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Abstract. We consider a version of the stochastic inventory control problem for a spectrally
positive Lévy demand process, in which the inventory can only be replenished at independent expo-
nential times. We show the optimality of a periodic barrier replenishment policy that restocks any
shortage below a certain threshold at each replenishment opportunity. The optimal policies and value
functions are concisely written in terms of the scale functions. Numerical results are also provided.
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1. Introduction. The classical continuous-time inventory model aims to opti-
mally control the inventory level to strike a balance between minimizing the inventory
costs and replenishment costs. The inventory in the absence of control is typically
assumed to follow a Brownian motion, a compound Poisson process, or a mixture of
the two. Under the assumption that the inventory can be monitored continuously and
replenishment can be made instantaneously, the existing results have shown the op-
timality of a barrier or an (s,.5)-policy, depending on whether fixed (replenishment)
costs are considered. For a comprehensive review and various inventory models, see [6].

In this study, we consider a new extension of the inventory model under the con-
straint that replenishment opportunities occur at the arrival times of an independent
Poisson process. This is because, in reality, one can monitor the inventory only at
intervals and, hence, barrier or (s, S) policies are difficult to implement in practice.
Recently, similar extensions have been studied in the context of insurance applications
[2, 16, 17].

Analytical solutions can be pursued under the assumption of Poissonian replen-
ishment opportunities in which, thanks to the memoryless property, the waiting time
until the next opportunity is always (conditionally) exponentially distributed. With
other replenishment opportunity times, the state space must be expanded to make the
problem Markovian, and, to our knowledge, one must resort to numerical approaches
rather than analytical solutions.

One important motivation for considering the Poissonian interarrival model is its
potential applications in approximating the constant interarrival time cases. In the
mathematical finance literature, randomization techniques (see, e.g., [9]) are known
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as efficient in approximating constant maturity problems with those with Erlang-
distributed maturities. In particular, for short maturity cases, it is known empirically
that accurate approximations can be obtained by simply replacing the constant with
exponential random variables [20].

Although the Poissonian assumption simplifies the considered problem, it is still
significantly more challenging and interesting in comparison to the continuous mon-
itoring case. The solutions depend directly on the rate of Poisson arrivals, and it is,
therefore, of interest to study its sensitivity.

In this study, we focus on the discounted continuous-time model driven by a
spectrally positive Lévy demand process. In other words, the inventory, in the absence
of control, follows a Lévy process with only negative jumps. As is typically assumed
in the literature, the inventory cost is modeled by a convex function, and the cost
of replenishment is assumed to be proportional to the order amount. Under these
assumptions, the classical continuous monitoring case admits a simple solution (see
section 7 of [21]): it is optimal to reflect the inventory process at a suitably chosen
barrier, and the value function is expressed concisely in terms of the so-called scale
function (see also [7] and sections 4-6 of [21] for the cases with fixed costs).

This study aims to show the optimality of a periodic barrier replenishment policy,
which restocks any shortage below a certain threshold at each replenishment opportu-
nity. The corresponding controlled inventory process becomes the Parisian reflected
process studied in [4, 18]. We show that a periodic barrier replenishment policy is
indeed optimal over the set of all admissible policies.

We follow the classical guess-and-verify procedure to solve this stochastic control
problem:

1. The first step is to compute the expected net present value (NPV) of re-
plenishment and inventory costs under periodic barrier replenishment poli-
cies. Replenishment costs, which are the expected amount of total discounted
Parisian reflection, have been computed in [4]. Inventory costs require the
resolvent identity, which we compute using a similar method as in [4]. These
admit semiexplicit expressions written in terms of the scale function.

2. In the second step, we select the optimal periodic barrier, which we call b*
in the current study. We choose its value so that the slope of the candidate
value function at the barrier equals the negative of the unit replenishment
cost.

3. In the final step, we confirm the optimality of the selected candidate optimal
policy. To this end, we obtain a verification lemma (sufficient condition for
optimality), which requires the value function to be sufficiently smooth and
satisfy certain variational inequality. By taking advantage of the existing an-
alytical properties of the scale function, as well as some fluctuation identities,
we confirm that the candidate value function indeed satisfies these conditions.

One major advantage of applying these three steps is that one can solve the
problem for a general spectrally positive Lévy demand process (of both bounded and
unbounded variations) without specifying a particular type of Lévy measure. By
reducing the problem to certain analyses on the scale function of the underlying Lévy
process, we avoid the use of integro-differential equation techniques, which tend to be
difficult, particularly when the Lévy measure has infinite activity.

The rest of the paper is organized as follows. In section 2, we model the problem
considered. Section 3 gives the verification lemma. In section 4, we study the periodic
barrier replenishment policy and compute the corresponding expected NPV of the
total costs. In section 5, we select the candidate barrier. In section 6, the optimality

© 2020 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license



Downloaded 07/16/21 to 129.110.242.32. Redistribution subject to CCBY license

3430 J.-L. PEREZ, K. YAMAZAKI, AND A. BENSOUSSAN

of the selected policy is shown and confirmed numerically. Long proofs and technical
results are deferred to the appendix. Throughout the paper, superscripts xT :=
max(z,0) and x~ := max(—=z,0) are used to indicate the positive and negative parts
of z, respectively. The left- and right-hand limits are written as f(z—) := limy, f(y)
and f(z+) := lim,, f(y), respectively, whenever they exist.

2. Inventory models with periodic replenishment opportunities. Let
(Q, F,P) be a probability space on which a stochastic process D = (D(t);t > 0)
with D(0) = 0, modeling the aggregate demand of a single item, is defined. Under
the conditional probability P, for x € R, the initial level of inventory is given by =
(in particular, we let P = IPy). Hence, the inventory, in the absence of control, follows
the stochastic process

X(t):=xz—D(t), t>0.

We consider a scenario where the item can be replenished only at the arrival
times 7, := (T'(i);7 > 0) of a Poisson process N" = (N"(t);t > 0) with intensity
r > 0, which is independent of X (and D). In other words, the interarrival times
T(i)—T(—1),4>1(with T(0) := 0) are independent and exponentially distributed
with mean 1/r. Let F := (F(t);t > 0) be the filtration generated by the process
(X,N7).

In this setting, an admissible policy, representing the cumulative amount of re-
plenishment 7 := (R7(t);¢ > 0) is a nondecreasing, right-continuous, and F-adapted
process such that

R™(t) = /[0 ] v (s)dN"(s), t >0,

for a caglad process v™. In particular, the replenishment at the ith replenishment
opportunity 7'(¢) is given by v™(T'(7)) for each ¢ > 1. The controlled inventory process
U™ becomes

U™(t) == X(t) + R™(t) = X(t) + Z v (T(0)iray<ny, >0

We fix a discount factor ¢ > 0 and a unit cost/reward of controlling C' € R. Associ-
ated with the policy m € A, the cost of inventory is modeled by fooo e 9 f(U™(t))dt for
a measurable function f : R — R and that of controlling is given by C [; 10,00) e~ dR™(1).
The problem is to minimize their expected sum

vp(x) = Ey , x€R,

/ Tt puryat+o [ e tarT(1)
0

[0,00)

over the set of all admissible policies A that satisfy all the constraints described above
and

(2.1) E, / e "dR™(t)| < oc.
[0,00)

The problem is to compute the value function

2.2 = inf v;(x), eR,

(2.2) o(@) = inf vale), @

and to obtain the optimal policy 7* that attains it, if such a policy exists.
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2.1. Spectrally one-sided Lévy processes. We shall consider the case where
the demand D follows a spectrally positive Lévy process, or equivalently X is a spec-
trally negative Lévy process. We exclude the case in which X is the negative of a
subordinator so that it does not have monotone paths a.s. We denote the Laplace
exponent of X by & : [0,00) — R such that E[e?X®)] = ¢%(9) for t,0 > 0, with its
Lévy—Khintchine decomposition

2
K(0) = %02 + 0 —|—/ [egy —1—=0ylgy~_y]II(dy), 6 >0.
(70010)

Here, 0 > 0, v € R, and the Lévy measure II satisfies f(foo o(LA y?)II(dy) < oo.

It is known (see, e.g., Lemma 2.12 of [13]) that X has paths of bounded variation
if and only if ¢ = 0 and f(fl.O) ly[TI(dy) < oco. For the bounded variation case, X can
be written as

X({t)=ct—S5(), t>0, where c::'y—/ yII(dy),
(71)0)

and (S(t);t > 0) is a driftless subordinator. Here, by the assumption that X is not
the negative of a subordinator, necessarily we have ¢ > 0.

2.2. Assumptions. We solve the problem (2.2) under the following standing
assumptions on the Lévy process X and the running cost function f.

Assumption 2.1. We assume that there exists § > 0 such that

/ exp(f]z))II(dz) < oo.
(700771]

This guarantees that E[X(1)] = /(0+) > —oc.

Assumption 2.2.

(i) We assume that f is convex and has at most polynomial growth in the tail.
That is to say, there exist ki, k2, > 0 and N € N such that |f(x)] <
k1 + ka|z|" for all z € R such that |z| > m.

(i) We assume that f'(—o0) < —Cq < f’(o0), where f’(0c0) := lim, o f'(z) €
(—00,00] and f/(—00) :=limy—_o f/(x) € [—00,00).

These assumptions are critical for our analysis, and similar assumptions are im-

posed in the existing literature (see, e.g., [7, 11]).

Remark 2.1. By Assumptions 2.1 and 2.2 we have that E, [ [~ e~ %| f(X (¢))|dt] <
oo for all € R. For its proof, see the proof of Lemma 7.5 of [21].

3. Verification lemma. We first obtain the verification lemma for the consid-
ered problem. Throughout the paper, we call a measurable function g sufficiently
smooth on R if g is C1(R) (resp., C*(R)) when X has paths of bounded (resp., un-
bounded) variation. Let £ be the operator acting on a sufficiently smooth function g,
defined by

2

L9te) =20+ G0 @)+ [ ot 2) (@) g @1 e I2)

Also, we define the operator M acting on a measurable function g,

(3.1) Myg(x) == }Izlg{Cl +g(z+D}.
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LEMMA 3.1 (verification lemma). Suppose & € A is such that w := vz is suffi-
ciently smooth on R, has polynomial growth (see Assumption 2.2), and satisfies

(3.2) (L = qQuw(z) +r(Mw(z) —w(x))+ f(x) =0, zeR.

Then v(x) = w(zx) for all x € R and hence 7 is an optimal policy.

Remark 3.2. (1) The equality (3.2) can be intuitively explained by the Bellman’s
principle. For a small time interval A;, the corresponding Bellman’s equation is
expected to be approximated as

v(x) = e AR, [e_thv(X(At))] +(1- e_rAf)Er [e_qA‘Mv(X(At)]

Ay
+E, / ¢ F(X(s))ds | + o(A),

where e~"2t is the probability of no replenishment opportunities over (0,4;), and
1—e "2+ is its complement. Hence, using Ité’s formula, by dividing by A; and taking
A; 0, we arrive at (3.2).

(2) Define the set C := {z € R : (L — q)v(z) + f(z) = 0}. Then, C can be
understood as the continuation region, and D := R\C as the control region at which
replenishment is made whenever the replenishment opportunity arrives.

In this paper, we aim to show that C = [b*, 00) and D = (—o0, b*) for some b* € R.
This property is closely related to the convexity of v and its slope at b*. To see this,
if v is convex and v'(b*) = —C, then necessarily we have Mv(z) — v(z) = 0 if and
only if x > b*.

(3) There are both similarities and differences with the classical singular control
case and the version where the control process must be absolutely continuous with
a bounded density (see (4.2) of [11]). While the forms of the variational inequalities
differ, the convexity and the slope condition at the candidate barrier are the key
elements needed as in the current paper.

Proof of Lemma 3.1. By the definition of v as an infimum, it follows that w(z) >
v(z) for all x € R. Hence, it suffices to show the opposite inequality.

Fix z € R and 7 € A with its corresponding inventory process U™. Let (T}, )nen
be defined by T,, := inf{t > 0: |U™(¢)| > n}; here and throughout, let inf & = co.

Because U™ is a semi-martingale and w is sufficiently smooth on R, the change
of variables/Itd’s formula (see Theorems I1.31 and I1.32 of [22]) gives under P, that

e_‘Z(MT")w(U”(t ANT,)) —w(x)

tAT,
_ / T qu(U™ (s—))ds + / =9/ (U™ (5—))dX (s)
0 [0,tAT]

0_2 tAT,
w5 [ e e+ Y e AU o)+ 07 () AN (5]

0<s<tAT,

Y e [Aw(UT(s-) + AX(s)) - w (U (s-)AX(s)]

0<s<tAT,

tAT),
_ / =9 (L — g (U™ (s—))ds — C o137 (5)AN" (s)
0 [0,tAT,]

AT,
+ /0 e [Cv™(s) + w(U™(s—) +v7(s)) — w(U™(s—))] ds + M(t A Ty,),

© 2020 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license



Downloaded 07/16/21 to 129.110.242.32. Redistribution subject to CCBY license

OPTIMAL PERIODIC REPLENISHMENT POLICIES 3433

where we define, for ¢ > 0, with N (ds x dy) := N(ds x dy) — II(dy)ds,
M(tAT,)
AT, R
- / oo~ 10 (U (5—))dB(s) + lim / / W (U™ (s—))y N (ds x dy)
[0,4AT,] J(—1 —s)

el0

/[0 AT, / 0,0 e [w(UT(s=) +y) — w(U(s-))
w' (U™ (s _))yl{ye(o,1)}]N(ds x dy)

+ / e [CV () + w(UT(s=) + 17 (s)) — w(U (s—))] d(N"(s) — rs).
[0,tAT},)]

Here, (B(s);s > 0) is a standard Brownian motion and N is a Poisson random
measure in the measure space ([0, 00) X (—00, 0), B[0, 00) x B(—00,0),ds x II(dz)). B
the definition of M as in (3.1),

tAT,
w(z) g—/ e~ (£ = qyu(U™ (s-)) + r(Mw(U™(s-)) = w(U™(s-))) |ds
0
+C/ ey (s)AN" (s) — M(t AT,) + e~ 1T )y(U™ (t A T)).
[0,tAT,]

Using the assumption (3.2), together with the fact that the process (M (tAT,);t > 0)
is a zero-mean P -martingale (see Corollary 4.6 of [13]), after taking expectations, we
obtain

(3.3) w(x) <E, {/OMTH e" P f(U™(s))ds

+C ey ($)ANT () + e~ 1T (U™ (E AT))| .-
[0,tAT,]

We shall now take t,n T oo in the above inequality to complete the proof. First,
assumption (3.2) and the fact that Mw < w imply that (£ — ¢)w(y) + f(y) > 0 for
y € R. Because w is sufficiently smooth and is of polynomial growth, by It6’s formula
together with dominated convergence, we have w(x) < Ew[fooo e f(X(s))ds] for all
x € R (for more details, see the proof of Lemma 7.5 of [21]). This, together with the
strong Markov property, implies

(34) E, [e*q(MTﬂ)w(U“(MTn))} < El[/

tATy,

o0

e F(RT(tATy) + X(s))ds} .
Now, following the same steps as the proof of Theorem 7.1 of [21], we have

E, {/too e Cf(RT(tAT,) + X(s))ds}

ATy

<su[[ (it car)]

+Er[/t°° =98 (f(X(s)) + qu(s))ds]

AT,
By using this and (3.4) in (3.3), we obtain w(z) < v, (z) + E, U;C;\OTH e"(f(X(s)) +
CqX(s))ds]. Because Ez[ftvoT e~ | f(X(s)) + CqX(s)|ds] < oo (which holds by

Remark 2.1), upon taking ¢, n 1 co via monotone convergence, we have w(z) < v, (x),
as desired. O
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4. Periodic barrier replenishment policies. The objective of this paper is
to show the optimality of the periodic barrier replenishment policy 7°, b € R, that
pushes the inventory up to b at the observation times 7, whenever it is below b. The
resulting inventory process is precisely the Parisian reflected Lévy process of [4].

We denote, by RY and U?, the aggregate sum of replenishment and the resulting
inventory, respectively. More concretely, we have

Ub(t)=X(t) and RM(t)=0, 0<t<T, (1),

where T, (1) := inf{S € 7, : X(S—) < b} is the first replenishment time. The
inventory is then pushed up by the amount ARY(T, (1)) = b — X (T, (1)—) so that
ULT, (1)) =b. For T, (1) <t < T, (2) :==inf{S € T, : S > T, (1),UL(S—) < b},
we have UP(t) = X(t) + (b — X (T, (1)—)) and R%(t) = R2(T, (1)). The controlled
inventory process can be constructed by repeating this procedure.

We have the following decomposition:

U (t) = X(t) + R)(¢), =0,

with
L) = 3 (6= Uy ()= gy o<y = /[ BTN, ez,
i=1 :
where the replenishment times (7, (n);n > 1) can be constructed inductively by
T, (1) defined above and T, (n + 1) := inf{S € 7, : S > T, (n),Ut(S—) < b} for

n > 1. We will see by (4.12) that the policy n° := (R2(¢);t > 0) satisfies (2.1), and is
hence admissible.
In this section, we compute, via the scale function, the expected NPV of the total

costs under 7*:

(1) wl) =K /O o [t bR

4.1. Scale functions. We fix ¢, > 0. The scale function W@ : R — [0, 00) of
X takes the value zero on (—00,0), and on [0,00) it is a strictly increasing function,
defined by its Laplace transform:

(4.2) / - e WD (2)de = 6 > ®(q) ;= sup{A > 0: k(\) = ¢}.

0 K(0) —q’

In addition, let, for x € R,

W(Q)(x) ::/ WDy dy, Z9D(z) ::1+qW(q)(x), Z(q)(m) ::/ ZD(2)dz.
0 0

Note that, for <0, w' () =0, Z(9(x) =1, and 7z (x) = x. We also define, for
0 >0and x € R,

(4.3) 2@ (g, 0) = (1 +(q— r(6)) / ’ e‘eZW(Q)(z)dz) .

0
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In particular, for z € R, Z(9(z,0) = Z(@(z) and

7(a) (2, (g +7)) = e2(a+r)z <1 _ r/ e¢(q+r)zw(q)(z)dz> )

(4.4) 20

Z\a) (1, ®(q)) = 2@ (1 + 1"/ eq’(q)ZW(‘HT)(z)dz) .
0

Finally, let

7@ () = 7 b 7@ (p R
() P (I)Jrq—i—r (z,P(qg+71)), z€eR,

and, for all z,y € R,

W;‘”) (z) = W) (z —y) — r/o WD (z — )W) (2 — 4)dz

(4.5) Sy

=W (z —y)+ r/ WD (z —u —y)WH) (u)du,
0

where the second equality holds by (7) of [15], and in particular Wéq’r) (z) = W (z—
y) for y > 0.

For the rest of this subsection, we list several fluctuation identities which we use
later in the paper. For the spectrally negative Lévy process X, define
=inf{t>0:X(t)<a} and 7] :=inf{t>0:X(t)>a}, ack

T(l a

By using identity (3.19) in [3], for z € R and 6 > 0,

HUY) (2,0) := E, [6_(q+7')r‘;+ax(ﬂ)1{ro—<oo}
4.
where, in particular,
(4.7)
HO) (2, 8(q)) = Es [e—@“)Tﬁ‘I’(q)X(TJ)1{TJ<OO}}
W) ()

— 2@ (2. B(q)) — d(g+r)—(g)

H(q+r)($) — H(q‘”)(x,O) =E, {e—(q-i-T)TJ} = zla+r) (z) — atr

50 17 W@t (),

For any Borel set A C (—00,0] and « < 0, by Theorem 2.7(ii) in [12],
o+
* =gt (g+7)
(4.8) Ex[ e 1{X(t)eA}dt} = A@ (z,y)dy,
0

where we define, for z,y € R,

(4.9) olatn) (z,y) = 6<1>(q+r)frw(q4rr)(7y) — wiatr) (z —1v).
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Remark 4.1. (i) For x,y < 0, by the identity (4.8), ©*") (z,y) > 0.
(ii) On the other hand, for z > 0 and y < x, O (z,y) < 0. Indeed, by (4.8),

+

(4.10) 0< E[/ e—(q+r>t1{x(t)€dy}dt} — e~ 2atnTgatn) (1 4)dy.
0

Let X be the running infimum process of X and e, , be an independent exponential
random variable with parameter ¢ + r. By Corollary 2.2 of [12], for Borel subsets on
[0, 00),

_atr

(4.11) P(—X(qurr) €dy) = (g +r)

Wt (dy) — (g + r)WEt) (y)dy,

where W(97)(dy) is the measure such that W@+ (y) = f[o y Wt (dz) (see [13,
(8.20)]).
Remark 4.2.
(1) By (8.26) of [13], the left- and right-hand derivatives of W@ always exist
on R\{0}. In addition, as in, e.g., [10, Theorem 3], if X is of unbounded

variation or the Lévy measure is atomless, we have W (@) € C1(R\{0}).
(2) Asin Lemmas 3.1 and 3.2 of [12],

W@ (0) = { 0 if X is of unbounded variation,

1 if X is of bounded variation,
0—22 if o >0,
W@ (04) ={ o0 if o =0 and II(—o00,0) = oo,

00 it 5 — ) and II(—o0, 0) < oo.

(3) As in Lemma 3.3 of [12], Wg(g(x) = e~ @ W@ () A K(B(q))7 ", as
x T oo.

4.2. The computation of v,. We shall now write the expected NPV of total
costs vy as in (4.1). For the controlling cost, it has already been obtained in Corollary
3.2(iii) of [4] that, for b,z € R,

(4.12)

/ e AR (t)
[0,00)

Hence, it is left to compute the expected NPV of the inventory cost.
Recall H(@t7) as in (4.6), and in order to obtain a concise expression for vy let us
define, for z,y € R,

_ Plg+r)—2(g) 2@ (5 — by — L{Z(‘”(:c . K’ (04) }

E,
(g +7)P(q) q+r q

(4.13) T(z,y) = -0+ (2, y) +r / W@ (z — 2)0 ) (2, y)dz
0

(4.14) = W) (@) = 2D (@, ®(q +r)) W) (—y),

Yy

where the second equality holds by (4.4) and (4.9).

Remark 4.3. (i) Using (4.3), for < 0, H@+7)(2,0) = €%* > 0 for 6 > 0.
(ii) Using (4.14) together with (4.5), we have that Y (x,y) = W@ (z—y) for y > 0.
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Remark 4.4. The function Y (z,y) will be a key function for the rest of the analysis
in this paper. It coincides with —©*+")(z,y) when z < 0 and with W@ (z — y) for
y > 0 as in the above remark. To see further relationships with these functions, see
(A.4) and Lemma A.1 in the appendix.

The proof of the following theorem is given in Appendix A.1.

THEOREM 4.5. For z,b € R, and a positive bounded measurable function h on R
with compact support,

(4.15) E, { /0 h e‘qth(Uf(t))dt] = / h h(y)ri®" (, y)dy,

—00

where, for x,y € R,

() = q;r Q(Q)@éq(; +)r) ) g0 (0 — by (6~ g, 2(0))
—Y(x—b,y—b).

Now using (4.12) and Theorem 4.5, as well as Lemma B.1 (given in the appendix),
we obtain the expression for (4.1).

PROPOSITION 4.6. For x,b € R, the function vy(x) is finite and can be written

wl) = FOZ0 @ -0 - [ T @)@ — by — b)dy

(4.16)
Cr (—(a) K'(0+)
O (g KO8,
where
(4.17)
F(b ._(I)(Q"'T)_(I)(Q) q—i—rq) /Oof H@T)(h — . ® d ¢
0) == e 2@ | SWH 6y ey + 5],

which is well-defined and finite by Lemma B.1 and Remark 4.3(1). In particular, for
x <b, from (4.13),

r—4+ qe‘b(Q‘i"")(w*b)
q+r

b /
Cr k' (04)
(q+r) (0 _ _ _ _
+/_oof(y)9 (x — b,y —b)dy q+r{x b+ p }

(4.18) wp(x) = F(b)

Proof. By Theorem 4.5 and dominated convergence (due to Lemmas B.1 and
B.2), identity (4.15) holds for h = f. By this and (4.12), the result holds after
simplification. 0

4.3. Polynomial growth of v,. We conclude this section with the following
property of v,, which is required in the verification lemma (Lemma 3.1).

LEMMA 4.7. For each b € R, x — vp(x) is of polynomial growth.

Proof. Under P where X(0) = 0 and z € R, let U%* be the Parisian reflected
process with barrier b € R driven by (X(¢) + z;t > 0) and define R%* similarly so
that U*(t) = z + X (t) + R%*(t), t > 0. Then,

(4.19) UP(t) = U (1) = (y — ) + (RYV(1) — RY (1), « <y.
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We first show that, for y > x,
(4.20) Uby(t)y —Ub*(t) >0, t>0.

Let o := inf{t > 0 : U>*(t) > U>Y(t)}, and assume (to derive a contradiction) that
o < oo. Because the increments of U%* and UPY can differ only at the jump times of
RV and RbY, we must have that AR%(0) > 0 and Ub®(0—) < b. If U2Y(0—) < b,
then UY*(0) = Ub¥(0) = b. If UPY(o—) > b, then Ub*(0) = b < Ul¥Y(0—) =
U2Y(0). In both cases, UY*(0) < UP¥(o) and the inequality holds until the next
Poisson arrival time after o, which contradicts the definition of o. Hence, we must
have o = 0o or equivalently (4.20).

On the other hand, letting o¢ := inf{t > 0: U>*(t) = U>¥(¢)}, we have, for i > 1
with T'(7) < oy,

ARP(T (i) = (b= Up*(T(i)=))" = (b= UpY(T(0)-))* = ARPY(T(0)),

while, for t > 0y, we must have AR%*(t) = AR%Y(t). This together with (4.20)
implies that

(4.21) 0< RV(t) —RMWW(t)<y—=x, t>0.
By (4.19) and (4.21), we also have
(4.22) 0< UMY () -UM(t)<y—x, t>0.

By these bounds and Assumption 2.2(i), we have that vy is of polynomial growth. O

5. Selection of b*. In this section, motivated by the discussion given in Remark
3.2(2), we pursue our candidate barrier b* such that vj.(b*) = —C and show its
existence. The convexity of vy« is shown later in the paper.

We first obtain the following two lemmas, whose proofs are deferred to Appendices
C.1 and C.2.

LEMMA 5.1. Define, for x,y € R,

P
B W)= W) = S bl 4 )2 )
Then, for y < b,
(5.2)
0 0
T _ - 2 Y(p —
0z (Z7 Y b) z=(z—b)+ 0z (JU b7 Z) z=(y—b)—

=Wt (z —y)+) — ’I"/ WD (z — )W+ (2 — y)dz
b

— ®(g+ )W (b — ) 2D (@ — b, B(g +1)).
Remark 5.2. By Lemma B.1 and Proposition 4.6, we must have

iim F)H T (b —y,0) =0
yl—oo

for > 0 and limy| o f(y)Y (2 — b,y — b) = 0. In addition because
(5.3)

d(q+)
U(z—by—b)="(xr—by—b) — 2
(x—by—0b) (x —by—0) s

we also have lim,| o f(y)¥(z — b,y —b) = 0.

ZD(z —b,®(q+r)HIT (b —y),
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LEMMA 5.3. Fiz x,b € R. We can choose —M < b A x sufficiently small so that

M —-M
[ IwTe by -nay= [ )t - by - b

ox oo

Using Lemmas 5.1 and 5.3, we obtain the results regarding the first derivative of
Vp.

LEMMA 5.4. Fiz b,z € R. (i) We have
(5.4)

o) = @F®) SOV DD 20 b, a0+ ) - [ WO =) )y

qtr b
b
Cr
— N (2 — — 7@ (2 _ ).
| e by =ty - 20 )

(ii) We have

E. | / e Ut n)at] - vh(a)

_ (z<w>(az —p)4 qu r q)fq’(j{)m 2Dz b, d(g+ r))) M) (b))
where
(5.5)
M) s= TEED =R [ g s -y agyay + L2

Proof. (i) By integration by parts, for z # b,

69 g [ F@WOE =y = FOWO -5+ [ WO ) )y

Differentiating (4.16) and using (5.6) and Lemma 5.3 (with which the derivative can
be interchanged over the integral) and that Y (z—b,y—b)|y=z+ — Y (x—b,y—b)|y=z— =
—~Wat)(0), for z # b,

40) = FOZ (@ =) = JOW O —0) — [ WO - ) )y
[ T by vy - s >W<q+“><0)1{m<b}—q%zm)(x—b)-

By Lemma 5.1, Remark 5.2, and integration by parts and noting that ¥(z — b,y —
D)ly=a+ — U@ = b,y = b)ly—a— = ~WH(0),

/ fy)=—"(x—b,y—b)d / fly —b,y—b)dy

— FB)¥(x — b,0) + / P )0 — by —bdy — @)W ()14
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where ¥(z — b,0) = W@ (z — b) — 20 7@ (3 — b, &(q + 1)). This together with
Z@n (x —b) = e+ r)Z(9D (x — b, ®(q + 7)) shows (5.4).
For the case x = b, following the same computation for the right- and left-hand

derivatives, it can be confirmed that they both match with (5.4).
(ii) Integration by parts gives

60 [ et @0y = (10 + [ 1wt 00 Vay) o)

and by noticing that """ (2) = (H*) (=, 9(0)) - 745 oy HO ) (2)) /9(a).

z € R, is an antiderivative of H+7) (. ®(q)) and by Remark 5.2,

(q ) _ f(b) T q)(q + 7')
/ JHITb =y, 2la)dy = )(1 q+r®(g+r)— ‘I)(Q)>

/ F T (b - )y,

Therefore, using the previous identities in (4.17) together with Remark 4.3(i), we
obtain

o =10~ [ rwaene-pa)

‘1>(qu7’) (q) (q+r g+r ¢
gt (G [Lrwno- s 55)

(5.8)

Now using (5.4) and Theorem 4.5 together with (5.3) and Remark 4.3(ii), we
obtain that

B | [ e ] - i
Cr

= q+TZ(Q)(x— b)
q+’l"¢(q)(@(q+7’) 7(1)((])) > / q,r q+r
+ RO S [ p )2 = )0 - . 00y
b
+ P g0 - batg 4 ) (10~ [ F@HT0 -0 - aF D),
which shows (ii) by (5.8). d

From (5.3), ¥(0,y — b) = —%H(q‘”)(b —y). Hence using (5.4) and (5.8), for
any b € R,

(5.9)
iy Cr Qlg+r) b (@) (1 D(g+71)—D(q) s C
ht) =~ D ([ e oy + g DR
+ / P HE (b~ g, (q))dy) “’" / £ HE (6 — y)dy
:M(q’)(b)fC.
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In view of this and Remark 3.2(2), our natural selection of the candidate barrier b*
is such that M (q”")(b*) = 0. With this choice, the following is immediate by Lemma
5.4(ii).

LEMMA 5.5. If b* € R is such that M%) (b*) = 0, then

vje () = [ / T e p U (1)

for x € R.

5.1. Existence of the optimal barrier b*. We first show the following two
lemmas. The proof of the first lemma is deferred to Appendix C.3.

LEMMA 5.6. Fiz b€ R and 0 > 0. We can choose —M < b sufficiently small so
that

o M RPN,
5 | T@HT G- g0y = [ )6~ g 0)dy.

LEMMA 5.7. For all b € R at which f'(b) exists,

(o) = 2D (g 4 B (X ey + ).

Proof. Using Lemma 5.6 together with Remark 4.3(i) and (4.11),
M@V (b)
(g +7) — 2(9)

r

x [— f'(b) + @(q) /boo Fy)e 0@ dy + f'(b) (1 -

rW @tr)(0) >
(g +r) — (q)

P W) (p - y)> dy]

b
[ (220 - o) + W ey - g T

D(g+r)

— (@) () _ /

M b) ~ = T2 (40 + B[ (Xlegrr) +1)] ).

By this, the desired result is immediate. ]

PROPOSITION 5.8. There exists a unique b* such that M7 (b*) = 0.

Proof. (i) First we note

(5.10)
0

b
e‘q}(q)b/ L )H O (b =y, D(q))dy = / e @D f(y + b)| H ) (—y, ®(g))dy.
Because f’ is nondecreasing and also of polynomial growth,

Flly+d)+H)T< > Culy™ ™+ K, yeR,
0<m<N

for some N € N and C,,,, K > 0; similar bounds can be obtained for f'((y + b)+)".
Because b¥e~®(@? is hounded in b > 0 for each k > 0, we see that e~ ®@| /((y+b)+)]
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is bounded by a polynomial of y (independent of b). This together with Lemma B.1
allows us to apply dominated convergence, and hence (5.10) vanishes as b — .
Therefore, in view of (5.5), we obtain that
(5.11) lim e~ 2@ p1(@) () = 0.
b—o0
(ii) By Lemma 5.7 and Assumption 2.2(i), b + 1(b) := e®(@b(e=2@bp1(ar) (b))
is nonincreasing. In addition, monotone convergence and Assumption 2.2(ii) give

(5.12)
D (0]
i 1(0) = f% Ca+ f'(=x)] >0, limi() = f% [Ca+ 1e0)] <.

By the positivity of exp(®(q)b), there exists b € R such that (e~ ®@°Ar(@) (b)) >
0 a.e. on (—o0,b) and (e~ ®@WbAr(@m) (b)) < 0 ae. on (b, 00); equivalently b +
e~ ®@b01(@7)(p) is nondecreasing (resp., nonincreasing) on (—oo,b) (resp., (b, 00)).
By this and (5.11), there exists —oo < b* < b such that e=®@*M(¢7)(p) (and hence
M(@7)(b) as well) is nonpositive on (—oo,b*) and nonnegative on (b*,c0). By the
continuity of M(@7)(b), we must have M (@) (b*) = 0.

(iii) To conclude, we show the uniqueness of b*. Because b* < b, (by the def-
inition of b) we must have (e~ ®(@°M (@) (b)) |,—p-; > 0. Hence it suffices to show
that (e~ @M@ (b)) |p—p-1 # O (equivalently I(b*+) # 0). Suppose I(b*+) = 0.
Then, because [ is nonincreasing on (b*,00), I(b) < 0 a.e. on (b*,00) and hence
e~ ®@o 1@ (h) < 0 for b € [b*, 00). Because this is also nonnegative by how b* was
chosen, e~ ®@b77(@7) () = 0 uniformly on [b*, 00), implying (e~ @0 (47 () = 0
a.e. on (b*,00), or equivalently, by Lemma 5.7, Cq + E [f'(X(eq+r) + b)] = 0 for a.e.
(b*, 00), which contradicts (5.12). 0

Remark 5.9. Using identity (5.7) in (5.5) leads to

_atr
D(q+7)

9] b
<[+t [ e @Dy [ e 6y a3,

Cq  q+r(®(g+r)—P(q)
®(q) r ®(q+r)

M(qar)(b) —

Because monotone convergence and the expression (4.7) give

b
lim ' W)H (b~ y, ®(q))dy = 0

r—oo [ o

and lim,_,o, ®(¢ + 7) = oo, we have

lim 4"
oo &g +7)

Ca
®(q)

This is consistent with [21], where the optimal barrier for the classical case is the root
of M@ (b) = 0.

6. Proof of optimality. With 0* € R selected in the previous section, we will
prove that our candidate value function vy~ satisfies the conditions required in Lemma
3.1 and hence that the strategy 7% is optimal.

We first confirm the desired smoothness for vy; we defer the proof to Appendix
CA4.

M) = 50 0) = () [ e @0 Day+ L 1)
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LEMMA 6.1. The function vy- is sufficiently smooth on R.
Now in order to verify the equality (3.2), we prove the following.
LEMMA 6.2. The function vy~ is convez, and vy. (b*) = —C.

Proof. (i) By Assumption 2.2(i), f’ is increasing Lebesgue-a.e. Hence, using
Lemma 5.5, together with the monotonicity of UfZ* in the starting point as in (4.20),
we obtain, for z < y,

(@) =B, | [ e r @] <g,[ [ ertpoF @] = o).
0 0
Therefore, v+ is convex.
(ii) By how b* is chosen so that M (@) (b*) = 0 and (5.9), v}. (b*) = —C. 0
Next, by an application of Lemma 6.2, the following result is immediate.
PROPOSITION 6.3. For x € R, we have
Cb* —x) + vp= (b*) —up«(x)  if z € (—00,b*),

(6.1) Moy (x) — vp< (x) = {0 if © € [b*,00).

Now we show the following auxiliary result.

PROPOSITION 6.4. (i) For x < b*, we have

(L = q)op- (z) + f(z) = — qq:r (F(b*) (1 - e¢<q+r><H*>) Fobt - 9:))

tr / F)0 D (@ — b,y — b*)dy.

(ii) For x > b*, we have (L — q)vp«(z) + f(x) = 0.

Proof. (i) Suppose < b*. Direct computation gives (£L—(q+7))e®(@+m)(@=t") — (
and hence

_ ®(g+r)(z—b") | — ®(q+r)(z—b*) _
(L—q)(r+gqe qr(e 1).
Let us define, for fixed z < b*,

(6.2)

‘r;; b*
6@ = [ et ana] = [ 10 by - b,

0

where the last equality holds by (4.8) and is well-defined and finite for all z < b* by
Remark 2.1. With T(_y -y := inf{t > 0: X(t) € [-N,b*]} for =N < z, define the
processes

I(t) := e” NN QU (X (8 ATy 1))
tAT(_N,b*)
+f e~ (X ())ds, 20,
0
I(c0) := tlggo I(t)

T—nNb)
= @Dt G (X (T ) + / e~ (@2 (X (s))ds.
0

Note by the strong Markov property that G(4+7)(z) = E,[I(c0)].
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~ With (G(t);t > 0) being the natural filtration of X, we define the P,-martingale:
I(t) :== E; [I(00)|G(t)], t > 0. For x < b* and t > 0, by the strong Markov property
of X and because, on {t > T(_n =}, I(t) = I(c0) = I(t), we can write

I(t) = 1{t<T(—N,b*)}{e_(q_‘—r)tEx(t) [I(OO)] +/O e—((H-T)Sf(X(S))dS}

+ 1{t2T(,N,b*)}I(t)'

On the other hand, because P,-a.s.,

t
Vet e} I(t) = 1{t<T(,N,b*)}{6_(q+r)t]EX(t) [£(o0)] +/0 6_(q+r)sf(X(5))dS},

we have that I = I, meaning it is a P,-martingale.

By Lemma 6.1 together with the expressions (4.18) and (6.2), we have that G(+7)
is sufficiently smooth. Therefore, using this martingale property and It6’s formula we
conclude that (£ — ¢ — r)G@+")(z) = — f(z), or equivalently, using the last equality
of (6.2),

(£ q) / F)O (@ — by — b)dy + f(z) =7 / £ (z — by — b)dy.

Finally, direct computation gives (£ — q) (b* —xr— #) = —q(b* — x). Hence
putting the pieces together, we complete the proof for the case x < b*.

(ii) Fix > b*. Similarly to I defined above, the process
AT (e )
e 10T )y, (X (AT, Ny)) + / e P f(X(s))ds, t>0,
0

where T4 ny := inf{t > 0: X(t) ¢ [b*, N]} with N > z, is a P,-martingale. Hence
using the martingale property and Itd’s formula (which we can use thanks to the fact
that vy~ is sufficiently smooth as in Lemma 6.1), we conclude that (£ — ¢)up-(x) +
f(z) =0, as desired.

For the case x = b*, because vy~ is sufficiently smooth, we obtain the result upon
taking z — b*. 0

Now we are ready to show the main result of the paper.

THEOREM 6.5. The policy ©° is optimal and the value function is given by v(z) =
vp+ () for all x € R.

Proof. In view of Lemma 6.1, it is sufficient to verify (3.2).
(i) Suppose z < b*. Using Proposition 6.3 and (4.18), we have

Moy () = - () = = (O = )+ F(b) (1 = et

- / F@)0 ) (@ — b*,y — b*)dy.

Hence using this and Proposition 6.4(i), we deduce (3.2) for x < b*. (ii) For the case
x > b*, using Proposition 6.4(ii) and (6.1), we have (3.2) as well. d
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Fic. 1. Plots of vp= (solid) in comparison to vy for b = b* — 2,b* — 1,b* + 1,b* + 2 (dotted).
The point (b*,vp= (b*)) is indicated by a square, while the points (b, vy (b)) are indicated by down-
and up-pointing triangles for b < b* and b > b*, respectively.

Remark 6.6. A natural extension of the considered problem is to allow additional
fixed ordering costs incurred each time an order is made. In this case, a “periodic
(s,5)-policy” is expected to be optimal. This policy replenishes the item up to the
inventory level S at each observation time 7, whenever it is below the level s. This
is an interesting and challenging problem and we leave it for further work.

6.1. Numerical examples. We now confirm numerically the obtained results
using the quadratic inventory cost f(x) = x2. In this case, a straightforward com-
putation gives b* = ®(q+ )"t — ®(q)~! — x'(0+)/(q + ) — qC/2. We assume that
X(t)=X(0)+t+02B(t) — Efy:(tl) Zn, for 0 <t < oo. Here, B is a standard Brown-
ian motion, N is a Poisson process with arrival rate 1, and {Z,},>1 is a sequence
of independent and identically distributed phase-type random variables (whose pa-
rameters are given in [20]) approximating the Weibull distribution with shape and
scale parameters 2 and 1, respectively. The corresponding scale function admits a
closed form expression as in [8]. We set ¢ = 0.05, r = 0.5, and C' = 1, unless stated
otherwise.

In Figure 1, we plot « — vy(x) for b = b* and for b # b* along with the points
(b, vp(b)). It is confirmed that vy~ is indeed convex (as in Lemma 6.2) and minimizes
over b uniformly in x.

In Figure 2, we show vy« for various values of the unit replenishment cost/reward
C and the rate of Poisson arrivals r, along with those in the continuous monitoring
case [21]. For the former, as C' increases, the value function vy« increases (uniformly
in ) while b* decreases. On the other hand, as r increases, both vy~ and b* decrease.
As r — o0, the convergence to the case [21] is also confirmed.

Appendix A. Proof of Theorem 4.5. Recall as in Corollaries 8.7 and 8.8 of
[13] that for any Borel set A on [0,00) and on R, respectively,
o
(A1) E, [/ e*qtl{X(t)EA}dt} = /A [e*q)(q)yW(q) (z) = WD (z — y)} dy, x>0,
0
(A.2)

E > (a+1)t1 d e®(a+7r)(z—y) S q R
et = [ S - W @ —y)| dy, .
[/ T xmen) } /A[ru(@(qw)) (= y)} hoTe
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/
s

Fic. 2. (Left) Plots of vy« for C = —100, —90, ..., 90,100 with (b*, vy« (b*)) indicated by squares.
(Right) Plots of vy= (dotted) for r =0.1,0.2,...,0.9,1,2,...,9,10,20,...,90,100, 200, ...,900,1000
with (b*, vy« (b*)) indicated by triangles, along with the continuous monitoring case (solid) with the
point at the optimal barrier indicated by a square.

A.1. Proof of Theorem 4.5. For x € R, let us denote the left-hand side of
(4.15) by gp(z) and in particular g(z) := go(x). We will prove the result for b = 0;
the general case follows because the spatial homogeneity of the Lévy process implies
that gy(z) = By [ [, e"Th(U2(t) + b)dt].

(i) For z € R, by the strong Markov property,

(A8 gl =B [ e OEO)] s [ X ]

In particular, for z < 0, again by the strong Markov property and because U? = X
on [0,T(1) A7),

g9(x) = A(x)g(0) + B(x),

where, for x <0,

)

Alz) =E, {e—q(TJAT(l))] _ T4 et
q+r q+r
0

B(z) = Em[/OTJ e_qtl{t<T<1>}h(X(t))dt} =/ h(y)©' ) (z, y)dy.

—00

Here, the second equality of the former holds by the fact that T'(1) is an independent
exponential random variable with parameter r and Theorem 3.12 of [13]. The second
equality of the latter holds by (4.8).

Now applying identity (3.19) in [3],

E. {equO_ A(X(To_))l{fg <oo}]

_ T (Z(Q)(m) _ (I)Elq)Wm)(x)) N ﬁ (Z(Q)(x’q)(q_’_r)) _
qr D(q+7)

g+ 2(q)(D(q+7) — D(q))

In addition, using identity (5) in [1] together with Lemma 2.1 in [15], we obtain for

rW (@ () )
®(q+1)— 2(q)

— zlar) (z) W@ (z).
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c>x,
— 0 —
By [e7770 B(*X(TOi))l{TJ<7'cJr } :/ h(y)Ey {e_qTO ®(q+r)(X(T(;)ay>1{TJ<T§}} dy

0 @(z) [
(A1) —— [ roteai e [ T

By (4.4) and Remark 4.2(3), for y € R, lim, 00 Wéq’r) (z) /WD (z) = 2@+ (—y, B(q)).
Also following the proof of Corollary 3.2(iii) in [4] we have lim, o Z(@ (2, ®(q +
7)) /W @D (x) = r/(®(q +r) — ®(q)). Hence by taking ¢ 1 oo in (A.4) and using these
limits, we get

B (67 BOXT ) o5 <ot

0 0
- / W)Y (@, y)dy + WD (2) / h(y) B (—y, B(q))dy.

— 00 — 00

Substituting these in (A.3) and by (A.1) and Remark 4.3,

D(g+r)
A5 z) = g(0){ 2@ () — ar WD (z }
A9 afe) =00 {2070 - g e
S WO [ hH ) @) [ )T
(ii) On the other hand, by the strong Markov property, we can also write
(A.6) 9(0) =71 + 7129(0) + 73,
where

()

o E[/ e‘qth(X(t))dt},
0

E[equ(l)l{X(Tu))so}}v

Y2 -
V3 = IE[equ(l)g(X(T(l))I{X(T(l))>0}]’

whose values are to be computed below.
(1) We get v1 = E [[5° Lyperyye T R(X (t))dt] = E[ [~ e~ @HIth(X (t))dt].
(2) Using (A.2), we obtain

1 > 1 1 1
— _ —(g+r)s — _
12 r(q—kr E{/O € 1{X(3)20}ds]) r(q—kr K (®(q+ 7)) <I>(q+r)>'
(3) Again by (A.2),
(A7)

V3 = rE[/ e’(q”)sg(X(S))1{X(s)>0}d5] -
0

r

=@+ (1)d
€ )
H’(CI)(q T)) /0 g(y) Yy
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which we shall compute using the expression of g as in (A.5). First, by integration by
parts,

00 1 0
/ e~ 2(atm)y 7(a) (y)dy = ﬁ (1 + q/ e—‘l’(q+7")“W(‘1)(u)du>
0

0 q+r
_ 1 q+r
C B(g+r)

Because (4.2) and (4.4) give e~ ®@+7)y 7(0) (y d(q + 7)) = rfyoo e~ a2 () (2)dz,
(A.8)OO .
/ e~ 2@+ 7(a) (y, ®(q +r))dy = 7"/ / e—tb(q—&-r)zW(Q)(Z)dzdy
0 0

Yy
_ 7O/OO Zef<1>(q+r)zW(q) (Z)dZ _ KJ/((I)((] + 7")),
0 T

where the second equality holds by the change of variables and the last holds because
monotone convergence and (4.2) give that

/ 2e 02 WD (2)dz = _9 e WD (2)dz.
0 90 Jo

LEMMA A.l. Fory € R,
(oo}
/ e~ P @ty (g yyde = [e” @Y — W) (_y)k (D (g + 1))] /1.
0
Proof. We have for 8 > ®(q + r), by the convolution theorem,

o) oo o0
/ e_exWéq’T)(a?)da? = (/ e T Wt (¢ — y)dm) (1 - T/ e 0T W@ (x)dx)

0 0 A
—0 0 o gt
= (L _ / e~ Oz (atr) ((E . y)dx) H(@) q—T 0ld(q+r) € (¢ )1/'
O =a=1 Jyro K(0) — g r
This together with (A.8) completes the proof. 0

By this lemma, Fubini’s theorem, and (A.2),

/OOO e~ ®latrly /O:O h(2)Y (y, z)dzdy = ME UOOO e(q”)th(X(t))dt} .

Substituting these and with the help of (A.5) in (A.7),

r [ 1, _a w(®g+r) g P(q+1) }

K (P(g+7)L®(g+71) g+ r g+ 2(q)((g+1)— 2(q))
1 o0 i

ey | MO ).

Now substituting the computed values of 1, 72, and 73 in (A.6) and after simplifica-
tion, we have

73 =g(0)

~E UOOO e—(q+’“>th(X(t))dt] -

_rq P(q +7) 9(0)
q+72(q)(2(g+71)— 2(q) K(2(g+ 7))

1 o abr
+we | H T ey,

9(0) = g(0)
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and hence, solving for g(0) we obtain

9(0) = h(y)H' ") (—y, ®(q))dy.

q+72(q)(P(g+7) — P(q)) /°°
qr (g +r) —oo

Substituting this back in (A.5), we have (4.15) for b = 0, as desired.

Appendix B. Integrability results.

LEMMA B.1. Consider g R — R that satisfies Assumption 2.2(1). Then, for any
beR and 6 > 0, we havef y)|HH) (b — y, 0)dy < oco.

Proof. By identity (4.6),

b b
/ lg()H (b — y,6)dy = / ()| [ef(qm% X ] dy

—o0 —0oo
b

b
< / 19(9)[B(—X(eqsr) > b— y)dy = / )| [ B(-X(egsr) € dz)dy

_ / —u |/ X(egsr) € dz)d; - [) P(—;(eq+r) € d2) /O (b — u)|du.

Here, as in (3.11) of [11] (using Assumption 2.1), we have E[e~/X(ea+r)] < oo for

0 < 6 < 6. This together with the polynomial growth of ¢ as in Assumption 2.2(i)

implies that the above is finite. ]
LEMMA B.2. Fizanyb e R. (i ) For anyx > b, sup_¢ (g ,—p) f_ f)]|0+) (z,y—
b)|dy < co. (ii) For any = € R, f (|| (z — 0, y—b)|dy<oo

Proof. (i) Recall Remark 4.1. For z € [0,z — b], because b < z + b, by (4.8) and
following similar arguments as in (4.10),

b z+b
/ FIOH (2, — b)|dy < / F@IO 2,y — b)ldy

— 0o — 00
+

7t Ty
_ e<I>(q+r)zEb [/ +b ef(qur)t‘f(X(t)”dt} < e<I>(q+r)(:c7b)Eb [/ e*(q+r)t|f(X(t))|dt} ,
0 0

and hence we have the result by Remark 2.1.
(ii) Fix x < b. Then by Remark 4.1(i) and (4.13), we have for y < b that
IT(x — b,y —b)| = O+ (2 — b,y — b). Hence

b b
[ @It by -vlay= [ 11O~y - by
:Ez[/Tb e~ F(X (1)),

0

which is finite by Remark 2.1.
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On the other hand, for z > b, we note that, by an application of Fubini’s theorem
and (i),

b
/ |/ WD (2 —b—2)[06+) (2,4 — b)|dzdy
= [T Wow - [ 1swle ey - e

(@ §
WOt o [ IO - bty < .
z€|0,x— —0o0

In view of the form of T as in (4.13) and (i), the proof is complete. d
Appendix C. Other proofs.

C.1. Proof of Lemma 5.1. For y < b, because
QW(%Z)(:E - b)‘ — W (2 )+ / W@ (2 — )W (2 — y)dz,
81,6 w u=y—
we have that f%\ll(x —b,2)|.=(y—p)— reduces to the right-hand side of (5.2).
On the other hand, we obtain by integration by parts

%Wéq_’z’@) oy =V (@ =) 1) - WO @ =W (b - y)

(C.1) —r / WD (z — )Wt (2 — y)dz.
b

Using —Z(q)(z B(qg+7)) =D(q+7r)Z9D (2, (g +7)) —rWD(2) and (C.1) in (4.14),
we have that B‘ZT( 2,9 = b)|z=(z—p)+ equals the right-hand side of (5.2).

C.2. Proof of Lemma 5.3. (i) Fix y <bAx and € > 0. With W44,y defined
as in Remark 4.2(3),

(C.2)
(g+7) (5 — —p)— 0l (p — _ ®(g+r)e _ 1
C) (xt—b+ey bi C) (x — b,y b):e : O+ (1 — by — b)
(B(a+r)(@+e—y) <W<1><q+r> (& +e-y) = Woggn(z— y)) .
€

Here we note that & +— (e®(@*7) — 1)/e is bounded in compact sets on (0,00) and
that ffoo |f()]|©F) (& — b,y — b)|dy < co by Lemma B.2(i).
As in Appendix A.1 of [11, p. 1150] we have that

Wagrn(ute—y) = Waoggrn(u—y)

g 1)l :

is bounded in £ > 0 by a function integrable over (—oo, —M) for some —M < b A x.
Therefore, dominated convergence gives

o / (1O (&~ by ~ b)dy
Ot (z —b+e,y—b) — O (x — by —b
— lim f(y) ( y—"b) ( y )dy
el J_ 3
—M b
©3) = [ 1wz by~ b
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(ii) Fix > b and consider the second term of Y in (4.13). We take § > 0 small
enough so that x — b — § > 0. By Fubini’s theorem

—M xr—b
/ f(w) / W (2 — b — )0+ 2,y — b)dady
—00 0

x—b —M
— [ wOe—b-s) [ e ey - by
0 —00

On the other hand, by the mean value theorem and Lemma B.2(i), for 0 < z <
r—b—9dand 0 < e < ¢,

@(p_p_ WD (g —p— -M
e = z)/ 7y )9(q+’(zy—bdy‘

< sup  W9@(ut) sup ‘/ y)OUt) (2,5 — b) dy’ < oo.
u€[d,x—b+é] z€[0,z—b]

This and dominated convergence imply

e=b=0 () (p — p — WDy —p— -M
lim WWD(z—-b—z4+e)—-WD(z—-b-2) / F)OEH (2, y — b)dydz
10 J, € oo
z—b—0 —-M
— [ Wb [ e ey - by
0 —00

On the other hand,

x=b 117(a) (o _ ) WD (e —p— -M
| / WO (e —bte—2) - WDz —b-2) / )0+ (2, y — b)dydz

€ —00

M
<(_aw, [ 1o ey - viay)
X/w—b WD (z—b+e—u)—WD(x—b—u)

—b—4§ 3

du,

which vanishes as ¢ | 0 and then § | 0 because ’'Hopital’s rule gives

z—b—3 € €

0 @) () — w@ (o).
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Putting the pieces together we obtain

WDz —bte—2) - WD(z—b—2)

A1 = hm
ed0 Jo £
-M
< e ey — by
x=b=3 1y7(q) (- _ W D(p —p—
= lim lim Wi(e—bte-z) " WH(@=b-2)
510 €10 J, €
-M
<[ e ey - by
z—b (@ (p — WD (e —p —
+ lim lim Wiz —bte-z) - Woz-b_z)

510 10 Sy ps €

—M
x / F@)OWH) (2, y — b)dydz

z—b -M
= / WDz —b—2) / f()0 ) (2, y — b)dydz=.
0 _

oo

On the other hand, by (C.2) the mapping z f:ojg f()©t) (2,4 — b)dy is contin-
uous, and hence

1 xr—b+te —-M
Ay = hﬂ)l g W@ (x—b+e— z)/ f(y)@(qw)(z’ y — b)dydz
€ z—b —00

—WO0) [ )0~ by~ bdyds

Therefore,

—M z—b
(C.4) % / f(y) / WD (z—b—2)00) (2, y —b)dzdy = A; + Ay
0

—00

—M b z—b
= / f(y)a—x / WD (2 —b— 20+ (2, y — b)dzdy.
[eS) 0

We now conclude the proof by identities (C.3), (C.4), and (4.13).
C.3. Proof of Lemma 5.6. We have
0

5 _ QH(q-i-r)(b —y,0) — MT(Q-H)(([) —y)+),

H@t) (4 p
(-.6) o ey,

z=(b—y)+

where 74t () := W) (2) =& (q+r)W @) () > 0, 2 > 0 with (¢+r)r @) (2)/®(q+
) being the density function of —X(e44,) as in (4.11), and hence

0

dz

r0) = (g+7)

a0

HE)(2,0)] ] < OH@) (b — y,0) +

z=(b—y)+

Let us suppose that b € [by,by] with by > —M. First, by (4.6), we have that
H@+) (b — y,0) < By, _y[e”@)70 ], On the other hand, using the fact that z
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W@t (24) /W) () is decreasing as in Remark 3.1(3) of [11], the mapping z
r(@+7) (24) /W (@) (1) is also decreasing. Therefore,

Wtn) (b —y)
Wt (by —y)
- W@t (by — y)
= Watr) (b —y)

£ (b - y)+) @ (b1 — ) +)

1=

1=

@ (b — y)+).

Because W(@+7) (by — ) /W (aH+7) (b — ) converges as y — —oo by Remark 4.2(3), for
—M small enough, there exists a constant K (b, b2) dependent only on by,bs such
that Wt (by — ) /W) (b — ) < K(by,by) for all y < —M. Hence

0

9z

H(atr) (2,0) |z=(b—y)+}

r(0) = (g+7)

b digrn O b2)r @ (b1 — y)+).

S G]Ebl—y |:67(q+’r)7—0_:| +

Here by Lemma B.1 and the polynomial growth of f as in Assumption 2.2(i),

M
/ |F()[Epyy [~ @7 Jdy < oo,

— 00

For the second term we have, by the density function of —X (eq4,) as in (4.11),

M oo
/ P by — y)dy = / £ By — )|+ (u)du

s by +M

P

Pla+r)g,
q-+r

<

< £ (br + X(eg4r))[] < 00,
where the finiteness holds as in the proof of Lemma B.1. Hence, by Corollary 5.9 in
[5], the derivative can be interchanged over the integral and the proof is complete.

C.4. Proof of Lemma 6.1. In view of the expression of Lemma 5.5, by mono-
tone convergence (noting that f’ is monotone) and (4.22), vj. is continuous for all
reR.

Therefore, it just remains to show that vj. is continuous for the case in which X
has paths of unbounded variation, where W@+ (0) = W(9)(0) = 0 by Remark 4.2(2).

Using the expression of Lemma 5.5 together with Theorem 4.5, we obtain after
differentiation that

0

x o b*
- [ row e —nay- 3 [ Fwre-i-ia.

vpe (2) = (@(q+7) — @) 29 (2, ®(q + 1)) /jO Fy)HO (b~ y, @(g)dy

Because Y (z — b*,y — b*) is continuous for the case of unbounded variation and by
Lemma 5.3,

o 1" —_ N _—
5o | FwTe—vy-d= [ P Te ==y seR
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Using (5.2), we can write, for x # y,
%T(x_bay_b):A(mayvb)_r Wq(x—z)A(z,y,b)dz,
b*
where
A,y %) = (W (@ — ) = (g + )W) (2 — y))
— B(q+ )0 (2 — b*,y — b¥).

Because A(z,y,b*) = W@ (z —y) for y > b*,
Kab) = [ FoW @ =ay+ [ @Ay
b*Vzx
[ WAy

— 00

For < b*, recalling that W(4+7)(0) = 0 as in Remark 4.2(2) for the case of unbounded
variation,

K(z,b*) = ME [f/(X(eqM) +2)]— ®(¢+1)E, [/Tb* e*(q+r)tf/(X(t))dt] .

q+r 0
Similarly, for = > b*, by Remark 4.1(ii),

K(eb) = DD (X (eyr) + o)

o
T (g + r)et e R, | / e~ (X ()]
0

(1) The function z — E[f’ (X (eq+,) + )] is continuous by monotone convergence in
view of Assumption 2.2(i). (2) By Assumption 2.2(i), for z < x < 7, under P,

Tt_m e’}
/ e P (X () + )t < / NS (X + )] + | (X (@) + 7)),
0 0
which are integrable by Remark 2.1. Hence, by dominated convergence,

z— E,

/Tb* e—(q+r)tf/(X(t))dt‘|
0

is continuous. (3) The function = +— Ep- [fOTj e~ (@Mt f1(X(¢))dt] is continuous by

again dominated convergence because the absolute value of the integrand is dominated
by [ e @t /(X (t))|dt. In sum, K (x,b*) is continuous in .
For the case > b*, we have by Fubini’s theorem that

(C.5)

* T T b*
/ fly) | WO —2)A(z,y,b")dzdy = [ WD (z—2) / F () Az, y,b")dydz.
—co b* b* —0o0
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W@ (e - ) / () Az b )dy

< WO @) DL B (Xleyr) + )] + 11 (Xlegs) + D)

+ (g4 r)e®@tnEIR UOOO e~ WX () + )| +[f(X(t) +T)|)dt

Hence, by bounded convergence, the term defined in (C.5) is also continuous in x.
This concludes the proof of the continuity of vy..
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