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a strictly increasing sequence of regular cardinals (k, : n < w), Prikry defined the
forcing P of all perfect subtrees of [], ., #n, and proved that for x = sup,,_, #n,
assuming the necessary cardinal arithmetic, the Boolean completion B of P is (w, p)-

MSC- distributive for all u < k but (w, x, §)-distributivity fails for all § < &, implying
03E17 failure of the (w, k)-d.l. These hitherto unpublished results are included, setting the
03E35 stage for the following recent results. IP satisfies a Sacks-type property, implying
03E40 that B is (w, 00, < k)-distributive. The (h,2)-d.1. and the (9,00, < k)-d.L fail in B.
03E55 P(w)/fin completely embeds into B. Also, B collapses xk“ to h. We further prove
that if & is a limit of countably many measurable cardinals, then B adds a minimal
KGWUOTdS-' degree of constructibility for new w-sequences. Some of these results generalize to
Forcing cardinals x with uncountable cofinality.
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1. Introduction

An ongoing area of research is to find complete Boolean algebras that witness first failures of distributive
laws. In the late 1960’s, Solovay asked the following question: For which cardinals k is there a complete
Boolean algebra B such that for all ;1 < &, the (w, p)-distributive law holds in B, while the (w, x)-distributive
law fails (see [12])7 In forcing language, Solovay’s question asks for which cardinals x is there a forcing
extension in which there is a new w-sequence of ordinals in k, while every w-sequence of ordinals bounded
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below k is in the ground model? Whenever such a Boolean algebra exists, it must be the case that u* < k,
for all u < k. It also must be the case that either « is regular or else x has cofinality w, as shown in [12].

For the case when k is regular, Solovay’s question was solved independently using different forcings by
Namba in [12] and Bukovsky in [5]. Namba’s forcing is similar to Laver forcing, where above the stem,
all nodes split with the number of immediate successors having maximum cardinality. Bukovsky’s forcing
consists of perfect trees, where splitting nodes have the maximum cardinality of immediate successors.
Bukovsky’s work was motivated by the following question which Vopénka asked in 1966: Can one change
the cofinality of a regular cardinal without collapsing smaller cardinals (see [5])? Prikry solved Vopénka’s
question for measurable cardinals in his dissertation [14]. The work of Bukovsky and of Namba solved
Vopénka’s question for Ny, which is now known, due to Jensen’s covering theorem, to be the only possibility
without assuming large cardinals.

In the late 1960’s, Prikry solved Solovay’s question for the case when k has cofinality w and p* < k for
all u < k. His proof was never published, but his result is quoted in [12]. In this article, we provide modified
versions of Prikry’s original proofs, generalizing them to cardinals of uncountable cofinality whenever this is
straightforward. The perfect tree forcings constructed by Prikry are interesting in their own right, and his
original results provided the impetus for the recent results in this article, further investigating their forcing
properties.

Bukovsky and Copldkova conducted a comprehensive study of forcing properties of generalized Namba
forcing and of a family of perfect tree forcings in [6]. They found which distributive laws hold, which cardinals
are collapsed, and proved under certain assumptions that the forcing extensions are minimal for adding new
w-sequences. Their perfect tree forcings, defined in Section 3 of [6], are similar, but not equivalent, to the
forcings investigated in this paper; some of their techniques are appropriated in later sections. A variant
of Namba style tree forcings, augmented from Namba forcing analogously to how the perfect tree forcings
in [6] are augmented from those in [5], was used by Cummings, Foreman and Magidor in [8] to prove that
a supercompact cardinal can be forced to collapse to Ry so that in this forcing extension, U, holds for
all positive integers n, and each stationary subset of N, 1 N cof(w) reflects to an a with cofinality w;. We
point out that the addition of a new w-sequence of ordinals has consequences for the co-stationarity of the
ground model in the P,()) of the extension model. It follows from more general work in [9] that if the
ground model V satisfies OJ,, for all regular cardinals p in forcing extension V[G] and if V/[G] contains a new
sequence f : w — #, then for all cardinals ¢ < X in V[G] with u regular in V[G] and A > &, (P, (\))VICI\ V
is stationary in (P,(\))VI] Tt seems likely that further investigations of variants of Namba and perfect
tree forcings should lead to interesting results.

A complete Boolean algebra B is said to satisfy the (A, p)-distributive law ((\, p)-d.1.) if for each collection
of A many partitions of unity into at most p pieces, there is a common refinement. This is equivalent to
saying that forcing with B\ {0} does not add any new functions from X into u. The weaker three-parameter
distributivity is defined as follows: B satisfies the (A, p, < d)-distributive law ((A, p, < §)-d.1.) if in any forcing
extension V[G] by B\ {0}, for each function f : A\ — p in V[G], there is a function h : A — []<? in the
ground model V such that f(a) € h(a), for each a < A. Such a function h may be thought of as a covering of
f in the ground model. Note that the d-chain condition implies (X, u, < §)-distributivity, for all A and k. We
shall usually write (X, i, §)-distributivity instead of (A, p, < 6T)-distributivity. See [11] for more background
on distributive laws.

In this paper, given any strictly increasing sequence of regular cardinals (k, : n < w), letting k =
Sup,, ., kn and assuming that @ < & for all 4 < , P is a collection of certain perfect subtrees of [],,_, #n,
partially ordered by inclusion, described in Definition 2.7. Let B denote its Boolean completion. We prove
the following. P has size k* and B has maximal antichains of size K, but no larger. P satisfies the (w, &, )-
d.l. for each n < w but not the (w, k)-d.l. In fact, it does not satisfy the (w, s, ky,)-d.1. for any n < w. It
does, however, satisfy the (w, s, < k)-d.l., and in fact it satisfies the (w, 00, < k)-d.l., because it satisfies a
Sacks-like property. On the other hand, the (9, 00, < k)-d.l. fails. We do not know if co can be replaced by
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a cardinal strictly smaller than k“. However, we do know that the (h,2)-d.l. fails. (h and ? are cardinal
characteristics of the continuum, and w; < § < 9 < 2¥.) In fact, we have that P(w)/fin densely embeds
into the regular open completion of P. By similar reasoning, we show that forcing with P collapses x“
to h. Under the assumption that x is the limit of measurables, we have that every w-sequence of ordinals
in the extension is either in the ground model or it constructs the generic filter. If G is P-generic over
V and H € V[G] is P(w)/fin-generic over V, then since P(w)/fin does not add w-sequences, G ¢ V[H].
Thus, P does not add a minimal degree of constructibility. Some of the results also hold for cardinals
of uncountable cofinality, and these are presented in full generality. The article closes with an example of
what can go wrong when x has uncountable cofinality, highlighting some open problems and ideas for how
to approach them.

2. Definitions and basic lemmas
2.1. Basic definitions

Recall that given a separative poset P, the reqular open completion B of P is a complete Boolean algebra
into which P densely embeds (after we remove the zero element 0 from B). Every other such complete
Boolean algebra is isomorphic to B. A set C' C P is regular open iff

1) (Vp1 € C)(¥p2 < p1)p2 € C, and
2) (Vp1 ¢ C)(3p2 < p1)(Vps < p2)p3 ¢ C.

Topologically, giving P the topology generated by basic open sets of the form {g € P : ¢ < p} for p € P, a
set C' C P is regular open if and only if it is equal to the interior of its closure in this topology. We define
B as the collection of regular open subsets of P ordered by inclusion. See [11] for more background on the
regular open completion of a partial ordering.

Given cardinals A and p, we say B (or P) satisfies the (A, p)-distributive law ((\, p)-d.1.) if and only
if whenever {A, : @ < A} is a collection of size < p maximal antichains in B, there is a single p € B
below one element of each antichain. This is equivalent to the statement 1p I (;\/1 C ‘7) That is, every
function from A to p in the forcing extension is already in the ground model. Note that B and P force
the same statements, since P densely embeds into B by the mapping p — {g € P : ¢ < p}. The (A, u)-
d.l. is equivalent to the statement that whenever p € P and f are such that p I f : PR K, then there
are ¢ < p and g : A — & satisfying ¢ IF f = §. We will also study a distributive law weaker than the
(A, u)-d.1.; namely, the (X, u, < §)-d.1. where 6 < p. This is the statement that for each o < X there is a set
X, € [A,4]<9 such that there is a single non-zero element of B below \/ X,, for each a < A. That is, there
is some p € P such that (Va < A)(Ja € X,)p € a. The (A, p, < §)-d.1. is equivalent to the statement that
whenever p € P and f satisfy p IF f : A= fi, then there exists ¢ < p and a function g : A — [u]<? satisfying
qIF (Yo < ) f(a) € §(a). Finally, if 4 is the smallest cardinal such that every maximal antichain in B has
size < u, then the distributive law is unchanged if we replace p in the second argument with any larger
cardinal, so in this situation we write oo instead of pu.

Convention 2.1. For this entire paper, & is a singular cardinal and (k,, : @ < cf(k)) is an increasing sequence
of regular cardinals with limit x such that cf(k) < ko < & for all a.

Note that the cardinality of T, (.
K is a strong limit cardinal. However, we do make the following weaker assumption:

) Fa equals k(") which is greater than k. We do not assume that
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Assumption 2.2.
(Vu < k) pt®) < k.
In a few places, we will make the special assumption that & is the limit of measurable cardinals.

Definition 2.3. The set N C <f(®)g consists of all functions ¢ such that Dom(t) < cf(k) and (Va €
Dom(t)) t(a) < kq. We call each ¢ € N a node. Given a set T C N (which is usually a tree, meaning
that it is closed under initial segments), [T] is the set of all f € “f(")x such that (Va < cf(k))f | a € T.
Define X := [N]. Given t1,t; € N U X, we write t3 J ¢y iff t5 is an extension of ¢;.

Note that |N| = x and | X| = x°(*), We point out that our set X is commonly written as [To<ct(n) fa- In
order to avoid confusion with cardinal arithmetic and to simplify notation, we shall use X as defined above.

Definition 2.4. Fix a tree T C N. A branch through T is a maximal element of T'U [T]. Given a < cf(k),
T(a) :=T N % is the set of all nodes of T on level . Given t € T such that ¢ € T'(«), then Succy(t) is the
set of all children of ¢ in T": all nodes ¢ J ¢ in T'(a+ 1). The word successor is another word for child (hence,
successor always means immediate successor). A node ¢ € T is splitting iff |Succy(t)| > 1. Stem(T) is the
unique (if it exists) splitting node of T" that is comparable (with respect to extension) to all other elements
of T. Given t € T, the tree T'|t is the subset of T' consisting of all nodes of T' that are comparable to t.

It is desirable for the trees that we consider to have no dead ends.

Definition 2.5. A tree T C N is called non-stopping iff it is non-empty and for every ¢ € T, there is some
f € [T] satisfying f Jt. A tree T C N is suitable iff T has no branches of length < cf(k).

Suitable implies non-stopping, and they are equivalent if cf(k) = w.

Definition 2.6. A tree T C N is pre-perfect iff T is non-stopping and for each o < cf(k) and each node
t1 € T, there is some t5 J t1 in T such that [Succer(t2)] > Kka. A tree T C N is perfect iff T is pre-perfect
and, instead of just being non-stopping, is suitable.

In Section 7, we will construct a pre-perfect T such that [T has size . That example points out problems
that arise in straightforward attempts to generalize some of our results to singular cardinals of uncountable
cofinality. On the other hand, it is not hard to see that if T is perfect, then [T] has size £°(*). We will now
define the forcing that we will investigate.

Definition 2.7. P is the set of all perfect trees T C N ordered by inclusion. B is the regular open completion
of P.

Note that by a density argument, given &, the choice of the sequence (k. : @ < cf(k)) having x as its
limit does not affect the definition of PP.

Definition 2.8. Assume cf(k) = w. Fix a perfect tree T C N. A node t € T is O-splitting iff it has exactly ko
children in T and it is the stem of T' (so it is unique). Given n < w, a node ¢t € T is (n + 1)-splitting iff it
has exactly k41 children in T" and it’s maximal proper initial segment that is splitting is n-splitting.

Definition 2.9. Assume cf(k) = w. Fix a perfect tree T C N. We say T is in weak splitting normal form iff
every splitting node of T' is n-splitting for some n. We say T is in medium splitting normal form iff it is in
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weak splitting normal form and for each splitting node ¢ € T', all minimal splitting descendants of ¢ are on
the same level. We say T is in strong splitting normal form iff it is in medium splitting normal form and for
each n € w, there is some [,, € w such that T'(l,) is precisely the set of n-splitting nodes of T'. We say that
the set {l,, : n € w} witnesses that T is in strong splitting normal form.

If T is in weak splitting normal form, then for each f € [T, there is a sequence ¢ty C ¢; T ... of initial
segments of f such that ¢, is n-splitting for each n < w (and these are the only splitting nodes on f). It
is not hard to prove that any 7" € P can be extended to some 77 < T in medium splitting normal form.
Furthermore, the set of conditions below a condition in medium splitting normal form is isomorphic to P
itself. This implies that whenever ¢ is a sentence in the forcing language that only involves names of the
form @ for some a € V, then either 1 I ¢ or 1 IF —p. In Proposition 2.30, we will show (in the cf(k) = w
case) that each condition can be extended to one in strong splitting normal form.

2.2. Topology

To prove several facts about P for the cf(k) = w case, a topological approach will be useful.

Definition 2.10. Given t € N, let B; C X be the set of all f € X such that f J¢t. We give the set X the
topology induced by the basis {B; : t € N}.

Observation 2.11. Fach By C X fort € N is clopen.

Observation 2.12. A set C' C X is closed iff whenever g € X satisfies (Voo < cf(k))|C N Bgja| # 0, then
geC.

This next fact explains why we considered the concept of “non-stopping”:
Fact 2.13. A set C C X is closed iff C = [T] for some (unique) non-stopping tree T C N.

Definition 2.14. A set C' C X is strongly closed iff C' = [T'] for some (unique) suitable tree 7' C N. Hence, if
cf(k) = w, then strongly closed is the same as closed.

Definition 2.15. A set P C X is perfect iff it is strongly closed and for each f € P, every neighborhood of f
contains £°1(%) elements of P.

Thus, every non-empty perfect set has size k(%) = |X|. One can check that if B C X is clopen and
P C X is perfect, then BN P is perfect. The next lemma does not hold in the cf(xk) > w case when we
replace “perfect tree” with “pre-perfect tree”, because it is possible for a pre-perfect tree to have s branches
(see Counterexample 7.2).

Lemma 2.16. If T C N is a perfect tree, then [T is a perfect set.
Proof. Since T is perfect, it is suitable, which by definition implies that [T is strongly closed. Next, given
any t € T, we can argue that By N [T] has size x1(%)  because we can easily construct an embedding from

N into T|t, and we have that X has size I(®). O

This next lemma implies the opposite direction: if P C X is a perfect set, then P = [T'] for some perfect
tree T'C N.
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Lemma 2.17. Fix P C X . Suppose P is strongly closed and for each f € P, every neighborhood of f contains
> k elements of P. Then P = [T for some (unique) perfect tree T C N. Hence, P is a perfect set.

Proof. Since P is strongly closed, fix some (unique) suitable tree T C N such that P = [T]. If we can show
that T is a perfect tree, we will be done by the lemma above.

Suppose that T is not a perfect tree. Let ¢ € T and « < cf(k) be such that for every extension ' € T of
t, [Sucer(t')| < kq. We see that [(T|t)] has size at most (r4)f") < &, which is a contradiction. 0O

Corollary 2.18. Fiz P C X. The following are equivalent:

1) P is perfect;
2) P is strongly closed and

(Vf € P)(Va < cf(k)) [P N Byja| = £
3) P is strongly closed and
(Vf € P)(Va < cf(k)) |[P N Bfia| > k;
4) There is a perfect tree T C N such that P = [T].

Lemma 2.19. Assume cf(k) = w. Let C C X be strongly closed and assume |C| > k. Then C has a non-empty
perfect subset.

Proof. Let T' C N be the (unique) suitable tree such that C' = [T]. We will construct 7" by successively
adding elements to it, starting with the empty set. By an argument similar to the one used in the previous
lemma, there must be a node ty € T such that there is a set Sy, C Succr(tp) of size ko such that (Ve €
St,) [(T|e)] > k. Fix tp and add it and all its initial segments to 7”. Next, for each ¢ € S, there must be
a node t. € T such that there is a set Sy, C Succr(t.) of size k1 such that (Vd € S;_) [(T|d)] > . For each
¢, fix such a t. and add it and all its initial segments to 7”. Continue like this. At a limit stage «, let ¢ be
such that it is not in 7" but all its initial segments are in 7. Find some extension of ¢ in T that has kg
appropriate children, etc. It is clear from the construction that 77 C T will be a perfect tree. O

2.8. Laver-style trees

In this subsection, we assume cf(k) = w, as this is the only case to which the proofs apply. The results
in this subsection are modifications to our setting of work extracted from [12], where Namba used the
terminology ‘rich’ and ‘poor’ sets.

Definition 2.20. For each n < w, let Q,, C P denote the set of T' € P such that Dom(Stem (7)) < n, and for
each m > Dom(Stem (7)) and ¢ € T'(m), |Sucer(t)| = Km.

Note that if n < m, then Q, C Q,,. The set Q = @, is the collection of “Laver” trees.

n<w

Definition 2.21. Fix a tree T C N. We say that T has small splitting at level n < w iff (V& €
T(n)) |Succr(t)| < kn. A tree is called leafless if it has no maximal nodes. We say that T is n-small
iff there is a sequence of leafless trees (D,, € N : m > n) such that [T'] C U,,>,[Pm] and each D,, has
small splitting at level m. -
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Note that if n > m, then n-small implies m-small. If (D, : m > n) witnesses that T is n-small, then
without loss of generality D,, C T for all m > n.

Observation 2.22. Let m < w. Let D be a collection of trees that have small splitting at level m. If |D| < K,
then |JD has small splitting at level m.

Lemma 2.23. Let T C N be a tree, let t := Stem(T), and let n := Dom(t). Assume that T is not n-small.
Then

E :={c € Succp(t) : (T|c) is not (n + 1)-small}
has size K.

Proof. Towards a contradiction, suppose that |E| < k. Let F' := Succy(t) — E. Let D,, C N be the set
D,, :=U{(T|¢) : ¢c € E}. Note that

T = [D,]u | JITle].

We have that D, has small splitting at level n, because ¢ is the only node in D,, C T at level n, and
Sucep, (t) = E has size < ky,.

For each ¢ € F, let (DS, C (T|c) : m > n+ 1) be a sequence of trees that witnesses that (T'|c) is
(n + 1)-small. For each m > n + 1, let

Dy, = ] DS,
ceF

Then

Umrd=U U = U Upnlc U Dal

ceF ceF m>n+1 m>n+1ceF m>n+1

Consider any m > n + 1. Since |F| < |Sucer(t)| < Ky, < ki, and each DS, has small splitting at level m,
by the observation above D,, has small splitting at level m. Thus, we have [T] C U,,>,,[Dm] and each D,
has small splitting at level m. Hence T is n-small, which is a contradiction. O

Corollary 2.24. Let T C N be a tree, let t := Stem(T), and let n := Dom(t). Assume that T is not n-small.
Then there is a subtree L C T such that L € Q,,.

Proof. We will construct L by induction. For each m < n, let L(m) := {t | m}. Let L(n + 1) be the set
of ¢ € Sucer(t) such that (T|e) is not (n + 1)-small. By Lemma 2.23, |Sucer(t)| = &,. Let L(n + 2) be
the set of nodes of the form ¢ € Sucer(u) for u € L(n + 1) such that (T'|c) is not (n + 2)-small. Again by
Lemma 2.23, for each u € L(n + 1), since (T'|u) is not (n + 1)-small, [Succy (u)| = kp4+1. Continuing in this
manner, we obtain L C T, and it has the property that for each m > n and ¢t € L(m), |Succr(t)| = Km.-
Thus, L€ Q,. O

Lemma 2.25. Fizrn < w and let L € Q,,. Then L is not n-small.
Proof. Suppose, towards a contradiction, that there is a sequence of leafless trees (D, C L : m > n) such

that [L] € U,,>,[Dm] and each D, has small splitting at level m. Let t,, € L(n) be arbitrary. We will define
a sequence of nodes (t,,, € L(m) : m > n) such that ¢, C t,11 C ... and (Vm > n) [Dp| N By, = 0. If we
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let = € [L] be the union of this sequence of t,,’s, then since {z} =,,>,, Bt,..., we will have x & J,,~,,[Dm],
so [L] € U, >, [Dm], which is a contradiction. - -

Define th:l to be any successor of ¢, in L such that ¢,41 ¢ D,,. This is possible because D,, has small
wir = 0. Next, define t,42 to be
any successor of t,,11 in L such that t,49 ¢ Dy41. Continuing in this manner yields the desired sequence
(tm :m>mn). O

splitting at level n and t has k, successors in L. We have [D,] N B;

Proposition 2.26. Fiz n < w. If T is a collection of n-small trees and |T| < kn, then |JT is an n-small
tree.

Proof. For each T' € T, let (D}, : m > n) witness that T" is n-small. Then ({J;o DL : m > n) witnesses
that U7 is n-small. O

Corollary 2.27. Fizn < w. If {[T] : T € T} is a partition of X into < ky, closed sets, then at least one of
the trees T € T is not n-small.

Proof. Suppose that each T' € T is n-small. Then by Proposition 2.26, | Jc+T = N is n-small. However,
N cannot be n-small by Lemma 2.25, as N is a member of Q,,. O

We do not know if this next lemma has an analogue for the cf(x) > w case because of a Bernstein set
phenomenon.

Lemma 2.28. Assume cf(k) = w. Fix n < w. Suppose ¥ : N — K. Given h : w — Ky, let Cp, C X be the
set of all f € X such that

(Vk <w)U(f I k) = h(k).
Then for some h, there is an L € Q, such that [L] C C},, where m satisfies Ky, > (kn)"“.

Proof. It is straightforward to see that each set C}, is strongly closed (and hence closed). Let m < w be
such that (k,)¥ < K. Such an m exists by Assumption 2.2. By Corollary 2.27, one of the sets Cj, = [T]
must be such that T is not m-small. By Corollary 2.24, there is some tree L C T such that L € Q,,. O

2.4. Strong splitting normal form

Observation 2.29. Let T € P. There is an embedding F : N — T, meaning that (Vt1,t2 € N),

. t1:t2<:>F(t1):F(t2),
o 11 Etg@F(tl)EF(tg);
. tlLtQ@F(tl)LF(h).

From this, it follows by induction that if t € N is on level a < cf(k), then F(t) is on level B for some > a.
It follows that given any f € [N], there is exactly one g € [T that has all the nodes F(f | a) for a < cf(k)
as initial segments.

Given a set S C N, let I(S) be the set of all initial segments of elements of S. If H C N is a perfect
tree, then I(F“(H)) C T is a perfect tree. If Hy,Hy C N are trees such that [Hi] N [Ha] = 0, then
[L(F“(H))] 0 [1(F“(Hy))] = 0.

Proof. To construct the embedding F, first define F()) = (). Now fix o < cf(x) and suppose F'(u) has been

defined for all u € |J, ., N(7). If a is a limit ordinal and ¢ € N(«), define F(t) to be U, F'(t [ 7). If
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a=pF+1, fix u e N(B). Fix s J F(u) such that s has > kg successors in T. For each 0 < kg, define
F(u"0) to be the o-th successor of s in T'. The rest of the claims in the observation follow easily. O

Proposition 2.30. For each T € P, there is some T' < T in strong splitting normal form.

Proof. Fix T € P. Fix an embedding F : N — T. Let ¥ : N — w be the coloring ¥(u) := Dom(F(u)). Let
L € Q be given by Lemma 2.28. Then T’ := I(F*“(L)) is in strong splitting normal form and 7V < T. O
cf(k)

This section concludes by showing that P is not x“'*)-c.c. That is, P has a maximal antichain of size

<% (%) This result is optimal because |P| = x°f(%),

Proposition 2.31. Let T € P. Then there are k'%) pairwise incompatible extensions of T in P. Hence, P

cf(k)

s not K -c.c.

Proof. Let F: N — T be an embedding guaranteed to exist by the observation above. For each a < cf(k),
let {R, 5 : 0 < ka} be a partition of Kk, into ko pieces of size ko. Given f € [N], let Hf C N be the tree

Hy:={t € N: (Va € Dom(t))t(a) € Ry #(a)}-

Each H is a non-empty perfect tree. If f1 # fo, then [Hy, |N[Hy,] = (0. Using the notation of Proposition 2.29,
for each f € [N] let

Ty = I(F*(Hj)).

Certainly each [T%] is a subset of P, because Ty C T. By the Proposition 2.29, each T} is a non-empty
perfect tree, and f1 # fo implies [Ty, ] N [Tf,] = 0, which in turn implies T}, is incompatible with T',. Thus,
the conditions Ty € P for f € [N] are pairwise incompatible. Since [N] = X has size x“, there are k* of
these conditions. O

3. (w, k) and (w, 0o, < K)-distributivity hold in P

This section concentrates on those distributive laws which hold in the complete Boolean algebra B, when
% has countable cofinality. Theorem 3.5 was proved by Prikry in the late 1960’s; the first proof in print
appears in this paper. Here, we reproduce the main ideas of his proof, modifying his original argument
slightly, in particular, using Lemma 2.28, to simplify the presentation. In Theorem 3.9 we prove that P
satisfies a Sacks-type property. This, in turn, implies that the (w, oo, < k)-d.l. holds in B (Corollary 3.10).
The reader is reminded that for the entire paper, Convention 2.1 and Assumption 2.2 are assumed.

3.1. (w, ky)-distributivity

Definition 3.1. A stable tree system is a pair (F, Fp) of functions Fy : N — N and Fp : N — P, where
F is an embedding, such that

1) For each t € N, Stem(Fp(t)) 3 Fn(t);

2) If t; € N is a proper initial segment of to € N, then Fp(t1) 2 Fp(t2), and Fx(¢1) is a proper initial
segment of Fy(t3);

3) Fy maps each level of N to a subset of a level of N (levels are mapped to distinct levels).

If requirement 3) is dropped, (Fi, Fp) is called a weak stable tree system.
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Note that 1) can be rewritten as follows: [Fp(t)] C Bp, ) for all t € N. Note from 3) that I(F*“(N)) is
in P.

Lemma 3.2. Assume cf(k) = w. If (Fy, Fp) is a weak stable tree system, then there is a tree T < N in strong
splitting normal form and an embedding F : N — T such that (Fyy o F, Fp o F') is a stable tree system.

Proof. Let ¥ : N — w be the coloring ¥(u) := Dom(Fy(u)). Let T € Q be given by Lemma 2.28. Let
F: N — T be an embedding that maps levels to levels. The function F' is as desired. 0O

We point out that Definition 3.1 applies for s of any cofinality. It can be shown that if (Fi, Fp) is a
stable tree system and v < cf(k), then

J{Fe(t) :t € N(7)} € P.
For our purposes, when cf(x) = w, the following lemma will be useful.

Lemma 3.3. Assume cf(k) =w. Let (Fn, Fp) be a stable tree system. Then

T:= () J{Fe(t): t € N(n)}

n<w

is in P. Further, given any S < T and n € w, there is some t € N(n) such that S is compatible with Fp(t).

Proof. To prove the first claim, note that

7= UFe@® teNm)} = () Fe(f I n).

nw fex n<w

This is because if t1,t2 € N are incomparable, then Fp(t1) N Fp(t2) = (). Now temporarily fix f € X. One
can see that

() Fe(f In) = I{Fn(fIn):n<w}).

n<w

Now

U N Fe(fin) = U I{EN(f [ n) i n <w}) = I(Ex“(N)).

fex n<w fex

Thus, T = I(Fn“(N)), so T is in P.

To prove the second claim, fix S < T and n € w. The stems of the trees Fp(t) for t € N(n) are pairwise
incompatible. Also, the stems of the trees Fp(t) for t € N(n) are all in N(I) for some fixed | € w. Let
s € S(I) be arbitrary. Then s = Stem(Fp(t)) for some fixed ¢t € N(n), and so (S|s) < Fp(t), showing that
S is compatible with Fp(t). O

Lemma 3.4. Assume cf(k) = w, and let n < w. Consider any {Tg € P : 8 < k,}. Then there is some | < w,
a set S C Ky, of size ky, and an injection J : S — N(I) such that

(VB € S)J(B) € Tp.
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Proof. For each 3 < &y, let Ig < w be such that Tjg has > «,, nodes on level lg. Let [ <w and S C &,, be a
set of size K, such that (V3 € S) Iz = I; these exist because k,, is regular and w < k,,. Define the injection
J S — N(l) by mapping each element 5 of S to a node on level I of Tz which is different from the nodes
chosen so far. Then J satisfies the lemma. O

Theorem 3.5. Assume cf(k) = w. Then P satisfies the (w,v)-d.1., for all v < k.

Proof. Let B be the complete Boolean algebra associated with P. We have a dense embedding of P into B,
which maps each condition P € P to the set of all conditions @ < P. Each element of B is a downwards
closed subset of P. We shall show that for each n < w, the (w, Ky, )-d.1. holds in B.

Let n < w be fixed. For each m < w, let (ay, 4 € B : v < k,,) be a maximal antichain in B. For each
m < w, the set (J{am,y : v < K, } is dense in P. To show that the specified distributive law holds, fix a
non-zero element b € B. We must find a function h € “«,, such that

b A /\ G, h(m) > 0.

m<w

It suffices to show that for some Q) € b, there is a function h € “k,, such that
(Vm < w) Q € pm p(m)-
Fix any P € b. First, we will construct a stable tree system (Fy, Fp) with the property that
(Vm < w)(Vt € N(m))(Ty < kn) Fp(t) € tm 5.

By Lemma 3.2, it suffices to define a weak stable tree system with this property. To define (Fy, Fp), first
let F(0) be 0 and Fp(0) < P be a member of ag, for some v < £,. Suppose that t € N and both Fy(t)
and Fp(t) have been defined. Suppose t is on level m of N. Note that Succy(t) = {t ™8 : 8 < km }. For each
B < Km, let Py ) be an element of a1, for some v < r,. We may apply Lemma 3.4 to get injections
Nt : Sucey (t) = Ky and Jy : Sucen (t) — N(I;) for some Iy < w such that (Vs € Succen(t)) Ji(s) € Py, (s))-
For each s € Succ(t), define Fiy(s) := Ji(s) and Fp(s) := Py p,(s))|Fn(8). Note that each Fp(s) is in @41,
for some vy < K. Also, since the nodes Fiy(s) 2 Fi(¢) for s € Succ(t) are pairwise incompatible, each Fi(s)
must be a proper extension of Fiy(t). This completes the definition of (Fi, Fp).

Let ¥ : N — ky be the function such that for each m < w and t € N(m), ¥(t) = v < Ky, is the
unique ordinal such that Fp(t) € a,, 4. Using the notation and result in Lemma 2.28, there is some h € “k,,
such that C} includes a non-empty perfect set. Fix such an h, and let H < N be a perfect tree such that
[H] C C},. We have

(Vm < w)(Vt S H(m)) Fp (t) € Qm,h(m)-

Let @Q € P be the set

Q= () U{Fe(t) :t € Hm)}.
m<w
It is immediate that @ C P, because Fp () = P. By Lemma 3.3, Q € P. Thus, Q < P.
Now fix an arbitrary m < w. We will show that Q € @, j(m), and this will complete the proof. It suffices
to show that for every v # h(m) and every R € a,, , we have |[Q] N [R]| < k“, as this will imply there is
no non-empty perfect subset of their intersection.
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Fix such v and R. We have Q < |J{Fp(t): t € H(m)}. In fact,

Q) < J{[Fp ()] : t € H(m)}.

Hence,

[QIn[R] < (J{[FeIN[R]: t € H(m)}.

However, fix some Fp(t) for t € H(m). The conditions R € a,, , and Fp(t) € @y, p(m) are incompatible, so
the closed set [Fg(t)] N [R] must have size < x by Corollary 2.19. We now have that [Q] N [R] is a subset of
a size < k union of size < k sets. Thus, |[Q] N [R]| < k < k*, implying that the (w, k,)-d.l. holds in B. O

Question 3.6. For cf(x) > w and v < k, does P satisfy the (cf(k),v)-d.1.7
3.2. (w, 00, < K)-distributivity

The next theorem we will prove will generalize the fact that P satisfies the (w, s, < k)-d.l. (assuming
cf(k) = w). The proof does not work for the cf(x) > w case. We could get the proof to work as long as we
modified the forcing so that fusion holds for sequences of length cf(x). However, all such modifications we
have tried cause important earlier theorems in this paper to fail.

Definition 3.7. Assume cf(k) = w. A fusion sequence is a sequence of conditions (7}, € P : n < w) such that
To > T > ... and there exists a sequence of sets (S, C T;, : n < w) such that for each n < w, each t € S,
has > k,, successors in T;,, which are in T}, for every m > n, and each successor of ¢ in T}, has an extension
in Sn+1-

Lemma 3.8. Let (T, € P : n < w) be a fusion sequence and define T,, := (¢, Tn. Then T, € P and
(Vn <w)T, <T,.

Proof. This is a standard argument. O
The following theorem shows that P has a property very similar to the Sacks property.

Theorem 3.9. Assume cf(k) = w. Let p : w — (k—{0}) be any non-decreasing function such that
lim,_, u(n) = k. Let A = k*. Let T € P and g be such that T I+ ¢ : w — X. Then there is some
Q < T and a function f with domain w such that for each n € w, |f(n)| < p(n) and Q IF §(n) € f().

Proof. We will define a decreasing (with respect to inclusion) sequence of trees (T, € P : n € w) such
that some subsequence of this is a fusion sequence. The condition ) will be the intersection of the fusion
sequence. At the same time, we will define f. For each n € w we will also define a set S;, C T}, such that
every child (in T},) of every node in S,, will be in each tree T, for m > n. Each node in T;, will be comparable
to some node in S,,. Also, we will have |S,,| < pu(n) and each ¢t € S, will have < u(n) children in T,,. Each
element of S, 11 will properly extend some element of 5,,, and each element of S,, will be properly extended
by some element of S, 1.

Let Sy consist of a single node ¢ of T that has > kg children. Let T/ C T be a subtree such that ¢ is
the stem of 7" and ¢ has exactly min{xo, #(0)} children. For each ~ such that t™v € T”, let Uy~ be a
subtree of T|t™ such that U;~., decides the value of §(0). Let T be the union of these U;~., trees. The
condition Ty allows for only < 1(0) possible values for ¢(0). Define f(0) to be the set of these values. We
have Ty IF §(0) € f(0). Also, |So| = 1 and the unique node in Sy has < x(0) children in Tp, so | £(0)| < (0).
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Now fix n > 0 and suppose we have defined Ty, ..., T,,_1. For each child ¢t € T,,_; of a node in S,,_1,
pick an extension s; € T,,_1 of t that has > k,, children in T},_;. Let S,, be the set of these s; nodes. By
hypothesis, [Sp_1| < u(n—1) and each node in S,_; has < p(n—1) children in T,,_;. Thus, |S,| < p(n—1),
and so |S,| < p(n), because p(n — 1) < u(n). Let T),_; be a subtree of T;,_1 such that each s; is in T},
and each s; has exactly min{x,, p(n)} children in 7),_;. Thus, each s; € S,, has < u(n) children in T),_;.
For each s;"v in T;,_,, let Us~, be a subtree of T _;[s;"v that decides the value of (7). Let T}, be the
union of the Us~ trees. We have T;, C T! _, € T,,_1. The condition T,, allows for only u(n) possible values
for ¢(1). Define f(n) to be the set of these values. We have that |f(n)| < u(n) and T,, IF §(0) € f(0).

This completes the construction of the sequence of trees and the function f. Defining @ :=) T,, we

new
see that @ is a condition because there is a subsequence of (T}, : n € w) that is a fusion sequence satisfying
the hypothesis of the lemma above. This is true because lim,_,, u(n) = . The condition @ forces the

desired statements. O

Note that for the purpose of using the theorem above, each function y' : w — & such that lim,,_, p'(n) =
k everywhere dominates a non-decreasing function p : w — & such that lim,_,, p(n) = . Note also that
nothing would have changed in the proof if instead we had T' I+ ¢ : w — ‘7, because any name for an element
of V' can be represented by a function in V' from an antichain (which has size < k“, by Proposition 2.31) in
P to V.

Corollary 3.10. Assume cf(k) = w. Then P satisfies the
(w, 00, < K)-d.1.
4. Failures of distributive laws

This section contains two of the three failures of distributive laws proved in this paper. Here, we assume
Convention 2.1 and Assumption 2.2, and do not place any restrictions on the cofinality of x. Theorems 4.1
and 4.6 were proved by Prikry in the late 1960’s (previously unpublished) for the case when cf(x) = w, and
here they are seen to easily generalize to k of any cofinality.

4.1. Failure of (cf(K), K, kn)-distributivity

We point out that when cf(k) = w, the (w, K, < k)-d.l. holding in P follows from the fact that P satisfies
the (w,w)-d.l. However, if we replace the third parameter < x with a fixed cardinal v < k, the associated
distributive law fails. This is true in the cf(x) > w case as well.

Theorem 4.1. For each v < k, the (cf(k), k,v)-d.1. fails for P.

Proof. Tt suffices to show that for each « < cf(k), the (cf(k), K, ko )-d.1. fails in P. Note that a maximal
antichain of P corresponds to a maximal antichain of the regular open completion of P, via mapping P € P
to the regular open set {Q € P : Q < P}. Let a < cf(x), and let Ag := {(N|t) : t € N(B8)} for each
B < cf(k). Each Ag is a maximal antichain in P. For each 8 < cf(k), let Sg C Ag have size < kq. Let
H C N be the set of ¢ such that N|t € Sg for some (. Since each Sg has size < k,, each level of H has
size < kq. This implies that H has at most k% < & paths, and so [H] cannot include a non-empty perfect
subset. By the definitions, we have

H= () JSs

B<cf(k)
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Since the left hand side of the equation above cannot include a perfect tree, neither can the right hand side.
Hence, the collection Ag, 8 < cf(k), witnesses the failure of (cf(k), K, ko )-distributivity in P. 0O

We point out that the previous theorem is stated in Theorem 4 (2) of [13]. The proof there, though, is
not obviously complete, and for the sake of the literature and of full generality, the proof has been included
here.

4.2. Failure of (9,00, < k)-distributivity
Definition 4.2. Given functions f, g : cf(k) — cf(k), we write f <* g and say g eventually dominates f iff

{a <cf(r) : fla) > g(a)}

is bounded below cf(x). Let d(cf(x)) be the smallest size of a family of functions from cf(x) to cf(x) such
that each function from cf(x) to cf(k) is eventually dominated by a member of this family.

Definition 4.3. Let D be the collection of all functions f from cf(x) to cf(x) such that f is non-decreasing
and

lim f(a) = cf(k).

a—cf(k)

We call a subset of D a dominated-by family iff given any function g € D, some function in the family is
eventually dominated by g.

The smallest size of a dominated-by family if 9(x). We will prove the direction that for every dominating
family, there is a dominated-by family of the same size. The other direction is similar. Let F be a dominating
family. Without loss of generality, each f € F is strictly increasing. Let F' := {f’ : f € F}, where each f’
is a non-decreasing function that extends the partial function {(y,z) : (z,y) € f}. Since F is a dominating
family, it can be shown that F’ is a dominated-by family.

Definition 4.4. Given f € D, we say that a perfect tree T' € P obeys f iff for each a < cf(k), the a-th level
of T has < Kf(a) Nodes in T'.

Lemma 4.5. Let A = 3(cf(x)) and G = {g, € D : v < A} be a dominated-by family. Then there is some
0 < cf(k) such that

(Vo < cf(k))(Fy € ) gy(a) < 6.
Proof. Assume there is no such ¢ < cf(k). For each 0 < cf(k), let a5 < cf(k) be the least ordinal such that
(Vy < A) gy(as) > 6.
It must be that §; < d2 implies a5, < as,. Now, the limit

= 1l
e R
cannot be less than cf(k). To see why, suppose p < cf(x). Consider go. The function go | (¢ + 1) must be
bounded below cf(k), since cf(x) is regular. Let ¢ be such a bound. Since oy < p and g is non-decreasing,
we have go(as) < g(u) < §, which contradicts the definition of as.
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We have now shown that p = cf(k). The partial function as — 0 may not be well-defined. To fix this
problem, for each a which equals ays for at least one value of §, pick the least such §. Let A C cf(k) be the
cofinal set of such § values picked. This results in a well-defined partial function which is non-decreasing.
Let f € D be an extension of this partial function. Since G is a dominated-by family, fix some ~ such that
[ dominates g,. Now, let 6 € A be such that g,(as) < f(as). Since f(as) = 9, we get that g,(as) < 9,
which contradicts the definition of as. O

Theorem 4.6. The (d(cf(x)), 00, < K)-d.1. fails for P.

Proof. Let A = 0(cf(x)). Let {f, € D : v < A} be a set which forms a dominated-by family. For each v < A,
let A, C P be a maximal antichain in P with the property that for each T € A,, T obeys f,. Note that
each A, has size < k(%) = |P|.

For each v < A, let B, C A, be some set of size strictly less than k. Let v : P — B be the standard
embedding of P into its completion. We claim that

N V{uT):TeB,} =0,

y<A

which will prove the theorem. To prove this claim, for each v < A let

T, = UB“Y‘

The claim will be proved once we show that T := 4<x Iy does not include a perfect tree. It suffices to find
some § < cf(x) such that there is a cofinal set of levels of T that each have < s nodes.
Since cf(k) < A are both regular cardinals, fix a set K C cf(k) of size cf(k) and some 0 < cf(k) such that

|By| < ks for each v € K. Given v € K, define g, € D to be the function

9,(a) := max{f, (a), ).

As |B,| < ks and (YT € B,) T obeys f,, it follows that 7., = |J B, obeys g,. Thus, by the definition of 7,
it suffices to find a cofinal set L C cf(x) and for each | € L an ordinal 7; € K such that g,,(I) < §. This,
however, follows from Lemma 4.5. O

For cf(k) = w, assuming the Continuum Hypothesis and that 2% = k*, Theorem 4 (4) of [13] states that
for all w < A < k7, the (w1, A, < A)-d.L fails in P. Under these assumptions, that theorem of Namba implies
Theorem 4.6. We have included our proof as it is simpler and the result is more general than that in [13].

5. P(w)/fin and b

In this section, we show that the Boolean algebra P(w)/fin completely embeds into B. Similar reasoning
shows that the forcing P collapses the cardinal k“ to the distributivity number h. It will follow that the
(b, 2)-distributive law fails in B; hence assuming the Continuum Hypothesis, B does not satisfy the (w1, 2)-
d.l. Similar results were proved by Bukovsky and Copldkovéd in Section 5 of [6]. They considered perfect
trees, where there is a fixed family of countably many regular cardinals and for each cardinal k,, in the
family, their perfect trees must have cofinally many levels where the branching has size k,; similarly for
their family of Namba forcings.

Recall that the regular open completion of a poset is the collection of regular open subsets of the poset
ordered by inclusion. For simplicity, we will work with the poset P’ of conditions in P that are in strong
splitting formal form. P’ forms a dense subset of P, so P’ and P have isomorphic regular open completions.
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For this section, let B’ denote the regular open completion of P’ (and B is the regular open completion of
P). Recall the following definition:

Definition 5.1. Let S and T be complete Boolean algebras. A function i : S — T is a complete embedding
iff the following are satisfied:

1) (Vs,s' € ST)s' <s=i(s) <i(s);
2) (Vs1,82 € ST) 51 L so & i(s1) L i(s2);
3) (Vte TH)(Fs e ST)(Vs' € ST)s' < s =i(s)|[t.

If i : S — T is a complete embedding, then if G is T-generic over V, then there is some H € V[G] that
is S-generic over V.

Definition 5.2. Given T € P, Split(T") C w is the set of I € w such that T has a splitting node on level [.
Theorem 5.3. There is a complete embedding of P(w)/fin into B.

Proof. It suffices to show there is a complete embedding of P(w)/fin into B’. For each X € [w]*, define
Sx € B’ to be Sx :={T € P’ : Split(T) C* X} Note that X =* X’ implies Sx = Sx-. Define i : [w]* — P’
to be i(X) := Sx. This induces a map from P(w)/fin to B’. We will show this is a complete embedding.

First, we must establish that each Sx is indeed in B’. Temporarily fix X € [w]“. We must show that
Sx C P’ is a regular open subset of P’. First, it is clear that Sx is closed downwards. Second, consider any
T, ¢ Sx. By definition, |Split(7}) — X| = w. By the nature of strong splitting normal form, there is some
T> < Ty in P’ such that Split(72) = Split(T1) — X. We see that for each T3 < Ty in P/, T3 ¢ Sx. Thus, Sx
is a regular open set.

We will now show that ¢ induces a complete embedding. To show 1) of Definition 5.1, suppose Y C* X
are in [w]*. If T € Sy, then Split(T) C* Y, so Split(7") C* X, which means T' € Sx. Thus, Sy C Sx, so 1)
is established.

To show 2) of the definition, suppose X, Y € [w]¥ but X NY is finite. Suppose, towards a contradiction,
that there is some T' € Sx N Sy. Then Split(T) C* X and Split(T) C* Y, so Split(T) C* X NY, which is
impossible because Split(T') is infinite.

To show 3) of the definition, fix T} € P. Let X := Split(71). We will show that for each infinite ¥ C* X,
there is an extension of 77 in Sy. Fix an infinite Y C* X. By the nature of strong splitting normal form,
there is some T5 < T such that Split(75) = Y N X. Thus, T € Sy. This completes the proof. O

Corollary 5.4. Forcing with P adds a selective ultrafilter on w.
Proof. Forcing with P(w)/fin adds a selective ultrafilter. O

Definition 5.5. The distributivity number, denoted b, is the smallest ordinal A such that the (A, co0)-d.l. fails
for P(w)/fin.

We have that w; < h < 2. The (h,2)-d.l. in fact fails for P(w)/fin. Thus, forcing with P adds a new
subset of f. Tt is also well-known (see [3]) that forcing with P(w)/fin adds a surjection from b to 2¢. Thus,
forcing with P collapses 2% to h. We will now see that many more cardinals get collapsed to b.

Definition 5.6. A family H C [w]® is called almost disjoint iff the intersection of any two elements of H is
finite. A family H C [w]* is called mad (maximally almost disjoint) iff # is almost disjoint and there is no
almost disjoint family H' such that H C H' C [w]“.
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Definition 5.7. A base matriz tree is a collection {H, : a < b} of mad families H,, C [w]* such that U, Ha
is dense in [w]¥ with respect to almost inclusion.

Balcar, Pelant and Simon proved in [2] that a base matrix for P(w)/fin exists, assuming only ZFC.
The following lemma and theorem use ideas from the proof of Theorem 5.1 in [6], in which Bukovsky and
Coplakova prove that their perfect tree forcings, described above, collapses k* to b, assuming 2% = k.

Lemma 5.8. There exists a family {A, C P : o < b} of mazimal antichains such that |J,_, Aq is dense in

= a<h
P.

Proof. Let {H, C [w]“ : @ < b} be a base matrix tree. For an infinite A C w, let P4 := {T" € P : Split(T) C
A}. For an infinite A C w, we may easily construct an antichain B4 C P4 whose downward closure is dense
in P4. Now temporarily fix o < b. For distinct Ay, As € H,, the elements of By, are incompatible with the
elements of B4,, because if T1 € B4, and T5 € Ba,, then Split(Ty) C* A; and Split(T2) C* A, so T} and
Ty cannot have a common extension because A; N A, is finite.

For each a < b, define A, = |J{Ba : A € H,}. Temporarily fix a < h. We will show that A, is
maximal. Consider any 7' € P. We will show that some extension of T' is compatible with an element of
Aq. Let T < T be such that Split(7”) C A for some fixed A € H,. If there was no such A, then Split(T)
would witness that H,, is not a mad family. Hence, T” € P4. Since the downward closure of B4 is dense in
P4, we have that 77 (and hence T) is compatible with some element of B4 C A,.

We will now show that (J, A is dense in P. Fix any T € P. Let A € {J,, Ha be such that
A C* Split(T). Let T" < T be such that Split(7”) € AN Split(T), and let S € B4 be such that S < 7.
Then S < T, and we are finished. O

Theorem 5.9. The forcing P collapses k* to .

Proof. We work in the generic extension. Let G be the generic filter. By the previous lemma, let {4, C P :
a < b} be a collection of maximal antichains such that |J,, <p Aa is dense in P. For each T' € U, <p Aa, let
Fr : k¥ — P be an injection such that {Fp(f5) : f < ¥} is a maximal antichain below T' (which exists by
Lemma 2.31). Consider the function f : h — k“ defined by

fla) =8 (FTeP)T € A,NG and Fr(B) € G.

This is indeed a function because for each «, there is at most one T in A, N G, and there is at most one
B < k¥ such that Fr(8) € G.

To show that f surjects onto x¥, fix 8 < k¥. We will find an « < b such that f(a) = g. It suffices to
show that

{Fr(p): T e | Ad}

a<b

is dense in P. To show this, fix S € P. Since Ua<h A, is dense in P, fix some o < h and T' € A, such that
T < S. We have Fr(8) <T,so Fr(8) < S and we are done. O

6. Minimality of w-sequences
For the entire section, we will assume cf(k) = w. Sacks forcing was the first forcing shown to add a

minimal degree of constructibility. In [15], Sacks proved that given a generic filter G for the perfect tree
forcing on <“2, each real r : w — 2 in V[G] which is not in V' can be used to reconstruct the generic filter
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G. A forcing adds a minimal degree of constructibility if whenever A is a name forced by a condition p to
be a function from an ordinal to 2, then p I+ (A € V or G € V(A)), where G is the name for the generic
filter and 1 I- V(A) is the smallest inner model M such that V C M and A € M.

One may also ask whether the generic extension is minimal with respect to adding new sequences from w
to a given cardinal. Abraham [1] and Prikry proved that the perfect tree forcings and the version of Namba
forcing involving subtrees of <“w; thus adding an unbounded function from w into w; are minimal, assuming
V = L (see Section 6 of [6]). Carlson, Kunen and Miller showed this to be the case assuming Martin’s Axiom
and the negation of the Continuum Hypothesis in [7]. The question of minimality was investigated generally
for two models of ZFC M C N (not necessarily forcing extensions) when N contains a new subset of a
cardinal regular in M in Section 1 of [6]. In Section 6 of that paper, Bukovsky and Copldkova proved that
their families of perfect tree and generalized Namba forcings are minimal with respect to adding new w-
sequences of ordinals, but do not produce minimal generic extensions, since P(w)/fin completely embeds
into their forcings.

Brown and Groszek investigated the question of minimality of forcing extensions was investigated for
forcing posets consisting of superperfect subtrees of <*x, where 1) s is an uncountable regular cardinal, 2)
splitting along any branch forms a club set of levels, 3) and whenever a node splits, its immediate successors
are in some k-complete, nonprincipal normal filter. In [4], they proved that this forcing adds a generic of
minimal degree if and only if the filter is xk-saturated.

In this section, we show that, assuming that x is a limit of measurable cardinals, P is minimal with
respect to w-sequences, meaning if p I A : w — V, then (p - A € V or G € V(A)). P does not add a
minimal degree of constructibility, since P(w)/fin completely embeds into B, and that intermediate model
has no new w-sequences.

The proof that Sacks forcing S is minimal follows once we observe that given an ordinal «, a name A
such that p IF A € %2 — V, and two conditions p1, P2, there are pi < p; and p)j < py that decide A to
extend incompatible sequences in V. After this observation, given any condition p € S, we can extend p
using fusion to get ¢ < p so that which branch the generic is through ¢ can be recovered by knowing which
initial segments (in V') the sequence A extends. This is because every child of a splitting node in ¢ has been
tagged with a sequence in V', and no two children of a splitting node are tagged with compatible sequences.

In Sacks forcing S, every node has at most 2 children. In our forcing P (assuming cf(x) = w), for each
n < w there must be some nodes that have > k,, children. To make the proof work for P, we would like
that whenever n < w and (p, € P : v < k,) is a sequence of conditions each forcing A to be in ¥2 — V,
then there exists a set of pairwise incompatible sequences {s, € <2 : v < k,} and a set of conditions
{Pl, < py v < kn} such that (Vy < k,)pl, IF 5, C A. However, suppose 1 |F A € 912, 2<91 = 2% < f,
and kg is a measurable cardinal as witnessed by some normal measure. Then there is a measure one set of
v € Ko such that the s, are all the same.

Thus, when we shrink a tree to try to assign tags to its nodes, there seems to be the possibility that
we can shrink it further to cause the resulting tags to give us no information. There is a special case: if
1FA:w—Vandll-A ¢ V, then it is impossible to perform fusion to decide more and more of A while
at the same time shrinking to get tags that are identical for each stage of the fusion. The intersection of
the fusion sequence would be a condition @ such that Q I+ A e 17, which would be a contradiction. The
actual proof by contradiction uses a thinning procedure more complicated than ordinary fusion. Our proof
will make the special assumption that x is a limit of measurable cardinals to perform the thinning.

When we say “thin the tree T, it is understood that we mean get a subtree T” of T that is still perfect,
and replace T with T'. When we say “thin the tree T below ¢t € T”, we mean thin T'|t to get some T”, and
then replace T by 7" U {s € T : s is incompatible with ¢}.

Definition 6.1. Fix a name A such that 1p IF A : w — V and 1p IF A ¢ V. For each condition T' € P, let
P : T — <V be the function which assigns to each node ¢t € T the longest sequence s = v (t) such that
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(T|t) I A 3 5. Call a splitting node ¢ € T a red node of T iff the sequences 17 (c) for ¢ € Succr(t) are all
the same. Call a splitting node ¢t € T a blue node of T iff the sequences 1 (c) for ¢ € Sucer(t) are pairwise
incomparable, where we say two sequences are incomparable iff neither is an end extension of the other.

Although 1 and the notions of a red and blue node depend on the name A, in practice there will be no
confusion. Note that being blue is preserved when we pass to a stronger condition but being red may not
be. For the sake of analyzing the minimality of P with respect to w-sequences, we want to be able to shrink
any perfect tree T to get some perfect 7/ < T whose splitting nodes are all blue:

Lemma 6.2 (Blue coding). Let T € P, A, and o € Ord be such that T IF (A: & — V) and T IF A ¢ V.
Suppose the following are satisfied:

1) T is in weak splitting normal form.
2) Each splitting node of T is a blue node of T.

Then T I+ G € V(A), where G is the generic filter.

Proof. Unlike almost every other proof in this paper, we will work in the extension. Let G be the generic
filter, g := NG, Ve be the ground model, and A be the interpretation of the name A. It suffices to prove
how ¢ can be constructed from Ag and Ver. We have that g is a path through T. Let t; be the stem of
T. Now g must extend one of the children of ¢y in T'. Because ¢y is blue in 7', this child ¢ can be defined
as the unique ¢ € Succy(ty) satisfying 17 (c) E Ag. Call this child ¢o. Now let ¢; be the unique minimal
extension of ¢ that is splitting. In the same way, we can define the ¢ € Sucer(t1) that g extends as the
unique child ¢ that satisfies ¥ (c) C Ag. Call this child ¢;. We can continue like this, and the sequence
co C ¢1 C ¢ C ... is constructible from VG and Ag. Since g is the unique path that extends each ¢;, we
have that g is constructible from Vi and Ag (and so G is as well). O

Lemma 6.3 (Blue selection). Let Ay < A2 be cardinals. Suppose there is an ultrafilter U on Ay that is uniform
and A\1-complete (which happens if Ao is a measurable cardinal and U is a normal ultrafilter on As). Let
(Sa € [Uyeoma TV s a < A) be a \i-sequence of size Ay sets of sequences, where within each S, the
sequences are pairwise incomparable. Then there is a sequence {aq € So : a < A1) such that the a, are
pairwise incomparable.

Proof. The ultrafilter & on A, induces an ultrafilter on each S, so we may freely talk about a measure one
subset of S,. Given sequences a, b, we write a||b to mean they are comparable (one is an initial segment of
the other).

Claim 1: Fix a1, as < A1. Then there is at most one a € S, such that B, := {b € Sy, : a||b} has measure
one.

Subclaim: Suppose a € S,, is such that B, has measure one. Then all elements of B, extend a. To see
why, suppose there is some b € B, which does not extend a. Then b is an initial segment of a. Let b’ be
another element of B,. Since b L V', it must be that a L ', which is a contradiction.

Towards proving Claim 1, suppose a,a’ are distinct elements of S, such that the sets B, and B, have
measure one. There must be some b € B, N B,/. We have that b extends both a and a’, which is impossible
because a L a’. This proves Claim 1.

We will now prove the theorem. For each a1, ag < A1, remove the unique element of S,, that is comparable
with measure one element of S,, (if it exists). This replaces each set S, with a new set S/,. Since A; < Ag
and the ultrafilter & on Ag is uniform, each S/, has size A2 (and is concentrated on by the ultrafilter on S,,).
Let ag be any element of Sj;. Now fix 0 < o < A1 and suppose we have chosen ag € S/g for each 8 < a. For
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each 8 < «, let Bg := {b € S, : ag||b}. Each set Bg has measure zero, and there are < A; of them. By the
A1-completeness of the ultrafilter, there must be an element of S/, not in any Bg for 5 < a. Let a, be any
such element. The sequence (aq : @ < A1) works as desired. O

The next lemma gives a flavor of how we can shrink to either get a red or a blue node.

Lemma 6.4 (Red-blue concentration). Let A\ < A2 be such that \1 is a measurable cardinal and there is a
uniform Ai-complete ultrafilter on Ay. Let T € P and t € T be the stem of T. Assume |Succy(t)| = A\1. Let
U be an ultrafilter on Sucer(t) that comes from a fized normal ultrafilter on A1 and a fized bijection between
A1 and Sucer(t). So U is A\i-complete and concentrates on Succr(t). For each ¢ € Sucerp(t), let s, J ¢
be the shortest splitting extension of ¢, and assume that in fact |Sucer(s.)| = A2 and there is a uniform
A1-complete ultrafilter U. which concentrates on Sucer(s.). Assume further that for each ¢ € Sucer(t), s
is either a red node of T or a blue node of T. Then there is a set C C Succy(t) in U and for each c € C a

tree T. C T|c such that when we define T' :=J .~ T., then exactly one of the following holds:

ceC

1) The values of Y7+ (c) for c € C are pairwise incomparable, so t is a blue node of T';

2) The values of Y1 (c) for ¢ € C are all the same, so t is a red node of T'. Also, for each ¢ € C, we have
that U, concentrates on Succr:(sc) and s is a red node of T'. This implies that 1/ (¢) is the same for
each ¢ € Sucer:(sc) and ¢ € Sucer (t).

Proof. First use the fact that U is an ultrafilter on Sucer(t) to get a set Cy C Sucer(t) in U such that the
nodes s. for ¢ € Cy are either all blue in T or all red in T.

Suppose the nodes s, (for ¢ € C') are all blue in T'. Set C' := Cy. Then use the lemma above (the Blue
Selection Lemma) to pick one child é&. of each s, (for ¢ € C) such that the resulting sequences 17 (é.) are all
pairwise incomparable. It is here that we use the fact that the ultrafilters U, are \;-complete. Now define
each T, C T'c to be T, := T|é.. Define 7" to be [ .o Te- We have 7(éc) = ¥(r)e,)(Ec) = Y, (c) = 1 (c).
Since the 17 (¢.) for ¢ € C are pairwise incomparable, then the ¥/ (c) for ¢ € C are pairwise incomparable,
so 1) holds.

Suppose now that the nodes s, (for ¢ € Cy) are all red in T'. Given ¢ € Cy, 17(¢) does not depend on which
¢ € Sucer(s.) is used, so each ¥p(¢) for ¢ € Sucer(s.) in fact equals 1 (s.). We also have 1 (s.) = r(c)
for each ¢ € Cy. We will now use the assumption that \; is a measurable cardinal. Since \; is a measurable
cardinal, if V is any normal ultrafilter on A1, then A\; — (V)3. Thus, there is a set C; C C in U such that
the sequences ¥r(c) for ¢ € C; are either all pairwise comparable or all pairwise incomparable.

Case 1: If they are all pairwise comparable, then because they might have different lengths, use the wi-
completeness of U to get a set Co C C; in U such that the ¢r(c) for ¢ € Cy are identical (by getting them
to have the same lengths). Set C' := Cy and set each T, C T'|c to be T, := T'|c (no thinning of the subtrees
is necessary). We have that 2) holds.

Case 2: If they are pairwise incomparable, then set C':= Cy and set each T, C T'|c to be T, := T|c (no
thinning of subtrees is necessary). We have that 1) holds. O

We are now ready for the fundamental lemma needed to analyze the minimality of P (for functions with
domain w).

Lemma 6.5 (Blue production for A : w — V). Assume cf(r) = w. Fiz n < w. Suppose kyp < kni1 < ... are
all measurable cardinals. Let T € P with stem s € T. Let A be such that TIF A:w —V and T I+ A ¢ V.
Suppose s has exactly k, children in T. Then there is some perfect W C T such that s has K, children in
W and s is blue in W.
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Proof. To prove this result, we will frequently pick some node in a tree and fix an ultrafilter which concen-
trates on the set of its children in that tree. When we shrink the tree further, we will ensure that as long as
the node has > 1 child, then the ultrafilter will still concentrate on the set of its children. To index this, we
will have partial functions which map nodes to ultrafilters. We will start with the empty partial function.
Once we attach an ultrafilter to a node, will never attach a different ultrafilter to the same node later.

We will define a (partial) function ® recursively. As input it will take in a tuple (Q,t, U,m, k), and as
output it will return (Q’,Z]’>. Q D Q' are perfect trees. Y C U’ are partial functions, mapping nodes to
ultrafilters. m and k are both numbers < w. ) has stem ¢ (passing the stem ¢ to the function ® is redundant,
but we do it for emphasis). The node t € @ has at least ,, children in @, it is in @', and it has exactly
fim children in Q'. Moreover, t € Dom(U’) and U (t) concentrates on Succg (t). The number k is how many
remaining recursive steps to take. Finally, one of the following holds (note the additional purpose of m and
k):

1) tis blue in @', or
2) tisred in Q" and Dom(¢q(t)) > m + k.

That is, if ¢ is red in @', then at least the first m + k values of A are decided by (Q'[t) = Q'. We will now
define ® recursively on k:

o(Q, t,ﬁ, m, 0): First, remove children of ¢ so that in the resulting tree Qo C Q, t has ezactly Kk, children.
If this is impossible, then the function is being used incorrectly, so leave the function undefined on this input.
At this point, we should have ¢ ¢ Dom(lf), otherwise the function is being used incorrectly. Let U be a
km-complete ultrafilter on Succg, (t) that is induced by a normal ultrafilter on «,, and a bijection between
Succg, (t) and K,,. Attach this ultrafilter to ¢ by defining U =uu{(t,u)}.

We now must define @' C Q. For each ¢ € Succg, (t), let U, C Qo|c be some condition which decides at
least the first m + 0 values of A. Let Q1 := |J, Ue.. We have Q1 C Qq. Of course, Succg, (t) = Succg, ().
Consider the coloring b : [Succg, (t)]> — 2 defined by b(cy,c2) = 1 iff ¥g, (c1) and 9o, (c2) are comparable,
and b(cy, c2) = 0 otherwise. Since the ultrafilter ¢ which concentrates on Succg, (¢) is induced by a normal
ultrafilter on k,,, fix a set Cy C Succg, (t) in U that will homogenize the coloring b. Hence the sequences
1Yo, () for ¢ € Cy are either pairwise incomparable or pairwise comparable.

Let @2 C @1 be the tree obtained by only removing the children of ¢ that are not in Cjy. If the sequences
Yo, (c) =Yg, (¢) for ¢ € Cy are pairwise incomparable, then we are done by defining Q' := Q2 (¢ is blue
in @Q2). If not, then apply the pigeon hole principle for w;-complete ultrafilters to get a set C; C Cy in U
such that all ¥, (c) sequences for ¢ € C are the same. Let Q3 C Q2 be the tree obtained from Q2 by only
removing the children of ¢ that are not in Cy. We are done by defining Q' := Q3 (¢ is red in Q3 and Q3
decides at least the first m + 0 values of A).

?(Q, t,ﬁ, m, k + 1): It must be that ¢ has k,, children in @, otherwise the function is being used incor-

rectly. Also, it must be that ¢ € Dom(Zf) and U(t) concentrates on Succe(t).

Temporarily fix a ¢ € Succg(t). Let s, J ¢ be a minimal extension in ¢ with > £,,41 children (if £ > 0, by
the way the function is used, the node s. will be unique). Let U, := Q|s.. Let (UC’,L_{;> = (U, se, U, m+1, k).
We have that s, € Dom(ﬁc) and ﬁc(sc) is a Kpp1-complete ultrafilter that concentrates on the size K41

set of children of s, in U.. Also, s, is either a blue node of U/, or it is a red node of U! and U/ decides at
least the first (m + 1) + k elements of A. Now unfix ¢. Define U’ := U. U,. Let Qo := U. Ul CQ.

Use the fact that Z4(¢) is an ultrafilter that concentrates on Succg, (t) to get a set Cp C Succg, () in Ult)
such that the nodes s, for ¢ € Cy are either all red in @y or all blue in Q. We will break into cases.

Case 1: First, consider the case that the nodes s, for ¢ € Cy are all blue in Q. Use Lemma 6.3 (Blue
Selection) to get, for each ¢ € Cy, a node & € Succg,(s.) such that the sequences ¢, (¢.) are pairwise
incomparable. Note that for each ¢ € Co, Vg, |z, (c) = ¥q,(Cc). Let Q1 :=J (Qoléc) C Qo. We have that
t is a blue node of Q1. Defining Q' := @1, we are done.

ceCy
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Case 2: The other case is that the nodes s. for ¢ € Cj are all red. Let b : [Cp]> — 2 be the coloring
defined by b(ci,c2) = 1 iff g, (c1) and g, (c2) are comparable, and b(c1,c2) = 1 otherwise. Since the
ultrafilter (t) which concentrates on C is induced by a normal ultrafilter on k., fix a set C7; C Cp in U (t)
that will homogenize the coloring b. Hence the sequences g, (c) for ¢ € C are either all comparable or all
incomparable.

If they are pairwise incomparable, then define Q' := (J.c¢, (Qolc) € Qo. The node ¢ is blue in @', and we
are done. If they are pairwise comparable, then use the fact that U (t) is wy-complete to get a set Cy C C4
in 24(t) such that the sequences g, (c) for ¢ € Cy are all the same (by getting the sequences g, (c) to have
the same length, we get them to be identical). Define Q' := | ., (Qolc) € Qo. We have that ¢ is red in
Q@'. From our definition of a red node, since each s. is a red node of @', it follows that for each ¢ € Co and
each ¢ € Succg (s.), we have Yo (c) = ¥g/(c’). We said earlier that U, decides at least the first m+ (k+ 1)
elements of A. Thus, @’ itself decides at least the first m + (k+1) values of A. This completes the definition
of ®.

With @ defined, we will prove the lemma. Let <T0,ﬁ0> = ®(T,s,0,n,0). If s is blue in Ty, we are
done by setting W := Tp. If not, then (Ty|s) = Tp decides at least the first n values of A. Next, let
(Tl,Z/_ﬁ) = @(To,s,do,n, 1). If s is blue in Ty, we are done by setting W := Tj. If not, then (T3|s) = T}
decides at least the first n + 1 values of A. Next, let (Tg,ﬁ2> = O(Ty, s, Uy, n, 2), etc.

We claim that this procedure eventually terminates. If not, then we have produced the sequences Ty 2
Ty 2 Ty D ... (which is probably not a fusion sequence) and Uy CU; CUy C ... Let T, := Nico, Ti- If we
can show that 7}, contains a perfect tree T, then we will have that T decides at least the first & values of
A for every k < w, which implies T'IF A € ‘7, which is a contradiction.

First note that the stem s of T satisfies s € Dom(Uy) and s has Uy(s) many children in each tree T;.
Using the wi-completeness of Z]o(s)7 s has Z]o(s) many children in 7,,, so in particular it has x,, children in
T..

Now temporarily fix ¢ € Succr, (s). Let s, be the minimal extension of ¢ in 737 that has > k,,41 children.
Now s, will never become a blue node in T; for any ¢ > 1, because otherwise because s remains red we
would have that s. would get removed at some point and hence ¢ would get removed, contradicting that
¢ € Succr, (s). We can see by the ways trees are shrunk in the definition of ® that the following holds:
Z]l(sc) is defined and for each ¢ > 1, s. is in each T; and s. has Z]l(sc) many children in T;. So by the
wi-completeness of Z]l(sc), S¢ has Kky41 children in T,,.

Continuing like this, here is the general pattern. We let Sg = {s}. Then, for i € w having defined S;, we
define S; ;1 as follows: a node ¢ is in S; 1 iff it is the minimal extension of a node in

U{SuccTw (t):teS;}

that has ki1 children in Tj,;. Let T be the set of all initial segments of nodes in \U; Si- One can check
that T is a perfect subtree of T,,. In fact, T=T, O

Theorem 6.6. Assume cf(k) = w. Suppose the cardinals kg < k1 < ... are all measurable. Fiz a condition
T € P. Let A be a name such that TIF (A:w — V) and T I (A ¢ V). Let G be a name for the generic
object. Then Tl G € V(A).

Proof. It suffices to find a condition 77 < T satisfying the hypotheses of Lemma 6.2 (Blue Coding). We will
construct 7" by performing fusion.

Let Ty < T be such that the stem ¢y € T} is O-splitting. Apply Lemma 6.5 (Blue Production) to the tree
Ty and the node ty € Ty to get Té < Tj. Now tgy is blue and 0-splitting in Té. Hence, the unique 0-splitting
node of Té is blue. Define T := Té, the first element of our fusion sequence.
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Now, fix any ¢ € Sucer, (tg). Let T, < (Tp|c) be such that there is a (unique) 1-splitting node t. J ¢ in
T.. Apply Lemma 6.5 (Blue Production) to the tree T, and the node t. to get T\ < T.. Now t. is blue and
1-splitting in T7/. Unfixing ¢, let us define T7 := [ J{T}. : ¢ € Succ(T},tp)}. We have T < Tj, every child of ¢y
is in 77 (so in particular it is O-splitting), and every 1-splitting node of T3 is blue.

We may continue like this to get the fusion sequence Ty D 17 D Tb D .... Define T’ to be the intersection
of this sequence. We have that T” is in weak splitting normal form (every node with > 1 child is n-splitting
for some n). Since being blue is preserved when we pass to a stronger condition, every splitting node of T”
is blue. We may now apply Lemma 6.2 (Blue Coding), and the theorem is finished. O

So P is minimal with respect to w-sequences of ordinals, but by what we found earlier it is not minimal:
Corollary 6.7. The forcing P does not add a minimal degree of constructibility.

Proof. Let B be the regular open completion of P. In the previous section, we showed that there is a
complete embedding of P(w)/fin into B. Let G be generic for P over V. Let H € V[G] be generic for
P(w)/fin over V. Since P(w)/fin is countably complete, it does not add any new w-sequences, so G ¢ V[H]|.
On the other hand, we have H ¢ V. Thus, V C V[H] C VI[G], so the forcing is not minimal. O

7. Uncountable height counterexample and open problems

To conclude the paper, we present an example of what can go wrong when one tries to generalize some
of the results in the previous sections to singular cardinals x with uncountable cofinality.
Assuming cf(k) > w, we will first construct a pre-perfect tree 7' C N such that [T has size k.

Lemma 7.1. Let g : Ord — 2 be a function. Given an ordinal vy, let

Sgiy =={a <7y:g(a) =1}.

Let @, be the statement that for each limit ordinal o < vy, g equals 0 for a final segment of . Let @, be
the analogous statement but for all o < ~y. The following hold:

1) If @, then Sqp is finite.
2) If & and cf(y) # w, then Sqp is finite.
3) If ., then Sy is countable.

Proof. We can prove these by induction on ~. If v = 0, there is nothing to do. Now assume that v is a
successor ordinal. If we assume ®..,, then ®,_; is true so by the inductive hypothesis and the fact that

ISgiy| < 1Sgr(v—1)| + 1,

Sg1y is finite.
Now assume that cf(y) = w. Let (7, : n € w) be a sequence cofinal in v. Note that

Sgiy = U Sgtvn = Sglye U U (Sgwnﬂ - ng)-

new new

Thus, if we assume ® ., then ®., holds for each n, so by the induction hypothesis each Sy}, is finite, so Sq},
is countable. If additionally we assume ®,,, then it must be that all but finitely many of the Sy, ., — Sgt,,
are empty, so Sq}4 is finite.
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Finally, assume cf(y) > w and ®,. For each limit ordinal a < 7, let f(a) < a be such that g is 0 from
f(a) to a. By Fodor’s Lemma, fix some 8 < v such that f=*({8}) C « is a stationary subset of . Since
f7H({B}) is cofinal in v, we see that g is 0 from g := min f~1({8}) to v. Thus, Sy, = Sy1u. The set Sgp,
is finite because of ®, and the induction hypothesis, so we are done. O

We can now get the desired counterexample:

Counterexample 7.2. Assume cf(k) > w. There is a pre-perfect tree T C N such that [T] has size k, and
hence [T is not perfect.

Proof. We will define T' C N. Define the a-th level of T as follows:

1) if & = 0, then the level consists of only the root .

2) If « = B+ 1, then a node is in the a-th level of T iff it is the successor in N of a node in the S-th level
of T.

3) If v is a limit ordinal, then a node t is in the a-th level of T iff every proper initial segment of ¢ is in T’
and ¢(8) = 0 for a final segment of 8’s less than a.

First, let us verify that T is non-stopping. Consider any node ¢t € T. Let f € X be the unique function that
extends ¢ such that f(a) =0 for all & in Dom(f) — Dom(¢). We see that f is a path through 7.
We will now show that [T] has size < k. Consider any f € [T]. Let g : cf(k) — 2 be the function

a(a) = {0 if f(a) =0,

1 otherwise.

By the definition of T" and the lemma above, it must be that {a < cf(k) : g(a) = 1} is finite. Recall that
for each o < cf(k), there are at most x, possible values for f(«). Now, a simple computation shows that
there are at most x such paths f associated to a given g (in fact, there are exactly k). O

This counterexample points to the need for some further requirements on the trees when s has uncount-
able cofinality. Such obstacles will likely be overcome by assuming that splitting levels on branches are club,
as in [10] and [4], as this will provide fusion for cf(x) sequences of trees. We ask, which distributive laws
hold and which ones fail for the Boolean completions of the families of perfect tree forcings similar to those
in this paper for singular x of uncountable cofinality, but requiring club splitting, or some other splitting
requirement which ensures cf(x)-fusion. More generally,

Question 7.3. Given a regular cardinal A, for which cardinals u is there a complete Boolean algebra in which
for all v < pu, the (A, v)-d.1. holds but the (A, p)-d.1. fails?

Similar questions remain open for three-parameter distributivity.
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