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Abstract

In order to deal with the curse of dimensionality in reinforcement learning (RL),
it is common practice to make parametric assumptions where values or policies
are functions of some low dimensional feature space. This work focuses on the
representation learning question: how can we learn such features? Under the
assumption that the underlying (unknown) dynamics correspond to a low rank
transition matrix, we show how the representation learning question is related
to a particular non-linear matrix decomposition problem. Structurally, we make
precise connections between these low rank MDPs and latent variable models,
showing how they significantly generalize prior formulations, such as block MDPs,
for representation learning in RL. Algorithmically, we develop FLAMBE, which
engages in exploration and representation learning for provably efficient RL in low
rank transition models. On a technical level, our analysis eliminates reachability
assumptions that appear in prior results on the simpler block MDP model and may
be of independent interest.

1 Introduction

The ability to learn effective transformations of complex data sources, sometimes called representation
learning, is an essential primitive in modern machine learning. Advances in this area have led to
remarkable achievements in language modeling, vision, and serve as a partial explanation for the
success of deep learning more broadly (Bengio et al., 2013). In Reinforcement Learning (RL),
several works have shown empirically that learning succinct representations of perceptual inputs can
accelerate the search for decision-making policies (Bellemare et al., 2016; Pathak et al., 2017; Tang
et al., 2017; Oord et al., 2018; Srinivas et al., 2020). However, representation learning for RL is far
more subtle than it is for supervised learning (Du et al., 2019a; Van Roy and Dong, 2019; Lattimore
and Szepesvari, 2020), and the theoretical foundations of representation learning for RL are nascent.

The first question that arises in this context is: what is a good representation? Intuitively, a good
representation should help us achieve greater sample efficiency on downstream tasks. For supervised
learning, several theoretical works adopt the perspective that a good representation should permit
simple models to achieve high accuracy on tasks of interest (Baxter, 2000; Maurer et al., 2016; Arora
et al., 2019; Tosh et al., 2020). Lifting this perspective to reinforcement learning, it is natural to expect
that we can express value functions and policies as simple functions of our representation. This may
allow us to leverage recent work on sample efficient RL with parametric function approximation.

The second question is: how do we learn such a representation when it is not provided in advance?
This question is particularly challenging because representation learning is intimately tied to explo-
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Algorithm \ Setting | Sample Complexity | Computation |

Pcib (Du et al., 2019b) block MDP d*H?K* (774172 + E%) Oracle efficient

HOMER (Misra etal., 2020) |  block MDP FHUE (L +%) | Oracle efficient
OLIVE (Jiang et al., 2017) | low Bellman rank d? 1;1231( Inefficient
Sun et al. (2019) low Witness rank ‘12?’# Inefficient

FLAMBE (this paper) low rank MDP d”g# Oracle efficient

Table 1: Comparison of methods for representation learning in RL. Settings from least to most
general are: block MDP, low rank MDP, low Bellman rank, low Witness rank. In all cases d is
the embedding dimension, H is the horizon, K is the number of actions, 7 and ~ parameterize
reachability and margin assumptions, and ¢ is the accuracy. Dependence on function classes and
logarithmic factors are suppressed. Oracle and realizability assumptions vary. Block MDP algorithms
discover a one-hot representation to discrete latent states. Bellman/Witness rank approaches can take
a class @ of embedding functions and search over simple policies or value functions composed with
® (see Section 4 and Appendix A.3 for details).

ration. We cannot learn a good representation without a comprehensive dataset of experience from
the environment, but a good representation may be critical for efficient exploration.

This work considers these questions in the context of low rank MDPs (Jiang et al., 2017) (also
known as factorizing MDPs (Rendle et al., 2010), factored linear MDPs (Yao et al., 2014), and linear
MDPs (Jin et al., 2020b; Yang and Wang, 2020)), which we argue provide a natural framework for
studying representation learning in RL. Concretely, these models assume there exists low dimensional
embedding functions ¢(x, a), u(z") such that the transition operator T satisfies

T(x' | x,a) = (¢(x,a), p(z')), where T(a’ | x, a) specifies the probability of the next state z’ given
the previous state  and action a. Low rank MDPs address the first issue above (on what constitutes a
good representation) in that if the features ¢ are known to the learner, then sample efficient learning
is possible (Jin et al., 2020b; Yang and Wang, 2020).

Our contributions. We address the question of learning the representation ¢ in a low rank MDP.
To this end our contributions are both structural and algorithmic.

1. Expressiveness of low rank MDPs. We first provide a re-formulation of the low rank dynamics
in terms of an equally expressive, but more interpretable latent variable model. We provide
several structural results for low rank MDPs, relating it to other models studied in prior work on
representation learning for RL. In particular, we show that low rank MDPs are significantly more
expressive than the block MDP model (Du et al., 2019b; Misra et al., 2020).

2. Feature learning. We develop a new algorithm, called FLAMBE for “Feature learning and
model based exploration”, that learns a representation for low rank MDPs. We prove that under
realizability assumptions, FLAMBE learns a uniformly accurate model of the environment as well
as a feature map that enables the use of linear methods for RL, in a statistically and computationally
efficient manner. These guarantees enable downstream reward maximization, for any reward
function, with no additional data collection.

Our results and techniques provide new insights on representation learning for RL and also signifi-
cantly increase the scope for provably efficient RL with rich observations (see Table 1).

2 Low Rank MDPs

We consider an episodic Markov decision process M with episode length H € N, state
space X, and a finite action space A = {1,...,K}. In each episode, a trajectory 7 =
(zo,a0,x1,a1,...,xg—1,am—1, ) is generated, where (a) xy is a starting state, and (b) zj,4+1 ~
Th(- | zp,an), and (c) all actions ag.;r—1 are chosen by the agent. We assume the starting state is
fixed and that there is only one available action at time 0.! The operators T}, : X x A — A(X)
denote the (non-stationary) transition dynamics for each time step.

!This easily accommodates the standard formulation with a non-degenerate initial distribution by defining
To(- | o, ao) to be the initial distribution. This setup is notationally more convenient, since we do not need
special notation for the starting distribution.



As is standard in the literature, a policy m : X — A(A) is a (randomized) mapping from states to
actions. We use the notation E [- | 7, M] to denote expectations over states and actions observed when
executing policy 7 in MDP M. We abuse notation slightly and use [H] to denote {0, ..., H — 1}.

Definition 1. An operator T : X x A — A(X) admits a low rank decomposition with dimension
d € N if there exist two embedding functions ¢* : X x A — R and p* : X — R? such that

Ve, o' € X,a € A:T(2 | x,a) = (¢*(x,a), p*(z')) .

For normalization,® we assume that ||¢* (x, a)||, < 1 for all z, a and for any function g : X — [0, 1],

I/ /QL*(m)g(ac)almH2 < Vd. An MDP M is a low rank MDP if for each h € [H], Ty, admits a low
rank decomposition with dimension d. We use ¢}, uj, to denote the embeddings for T,.

Throughout we assume that M is a low rank MDP with dimension d. Note that the normalization
condition on p* ensures that the Bellman backup operator is well-behaved.

Function approximation for representation learning. We consider state spaces X that are ar-
bitrarily large, so that some form of function approximation is necessary to generalize across
states. For representation learning, it is natural to grant the agent access to two function classes
® C {¥xA— Ri}and YT C {X — R?} of candidate embeddings, which we can use to identify the
true embeddings (¢*, u*). To facilitate this model selection task, we posit a realizability assumption.

Assumption 1 (Realizability). We assume that for each h € [H]: ¢} € ® and i} € T.

We desire sample complexity bounds that scale logarithmically with the cardinality of the classes ®
and Y, which we assume to be finite. Extensions that permit infinite classes with bounded statistical
complexity (e.g., VC-classes) are not difficult.

In Appendix A, we show that the low rank assumption alone, without Assumption 1, is not sufficient
for obtaining performance guarantees that are independent of the size of the state space. Hence,
additional modeling assumptions are required, and we encode these in ¢, Y.

Learning goal. We focus on the problem of reward-free exploration (Hazan et al., 2019; Jin et al.,
2020a), where the agent interacts with the environment with no reward signal. When considering
model-based algorithms, a natural reward-free goal is system identification: given function classes

®, T, the algorithm should learn a model M = (¢0:H—1, flo: r—1) that uniformly approximates the
environment M. We formalize this with the following performance criteria:

vr he[H]:E [H<$h(a:h,ah),ﬁh<.>> (| xh,ah)HTv | mM} <e. )

Here, we ask that our model accurately approximates the one-step dynamics from the state-action
distribution induced by following any policy 7 for h steps in the real environment.

System identification also implies a quantitative guarantee on the learned representation qAS(): H—1: We
can approximate the Bellman backup of any value function on any data-distribution.

Lemma 1. If/\//T = ((50;1{,1, Lo:H—1) satisfies (1), then

Vh e [H],V : X —[0,1],30 : max, E H<9,$h(xh,ah)> —E[V(zpt1) | xh,ah]’ | 71,/\/1} <e.

Thus, linear function approximation using our learned features suffices to fit the () function associated
with any policy and explicitly given reward.> The guarantee also enables dynamic programming tech-
niques for policy optimization. In other words, (1) verifies that we have found a good representation,
in a quantitative sense, and enables tractable reward maximization for any known reward function.

3 Related work

Low rank models are prevalent in dynamics and controls (Thon and Jaeger, 2015; Littman and Sutton,
2002; Singh et al., 2004). The low rank MDP in particular has been studied in several works in

2See the proof of Lemma B.1 in Jin et al. (2020b) for this form of the normalization assumption.
3Formally, we append the immediate reward to the learned features ¢o. s _1.



the context of planning (Barreto et al., 2011; Barreto and Fragoso, 2011), estimation (Duan et al.,
2020), and in the generative model setting (Yang and Wang, 2019). Regarding nomenclature, to our
knowledge the name low rank MDP appears first in Jiang et al. (2017), although Rendle et al. (2010)
refer to it as factorizing MDP, Yao et al. (2014) call it a factored linear MDP, and Barreto et al. (2011)
refer to a similar model as stochastic factorization. More recently, it has been called the linear MDP
by Jin et al. (2020b). We use low rank MDP because it highlights the key structural property of the
dynamics, and because we study the setting where the embeddings are unknown, which necessitates
non-linear function approximation.

Turning to reinforcement learning with function approximation and exploration, a large body of effort
focuses on (essentially) linear methods (Yang and Wang, 2020; Jin et al., 2020b; Cai et al., 2020;
Modi et al., 2020; Du et al., 2019c; Wang et al., 2019; Agarwal et al., 2020). Closest to our work are
the results of Jin et al. (2020b) and Yang and Wang (2020), who consider low rank MDPs with known
feature maps @5, ;;_; (Yang and Wang (2020) also assumes that 5. ;;_; is known up to a linear map).
These results motivate our representation learning formulation, but, on their own, these algorithms
cannot leverage the inductive biases provided by neural networks to scale to rich state spaces.

There are methods for more general, non-linear, function approximation, but these works either (a)
require strong environment assumptions such as determinism (Wen and Van Roy, 2013; Du et al.,
2020), (b) require strong function class assumptions such as bounded Eluder dimension (Russo
and Van Roy, 2013; Osband and Van Roy, 2014), (c) have sample complexity scaling linearly
with the function class size (Lattimore et al., 2013; Ortner et al., 2014) or (d) are computationally
intractable (Jiang et al., 2017; Sun et al., 2019; Dong et al., 2020). Note that Ortner et al. (2014); Jiang
et al. (2015) consider a form of representation learning, abstraction selection, but the former scales
linearly with the number of candidate abstractions, while the latter does not address exploration.

Bellman/Witness rank. We briefly expand on this final category of computationally inefficient
methods. For model-free reinforcement learning, Jiang et al. (2017) give an algebraic condition, in
terms of a notion called the Bellman rank, on the environment and a given function approximation
class, under which sample efficient reinforcement learning is always possible. Sun et al. (2019) extend
the definition to model-based approaches, with the notion of Witness rank. As we will see in the next
section, the low rank MDP with a function class derived from ¢ (and T') admits low Bellman (resp.,
Witness) rank, and so these results imply that our setting is statistically tractable.

Block MDPs. Finally, we turn to theoretical works on representation learning for RL. Du et al.
(2019b) introduce the block MDP model, in which there is a finite latent state space S that governs
the transition dynamics, and each “observation” € &’ is associated with a latent state s € S, so the
state is decodable. The natural representation learning goal is to recover the latent states, and Du et al.
(2019b); Misra et al. (2020) show that this can be done, in concert with exploration, in a statistically
and computationally efficient manner. Since the block MDP can be easily expressed as a low rank
MDP, our results can be specialized to this setting, where they yield comparable guarantees. On the
other hand, we will see that the low rank MDP is significantly more expressive, and so our results
greatly expand the scope for provably efficient representation learning and reinforcement learning.

4 Expressiveness of low rank MDPs

Before turning to our algorithmic development, we discuss connections between low-rank MDPs
and models studied in prior work. This discussion is facilitated by formalizing a connection between
MDP transition operators and latent variable graphical models.

Definition 2. The latent variable representation of a transition operator T : X x A — A(X)
is a latent space Z along with functions ¢ : X x A — A(Z) and v : Z — A(X), such that
T(-| z,a) = [v(- | 2)¢(z | x,a)dz. The latent variable dimension of T, denoted dyy is the
cardinality of smallest latent space Z for which T admits a latent variable representation.

See Figure 1. In this representation, (1) each (x, a) pair induces a “pos-
terior” distribution ¢(x, a) € A(Z) over z, (2) we sample z ~ ¥(z, a),
and (3) then sample =’ ~ v(- | z), where v specifies the “emission” dis-
tributions. As notation, we typically write v(z) € R? with coordinates
v(z)[z] = v(xz | z) and we call o, v the simplex features, following
the example described by Jin et al. (2020b). When considering H -step
MBDPs, this representation allows us to augment the trajectory 7 with the

Figure 1: The latent vari-
able interpretation.



Multinomial Multinomial Multinomial

block MDP simplex features: dry = d general: dry > d

Figure 2: The latent variable interpretation of low rank MDPs, where (x, a) induces a distribution
over latent variable z. Left: in block MDPs, latent variables induce a partition over the next state z’.
Center: simplex features have embedding dimension equal to the number of latent variables. Right:
low rank MDPs can have exponentially more latent variables than the dimension, dry > d.

latent variables 7 = (xg, ag, 21, %1,...2H-1,TH—1,aH—1, T ). Here
note that 2y, is the latent variable that generates xy,.

Note that all transition operators admit a trivial latent variable representation, as we may always take
Y(xz,a) = T(- | z,a). However, when T is endowed with additional structure, the latent variable
representations are more interesting. For example, this viewpoint already certifies a factorization
T(z' | z,a) = (¢(z,a),v(z’)) with embedding dimension | Z|, and so dry (if it is finite) is an upper
bound on the rank of the transition operator. On the other hand, compared with Definition 1, this
factorization additionally requires that ¢)(x, a) and v(- | z) are probability distributions. Since the
factorization is non-negative, dy,; is the non-negative rank of the transition operator.

The latent variable representation enables a natural comparison of the expressiveness of various
models, and, as we will see in the next section, yields insights that facilitate algorithm design. We now
examine models that have been introduced in prior works and their properties relative to Definition 1.

Block MDPs. A block MDP (Du et al., 2019b; Misra et al., 2020) is clearly a latent variable model
with Z corresponding to the latent state space S and the additional restriction that two latent variables
z and 2’ have disjoint supports in their respective emissions v (- | z) and v(- | 2’) (see the left panel
of Figure 2). Therefore, a block MDP is a low rank MDP with rank d < |S], but the next result shows
that a low rank MDP is significantly more expressive.

Proposition 1. For any d > 2 and any M € N there exists an environment on |X| = M states, that
can be expressed as a low rank MDP with embedding dimension d, but for which any block MDP
representation must have M latent states.

In fact, the MDP that we construct for the proof, admits a latent variable representation with | Z| = d,
but does not admit a non-trivial block MDP representation. This separation exploits the decodability
restriction of block MDPs, which is indeed quite limiting in terms of expressiveness.

Simplex features. Given the latent variable representation and the fact that it certifies a rank of at
most dry, it is natural to ask if this representation is canonical for all low rank MDPs. In other words,
for any transition operator with rank d, can we express it as a latent variable model with |Z| = d, or
equivalently with simplex features of dimension d?

As discussed above, this model is indeed more expressive than the block MDP. However, the next
result answers the above question in the negative. The latent variable representation is exponentially
weaker than the general low rank representation in the following sense:

Proposition 2. For any even n € N, there exists an MDP that can be cast as a low rank MDP with
embedding dimension O(ng), but which has dpy > 29(n),

See the center and right panels of Figure 2. The result is proved by recalling that the latent variable
dimension determines the non-negative rank of 7', which can be much larger than its rank (Rothvo83,
2017; Yannakakis, 1991). It showcases how low rank MDPs are quite different from latent variable
models of comparable dimension and demonstrates how embedding functions with negative values
can provide significant expressiveness.

Bellman and Witness rank. As our last concrete connection, we remark here that the low rank MDP
with a function class derived from ® (and Y) admits low Bellman (resp., Witness) rank.

Proposition 3 (Informal). The low rank MDP model always has Bellman rank at most d. Additionally,
given ® and assuming ¢§.;;_, € ®, we can construct a function classes (G,10), so that OLIVE when

run with (G, T1) has sample complexity O (poly(d, H, K,log |®],e~1)).



See Proposition 5 for a more precise statement. An analogous result holds for the Witness rank
notion of Sun et al. (2019) (see Proposition 6 in the appendix). Unfortunately both OLIVE, and the
algorithm of Sun et al. (2019) are not computationally tractable, as they involve enumeration of the
employed function class. We turn to the development of computationally tractable algorithms in the
next section.

5 Main results

We now turn to the design of algorithms for representation learning and exploration in low rank
MDPs. As a computational abstraction, we consider the following optimization and sampling oracles.

Definition 3 (Computational oracles). Define the following oracles for the classes ®,Y:

1. The maximum likelihood oracle, MLE, fakes a dataset D of (x, a, z') triples, and returns
MLE(D) = argiaXsed ey Z(m,a,z’)ED 10g(<¢($, CL), N(l./)>)

2. The sampling oracle, SAMP, is a subroutine which, for any (¢, 1) € ® x Y and any (x, a), returns
a sample 2’ ~ (¢(x,a), pu(-)). Multiple calls to the procedure result in independent samples.

We assume access to both oracles as a means towards practical algorithms that avoid explicitly enu-
merating over all functions in ® and Y. Related assumptions are quite common in the literature (Misra
et al., 2020; Du et al., 2019b; Agarwal et al., 2014), and in practice, both oracles can be reasonably
approximated whenever optimizing over @, Y is feasible (e.g., neural networks). Regarding MLE,
other optimization oracles are possible, and in the appendix (Remark 19) we sketch how our proof
can accommodate a generative adversarial oracle as a replacement (Goodfellow et al., 2014; Arora
et al., 2017). While the sampling oracle is less standard, one might implement SAMP via optimization
methods like the Langevin dynamics (Welling and Teh, 2011) or through reparametrization techniques
such as the Gumbel-softmax trick (Jang et al., 2017; Figurnov et al., 2018).4

5.1 Algorithm description

The algorithm is called FLAMBE, for “Feature Learning And Model-Based Exploration.” Pseudocode
is displayed in Algorithm 1. Before turning to the description, we clarify our use of h-step policies
and policy mixtures. Throughout the algorithm we compute policies by optimizing reward functions
that are only defined at a single stage h € [H]. This yields an h-step policy, and when executing such
policy, we always terminate the episode by taking actions {ay, }, 7 uniformly at random. We also
use policy mixtures or distributions over policies. When executing a policy mixture, we sample a
policy from the distribution at the beginning of the episode and use that policy for the entire episode.

FLAMBE is iterative in nature, where in iteration j, we use an exploration policy p;_1 to collect a
dataset of transitions (Line 6), and then we pass all the transitions collected so far to the MLE oracle
(Line 7). The MLE oracle returns embedding functions (¢, fiy,) for each h, which define transition
operators 7}, for the learned model M. Then FLAMBE calls a planning sub-routine to compute the
exploration policy p; (Lines 10- 11) that we use in the next iteration. After Jy,.x iterations, we output
the current model M.

For the planning step, intuitively we seek an exploratory policy p that induces good coverage over the

state space when executed in the model. We do this by solving one planning problem per time step h
in Algorithm 2 using a technique inspired by elliptical potential arguments from linear bandits (Dani

et al., 2008). Using the h-step model T}, ; _,, we iteratively maximize certain quadratic forms of
our learned features aﬁ—1 to find new directions not covered by the previously discovered policies,

and we update the exploratory policy mixture to include the maximizer. The planning algorithm
terminates when no policy can achieve large quadratic form, which implies that we have found all

reachable directions in ¢5_1. This yields a policy mixture p}'® with component policies that are

*We do not explicitly consider approximate oracles, but additive approximations can be accommodated in
our proof. In particular, if SAMP returns a sample from a distribution that is €samp close in total variation to the
target distribution in poly(1/esamp) time, then we retain computational efficiency.



Algorithm 1 FLAMBE: Feature Learning And Model-Based Exploration

1: Imput: Environment M, function classes ®, T, subroutines MLE and SAMP, parameters 3, n.
2: For each h set p)" to be the random policy, which takes all actions uniformly at random.

3: Set pg = {ph"°} -} and Dy, = 0 foreach h € {0,..., H — 1}.

4: for j=1,..., Jnax do

5 forh=0,....H—1do

6: Obtain Dy, - DU EXECUTE_IN_REAL_WORLD(p;_1, h,n).
7

8

Solve maximum likelihood problem: (¢y,,7in) < MLE(Dj).

Set fh(ivhﬂ | Th,an) = <$h(xhaah)aﬁh(xh+l) .

9: end for

10: For each h, call planner (Algorithm 2) with A step model Tp.,—1 and /3 to obtain p},"“.
11: Set p; = {p?" 1! to be the set of exploration policies.

12: end for

13: function EXECUTE_IN_REAL_WORLD(p = {p}"*}1:1 b n)

14: Initialize D = 0.

15: fori=1,...,ndo

16: Pick t € {0, ..., H — 1} uniformly at random.

17: Starting in zg, execute h — 1 actions using p}"° to get zj,. Take aj, uniformly to get xp, 1.
18: Augment D < D U {(zn, an, Tp11)}-

19: end for

20: return D.
21: end function

Algorithm 2 Elliptical planner

1: Input: MDP M = (60.7,» Ho.7,)» subroutine SAMP, parameter 3 > 0. Initialize Xg = Igxq-
2: fort=1,2,...,do
3: Use SAMP to compute (see text for details)

m = argmax E {qb;b(xﬁ,a;L)TEt__ﬂ@L(xﬁ,aﬁ) | W,M}

2

»

If the objective is at most 3, halt and output p = unif ({7, }r<¢).
5: Compute ¥, = E {gbﬁ(xﬁ, aj,) o5 (x5, a;) " | 7('7.//\;1/] Update 3, < ¥;_1 + Xy,
6: end for

linear in the learned features ¢g.;,—1. The challenge in our analysis is to relate this coverage in the
model to that in the true environment as we discuss in the next section.

Algorithm 2 is a model-based planner, so it requires no interaction with the environment. The main
computational step is the optimization problem (2), which is a policy optimization problem in a
known low rank MDP from which we can sample efficiently. We solve this problem by running
the reinforcement learning algorithm of Jin et al. (2020b) (See Lemma 14 in the appendix) with the
reward function corresponding to the objective in (2) and using SAMP to simulate the algorithm’s
interaction with the environment. Note that we are optimizing over all policies, which is possible
because the Bellman backups in a low rank MDP are linear functions of the features (c.f., Lemma 1).
The sampling oracle can also be used to approximate all expectations, and, with sufficient accuracy,
this has no bearing on the final results. Our proofs do account for the sampling errors.

5.2 Theoretical Results

We now state the main guarantee.

Theorem 2. Fix ¢ € (0,1). If M is a low rank MDP with dimension d and horizon H and Assump-
tion 1 holds, then FLAMBE with subroutine Algorithm 2 and appropriate settings® of 3, Jmax, and
n, computes a model M such that (1) holds with probability at least 1 — 6. The total number of

>The precise settings for 3, Jmax, and n are given in the appendix.



trajectories collected is

5 (H%Kw 1og<|<1>||r|/5>)
510 :

The algorithm runs in polynomial time with polynomially many calls to MLE and SAMP (Definition 3).

Thus, FLAMBE provably learns low rank MDP models in a statistically and computationally efficient
manner, under Assumption 1. While the result is comparable to prior work in the dependencies on d,
H, K and €, we instead highlight the more conceptual advances over prior work.

e The key advancement over the block MDP algorithms (Du et al., 2019b; Misra et al., 2020) is that
FLAMBE applies to a significantly richer class of models with comparable function approximation
assumptions.® A secondary, but important, improvement is that FLAMBE does not require any
reachability assumptions, unlike these previous results. We remark that Feng et al. (2020) avoid
reachability restrictions in block MDPs, but their function approximation/oracle assumptions are
much stronger than ours.”

e Over Jin et al. (2020b); Yang and Wang (2020), the key advancement is that we address the
representation learning setting where the embeddings ¢, ;;_; are not known a priori. On the
other hand, our bound scales with the number of actions /. We believe that additional structural
assumptions on ® are required to avoid the dependence on K in the representation learning setting.

e Over Jiang et al. (2017); Sun et al. (2019), the key advancement is computational efficiency.
However, the low rank MDP is less general than what is covered by their theory, and our sample
complexity is worse in the polynomial factors.

As remarked earlier, the logarithmic dependence on the sizes of ®, T can be relaxed to alternative
notions of capacity for continuous classes.

We also state a sharper bound for a version of FLAMBE that operates directly on the simplex
factorization. The main difference is that we use a conceptually simpler planner (See Algorithm 3 in
the appendix) and the sample complexity bound scales with dry .

Theorem 3. Fix § € (0,1). If M admits a simplex factorization with embedding dimension
dry, Assumption 1 holds, and all ¢ € ® satisfy ¢(x,a) € A([dLv]), then FLAMBE with Algorithm 3
as the subroutine and appropriate setting® of Juax and n computes a model M such that (1) holds
with probability at least 1 — §. The total number of trajectories collected is

o (MK 10
g3 ’

The algorithm runs in polynomial time with polynomially many calls to MLE and SAMP (Definition 3).

This bound scales much more favorably with H, K and ¢, but incurs a polynomial dependence on the
latent variable dimension dyy, instead of the embedding dimension d. For many problems, including
block MDPs, we expect that dry =~ d, in which case using this version of FLAMBE may be preferable.
However, Theorem 3 requires that we encode simplex constraints into our function class ®, for
example using the softmax. When dr,y is small, this may be a practically useful design choice.

Challenges in the analysis. We highlight three main challenges in the analysis. The first challenge
arises in the analysis of the model learning step, where we want to show that our model 7}, learned
by maximum likelihood estimation, accurately approximates the true dynamics 7}, on the data
distributions induced by the exploratory policies pg.;—1. This requires a generalization argument, but
both the empirical MLE objective and population version — the KL divergence — are unbounded, so
we cannot use standard uniform convergence techniques. Instead, we employ (and slightly adapt)

SThe realizability assumption for Block MDPs implies realizability of ¢.;;_, and the support of the
components of ug. ;1 (recall that for Block MDPs these components have disjoint support). This is slightly
weaker than Assumption 1, but stronger than just assuming realizability of ¢g. z7_1.

"Unlike ours, their oracle assumption is not a purely computational abstraction, but rather it implicitly places
statistical restrictions on the emission distributions.

8This version does not require the parameter (3.



results from the statistics literature (Van de Geer, 2000; Zhang, 2006) to show that MLE yields
convergence in the Hellinger and total variation distances. While these arguments are well-known in
the statistics community, we highlight them here because we believe they may be broadly useful in
the context of model-based RL.

The second challenge is to transfer the model error guarantee from the exploratory distributions to
distributions induced by other policies. Intuitively, error transfer should be possible if the exploratory
policies cover the state space, but we must determine how we measure and track coverage. Leveraging
the low rank dynamics, we show that if a policy 7 induces a distribution over true features ¢; _, that
is in the span of the directions visited by the exploratory policies, then we can transfer the MLE error

guarantee for T}, to 7’s distribution. This suggests measuring coverage for time A in terms of the
second moment matrix of the true features at the previous time induced by the exploratory policies p,
thatis Xp_1 = qubfl_lqﬁpjl. Using these matrices, we prove a sharp simulation lemma that bounds
the model error observed by a policy 7 in terms of the model error on the exploratory distribution

and the probability that 7 visits features for which ngZ’_Tl E;ﬁlgb,*kl is large.

The simulation lemma suggests a planning strategy and an “explore-or-terminate” argument: the
next exploratory policy should maximize ¢,*l’_T1 3,1 @5, in which case either we visit some new
direction and make progress, or we certify (1), since no policy can make this quantity large. However,
we cannot maximize this objective directly, since we do not know ¢;_, or 31! Moreover, we

cannot use ¢,_; to approximate ¢j_, in the objective, since even if the model is accurate, the
features may not be. Instead we plan to find a policy that induces a well-conditioned covariance

matrix in terms of (Zh_g, the learned features at time h — 2. By composing this policy with a random
action and applying our simulation lemma, we can show that this policy either explores at some
. . . .. *7T -1 * .

previous time or approximately maximizes ¢;’ ¥, ~; ¢7 _,, which allows us to apply the explore-or-
terminate argument. Note that this argument uses two random actions: we take a;_; at random to
approximately maximize qb;‘L’le;ilqﬁfl_l, even though we optimize with ¢, _o, and then we take ay,
at random for the MLE step. Combining this reasoning with an elliptical potential argument, we can
bound the number of iterations in which exploration can happen, which leads to the final result.

6 Discussion

This paper studies representation learning and exploration for low rank MDPs. We provide an intuitive
interpretation of these models in terms of a latent variable representation, and we prove a number of
structural results certifying that low rank MDPs are significantly more expressive than models studied
in prior work. We also develop FLAMBE, a computationally and statistically efficient model-based
algorithm for system identification in low rank MDPs. Policy optimization follows as a corollary.

Our results raise a number of promising directions for future work. On the theoretical side, in the
reward-sensitive setting, can we avoid learning the entire model, perhaps by utilizing “value-aware”
methods (Farahmand et al., 2017; Ayoub et al., 2020)? Can we remove realizability conditions on
14, i1 and develop provably efficient model-free algorithms for representation learning in the low
rank MDP? On the empirical side, can we leverage the algorithmic insights of FLAMBE to develop
new practically effective representation learning algorithms for complex reinforcement learning
tasks? Finally, this work considers representation learning for a set of related RL problems which all
share the same underlying dynamics, but differ in their reward functions. A natural future direction is
to consider learning representations that enable more general task variations. We look forward to
answering these questions in future work.



Broader impact

This paper is theoretical in nature, and so we expect the ethical and societal consequences of our
specific results to be minimal. More broadly, we do expect that reinforcement learning will have
significant impact on society. There is much potential for benefits to humanity in the often-referenced
application domains of precision medicine, personalized education, and elsewhere. There is also
much potential for harms, both malicious and unintentional. To this end, we hope that research into
the foundations of reinforcement learning can help enable these applications and mitigate harms
through the development of algorithms that are efficient, robust, and safe.
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