successor always means immediate successor). A node t ∈ T is splitting iff |SuccT (t)| > 1. Stem(T ) is the 

unique (if it exists) splitting node of T that is comparable (with respect to extension) to all other elements 

of T . Given t ∈ T , the tree T |t is the subset of T consisting of all nodes of T that are comparable to t.

It is desirable for the trees that we consider to have no dead ends.

Definition 2.5. A tree T ⊆ N is called non-stopping iff it is non-empty and for every t ∈ T , there is some 

f ∈ [T ] satisfying f � t. A tree T ⊆ N is suitable iff T has no branches of length < cf(κ).

Suitable implies non-stopping, and they are equivalent if cf(κ) = ω.

Definition 2.6. A tree T ⊆ N is pre-perfect iff T is non-stopping and for each α < cf(κ) and each node 

t1 ∈ T , there is some t2 � t1 in T such that |SuccT (t2)| ≥ κα. A tree T ⊆ N is perfect iff T is pre-perfect 

and, instead of just being non-stopping, is suitable.

In Section 7, we will construct a pre-perfect T such that [T ] has size κ. That example points out problems 

that arise in straightforward attempts to generalize some of our results to singular cardinals of uncountable 

cofinality. On the other hand, it is not hard to see that if T is perfect, then [T ] has size κcf(κ). We will now 

define the forcing that we will investigate.

Definition 2.7. P is the set of all perfect trees T ⊆ N ordered by inclusion. B is the regular open completion 

of P .

Note that by a density argument, given κ, the choice of the sequence 〈κα : α < cf(κ)〉 having κ as its 

limit does not affect the definition of P .

Definition 2.8. Assume cf(κ) = ω. Fix a perfect tree T ⊆ N . A node t ∈ T is 0-splitting iff it has exactly κ0

children in T and it is the stem of T (so it is unique). Given n < ω, a node t ∈ T is (n + 1)-splitting iff it 

has exactly κn+1 children in T and it’s maximal proper initial segment that is splitting is n-splitting.

Definition 2.9. Assume cf(κ) = ω. Fix a perfect tree T ⊆ N . We say T is in weak splitting normal form iff 

every splitting node of T is n-splitting for some n. We say T is in medium splitting normal form iff it is in 
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weak splitting normal form and for each splitting node t ∈ T , all minimal splitting descendants of t are on 

the same level. We say T is in strong splitting normal form iff it is in medium splitting normal form and for 

each n ∈ ω, there is some ln ∈ ω such that T (ln) is precisely the set of n-splitting nodes of T . We say that 

the set {ln : n ∈ ω} witnesses that T is in strong splitting normal form.

If T is in weak splitting normal form, then for each f ∈ [T ], there is a sequence t0 � t1 � ... of initial 

segments of f such that tn is n-splitting for each n < ω (and these are the only splitting nodes on f). It 

is not hard to prove that any T ∈ P can be extended to some T ′ ≤ T in medium splitting normal form. 

Furthermore, the set of conditions below a condition in medium splitting normal form is isomorphic to P

itself. This implies that whenever ϕ is a sentence in the forcing language that only involves names of the 

form ǎ for some a ∈ V , then either 1 � ϕ or 1 � ¬ϕ. In Proposition 2.30, we will show (in the cf(κ) = ω

case) that each condition can be extended to one in strong splitting normal form.

2.2. Topology

To prove several facts about P for the cf(κ) = ω case, a topological approach will be useful.

Definition 2.10. Given t ∈ N , let Bt ⊆ X be the set of all f ∈ X such that f � t. We give the set X the 

topology induced by the basis {Bt : t ∈ N}.

Observation 2.11. Each Bt ⊆ X for t ∈ N is clopen.

Observation 2.12. A set C ⊆ X is closed iff whenever g ∈ X satisfies (∀α < cf(κ)) |C ∩ Bg�α| �= ∅, then 

g ∈ C.

This next fact explains why we considered the concept of “non-stopping”:

Fact 2.13. A set C ⊆ X is closed iff C = [T ] for some (unique) non-stopping tree T ⊆ N .

Definition 2.14. A set C ⊆ X is strongly closed iff C = [T ] for some (unique) suitable tree T ⊆ N . Hence, if 

cf(κ) = ω, then strongly closed is the same as closed.

Definition 2.15. A set P ⊆ X is perfect iff it is strongly closed and for each f ∈ P , every neighborhood of f

contains κcf(κ) elements of P .

Thus, every non-empty perfect set has size κcf(κ) = |X|. One can check that if B ⊆ X is clopen and 

P ⊆ X is perfect, then B ∩ P is perfect. The next lemma does not hold in the cf(κ) > ω case when we 

replace “perfect tree” with “pre-perfect tree”, because it is possible for a pre-perfect tree to have κ branches 

(see Counterexample 7.2).

Lemma 2.16. If T ⊆ N is a perfect tree, then [T ] is a perfect set.

Proof. Since T is perfect, it is suitable, which by definition implies that [T ] is strongly closed. Next, given 

any t ∈ T , we can argue that Bt ∩ [T ] has size κcf(κ), because we can easily construct an embedding from 

N into T |t, and we have that X has size κcf(κ). �

This next lemma implies the opposite direction: if P ⊆ X is a perfect set, then P = [T ] for some perfect 

tree T ⊆ N .
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Lemma 2.17. Fix P ⊆ X. Suppose P is strongly closed and for each f ∈ P , every neighborhood of f contains 

≥ κ elements of P . Then P = [T ] for some (unique) perfect tree T ⊆ N . Hence, P is a perfect set.

Proof. Since P is strongly closed, fix some (unique) suitable tree T ⊆ N such that P = [T ]. If we can show 

that T is a perfect tree, we will be done by the lemma above.

Suppose that T is not a perfect tree. Let t ∈ T and α < cf(κ) be such that for every extension t′ ∈ T of 

t, |SuccT (t′)| ≤ κα. We see that [(T |t)] has size at most (κα)cf(κ) < κ, which is a contradiction. �

Corollary 2.18. Fix P ⊆ X. The following are equivalent:

1) P is perfect;

2) P is strongly closed and

(∀f ∈ P )(∀α < cf(κ)) |P ∩ Bf�α| = κcf(κ);

3) P is strongly closed and

(∀f ∈ P )(∀α < cf(κ)) |P ∩ Bf�α| ≥ κ;

4) There is a perfect tree T ⊆ N such that P = [T ].

Lemma 2.19. Assume cf(κ) = ω. Let C ⊆ X be strongly closed and assume |C| > κ. Then C has a non-empty 

perfect subset.

Proof. Let T ⊆ N be the (unique) suitable tree such that C = [T ]. We will construct T ′ by successively 

adding elements to it, starting with the empty set. By an argument similar to the one used in the previous 

lemma, there must be a node t∅ ∈ T such that there is a set St∅
⊆ SuccT (t∅) of size κ0 such that (∀c ∈

St∅
) [(T |c)] > κ. Fix t∅ and add it and all its initial segments to T ′. Next, for each c ∈ St∅

, there must be 

a node tc ∈ T such that there is a set Stc
⊆ SuccT (tc) of size κ1 such that (∀d ∈ Stc

) [(T |d)] > κ. For each 

c, fix such a tc and add it and all its initial segments to T ′. Continue like this. At a limit stage α, let t be 

such that it is not in T ′ but all its initial segments are in T ′. Find some extension of t in T that has κα

appropriate children, etc. It is clear from the construction that T ′ ⊆ T will be a perfect tree. �

2.3. Laver-style trees

In this subsection, we assume cf(κ) = ω, as this is the only case to which the proofs apply. The results 

in this subsection are modifications to our setting of work extracted from [12], where Namba used the 

terminology ‘rich’ and ‘poor’ sets.

Definition 2.20. For each n < ω, let Qn ⊆ P denote the set of T ∈ P such that Dom(Stem(T )) ≤ n, and for 

each m ≥ Dom(Stem(T )) and t ∈ T (m), |SuccT (t)| = κm.

Note that if n < m, then Qn ⊆ Qm. The set Q =
⋃

n<ω Qn is the collection of “Laver” trees.

Definition 2.21. Fix a tree T ⊆ N . We say that T has small splitting at level n < ω iff (∀t ∈

T (n)) |SuccT (t)| < κn. A tree is called leafless if it has no maximal nodes. We say that T is n-small

iff there is a sequence of leafless trees 〈Dm ⊆ N : m ≥ n〉 such that [T ] ⊆
⋃

m≥n[Dm] and each Dm has 

small splitting at level m.
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Note that if n > m, then n-small implies m-small. If 〈Dm : m ≥ n〉 witnesses that T is n-small, then 

without loss of generality Dm ⊆ T for all m ≥ n.

Observation 2.22. Let m < ω. Let D be a collection of trees that have small splitting at level m. If |D| < κm, 

then 
⋃

D has small splitting at level m.

Lemma 2.23. Let T ⊆ N be a tree, let t := Stem(T ), and let n := Dom(t). Assume that T is not n-small. 

Then

E := {c ∈ SuccT (t) : (T |c) is not (n + 1)-small}

has size κn.

Proof. Towards a contradiction, suppose that |E| < κn. Let F := SuccT (t) − E. Let Dn ⊆ N be the set 

Dn :=
⋃

{(T |c) : c ∈ E}. Note that

T = [Dn] ∪
⋃

c∈F

[T |c].

We have that Dn has small splitting at level n, because t is the only node in Dn ⊆ T at level n, and 

SuccDn
(t) = E has size < κn.

For each c ∈ F , let 〈Dc
m ⊆ (T |c) : m ≥ n + 1〉 be a sequence of trees that witnesses that (T |c) is 

(n + 1)-small. For each m ≥ n + 1, let

Dm :=
⋃

c∈F

Dc
m.

Then

⋃

c∈F

[T |c] =
⋃

c∈F

⋃

m≥n+1

[Dc
m] =

⋃

m≥n+1

⋃

c∈F

[Dc
m] ⊆

⋃

m≥n+1

[Dm].

Consider any m ≥ n + 1. Since |F | ≤ |SuccT (t)| ≤ κn < κm and each Dc
m has small splitting at level m, 

by the observation above Dm has small splitting at level m. Thus, we have [T ] ⊆
⋃

m≥n[Dm] and each Dm

has small splitting at level m. Hence T is n-small, which is a contradiction. �

Corollary 2.24. Let T ⊆ N be a tree, let t := Stem(T ), and let n := Dom(t). Assume that T is not n-small. 

Then there is a subtree L ⊆ T such that L ∈ Qn.

Proof. We will construct L by induction. For each m ≤ n, let L(m) := {t � m}. Let L(n + 1) be the set 

of c ∈ SuccT (t) such that (T |c) is not (n + 1)-small. By Lemma 2.23, |SuccT (t)| = κn. Let L(n + 2) be 

the set of nodes of the form c ∈ SuccT (u) for u ∈ L(n + 1) such that (T |c) is not (n + 2)-small. Again by 

Lemma 2.23, for each u ∈ L(n + 1), since (T |u) is not (n + 1)-small, |SuccL(u)| = κn+1. Continuing in this 

manner, we obtain L ⊆ T , and it has the property that for each m ≥ n and t ∈ L(m), |SuccL(t)| = κm. 

Thus, L ∈ Qn. �

Lemma 2.25. Fix n < ω and let L ∈ Qn. Then L is not n-small.

Proof. Suppose, towards a contradiction, that there is a sequence of leafless trees 〈Dm ⊆ L : m ≥ n〉 such 

that [L] ⊆
⋃

m≥n[Dm] and each Dm has small splitting at level m. Let tn ∈ L(n) be arbitrary. We will define 

a sequence of nodes 〈tm ∈ L(m) : m ≥ n〉 such that tn � tn+1 � ... and (∀m ≥ n) [Dm] ∩ Btm+1
= ∅. If we 
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let x ∈ [L] be the union of this sequence of tn’s, then since {x} =
⋂

m≥n Btm+1
, we will have x /∈

⋃

m≥n[Dm], 

so [L] �
⋃

m≥n[Dm], which is a contradiction.

Define tn+1 to be any successor of tn in L such that tn+1 /∈ Dn. This is possible because Dn has small 

splitting at level n and t has κn successors in L. We have [Dn] ∩ Btn+1
= ∅. Next, define tn+2 to be 

any successor of tn+1 in L such that tn+2 /∈ Dn+1. Continuing in this manner yields the desired sequence 

〈tm : m ≥ n〉. �

Proposition 2.26. Fix n < ω. If T is a collection of n-small trees and |T | < κn, then 
⋃

T is an n-small 

tree.

Proof. For each T ∈ T , let 〈DT
m : m ≥ n〉 witness that T is n-small. Then 〈

⋃

T ∈T DT
m : m ≥ n〉 witnesses 

that 
⋃

T is n-small. �

Corollary 2.27. Fix n < ω. If {[T ] : T ∈ T } is a partition of X into < κn closed sets, then at least one of 

the trees T ∈ T is not n-small.

Proof. Suppose that each T ∈ T is n-small. Then by Proposition 2.26, 
⋃

T ∈T T = N is n-small. However, 

N cannot be n-small by Lemma 2.25, as N is a member of Qn. �

We do not know if this next lemma has an analogue for the cf(κ) > ω case because of a Bernstein set 

phenomenon.

Lemma 2.28. Assume cf(κ) = ω. Fix n < ω. Suppose Ψ : N → κn. Given h : ω → κn, let Ch ⊆ X be the 

set of all f ∈ X such that

(∀k < ω) Ψ(f � k) = h(k).

Then for some h, there is an L ∈ Qm such that [L] ⊆ Ch, where m satisfies κm > (κn)ω.

Proof. It is straightforward to see that each set Ch is strongly closed (and hence closed). Let m < ω be 

such that (κn)ω < κm. Such an m exists by Assumption 2.2. By Corollary 2.27, one of the sets Ch = [T ]

must be such that T is not m-small. By Corollary 2.24, there is some tree L ⊆ T such that L ∈ Qm. �

2.4. Strong splitting normal form

Observation 2.29. Let T ∈ P . There is an embedding F : N → T , meaning that (∀t1, t2 ∈ N),

• t1 = t2 ⇔ F (t1) = F (t2);

• t1 � t2 ⇔ F (t1) � F (t2);

• t1 ⊥ t2 ⇔ F (t1) ⊥ F (t2).

From this, it follows by induction that if t ∈ N is on level α < cf(κ), then F (t) is on level β for some β ≥ α. 

It follows that given any f ∈ [N ], there is exactly one g ∈ [T ] that has all the nodes F (f � α) for α < cf(κ)

as initial segments.

Given a set S ⊆ N , let I(S) be the set of all initial segments of elements of S. If H ⊆ N is a perfect 

tree, then I(F“(H)) ⊆ T is a perfect tree. If H1, H2 ⊆ N are trees such that [H1] ∩ [H2] = ∅, then 

[I(F“(H1))] ∩ [I(F“(H2))] = ∅.

Proof. To construct the embedding F , first define F (∅) = ∅. Now fix α < cf(κ) and suppose F (u) has been 

defined for all u ∈
⋃

γ<α N(γ). If α is a limit ordinal and t ∈ N(α), define F (t) to be 
⋃

γ<α F (t � γ). If 
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α = β + 1, fix u ∈ N(β). Fix s � F (u) such that s has ≥ κβ successors in T . For each σ < κβ , define 

F (u	σ) to be the σ-th successor of s in T . The rest of the claims in the observation follow easily. �

Proposition 2.30. For each T ∈ P , there is some T ′ ≤ T in strong splitting normal form.

Proof. Fix T ∈ P . Fix an embedding F : N → T . Let Ψ : N → ω be the coloring Ψ(u) := Dom(F (u)). Let 

L ∈ Q be given by Lemma 2.28. Then T ′ := I(F“(L)) is in strong splitting normal form and T ′ ≤ T . �

This section concludes by showing that P is not κcf(κ)-c.c. That is, P has a maximal antichain of size 

κcf(κ). This result is optimal because |P | = κcf(κ).

Proposition 2.31. Let T ∈ P . Then there are κcf(κ) pairwise incompatible extensions of T in P . Hence, P

is not κcf(κ)-c.c.

Proof. Let F : N → T be an embedding guaranteed to exist by the observation above. For each α < cf(κ), 

let {Rn,β : β < κα} be a partition of κα into κα pieces of size κα. Given f ∈ [N ], let Hf ⊆ N be the tree

Hf := {t ∈ N : (∀α ∈ Dom(t)) t(α) ∈ Rα,f(α)}.

Each Hf is a non-empty perfect tree. If f1 �= f2, then [Hf1
] ∩[Hf2

] = ∅. Using the notation of Proposition 2.29, 

for each f ∈ [N ] let

Tf := I(F“(Hf )).

Certainly each [Tf ] is a subset of P , because Tf ⊆ T . By the Proposition 2.29, each Tf is a non-empty 

perfect tree, and f1 �= f2 implies [Tf1
] ∩ [Tf2

] = ∅, which in turn implies Tf1
is incompatible with Tf2

. Thus, 

the conditions Tf ∈ P for f ∈ [N ] are pairwise incompatible. Since [N ] = X has size κω, there are κω of 

these conditions. �

3. (ω, κn) and (ω, ∞, < κ)-distributivity hold in P

This section concentrates on those distributive laws which hold in the complete Boolean algebra B, when 

κ has countable cofinality. Theorem 3.5 was proved by Prikry in the late 1960’s; the first proof in print 

appears in this paper. Here, we reproduce the main ideas of his proof, modifying his original argument 

slightly, in particular, using Lemma 2.28, to simplify the presentation. In Theorem 3.9 we prove that P

satisfies a Sacks-type property. This, in turn, implies that the (ω, ∞, < κ)-d.l. holds in B (Corollary 3.10). 

The reader is reminded that for the entire paper, Convention 2.1 and Assumption 2.2 are assumed.

3.1. (ω, κn)-distributivity

Definition 3.1. A stable tree system is a pair (FN , FP ) of functions FN : N → N and FP : N → P , where 

FN is an embedding, such that

1) For each t ∈ N , Stem(FP (t)) � FN (t);

2) If t1 ∈ N is a proper initial segment of t2 ∈ N , then FP (t1) ⊇ FP (t2), and FN (t1) is a proper initial 

segment of FN (t2);

3) FN maps each level of N to a subset of a level of N (levels are mapped to distinct levels).

If requirement 3) is dropped, (FN , FP ) is called a weak stable tree system.
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Note that 1) can be rewritten as follows: [FP (t)] ⊆ BFN (t) for all t ∈ N . Note from 3) that I(F“(N)) is 

in P .

Lemma 3.2. Assume cf(κ) = ω. If (FN , FP ) is a weak stable tree system, then there is a tree T ≤ N in strong 

splitting normal form and an embedding F : N → T such that (FN ◦ F, FP ◦ F ) is a stable tree system.

Proof. Let Ψ : N → ω be the coloring Ψ(u) := Dom(FN (u)). Let T ∈ Q be given by Lemma 2.28. Let 

F : N → T be an embedding that maps levels to levels. The function F is as desired. �

We point out that Definition 3.1 applies for κ of any cofinality. It can be shown that if (FN , FP ) is a 

stable tree system and γ < cf(κ), then

⋃

{FP (t) : t ∈ N(γ)} ∈ P .

For our purposes, when cf(κ) = ω, the following lemma will be useful.

Lemma 3.3. Assume cf(κ) = ω. Let (FN , FP ) be a stable tree system. Then

T :=
⋂

n<ω

⋃

{FP (t) : t ∈ N(n)}

is in P . Further, given any S ≤ T and n ∈ ω, there is some t ∈ N(n) such that S is compatible with FP (t).

Proof. To prove the first claim, note that

T :=
⋂

n<ω

⋃

{FP (t) : t ∈ N(n)} =
⋃

f∈X

⋂

n<ω

FP (f � n).

This is because if t1, t2 ∈ N are incomparable, then FP (t1) ∩ FP (t2) = ∅. Now temporarily fix f ∈ X. One 

can see that

⋂

n<ω

FP (f � n) = I({FN (f � n) : n < ω}).

Now

⋃

f∈X

⋂

n<ω

FP (f � n) =
⋃

f∈X

I({FN (f � n) : n < ω}) = I(FN “(N)).

Thus, T = I(FN “(N)), so T is in P .

To prove the second claim, fix S ≤ T and n ∈ ω. The stems of the trees FP (t) for t ∈ N(n) are pairwise 

incompatible. Also, the stems of the trees FP (t) for t ∈ N(n) are all in N(l) for some fixed l ∈ ω. Let 

s ∈ S(l) be arbitrary. Then s = Stem(FP (t)) for some fixed t ∈ N(n), and so (S|s) ≤ FP (t), showing that 

S is compatible with FP (t). �

Lemma 3.4. Assume cf(κ) = ω, and let n < ω. Consider any {Tβ ∈ P : β < κn}. Then there is some l < ω, 

a set S ⊆ κn of size κn, and an injection J : S → N(l) such that

(∀β ∈ S) J(β) ∈ Tβ .
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Proof. For each β < κn, let lβ < ω be such that Tβ has ≥ κn nodes on level lβ. Let l < ω and S ⊆ κn be a 

set of size κn such that (∀β ∈ S) lβ = l; these exist because κn is regular and ω < κn. Define the injection 

J : S → N(l) by mapping each element β of S to a node on level l of Tβ which is different from the nodes 

chosen so far. Then J satisfies the lemma. �

Theorem 3.5. Assume cf(κ) = ω. Then P satisfies the (ω, ν)-d.l., for all ν < κ.

Proof. Let B be the complete Boolean algebra associated with P . We have a dense embedding of P into B, 

which maps each condition P ∈ P to the set of all conditions Q ≤ P . Each element of B is a downwards 

closed subset of P . We shall show that for each n < ω, the (ω, κn)-d.l. holds in B.

Let n < ω be fixed. For each m < ω, let 〈am,γ ∈ B : γ < κn〉 be a maximal antichain in B. For each 

m < ω, the set 
⋃

{am,γ : γ < κn} is dense in P . To show that the specified distributive law holds, fix a 

non-zero element b ∈ B. We must find a function h ∈ ωκn such that

b ∧
∧

m<ω

am,h(m) > 0.

It suffices to show that for some Q ∈ b, there is a function h ∈ ωκn such that

(∀m < ω) Q ∈ am,h(m).

Fix any P ∈ b. First, we will construct a stable tree system (FN , FP ) with the property that

(∀m < ω)(∀t ∈ N(m))(∃γ < κn) FP (t) ∈ am,γ .

By Lemma 3.2, it suffices to define a weak stable tree system with this property. To define (FN , FP ), first 

let FN (∅) be ∅ and FP (∅) ≤ P be a member of a0,γ for some γ < κn. Suppose that t ∈ N and both FN (t)

and FP (t) have been defined. Suppose t is on level m of N . Note that SuccN (t) = {t	β : β < κm}. For each 

β < κm, let P〈t,β〉 be an element of am+1,γ for some γ < κn. We may apply Lemma 3.4 to get injections 

ηt : SuccN (t) → κm and Jt : SuccN (t) → N(lt) for some lt < ω such that (∀s ∈ SuccN (t)) Jt(s) ∈ P〈t,ηt(s)〉. 

For each s ∈ Succ(t), define FN (s) := Jt(s) and FP (s) := P〈t,ηt(s)〉|FN (s). Note that each FP (s) is in am+1,γ

for some γ < κα. Also, since the nodes FN (s) � FN (t) for s ∈ Succ(t) are pairwise incompatible, each FN (s)

must be a proper extension of FN (t). This completes the definition of (FN , FP ).

Let Ψ : N → κn be the function such that for each m < ω and t ∈ N(m), Ψ(t) = γ < κn is the 

unique ordinal such that FP (t) ∈ am,γ . Using the notation and result in Lemma 2.28, there is some h ∈ ωκn

such that Ch includes a non-empty perfect set. Fix such an h, and let H ≤ N be a perfect tree such that 

[H] ⊆ Ch. We have

(∀m < ω)(∀t ∈ H(m)) FP (t) ∈ am,h(m).

Let Q ∈ P be the set

Q :=
⋂

m<ω

⋃

{FP (t) : t ∈ H(m)}.

It is immediate that Q ⊆ P , because FP (∅) = P . By Lemma 3.3, Q ∈ P . Thus, Q ≤ P .

Now fix an arbitrary m < ω. We will show that Q ∈ am,h(m), and this will complete the proof. It suffices 

to show that for every γ �= h(m) and every R ∈ am,γ , we have |[Q] ∩ [R]| < κω, as this will imply there is 

no non-empty perfect subset of their intersection.
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Fix such γ and R. We have Q ≤
⋃

{FP (t) : t ∈ H(m)}. In fact,

[Q] ≤
⋃

{[FP (t)] : t ∈ H(m)}.

Hence,

[Q] ∩ [R] ⊆
⋃

{[FP (t)] ∩ [R] : t ∈ H(m)}.

However, fix some FP (t) for t ∈ H(m). The conditions R ∈ am,γ and FP (t) ∈ am,h(m) are incompatible, so 

the closed set [FR(t)] ∩ [R] must have size ≤ κ by Corollary 2.19. We now have that [Q] ∩ [R] is a subset of 

a size < κ union of size ≤ κ sets. Thus, |[Q] ∩ [R]| ≤ κ < κω, implying that the (ω, κn)-d.l. holds in B. �

Question 3.6. For cf(κ) > ω and ν < κ, does P satisfy the (cf(κ), ν)-d.l.?

3.2. (ω, ∞, < κ)-distributivity

The next theorem we will prove will generalize the fact that P satisfies the (ω, κ, < κ)-d.l. (assuming 

cf(κ) = ω). The proof does not work for the cf(κ) > ω case. We could get the proof to work as long as we 

modified the forcing so that fusion holds for sequences of length cf(κ). However, all such modifications we 

have tried cause important earlier theorems in this paper to fail.

Definition 3.7. Assume cf(κ) = ω. A fusion sequence is a sequence of conditions 〈Tn ∈ P : n < ω〉 such that 

T0 ≥ T1 ≥ ... and there exists a sequence of sets 〈Sn ⊆ Tn : n < ω〉 such that for each n < ω, each t ∈ Sn

has ≥ κn successors in Tn, which are in Tm for every m ≥ n, and each successor of t in Tn has an extension 

in Sn+1.

Lemma 3.8. Let 〈Tn ∈ P : n < ω〉 be a fusion sequence and define Tω :=
⋂

n∈ω Tn. Then Tω ∈ P and 

(∀n < ω) Tω ≤ Tn.

Proof. This is a standard argument. �

The following theorem shows that P has a property very similar to the Sacks property.

Theorem 3.9. Assume cf(κ) = ω. Let μ : ω → (κ − {0}) be any non-decreasing function such that 

limn→ω μ(n) = κ. Let λ = κω. Let T ∈ P and ġ be such that T � ġ : ω → λ̌. Then there is some 

Q ≤ T and a function f with domain ω such that for each n ∈ ω, |f(n)| ≤ μ(n) and Q � ġ(ň) ∈ f̌(ň).

Proof. We will define a decreasing (with respect to inclusion) sequence of trees 〈Tn ∈ P : n ∈ ω〉 such 

that some subsequence of this is a fusion sequence. The condition Q will be the intersection of the fusion 

sequence. At the same time, we will define f . For each n ∈ ω we will also define a set Sn ⊆ Tn such that 

every child (in Tn) of every node in Sn will be in each tree Tm for m ≥ n. Each node in Tn will be comparable 

to some node in Sn. Also, we will have |Sn| ≤ μ(n) and each t ∈ Sn will have ≤ μ(n) children in Tn. Each 

element of Sn+1 will properly extend some element of Sn, and each element of Sn will be properly extended 

by some element of Sn+1.

Let S0 consist of a single node t of T that has ≥ κ0 children. Let T ′ ⊆ T be a subtree such that t is 

the stem of T ′ and t has exactly min{κ0, μ(0)} children. For each γ such that t	γ ∈ T ′, let Ut�γ be a 

subtree of T |t	γ such that Ut�γ decides the value of ġ(0̌). Let T0 be the union of these Ut�γ trees. The 

condition T0 allows for only ≤ μ(0) possible values for ġ(0̌). Define f(0) to be the set of these values. We 

have T0 � ġ(0) ∈ f̌(0). Also, |S0| = 1 and the unique node in S0 has ≤ μ(0) children in T0, so |f(0)| ≤ μ(0).
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Now fix n > 0 and suppose we have defined T0, ..., Tn−1. For each child t ∈ Tn−1 of a node in Sn−1, 

pick an extension st ∈ Tn−1 of t that has ≥ κn children in Tn−1. Let Sn be the set of these st nodes. By 

hypothesis, |Sn−1| ≤ μ(n −1) and each node in Sn−1 has ≤ μ(n −1) children in Tn−1. Thus, |Sn| ≤ μ(n −1), 

and so |Sn| ≤ μ(n), because μ(n − 1) ≤ μ(n). Let T ′
n−1 be a subtree of Tn−1 such that each st is in T ′

n−1

and each st has exactly min{κn, μ(n)} children in T ′
n−1. Thus, each st ∈ Sn has ≤ μ(n) children in T ′

n−1. 

For each s	
t γ in T ′

n−1, let Us�
t

γ be a subtree of T ′
n−1|s	

t γ that decides the value of ġ(ň). Let Tn be the 

union of the Us�
t

γ trees. We have Tn ⊆ T ′
n−1 ⊆ Tn−1. The condition Tn allows for only μ(n) possible values 

for ġ(ň). Define f(n) to be the set of these values. We have that |f(n)| ≤ μ(n) and Tn � ġ(0) ∈ f̌(0).

This completes the construction of the sequence of trees and the function f . Defining Q :=
⋂

n∈ω Tn, we 

see that Q is a condition because there is a subsequence of 〈Tn : n ∈ ω〉 that is a fusion sequence satisfying 

the hypothesis of the lemma above. This is true because limn→ω μ(n) = κ. The condition Q forces the 

desired statements. �

Note that for the purpose of using the theorem above, each function μ′ : ω → κ such that limn→ω μ′(n) =

κ everywhere dominates a non-decreasing function μ : ω → κ such that limn→ω μ(n) = κ. Note also that 

nothing would have changed in the proof if instead we had T � ġ : ω → V̌ , because any name for an element 

of V can be represented by a function in V from an antichain (which has size ≤ κω, by Proposition 2.31) in 

P to V .

Corollary 3.10. Assume cf(κ) = ω. Then P satisfies the

(ω, ∞, < κ)-d.l.

4. Failures of distributive laws

This section contains two of the three failures of distributive laws proved in this paper. Here, we assume 

Convention 2.1 and Assumption 2.2, and do not place any restrictions on the cofinality of κ. Theorems 4.1

and 4.6 were proved by Prikry in the late 1960’s (previously unpublished) for the case when cf(κ) = ω, and 

here they are seen to easily generalize to κ of any cofinality.

4.1. Failure of (cf(κ), κ, κn)-distributivity

We point out that when cf(κ) = ω, the (ω, κ, < κ)-d.l. holding in P follows from the fact that P satisfies 

the (ω, ω)-d.l. However, if we replace the third parameter < κ with a fixed cardinal ν < κ, the associated 

distributive law fails. This is true in the cf(κ) > ω case as well.

Theorem 4.1. For each ν < κ, the (cf(κ), κ, ν)-d.l. fails for P .

Proof. It suffices to show that for each α < cf(κ), the (cf(κ), κ, κα)-d.l. fails in P . Note that a maximal 

antichain of P corresponds to a maximal antichain of the regular open completion of P , via mapping P ∈ P

to the regular open set {Q ∈ P : Q ≤ P}. Let α < cf(κ), and let Aβ := {(N |t) : t ∈ N(β)} for each 

β < cf(κ). Each Aβ is a maximal antichain in P . For each β < cf(κ), let Sβ ⊆ Aβ have size ≤ κα. Let 

H ⊆ N be the set of t such that N |t ∈ Sβ for some β. Since each Sβ has size ≤ κα, each level of H has 

size ≤ κα. This implies that H has at most κω
α < κ paths, and so [H] cannot include a non-empty perfect 

subset. By the definitions, we have

H =
⋂

β<cf(κ)

⋃

Sβ .
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Since the left hand side of the equation above cannot include a perfect tree, neither can the right hand side. 

Hence, the collection Aβ, β < cf(κ), witnesses the failure of (cf(κ), κ, κα)-distributivity in P . �

We point out that the previous theorem is stated in Theorem 4 (2) of [13]. The proof there, though, is 

not obviously complete, and for the sake of the literature and of full generality, the proof has been included 

here.

4.2. Failure of (d, ∞, < κ)-distributivity

Definition 4.2. Given functions f, g : cf(κ) → cf(κ), we write f ≤∗ g and say g eventually dominates f iff

{α < cf(κ) : f(α) > g(α)}

is bounded below cf(κ). Let d(cf(κ)) be the smallest size of a family of functions from cf(κ) to cf(κ) such 

that each function from cf(κ) to cf(κ) is eventually dominated by a member of this family.

Definition 4.3. Let D be the collection of all functions f from cf(κ) to cf(κ) such that f is non-decreasing 

and

lim
α→cf(κ)

f(α) = cf(κ).

We call a subset of D a dominated-by family iff given any function g ∈ D, some function in the family is 

eventually dominated by g.

The smallest size of a dominated-by family if d(κ). We will prove the direction that for every dominating 

family, there is a dominated-by family of the same size. The other direction is similar. Let F be a dominating 

family. Without loss of generality, each f ∈ F is strictly increasing. Let F ′ := {f ′ : f ∈ F}, where each f ′

is a non-decreasing function that extends the partial function {(y, x) : (x, y) ∈ f}. Since F is a dominating 

family, it can be shown that F ′ is a dominated-by family.

Definition 4.4. Given f ∈ D, we say that a perfect tree T ∈ P obeys f iff for each α < cf(κ), the α-th level 

of T has ≤ κf(α) nodes in T .

Lemma 4.5. Let λ = d(cf(κ)) and G = {gγ ∈ D : γ < λ} be a dominated-by family. Then there is some 

δ < cf(κ) such that

(∀α < cf(κ))(∃γ ∈ λ) gγ(α) ≤ δ.

Proof. Assume there is no such δ < cf(κ). For each δ < cf(κ), let αδ < cf(κ) be the least ordinal such that

(∀γ < λ) gγ(αδ) > δ.

It must be that δ1 < δ2 implies αδ1
≤ αδ2

. Now, the limit

μ := lim
δ→cf(κ)

αδ

cannot be less than cf(κ). To see why, suppose μ < cf(κ). Consider g0. The function g0 � (μ + 1) must be 

bounded below cf(κ), since cf(κ) is regular. Let δ be such a bound. Since αδ ≤ μ and g is non-decreasing, 

we have g0(αδ) ≤ g(μ) ≤ δ, which contradicts the definition of αδ.
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We have now shown that μ = cf(κ). The partial function αδ �→ δ may not be well-defined. To fix this 

problem, for each α which equals αδ for at least one value of δ, pick the least such δ. Let Δ ⊆ cf(κ) be the 

cofinal set of such δ values picked. This results in a well-defined partial function which is non-decreasing. 

Let f ∈ D be an extension of this partial function. Since G is a dominated-by family, fix some γ such that 

f dominates gγ . Now, let δ ∈ Δ be such that gγ(αδ) ≤ f(αδ). Since f(αδ) = δ, we get that gγ(αδ) ≤ δ, 

which contradicts the definition of αδ. �

Theorem 4.6. The (d(cf(κ)), ∞, < κ)-d.l. fails for P .

Proof. Let λ = d(cf(κ)). Let {fγ ∈ D : γ < λ} be a set which forms a dominated-by family. For each γ < λ, 

let Aγ ⊆ P be a maximal antichain in P with the property that for each T ∈ Aγ , T obeys fγ . Note that 

each Aγ has size ≤ κcf(κ) = |P |.

For each γ < λ, let Bγ ⊆ Aγ be some set of size strictly less than κ. Let u : P → B be the standard 

embedding of P into its completion. We claim that

∧

γ<λ

∨

{u(T ) : T ∈ Bγ} = 0,

which will prove the theorem. To prove this claim, for each γ < λ let

Tγ :=
⋃

Bγ .

The claim will be proved once we show that T̃ :=
⋂

γ<λ Tγ does not include a perfect tree. It suffices to find 

some δ < cf(κ) such that there is a cofinal set of levels of T̃ that each have ≤ κδ nodes.

Since cf(κ) < λ are both regular cardinals, fix a set K ⊆ cf(κ) of size cf(κ) and some δ < cf(κ) such that 

|Bγ | ≤ κδ for each γ ∈ K. Given γ ∈ K, define gγ ∈ D to be the function

gγ(α) := max{fγ(α), δ}.

As |Bγ | ≤ κδ and (∀T ∈ Bγ) T obeys fγ , it follows that Tγ =
⋃

Bγ obeys gγ . Thus, by the definition of T̃ , 

it suffices to find a cofinal set L ⊆ cf(κ) and for each l ∈ L an ordinal γl ∈ K such that gγl
(l) ≤ δ. This, 

however, follows from Lemma 4.5. �

For cf(κ) = ω, assuming the Continuum Hypothesis and that 2κ = κ+, Theorem 4 (4) of [13] states that 

for all ω ≤ λ ≤ κ+, the (ω1, λ, < λ)-d.l. fails in P . Under these assumptions, that theorem of Namba implies 

Theorem 4.6. We have included our proof as it is simpler and the result is more general than that in [13].

5. P(ω)/fin and h

In this section, we show that the Boolean algebra P(ω)/fin completely embeds into B. Similar reasoning 

shows that the forcing P collapses the cardinal κω to the distributivity number h. It will follow that the 

(h, 2)-distributive law fails in B; hence assuming the Continuum Hypothesis, B does not satisfy the (ω1, 2)-

d.l. Similar results were proved by Bukovský and Copláková in Section 5 of [6]. They considered perfect 

trees, where there is a fixed family of countably many regular cardinals and for each cardinal κn in the 

family, their perfect trees must have cofinally many levels where the branching has size κn; similarly for 

their family of Namba forcings.

Recall that the regular open completion of a poset is the collection of regular open subsets of the poset 

ordered by inclusion. For simplicity, we will work with the poset P ′ of conditions in P that are in strong 

splitting formal form. P ′ forms a dense subset of P , so P ′ and P have isomorphic regular open completions. 
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For this section, let B′ denote the regular open completion of P ′ (and B is the regular open completion of 

P ). Recall the following definition:

Definition 5.1. Let S and T be complete Boolean algebras. A function i : S → T is a complete embedding

iff the following are satisfied:

1) (∀s, s′ ∈ S+) s′ ≤ s ⇒ i(s′) ≤ i(s);

2) (∀s1, s2 ∈ S+) s1 ⊥ s2 ⇔ i(s1) ⊥ i(s2);

3) (∀t ∈ T +)(∃s ∈ S+)(∀s′ ∈ S+) s′ ≤ s ⇒ i(s′)||t.

If i : S → T is a complete embedding, then if G is T -generic over V , then there is some H ∈ V [G] that 

is S-generic over V .

Definition 5.2. Given T ∈ P , Split(T ) ⊆ ω is the set of l ∈ ω such that T has a splitting node on level l.

Theorem 5.3. There is a complete embedding of P(ω)/fin into B.

Proof. It suffices to show there is a complete embedding of P (ω)/fin into B′. For each X ∈ [ω]ω, define 

SX ∈ B′ to be SX := {T ∈ P ′ : Split(T ) ⊆∗ X} Note that X =∗ X ′ implies SX = SX′ . Define i : [ω]ω → P ′

to be i(X) := SX . This induces a map from P (ω)/fin to B′. We will show this is a complete embedding.

First, we must establish that each SX is indeed in B′. Temporarily fix X ∈ [ω]ω. We must show that 

SX ⊆ P ′ is a regular open subset of P ′. First, it is clear that SX is closed downwards. Second, consider any 

T1 /∈ SX . By definition, |Split(T1) − X| = ω. By the nature of strong splitting normal form, there is some 

T2 ≤ T1 in P ′ such that Split(T2) = Split(T1) − X. We see that for each T3 ≤ T2 in P ′, T3 /∈ SX . Thus, SX

is a regular open set.

We will now show that i induces a complete embedding. To show 1) of Definition 5.1, suppose Y ⊆∗ X

are in [ω]ω. If T ∈ SY , then Split(T ) ⊆∗ Y , so Split(T ) ⊆∗ X, which means T ∈ SX . Thus, SY ⊆ SX , so 1) 

is established.

To show 2) of the definition, suppose X, Y ∈ [ω]ω but X ∩ Y is finite. Suppose, towards a contradiction, 

that there is some T ∈ SX ∩ SY . Then Split(T ) ⊆∗ X and Split(T ) ⊆∗ Y , so Split(T ) ⊆∗ X ∩ Y , which is 

impossible because Split(T ) is infinite.

To show 3) of the definition, fix T1 ∈ P . Let X := Split(T1). We will show that for each infinite Y ⊆∗ X, 

there is an extension of T1 in SY . Fix an infinite Y ⊆∗ X. By the nature of strong splitting normal form, 

there is some T2 ≤ T1 such that Split(T2) = Y ∩ X. Thus, T2 ∈ SY . This completes the proof. �

Corollary 5.4. Forcing with P adds a selective ultrafilter on ω.

Proof. Forcing with P(ω)/fin adds a selective ultrafilter. �

Definition 5.5. The distributivity number, denoted h, is the smallest ordinal λ such that the (λ, ∞)-d.l. fails 

for P(ω)/fin.

We have that ω1 ≤ h ≤ 2ω. The (h, 2)-d.l. in fact fails for P(ω)/fin. Thus, forcing with P adds a new 

subset of h. It is also well-known (see [3]) that forcing with P(ω)/fin adds a surjection from h to 2ω. Thus, 

forcing with P collapses 2ω to h. We will now see that many more cardinals get collapsed to h.

Definition 5.6. A family H ⊆ [ω]ω is called almost disjoint iff the intersection of any two elements of H is 

finite. A family H ⊆ [ω]ω is called mad (maximally almost disjoint) iff H is almost disjoint and there is no 

almost disjoint family H′ such that H � H′ ⊆ [ω]ω.
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Definition 5.7. A base matrix tree is a collection {Hα : α < h} of mad families Hα ⊆ [ω]ω such that 
⋃

α<h Hα

is dense in [ω]ω with respect to almost inclusion.

Balcar, Pelant and Simon proved in [2] that a base matrix for P(ω)/fin exists, assuming only ZFC. 

The following lemma and theorem use ideas from the proof of Theorem 5.1 in [6], in which Bukovský and 

Copláková prove that their perfect tree forcings, described above, collapses κ+ to h, assuming 2κ = κ+.

Lemma 5.8. There exists a family {Aα ⊆ P : α < h} of maximal antichains such that 
⋃

α<h Aα is dense in 

P .

Proof. Let {Hα ⊆ [ω]ω : α < h} be a base matrix tree. For an infinite A ⊆ ω, let PA := {T ∈ P : Split(T ) ⊆

A}. For an infinite A ⊆ ω, we may easily construct an antichain BA ⊆ PA whose downward closure is dense 

in PA. Now temporarily fix α < h. For distinct A1, A2 ∈ Hα, the elements of BA1
are incompatible with the 

elements of BA2
, because if T1 ∈ BA1

and T2 ∈ BA2
, then Split(T1) ⊆∗ A1 and Split(T2) ⊆∗ A2, so T1 and 

T2 cannot have a common extension because A1 ∩ A2 is finite.

For each α < h, define Aα :=
⋃

{BA : A ∈ Hα}. Temporarily fix α < h. We will show that Aα is 

maximal. Consider any T ∈ P . We will show that some extension of T is compatible with an element of 

Aα. Let T ′ ≤ T be such that Split(T ′) ⊆ A for some fixed A ∈ Ha. If there was no such A, then Split(T )

would witness that Hα is not a mad family. Hence, T ′ ∈ PA. Since the downward closure of BA is dense in 

PA, we have that T ′ (and hence T ) is compatible with some element of BA ⊆ Aα.

We will now show that 
⋃

α<h Aα is dense in P . Fix any T ∈ P . Let A ∈
⋃

α<h Hα be such that 

A ⊆∗ Split(T ). Let T ′ ≤ T be such that Split(T ′) ⊆ A ∩ Split(T ), and let S ∈ BA be such that S ≤ T ′. 

Then S ≤ T , and we are finished. �

Theorem 5.9. The forcing P collapses κω to h.

Proof. We work in the generic extension. Let G be the generic filter. By the previous lemma, let {Aα ⊆ P :

α < h} be a collection of maximal antichains such that 
⋃

α<h Aα is dense in P . For each T ∈
⋃

α<h Aα, let 

FT : κω → P be an injection such that {FT (β) : β < κω} is a maximal antichain below T (which exists by 

Lemma 2.31). Consider the function f : h → κω defined by

f(α) := β ⇔ (∃T ∈ P ) T ∈ Aα ∩ G and FT (β) ∈ G.

This is indeed a function because for each α, there is at most one T in Aα ∩ G, and there is at most one 

β < κω such that FT (β) ∈ G.

To show that f surjects onto κω, fix β < κω. We will find an α < h such that f(α) = β. It suffices to 

show that

{FT (β) : T ∈
⋃

α<h

Aα}

is dense in P . To show this, fix S ∈ P . Since 
⋃

α<h Aα is dense in P , fix some α < h and T ∈ Aα such that 

T ≤ S. We have FT (β) ≤ T , so FT (β) ≤ S and we are done. �

6. Minimality of ω-sequences

For the entire section, we will assume cf(κ) = ω. Sacks forcing was the first forcing shown to add a 

minimal degree of constructibility. In [15], Sacks proved that given a generic filter G for the perfect tree 

forcing on <ω2, each real r : ω → 2 in V [G] which is not in V can be used to reconstruct the generic filter 
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G. A forcing adds a minimal degree of constructibility if whenever Ȧ is a name forced by a condition p to 

be a function from an ordinal to 2, then p � (Ȧ ∈ V̌ or Ġ ∈ V̌ (Ȧ)), where Ġ is the name for the generic 

filter and 1 � V̌ (Ȧ) is the smallest inner model M such that V̌ ⊆ M and Ȧ ∈ M .

One may also ask whether the generic extension is minimal with respect to adding new sequences from ω

to a given cardinal. Abraham [1] and Prikry proved that the perfect tree forcings and the version of Namba 

forcing involving subtrees of <ωω1 thus adding an unbounded function from ω into ω1 are minimal, assuming 

V = L (see Section 6 of [6]). Carlson, Kunen and Miller showed this to be the case assuming Martin’s Axiom 

and the negation of the Continuum Hypothesis in [7]. The question of minimality was investigated generally 

for two models of ZFC M ⊆ N (not necessarily forcing extensions) when N contains a new subset of a 

cardinal regular in M in Section 1 of [6]. In Section 6 of that paper, Bukovský and Copláková proved that 

their families of perfect tree and generalized Namba forcings are minimal with respect to adding new ω-

sequences of ordinals, but do not produce minimal generic extensions, since P(ω)/fin completely embeds 

into their forcings.

Brown and Groszek investigated the question of minimality of forcing extensions was investigated for 

forcing posets consisting of superperfect subtrees of <κκ, where 1) κ is an uncountable regular cardinal, 2) 

splitting along any branch forms a club set of levels, 3) and whenever a node splits, its immediate successors 

are in some κ-complete, nonprincipal normal filter. In [4], they proved that this forcing adds a generic of 

minimal degree if and only if the filter is κ-saturated.

In this section, we show that, assuming that κ is a limit of measurable cardinals, P is minimal with 

respect to ω-sequences, meaning if p � Ȧ : ω → V̌ , then (p � Ȧ ∈ V̌ or Ġ ∈ V̌ (Ȧ)). P does not add a 

minimal degree of constructibility, since P(ω)/fin completely embeds into B, and that intermediate model 

has no new ω-sequences.

The proof that Sacks forcing S is minimal follows once we observe that given an ordinal α, a name Ȧ

such that p � Ȧ ∈ α̌2 − V̌ , and two conditions p1, p2, there are p′
1 ≤ p1 and p′

2 ≤ p2 that decide Ȧ to 

extend incompatible sequences in V . After this observation, given any condition p ∈ S, we can extend p

using fusion to get q ≤ p so that which branch the generic is through q can be recovered by knowing which 

initial segments (in V ) the sequence Ȧ extends. This is because every child of a splitting node in q has been 

tagged with a sequence in V , and no two children of a splitting node are tagged with compatible sequences.

In Sacks forcing S, every node has at most 2 children. In our forcing P (assuming cf(κ) = ω), for each 

n < ω there must be some nodes that have ≥ κn children. To make the proof work for P , we would like 

that whenever n < ω and 〈pγ ∈ P : γ < κn〉 is a sequence of conditions each forcing Ȧ to be in α̌2 − V̌ , 

then there exists a set of pairwise incompatible sequences {sγ ∈ <α2 : γ < κn} and a set of conditions 

{p′
γ ≤ pγ : γ < κn} such that (∀γ < κn) p′

γ � šγ � Ȧ. However, suppose 1 � Ȧ ∈ ω̌12, 2<ω1 = 2ω < κ0, 

and κ0 is a measurable cardinal as witnessed by some normal measure. Then there is a measure one set of 

γ ∈ κ0 such that the sγ are all the same.

Thus, when we shrink a tree to try to assign tags to its nodes, there seems to be the possibility that 

we can shrink it further to cause the resulting tags to give us no information. There is a special case: if 

1 � Ȧ : ω → V̌ and 1 � Ȧ /∈ V̌ , then it is impossible to perform fusion to decide more and more of Ȧ while 

at the same time shrinking to get tags that are identical for each stage of the fusion. The intersection of 

the fusion sequence would be a condition Q such that Q � Ȧ ∈ V̌ , which would be a contradiction. The 

actual proof by contradiction uses a thinning procedure more complicated than ordinary fusion. Our proof 

will make the special assumption that κ is a limit of measurable cardinals to perform the thinning.

When we say “thin the tree T”, it is understood that we mean get a subtree T ′ of T that is still perfect, 

and replace T with T ′. When we say “thin the tree T below t ∈ T”, we mean thin T |t to get some T ′, and 

then replace T by T ′ ∪ {s ∈ T : s is incompatible with t}.

Definition 6.1. Fix a name Ȧ such that 1P � Ȧ : ω → V̌ and 1P � Ȧ /∈ V̌ . For each condition T ∈ P , let 

ψT : T → <ωV be the function which assigns to each node t ∈ T the longest sequence s = ψT (t) such that 
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(T |t) � Ȧ � š. Call a splitting node t ∈ T a red node of T iff the sequences ψT (c) for c ∈ SuccT (t) are all 

the same. Call a splitting node t ∈ T a blue node of T iff the sequences ψT (c) for c ∈ SuccT (t) are pairwise 

incomparable, where we say two sequences are incomparable iff neither is an end extension of the other.

Although ψT and the notions of a red and blue node depend on the name Ȧ, in practice there will be no 

confusion. Note that being blue is preserved when we pass to a stronger condition but being red may not 

be. For the sake of analyzing the minimality of P with respect to ω-sequences, we want to be able to shrink 

any perfect tree T to get some perfect T ′ ≤ T whose splitting nodes are all blue:

Lemma 6.2 (Blue coding). Let T ∈ P , Ȧ, and α ∈ Ord be such that T � (Ȧ : α̌ → V̌ ) and T � Ȧ /∈ V̌ . 

Suppose the following are satisfied:

1) T is in weak splitting normal form.

2) Each splitting node of T is a blue node of T .

Then T � Ġ ∈ V̌ (Ȧ), where Ġ is the generic filter.

Proof. Unlike almost every other proof in this paper, we will work in the extension. Let G be the generic 

filter, g :=
⋂

G, V̌G be the ground model, and ȦG be the interpretation of the name Ȧ. It suffices to prove 

how g can be constructed from ȦG and V̌G. We have that g is a path through T . Let t0 be the stem of 

T . Now g must extend one of the children of t0 in T . Because t0 is blue in T , this child c can be defined 

as the unique c ∈ SuccT (t0) satisfying ψT (c) � ȦG. Call this child c0. Now let t1 be the unique minimal 

extension of c0 that is splitting. In the same way, we can define the c ∈ SuccT (t1) that g extends as the 

unique child c that satisfies ψT (c) � ȦG. Call this child c1. We can continue like this, and the sequence 

c0 � c1 � c2 � ... is constructible from V̌G and ȦG. Since g is the unique path that extends each ci, we 

have that g is constructible from V̌G and ȦG (and so G is as well). �

Lemma 6.3 (Blue selection). Let λ1 < λ2 be cardinals. Suppose there is an ultrafilter U on λ2 that is uniform 

and λ1-complete (which happens if λ2 is a measurable cardinal and U is a normal ultrafilter on λ2). Let 

〈Sα ∈ [
⋃

γ∈Ord
γV ]λ2 : α < λ1〉 be a λ1-sequence of size λ2 sets of sequences, where within each Sα the 

sequences are pairwise incomparable. Then there is a sequence 〈aα ∈ Sα : α < λ1〉 such that the aα are 

pairwise incomparable.

Proof. The ultrafilter U on λ2 induces an ultrafilter on each Sα, so we may freely talk about a measure one 

subset of Sα. Given sequences a, b, we write a||b to mean they are comparable (one is an initial segment of 

the other).

Claim 1: Fix α1, α2 < λ1. Then there is at most one a ∈ Sα1
such that Ba := {b ∈ Sα2

: a||b} has measure 

one.

Subclaim: Suppose a ∈ Sα1
is such that Ba has measure one. Then all elements of Ba extend a. To see 

why, suppose there is some b ∈ Ba which does not extend a. Then b is an initial segment of a. Let b′ be 

another element of Ba. Since b ⊥ b′, it must be that a ⊥ b′, which is a contradiction.

Towards proving Claim 1, suppose a, a′ are distinct elements of Sα1
such that the sets Ba and Ba′ have 

measure one. There must be some b ∈ Ba ∩ Ba′ . We have that b extends both a and a′, which is impossible 

because a ⊥ a′. This proves Claim 1.

We will now prove the theorem. For each α1, α2 < λ1, remove the unique element of Sα1
that is comparable 

with measure one element of Sα2
(if it exists). This replaces each set Sα with a new set S′

α. Since λ1 < λ2

and the ultrafilter U on λ2 is uniform, each S′
α has size λ2 (and is concentrated on by the ultrafilter on Sα). 

Let a0 be any element of S′
0. Now fix 0 < α < λ1 and suppose we have chosen aβ ∈ S′

β for each β < α. For 
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each β < α, let Bβ := {b ∈ Sα : aβ ||b}. Each set Bβ has measure zero, and there are < λ1 of them. By the 

λ1-completeness of the ultrafilter, there must be an element of S′
α not in any Bβ for β < α. Let aα be any 

such element. The sequence 〈aα : α < λ1〉 works as desired. �

The next lemma gives a flavor of how we can shrink to either get a red or a blue node.

Lemma 6.4 (Red-blue concentration). Let λ1 < λ2 be such that λ1 is a measurable cardinal and there is a 

uniform λ1-complete ultrafilter on λ2. Let T ∈ P and t ∈ T be the stem of T . Assume |SuccT (t)| = λ1. Let 

U be an ultrafilter on SuccT (t) that comes from a fixed normal ultrafilter on λ1 and a fixed bijection between 

λ1 and SuccT (t). So U is λ1-complete and concentrates on SuccT (t). For each c ∈ SuccT (t), let sc � c

be the shortest splitting extension of c, and assume that in fact |SuccT (sc)| = λ2 and there is a uniform 

λ1-complete ultrafilter Uc which concentrates on SuccT (sc). Assume further that for each c ∈ SuccT (t), sc

is either a red node of T or a blue node of T . Then there is a set C ⊆ SuccT (t) in U and for each c ∈ C a 

tree Tc ⊆ T |c such that when we define T ′ :=
⋃

c∈C Tc, then exactly one of the following holds:

1) The values of ψT ′(c) for c ∈ C are pairwise incomparable, so t is a blue node of T ′;

2) The values of ψT ′(c) for c ∈ C are all the same, so t is a red node of T ′. Also, for each c ∈ C, we have 

that Uc concentrates on SuccT ′(sc) and sc is a red node of T ′. This implies that ψT ′(c̃) is the same for 

each c̃ ∈ SuccT ′(sc) and c ∈ SuccT ′(t).

Proof. First use the fact that U is an ultrafilter on SuccT (t) to get a set C0 ⊆ SuccT (t) in U such that the 

nodes sc for c ∈ C0 are either all blue in T or all red in T .

Suppose the nodes sc (for c ∈ C) are all blue in T . Set C := C0. Then use the lemma above (the Blue 

Selection Lemma) to pick one child c̃c of each sc (for c ∈ C) such that the resulting sequences ψT (c̃c) are all 

pairwise incomparable. It is here that we use the fact that the ultrafilters Uc are λ1-complete. Now define 

each Tc ⊆ T |c to be Tc := T |c̃c. Define T ′ to be 
⋃

c∈C Tc. We have ψT (c̃c) = ψ(T |c̃c)(c̃c) = ψTc
(c) = ψT ′(c). 

Since the ψT (c̃c) for c ∈ C are pairwise incomparable, then the ψT ′(c) for c ∈ C are pairwise incomparable, 

so 1) holds.

Suppose now that the nodes sc (for c ∈ C0) are all red in T . Given c ∈ C0, ψT (c̃) does not depend on which 

c̃ ∈ SuccT (sc) is used, so each ψT (c̃) for c̃ ∈ SuccT (sc) in fact equals ψT (sc). We also have ψT (sc) = ψT (c)

for each c ∈ C0. We will now use the assumption that λ1 is a measurable cardinal. Since λ1 is a measurable 

cardinal, if V is any normal ultrafilter on λ1, then λ1 → (V)2
2. Thus, there is a set C1 ⊆ C0 in U such that 

the sequences ψT (c) for c ∈ C1 are either all pairwise comparable or all pairwise incomparable.

Case 1: If they are all pairwise comparable, then because they might have different lengths, use the ω1-

completeness of U to get a set C2 ⊆ C1 in U such that the ψT (c) for c ∈ C2 are identical (by getting them 

to have the same lengths). Set C := C2 and set each Tc ⊆ T |c to be Tc := T |c (no thinning of the subtrees 

is necessary). We have that 2) holds.

Case 2: If they are pairwise incomparable, then set C := C1 and set each Tc ⊆ T |c to be Tc := T |c (no 

thinning of subtrees is necessary). We have that 1) holds. �

We are now ready for the fundamental lemma needed to analyze the minimality of P (for functions with 

domain ω).

Lemma 6.5 (Blue production for Ȧ : ω → V̌ ). Assume cf(κ) = ω. Fix n < ω. Suppose κn < κn+1 < ... are 

all measurable cardinals. Let T ∈ P with stem s ∈ T . Let Ȧ be such that T � Ȧ : ω → V̌ and T � Ȧ /∈ V̌ . 

Suppose s has exactly κn children in T . Then there is some perfect W ⊆ T such that s has κn children in 

W and s is blue in W .
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Proof. To prove this result, we will frequently pick some node in a tree and fix an ultrafilter which concen-

trates on the set of its children in that tree. When we shrink the tree further, we will ensure that as long as 

the node has > 1 child, then the ultrafilter will still concentrate on the set of its children. To index this, we 

will have partial functions which map nodes to ultrafilters. We will start with the empty partial function. 

Once we attach an ultrafilter to a node, will never attach a different ultrafilter to the same node later.

We will define a (partial) function Φ recursively. As input it will take in a tuple 〈Q, t, �U , m, k〉, and as 

output it will return 〈Q′, �U ′〉. Q ⊇ Q′ are perfect trees. �U ⊆ �U ′ are partial functions, mapping nodes to 

ultrafilters. m and k are both numbers < ω. Q has stem t (passing the stem t to the function Φ is redundant, 

but we do it for emphasis). The node t ∈ Q has at least κm children in Q, it is in Q′, and it has exactly 

κm children in Q′. Moreover, t ∈ Dom(�U ′) and �U ′(t) concentrates on SuccQ′(t). The number k is how many 

remaining recursive steps to take. Finally, one of the following holds (note the additional purpose of m and 

k):

1) t is blue in Q′, or

2) t is red in Q′ and Dom(ψQ′(t)) ≥ m + k.

That is, if t is red in Q′, then at least the first m + k values of Ȧ are decided by (Q′|t) = Q′. We will now 

define Φ recursively on k:

Φ(Q, t, �U , m, 0): First, remove children of t so that in the resulting tree Q0 ⊆ Q, t has exactly κm children. 

If this is impossible, then the function is being used incorrectly, so leave the function undefined on this input. 

At this point, we should have t /∈ Dom(�U), otherwise the function is being used incorrectly. Let U be a 

κm-complete ultrafilter on SuccQ0
(t) that is induced by a normal ultrafilter on κm and a bijection between 

SuccQ0
(t) and κm. Attach this ultrafilter to t by defining �U ′ := �U ∪ {(t, U)}.

We now must define Q′ ⊆ Q. For each c ∈ SuccQ0
(t), let Uc ⊆ Q0|c be some condition which decides at 

least the first m + 0 values of Ȧ. Let Q1 :=
⋃

c Uc. We have Q1 ⊆ Q0. Of course, SuccQ1
(t) = SuccQ0

(t). 

Consider the coloring b : [SuccQ1
(t)]2 → 2 defined by b(c1, c2) = 1 iff ψQ1

(c1) and ψQ1
(c2) are comparable, 

and b(c1, c2) = 0 otherwise. Since the ultrafilter U which concentrates on SuccQ1
(t) is induced by a normal 

ultrafilter on κm, fix a set C0 ⊆ SuccQ1
(t) in U that will homogenize the coloring b. Hence the sequences 

ψQ1
(c) for c ∈ C0 are either pairwise incomparable or pairwise comparable.

Let Q2 ⊆ Q1 be the tree obtained by only removing the children of t that are not in C0. If the sequences 

ψQ2
(c) = ψQ1

(c) for c ∈ C0 are pairwise incomparable, then we are done by defining Q′ := Q2 (t is blue 

in Q2). If not, then apply the pigeon hole principle for ω1-complete ultrafilters to get a set C1 ⊆ C0 in U

such that all ψQ2
(c) sequences for c ∈ C1 are the same. Let Q3 ⊆ Q2 be the tree obtained from Q2 by only 

removing the children of t that are not in C1. We are done by defining Q′ := Q3 (t is red in Q3 and Q3

decides at least the first m + 0 values of Ȧ).

Φ(Q, t, �U , m, k + 1): It must be that t has κm children in Q, otherwise the function is being used incor-

rectly. Also, it must be that t ∈ Dom(�U) and �U(t) concentrates on SuccQ(t).

Temporarily fix a c ∈ SuccQ(t). Let sc � c be a minimal extension in Q with ≥ κm+1 children (if k > 0, by 

the way the function is used, the node sc will be unique). Let Uc := Q|sc. Let 〈U ′
c, �Uc〉 := Φ(Uc, sc, �U , m +1, k). 

We have that sc ∈ Dom(�Uc) and �Uc(sc) is a κm+1-complete ultrafilter that concentrates on the size κm+1

set of children of sc in U ′
c. Also, sc is either a blue node of U ′

c, or it is a red node of U ′
c and U ′

c decides at 

least the first (m + 1) + k elements of Ȧ. Now unfix c. Define �U ′ :=
⋃

c
�Uc. Let Q0 :=

⋃

c U ′
c ⊆ Q.

Use the fact that �U(t) is an ultrafilter that concentrates on SuccQ0
(t) to get a set C0 ⊆ SuccQ0

(t) in �U(t)

such that the nodes sc for c ∈ C0 are either all red in Q0 or all blue in Q0. We will break into cases.

Case 1: First, consider the case that the nodes sc for c ∈ C0 are all blue in Q0. Use Lemma 6.3 (Blue 

Selection) to get, for each c ∈ C0, a node c̃c ∈ SuccQ0
(sc) such that the sequences ψQ0

(c̃c) are pairwise 

incomparable. Note that for each c ∈ C0, ψQ0|c̃c
(c) = ψQ0

(c̃c). Let Q1 :=
⋃

c∈C0
(Q0|c̃c) ⊆ Q0. We have that 

t is a blue node of Q1. Defining Q′ := Q1, we are done.
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Case 2: The other case is that the nodes sc for c ∈ C0 are all red. Let b : [C0]2 → 2 be the coloring 

defined by b(c1, c2) = 1 iff ψQ0
(c1) and ψQ0

(c2) are comparable, and b(c1, c2) = 1 otherwise. Since the 

ultrafilter �U(t) which concentrates on C0 is induced by a normal ultrafilter on κm, fix a set C1 ⊆ C0 in �U(t)

that will homogenize the coloring b. Hence the sequences ψQ0
(c) for c ∈ C1 are either all comparable or all 

incomparable.

If they are pairwise incomparable, then define Q′ :=
⋃

c∈C1
(Q0|c) ⊆ Q0. The node t is blue in Q′, and we 

are done. If they are pairwise comparable, then use the fact that �U(t) is ω1-complete to get a set C2 ⊆ C1

in �U(t) such that the sequences ψQ0
(c) for c ∈ C2 are all the same (by getting the sequences ψQ0

(c) to have 

the same length, we get them to be identical). Define Q′ :=
⋃

c∈C2
(Q0|c) ⊆ Q0. We have that t is red in 

Q′. From our definition of a red node, since each sc is a red node of Q′, it follows that for each c ∈ C2 and 

each c′ ∈ SuccQ′(sc), we have ψQ′(c) = ψQ′(c′). We said earlier that U ′
c decides at least the first m + (k + 1)

elements of Ȧ. Thus, Q′ itself decides at least the first m +(k +1) values of Ȧ. This completes the definition 

of Φ.

With Φ defined, we will prove the lemma. Let 〈T0, �U0〉 := Φ(T, s, ∅, n, 0). If s is blue in T0, we are 

done by setting W := T0. If not, then (T0|s) = T0 decides at least the first n values of Ȧ. Next, let 

〈T1, �U1〉 := Φ(T0, s, �U0, n, 1). If s is blue in T1, we are done by setting W := T1. If not, then (T1|s) = T1

decides at least the first n + 1 values of Ȧ. Next, let 〈T2, �U2〉 := Φ(T1, s, �U1, n, 2), etc.

We claim that this procedure eventually terminates. If not, then we have produced the sequences T0 ⊇

T1 ⊇ T2 ⊇ ... (which is probably not a fusion sequence) and �U0 ⊆ �U1 ⊆ �U2 ⊆ .... Let Tω :=
⋂

i<ω Ti. If we 

can show that Tω contains a perfect tree T̃ , then we will have that T̃ decides at least the first k values of 

Ȧ for every k < ω, which implies T̃ � Ȧ ∈ V̌ , which is a contradiction.

First note that the stem s of T satisfies s ∈ Dom(�U0) and s has �U0(s) many children in each tree Ti. 

Using the ω1-completeness of �U0(s), s has �U0(s) many children in Tω, so in particular it has κn children in 

Tω.

Now temporarily fix c ∈ SuccTω
(s). Let sc be the minimal extension of c in T1 that has ≥ κn+1 children. 

Now sc will never become a blue node in Ti for any i ≥ 1, because otherwise because s remains red we 

would have that sc would get removed at some point and hence c would get removed, contradicting that 

c ∈ SuccTω
(s). We can see by the ways trees are shrunk in the definition of Φ that the following holds: 

�U1(sc) is defined and for each i ≥ 1, sc is in each Ti and sc has �U1(sc) many children in Ti. So by the 

ω1-completeness of �U1(sc), sc has κn+1 children in Tω.

Continuing like this, here is the general pattern. We let S0 = {s}. Then, for i ∈ ω having defined Si, we 

define Si+1 as follows: a node c is in Si+1 iff it is the minimal extension of a node in

⋃

{SuccTω
(t) : t ∈ Si}

that has κn+i+1 children in Ti+1. Let T̃ be the set of all initial segments of nodes in 
⋃

i Si. One can check 

that T̃ is a perfect subtree of Tω. In fact, T̃ = Tω. �

Theorem 6.6. Assume cf(κ) = ω. Suppose the cardinals κ0 < κ1 < ... are all measurable. Fix a condition 

T ∈ P . Let Ȧ be a name such that T � (Ȧ : ω → V̌ ) and T � (Ȧ /∈ V̌ ). Let Ġ be a name for the generic 

object. Then T � Ġ ∈ V̌ (Ȧ).

Proof. It suffices to find a condition T ′ ≤ T satisfying the hypotheses of Lemma 6.2 (Blue Coding). We will 

construct T ′ by performing fusion.

Let T∅ ≤ T be such that the stem t∅ ∈ T∅ is 0-splitting. Apply Lemma 6.5 (Blue Production) to the tree 

T∅ and the node t∅ ∈ T∅ to get T ′
∅ ≤ T∅. Now t∅ is blue and 0-splitting in T ′

∅. Hence, the unique 0-splitting 

node of T ′
∅ is blue. Define T0 := T ′

∅, the first element of our fusion sequence.
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Now, fix any c ∈ SuccT0
(t∅). Let Tc ≤ (T0|c) be such that there is a (unique) 1-splitting node tc � c in 

Tc. Apply Lemma 6.5 (Blue Production) to the tree Tc and the node tc to get T ′
c ≤ Tc. Now tc is blue and 

1-splitting in T ′
c. Unfixing c, let us define T1 :=

⋃

{T ′
c : c ∈ Succ(T ′

c, t∅)}. We have T1 ≤ T0, every child of t∅

is in T1 (so in particular it is 0-splitting), and every 1-splitting node of T1 is blue.

We may continue like this to get the fusion sequence T0 ⊇ T1 ⊇ T2 ⊇ .... Define T ′ to be the intersection 

of this sequence. We have that T ′ is in weak splitting normal form (every node with > 1 child is n-splitting 

for some n). Since being blue is preserved when we pass to a stronger condition, every splitting node of T ′

is blue. We may now apply Lemma 6.2 (Blue Coding), and the theorem is finished. �

So P is minimal with respect to ω-sequences of ordinals, but by what we found earlier it is not minimal:

Corollary 6.7. The forcing P does not add a minimal degree of constructibility.

Proof. Let B be the regular open completion of P . In the previous section, we showed that there is a 

complete embedding of P(ω)/fin into B. Let G be generic for P over V . Let H ∈ V [G] be generic for 

P(ω)/fin over V . Since P(ω)/fin is countably complete, it does not add any new ω-sequences, so G /∈ V [H]. 

On the other hand, we have H /∈ V . Thus, V � V [H] � V [G], so the forcing is not minimal. �

7. Uncountable height counterexample and open problems

To conclude the paper, we present an example of what can go wrong when one tries to generalize some 

of the results in the previous sections to singular cardinals κ with uncountable cofinality.

Assuming cf(κ) > ω, we will first construct a pre-perfect tree T ⊆ N such that [T ] has size κ.

Lemma 7.1. Let g : Ord → 2 be a function. Given an ordinal γ, let

Sg�γ := {α < γ : g(α) = 1}.

Let Φ<γ be the statement that for each limit ordinal α < γ, g equals 0 for a final segment of α. Let Φγ be 

the analogous statement but for all α ≤ γ. The following hold:

1) If Φγ , then Sg�γ is finite.

2) If Φ<γ and cf(γ) �= ω, then Sg�γ is finite.

3) If Φ<γ , then Sg�γ is countable.

Proof. We can prove these by induction on γ. If γ = 0, there is nothing to do. Now assume that γ is a 

successor ordinal. If we assume Φ<γ , then Φγ−1 is true so by the inductive hypothesis and the fact that

|Sg�γ | ≤ |Sg�(γ−1)| + 1,

Sg�γ is finite.

Now assume that cf(γ) = ω. Let 〈γn : n ∈ ω〉 be a sequence cofinal in γ. Note that

Sg�γ =
⋃

n∈ω

Sg�γn
= Sg�γ0

∪
⋃

n∈ω

(Sg�γn+1
− Sg�γn

).

Thus, if we assume Φ<γ , then Φγn
holds for each n, so by the induction hypothesis each Sg�γn

is finite, so Sg�γ

is countable. If additionally we assume Φγ , then it must be that all but finitely many of the Sg�γn+1
− Sg�γn

are empty, so Sg�γ is finite.
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Finally, assume cf(γ) > ω and Φ<γ . For each limit ordinal α < γ, let f(α) < α be such that g is 0 from 

f(α) to α. By Fodor’s Lemma, fix some β < γ such that f−1({β}) ⊆ γ is a stationary subset of γ. Since 

f−1({β}) is cofinal in γ, we see that g is 0 from μ := min f−1({β}) to γ. Thus, Sg�γ = Sg�μ. The set Sg�μ

is finite because of Φμ and the induction hypothesis, so we are done. �

We can now get the desired counterexample:

Counterexample 7.2. Assume cf(κ) > ω. There is a pre-perfect tree T ⊆ N such that [T ] has size κ, and 

hence [T ] is not perfect.

Proof. We will define T ⊆ N . Define the α-th level of T as follows:

1) if α = 0, then the level consists of only the root ∅.

2) If α = β + 1, then a node is in the α-th level of T iff it is the successor in N of a node in the β-th level 

of T .

3) If α is a limit ordinal, then a node t is in the α-th level of T iff every proper initial segment of t is in T

and t(β) = 0 for a final segment of β’s less than α.

First, let us verify that T is non-stopping. Consider any node t ∈ T . Let f ∈ X be the unique function that 

extends t such that f(α) = 0 for all α in Dom(f) − Dom(t). We see that f is a path through T .

We will now show that [T ] has size ≤ κ. Consider any f ∈ [T ]. Let g : cf(κ) → 2 be the function

g(α) :=

{

0 if f(α) = 0,

1 otherwise.

By the definition of T and the lemma above, it must be that {α < cf(κ) : g(α) = 1} is finite. Recall that 

for each α < cf(κ), there are at most κα possible values for f(α). Now, a simple computation shows that 

there are at most κ such paths f associated to a given g (in fact, there are exactly κ). �

This counterexample points to the need for some further requirements on the trees when κ has uncount-

able cofinality. Such obstacles will likely be overcome by assuming that splitting levels on branches are club, 

as in [10] and [4], as this will provide fusion for cf(κ) sequences of trees. We ask, which distributive laws 

hold and which ones fail for the Boolean completions of the families of perfect tree forcings similar to those 

in this paper for singular κ of uncountable cofinality, but requiring club splitting, or some other splitting 

requirement which ensures cf(κ)-fusion. More generally,

Question 7.3. Given a regular cardinal λ, for which cardinals μ is there a complete Boolean algebra in which 

for all ν < μ, the (λ, ν)-d.l. holds but the (λ, μ)-d.l. fails?

Similar questions remain open for three-parameter distributivity.
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