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Abstract

We consider the post-training quantization problem, which
discretizes the weights of pre-trained deep neural networks
without re-training the model. We propose multipoint quan-
tization, a quantization method that approximates a full-
precision weight vector using a linear combination of mul-
tiple vectors of low-bit numbers; this is in contrast to typical
quantization methods that approximate each weight using a
single low precision number. Computationally, we construct
the multipoint quantization with an efficient greedy selection
procedure, and adaptively decides the number of low preci-
sion points on each quantized weight vector based on the er-
ror of its output. This allows us to achieve higher precision
levels for important weights that greatly influence the outputs,
yielding an “effect of mixed precision” but without physical
mixed precision implementations (which requires specialized
hardware accelerators (Wang et al. 2019)). Empirically, our
method can be implemented by common operands, bringing
almost no memory and computation overhead. We show that
our method outperforms a range of state-of-the-art methods
on ImageNet classification and it can be generalized to more
challenging tasks like PASCAL VOC object detection.

Introduction
The past decade has witnessed the great success of deep neu-
ral networks (DNNs) in many fields. Nonetheless, DNNs re-
quire expensive computational resources and enormous stor-
age space, making it difficult for deployment on resource-
constrained devices, such as devices for Internet of Things
(IoT), processors on smart phones, and embeded controllers
in mobile robots (Howard et al. 2017; Xu et al. 2018).

Quantization is a promising method for creating more
energy-efficient deep learning systems (Han, Mao, and
Dally 2015; Hubara et al. 2017; Zmora et al. 2018; Cheng
et al. 2018). By approximating real-valued weights and ac-
tivations using low-bit numbers, quantized neural networks
(QNNs) trained with state-of-the-art algorithms (e.g., Cour-
bariaux, Bengio, and David 2015; Rastegari et al. 2016;
Louizos et al. 2018; Li, Dong, and Wang 2019) can be shown
to perform similarly as their full-precision counterparts (e.g.,
Jung et al. 2019; Li, Dong, and Wang 2019).

This work focuses on the problem of post-training quan-
tization, which aims to generate a QNN from a pretrained
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full-precision network, without accessing the original train-
ing data (e.g., Sung, Shin, and Hwang 2015; Krishnamoorthi
2018; Zhao et al. 2019; Meller et al. 2019; Banner, Nahshan,
and Soudry 2019; Nagel et al. 2019; Choukroun, Kravchik,
and Kisilev 2019). This scenario appears widely in practice.
For example, when a client wants to deploy a full-precision
model provided by a machine learning service provider in
low-precision, the client may have no access to the original
training data due to privacy policy. In addition, compared
with training QNNs from scratch, prost-training quantiza-
tion is much more efficient computationally.

Mixed precision is a recent advanced technology to boost
the performance of QNNs (Wang et al. 2019; Banner,
Nahshan, and Soudry 2019; Gong et al. 2019; Dong et al.
2019). The idea is to assign more bits to important layers
(or channels) and less bits to unimportant layers/channels
to better control the overall quantization error and balance
the accuracy and cost more efficiently. The difficulty, how-
ever, is that current mixed precision methods require spe-
cialized hardware (e.g., Wang et al. 2019). Most commodity
hardware do not support efficient mixed precision computa-
tion (e.g. due to chip area constraints (Horowitz 2014)). This
makes it difficult to implement mixed precision in practice,
despite that it is highly desirable.

In this paper, we propose multipoint quantization for post-
training quantization, which can achieve the flexibility simi-
lar to mixed precision, but uses only a single precision level.
The idea is to approximate a full-precision weight vector by
a linear combination of multiple low-bit vectors. This al-
lows us to use a larger number of low-bit vectors to approxi-
mate the weights of more important channels, while use less
points to approximate the insensitive channels. It enables a
flexible trade-off between accuracy and cost at a per-channel
basis, while using only a single precision level. Because it
does not require physical mixed precision implementation,
our method can be easily deployed on commodity hardware
by common operands.

We propose a greedy algorithm to iteratively find the
optimal low-bit vectors to minimize the approximation er-
ror. The algorithm sequentially adds the low-bit vector that
yields largest improvement on the error, until a stopping cri-
terion is met. We develop a theoretical analysis, showing that
the error decays exponentially with the number of low-bit
vectors used. The fast decay of the greedy algorithm ensures
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small overhead after adding these additional points.
Our multipoint quantization is computationally efficient.

The key advantage is that it only involves multiply-
accumulate (MAC) operations during inference, which has
been highly optimized in normal deep learning devices. We
adaptively decide the number of low precision points for
each channel by measuring its output error. Empirically, we
find that there are only a small number of channels that re-
quire a large number of points. By applying multipoint quan-
tization on these channels, the performance of the QNN is
improved significantly without any training or fine-tuning.
Empirically, it only brings a negligible increase of memory
cost.

We conduct experiments on ImageNet classification with
different neural architectures. Our method performs favor-
ably against the state-of-the-art methods. It even outper-
forms the method proposed by Banner, Nahshan, and Soudry
(2019) in accuracy, which exploits physical mixed precision.
We also verify the generalizability of our approach by apply-
ing it to PASCAL VOC object detection tasks.

Related Works
Quantized neural networks has made significant progress
with training (Courbariaux, Bengio, and David 2015; Han,
Mao, and Dally 2015; Zhu et al. 2016; Rastegari et al. 2016;
Mishra et al. 2017; Zmora et al. 2018; Cheng et al. 2018;
Krishnamoorthi 2018; Li, Dong, and Wang 2019). The re-
search of post-training quantization is conducted for sce-
narios when training is not available (Krishnamoorthi 2018;
Meller et al. 2019; Banner, Nahshan, and Soudry 2019;
Zhao et al. 2019). Hardware-aware Automated Quantiza-
tion (Wang et al. 2019) is a pioneering work to apply mixed
precision to improve the accuracy of QNN, which needs
fine-tuning the network. It inspired a line of research of
training a mixed precision QNN (Gong et al. 2019; Dong
et al. 2019). Banner, Nahshan, and Soudry (2019) first ex-
ploits mixed precision to enhance the performance of post-
training quantization.

Using multiple binary filters to approximate a full-
precision filter has been investigated in supervised learning
of binary neural networks (Guo et al. 2017; Lin, Zhao, and
Pan 2017; Zhuang et al. 2019). Our work differs from these
works in two dimensions: (1) Instead of supervised learn-
ing, our work focuses on post-training quantization, where
only a small fraction of data can be used. (2) Our work goes
beyond binary case. Our method and theory are applicable
for quantization with arbitrary bits. This is non-trivial since,
with higher bits, the weights are not simply ±1, leading to a
much more difficult optimization problem.

Method
We start by introducing the background on post-training
quantization. Then we discuss the main framework of mul-
tipoint quantization, its application to deep neural networks,
and its implementation overhead.
Preliminaries: Post-trainig Quantization
Given a pretrained full-precision neural network f , the goal
of post-training quantization is to generate a quantized neu-
ral network (QNN) f̃ with high performance. We assume
the full training dataset of f is unavailable, but there is a

Algorithm 1 Optimization of Problem 5

1: Input: weight w, integer n, maximal step size for grid
search η, a fixed quantization set Q.

2: Initialize the residual r1 = w.
3: for i = 1 : n do
4: Compute ∆ri , the minimal gap of ri, as definition 1.
5: Set step size γ and search range I as Eq. 11.
6: Solve Eq. 9 for a∗i by grid search in I with step size γ.
7: Set w∗i =

[
ri
a∗i

]
Q

, ri+1 = ri − a∗iw
∗
i .

8: end for
9: Return {a∗i , w̃∗i }

n
i=1.

small calibration dataset D = {xi}Ni=1, where N is a very
small size, e.g. N = 256. The calibration set is used only
for choosing a small number of hyperparameters of our al-
gorithm, and we can not directly train f̃ on it because it is
too small and would cause overfitting.

The b-bit linear quantization amounts to approximate real
numbers using the following quantization set Q,

Q = K × [−1 : εb : 1] + B, εb :=
1

2b−1 − 1
, (1)

where [−1 : εb : 1] denotes the uniform grid on [−1, 1]
with increment εb between elements, and K > 0 is a scaling
factor that controls the length ofQ and B specifies center of
Q.

Then we map a floating number t to Q by,

t̃ = [t]Q := arg min
z∈Q

|t− z|, (2)

where [·]Q denotes the nearest rounding operator w.r.t. Q.
For a real vector t = (t1, t2, . . . , td) ∈ Rd, we map it to Qd

by,
t̃ = [t]Q = ([t1]Q, [t2]Q, . . . , [td]Q). (3)

Further, [·]Q can be generalized to higher dimensional ten-
sors by first stretching them to one-dimensional vectors then
applying Eq. 3.

Since all the values are larger than K (or smaller than
−K) will be clipped, K is also called the clipping factor.
Supposing Q is used to quantize vector t, a naive choice
of K is the element with the maximal absolute value in t.
In this case, no element will be clipped. However, because
the weights in a layer/channel of a neural network empiri-
cally follows a bell-shaped distribution, properly shrinking
K can boost the performance. Different clipping methods
have been proposed to optimize K (Zhao et al. 2019).

There are two common configurations for post-training
quantization, per-layer quantization and per-channel quan-
tization. Per-layer quantization assigns the same K and B
for all the weights in the same layer. Per-channel quantiza-
tion is more fine-grained, and it uses different K and B for
different channels. The latter can achieve higher precision,
but it also requires more complicated hardware design.
Multipoint Quantization and Optimization

We propose multipoint quantization, which can be imple-
mented with common operands on commodity hardware.



Consider a linear layer in a neural network, which is ei-
ther a fully-connected (FC) layer or a convolutional layer.
The weight of a channel is a vector for FC layer, or a convo-
lution kernel for convolutional layer. For simplicity, we only
introduce the case of FC layer in this section. It can be easily
generalized to convolutional layers. Supposing the input to
this layer is d-dimensional , then the real-valued weight of a
channel can be denoted as w = (w1, w2, . . . , wd) ∈ Rd.
Multipoint quantization approximates w with a weighted
sum of a set of low precision weight vectors,

w̃ =

n∑
i=1

aiw̃i, (4)

where ai ∈ R and w̃i ∈ Qd for ∀i = 1, . . . , n. Multipoint
quantization allows more freedom in representing the full-
precision weight. Naive quantization approximates a weight
by the nearest grid points, while multipoint quantization ap-
proximates it with the nearest point on the linear segments.
If we release the constraint a1 + a2 = 1, we can actually
represent every point on the 2-dimensional planar with mul-
tipoint quantization.

Given a fixed n, we want to find optimal {a∗i , w̃i
∗}ni=1

that minimizes the `2-norm between the real-valued weight
and the weighted sum,

{a∗i , w̃i
∗}ni=1 = arg min

{ai,w̃i}ni=1

∣∣∣∣∣
∣∣∣∣∣w −

n∑
i=1

aiw̃i

∣∣∣∣∣
∣∣∣∣∣ . (5)

Problem 5 yields a difficult combinatorial optimization.
We are able to get exact approximation when n = d + 1 by
taking ai = wi and w̃i = one hot(i), where one hot(i) is a
one hot vector with the i-th element as 1 and other elements
as 0. However, d is always large in deep neural networks,
and our goal is to approximate w with a small enough n.
Hence, we propose an efficient greedy method for solving it,
which sequentially adds the best pairs (ai, w̃i) one by one.
Specifically, we obtain the i-th pair (ai, w̃i) by approximate
the residual from the previous pairs,

(a∗i , w̃
∗
i ) = arg min

a, w̃
||ri − aw̃|| (6)

where ri is the residual from the first i− 1 pairs,

r1 = w; ri = w −
i−1∑
j=1

a∗j w̃
∗
j , ∀ i = 2, . . . , n (7)

For a fixed a, we have,
w̃∗i (a) = arg min

w̃
||ri − aw̃||

= arg min
w̃

∣∣∣∣∣∣ri
a
− w̃

∣∣∣∣∣∣ =
[ri
a

]
Q
.

(8)

Now we only need to solve optimal a,

a∗i = arg min
a

∣∣∣∣∣∣∣∣ri − a [ria ]Q
∣∣∣∣∣∣∣∣ . (9)

Because [·]Q is not differentiable, it is hard to optimize a
by gradient descent. Instead, we adopt grid search to find a∗i
efficiently. Once the optimal a∗i is found, the corresponding
w̃∗i is,

w̃∗i =

[
ri
a∗i

]
Q
. (10)

Algorithm 2 Generate QNN with Multipoint Quantization

1: Input: A full-precision network f , a predefined thresh-
old ε, a calibration set of data points D = {x(i)}Ni=1.

2: Run forward pass of f with calibration set D =

{x(i)}Ni=1 to get the input batch DL = {x(i)
L }Ni=1 for

each layer L in f ,
3: for each layer L in f do
4: for each channel k in layer L do
5: w̃k ← [wk]Q.
6: if e(wk, w̃k, DL) > ε then
7: Apply multipoint quantization with Algorithm 1

and keep increasing n until e(wk, w̃k, DL) < ε.
Get {a∗i , w̃i

∗}ni=1.
8: w̃k ←

∑n
i=1 a

∗
i w̃i

∗

9: end if
10: end for
11: end for
12: Return QNN f̃

Choice of Parameters for Grid Searching a∗i : Grid
search enumerates all the values from set [Imin : γ : Imax],
and selects the value that achieves the lowest error. The pa-
rameters of grid search, search range and step size, are de-
fined as the interval I = [Imin, Imax] and the increment γ
respectively. The choice of search range I and step size γ
are critical. We first define minimal gap of vector , and then
give the choice of search range and step size.

The minimal gap is the minimal distance between two el-
ements in a vector t. It restricts the maximal value of step
size.

Definition 1 Given vector t = (t1, . . . , td) ∈ Rd, the mini-
mal gap of t is,

∆t = min
i,j

| |ti| − |tj | |
2

,

s.t. i, j ∈ {1, 2, . . . , d} and ti 6= tj .

Then we propose the following choice of I and γ,

I = [0 , 2(2b−1 − 1)||ri||]; γ = min(
∆ri

2b−1 − 1
, η), (11)

where η is a predefined maximal step size to accelerate
convergence. In Sec. , we show that by choosing I and γ like
this, our algorithm is guaranteed to converge to zero. As n
increases, the dimension of the approximation set increases.
Intuitively, the nearest distance from an arbitrary point to the
approximation set decreases exponentially with n. We rigor-
ously prove that the greedy algorithm decays in an exponen-
tial rate in Sec. . Algorithm 1 recaptures the optimization
procedure.
Multipoint Quantization on Deep Networks

We describe how to apply multipoint quantization to deep
neural networks. Using multipoint quantization can decrease
the quantization error of a channel significantly, but every
additional quantized filter requires additional memory and



computation consumption. Therefore, to apply it to deep net-
works, we must select the important channels to compensate
for their quantization error with multipoint quantization.

For a layer L with d-dimensional input, we adopt a sim-
ple criterion, output error, to determine the target channels.
Output error is the difference of the output of a channel be-
fore and after quantization. Suppose the weight of a channel
is w, its output error is defined as,

e(w, w̃, DL) = Ex∼DL
||w>x− w̃>x||22, (12)

where DL is the input batch to L, collected by running for-
ward pass of f with calibration setD. Our goal is to keep the
output of each channel invariant. If e(w, w̃, DL) is larger
than a predefined threshold ε, we apply multipoint quantiza-
tion to this channel and increase n until e(w, w̃, DL) < ε.
A similar idea is leveraged to determine the optimal clipping
factor K∗,

K∗ = arg min
K

∑
w∈W

Ex∼DL
||w>x− w̃>x||22. (13)

Here,W is the set of weights sharing the same K. For per-
layer quantization,W is contains the weights of all the chan-
nels in a layer. For per-channel quantization, W contains
only one element, which is the weight of a channel.

Analysis of Overhead
We introduce how the computation of dot product can be
implemented with common operands when adopting multi-
point quantization. Then we analyze the overhead of mem-
ory and computation.

For d−dimensional input and weight with N bits, com-
puting the dot product requires d multiplications between
two N−bit integers. The result of the dot product is stored
in a 32-bit accumulator, since the sum of the individual prod-
ucts could be more than N bits. The above operation is
called Multiply-Accumulate (MAC), which has been highly
optimized in modern deep learning hardware (Chen et al.
2016). The 32-bit integer is then quantized according to the
quantization scheme of the output part.

Now we delve into the computation pipeline when w̃ =∑n
i=1 aiw̃i. Because ai ∈ R, we transform them to a

hardware-friendly integer representation beforehand,

ai ≈
Ai

2p
, Ai = [2p × ai] (14)

Here, p determines the precision of the quantized ai. We use
the same p for all the weights with multipoint quantization
in the network. Ai are 32-bit integers. The quantization of
ai can be performed off-line before deploying the QNN. We
point out that,

w̃>x = a1w̃
>
1 x + · · ·+ anw̃

>
n x

≈ A1w̃
>
1 x + · · ·+Anw̃

>
n x

2p

(15)

We divide the computation into three steps. Readers can
refer to Fig.8 in the Appendix for the computational flow
charts.

Method Memory MULs ADDs

Naive dN dN2 (d− 1)N

Multipoint ndN + 32n n(dN2 + 322)
n(d− 1)N+
32(n− 1)

Table 1: Comparison of memory and computation consump-
tion between a naively quantized layer and a layer using
multipoint quantization.

lo
g
`

iteration i
Figure 1: A toy experiment where w is randomly generated.
The y-axis refers to log `. We test three different step sizes
γ for grid search. As ` gets smaller, ||r|| approaches zero
and ∆r also becomes smaller. The dashed line indicates the
step that γ > ∆r for the first time. Before the dashed line, `
decays exponentially. After the dashed line, the grid search
does not have enough precision and thus the residual can no
more be further reduced.

Step 1: Matrix Multiplication In the first step, we com-
pute (w̃1

>x, . . . , w̃n
>x). The results are stored in the 32-

bit accumulators.
Step 2: Coefficient Multiplication & Summation The

second step first multiplies Ai with w̃>i x, containing n
times of multiplication between two 32-bit integers. Then
we sum Aiw̃

>
i x together with n− 1 times of addition.

Step 3: Bit Shift Finally, the division with 2p can be ef-
ficiently implemented by shifting p bits of

∑n
i=1Aiw̃

>
i x to

the left. We ignore the computation overhead in this step.
Overall Storage/ Computation Overhead: We count the

number of binary operations following the same bit-op com-
putation strategy as Li, Dong, and Wang (2019); Zhou et al.
(2016). The multiplication between two N -bit integer costs
N2 binary operations. Suppose we have a weight vector
w ∈ Rd. We compare the memory cost and the compu-
tational cost (dot product with N−bit input x) between
naive quantization w̃ = [w]Q and multipoint quantization∑n

i=1 aiw̃i. The results are summarized in Table 1. Because
d is always large in neural networks, so the memory and the
computation overhead is approximately proportional to the
number n.

Theoretical Analysis
In this section, we give a convergence analysis of the pro-
posed optimization procedure. We prove the quantizataion
error of the proposed greedy optimization decays exponen-
tially w.r.t. the number of points.

Suppose that we want to quantize a real-valued d-
dimensional weight w ∈ Rd. For simplicity, we assume
a binary precision b = 2 in this section, which leads to



Q = [−1, 0, 1]. Our proof can be generalized to b > 2 eas-
ily. We follow the notations in Section . At the i-th iteration,
the residual ri, a∗i and w̃∗i are defined by Eq. (7), Eq. (9) and
Eq. (10), respectively. The minimal gap of a vector t, ∆t, is
defined in Definition (1).

Let the loss function be `(r, a,w) = ||r − aw||. Now we
can prove the following rate under mild assumptions.
Theorem 1 (Exponential Decay) Suppose that at the i-th
iteration of the algorithm, a∗i is obtained by grid searching
a from the range (0 : γi : 2(22−1 − 1)||ri||], where γi is the
step size of the grid search. Assume that γi ≤ min(∆ri , η)
for any step i before termination, where η is a predefined
maximal step size. We have

`(ri, a
∗
i ,w

∗
i ) = O (exp (−ci) + η) ,

for some constant c > 0.

The proof is in Appendix A. Note that η is usually much
smaller than the exponential term and thus can be ignored.
Theorem 1 suggests that if we use sufficiently small step
size (γi ≤ min(∆ri

, η)) for the optimization, the loss will
decrease exponentially. Because of the exponentially fast de-
cay of the algorithm, we find that n ≤ 2 for most of the chan-
nels using multipoint quantization in practice. Fig. 1 justifies
our theoretical analysis by a toy experiment.

Experiments
We evaluate our method on two tasks, ImageNet classifica-
tion (Krizhevsky, Sutskever, and Hinton 2012) and PAS-
CAL VOC object detection (Everingham et al.). Our evalu-
ation contains various neural networks.

Experiment Results on ImageNet Benchmark
We evaluate our method on the ImageNet classification
benchmark. For fair comparison, we use the pretrained mod-
els provided by PyTorch 1 as others (Zhao et al. 2019;
Banner, Nahshan, and Soudry 2019). We take 256 images
from the training set as the calibration set. Calibration set is
used to quantize activations and choose the channels to per-
form multipoint quantization. To improve the performance
of low-bit activation quantization, we pick the optimal clip-
ping factor for activations by minimizing the mean square
error (Sung, Shin, and Hwang 2015). Like previous works,
the weights of the first and the last layer are always quan-
tized to 8-bit (Nahshan et al. 2019; Li, Dong, and Wang
2019; Banner, Nahshan, and Soudry 2019). For all experi-
ments, we set the maximal step size for grid search in Eq. 9
to η = 1

210 .
We report both model size and number of operations un-

der different bit-width settings for all the methods. The first
and the last layer are not counted. We follow the same bit-op
computation strategy as Li, Dong, and Wang (2019); Zhou
et al. (2016) to count the number of binary operations. One
OP is defined as one multiplication between an 8-bit weight
and an 8-bit activation, which takes 64 binary operations.
The multiplication between a m-bit and a n-bit integer is
counted as mn

64 OPs.

1https://pytorch.org/

We provide two categories of results here: per-layer quan-
tization and per-channel quantization. In per-layer quan-
tization, all the channels in a layer exploit the same K
and B. In per-channel quantization, each channel has its
own parameter K and B. For both settings, we test six
different networks in our experiments, including VGG-
19 with BN (Simonyan and Zisserman 2014), ResNet-18,
ResNet-101, WideResNet-50 (He et al. 2016), Inception-
v3 (Szegedy et al. 2015) and MobileNet-v2 (Sandler et al.
2018).

Per-layer Quantization For per-layer quantization, we
compare our method with a state-of-the-art (SOTA) base-
line, Outlier Channel Splitting (OCS) (Zhao et al. 2019).
OCS duplicates the channel with the maximal absolute value
and halves it to mitigate the quantization error. For fair com-
parison, we choose the best clipping method among four
methods for OCS according to their paper (Sung, Shin, and
Hwang 2015; Migacz 2017; Banner, Nahshan, and Soudry
2019). We select the threshold ε such that the OPs of the
QNN with multipoint quantization is about 1.15 times of
the naive QNN. For fair comparison, we expand the network
with OCS until it has similar OPs with the QNN using multi-
point quantization. The results without multipoint quantiza-
tion (denoted ‘w/o Multipoint’ in Table. 7) serve as another
baseline. We quantize the activations and the weights to the
same precision as the baselines. Experiment results are pre-
sented in Table. 7. It shows that our method obtains con-
sistently significant gain on all the models compared with
‘w/o Multipoint’, with little increase on memory overhead.
Our method also consistently outperforms the performance
of OCS under any computational constraint. Especially, on
ResNet-18, ResNet-101 and Inception-v3, our method sur-
passes OCS by more than 2% Top-1 accuracy. OCS cannot
quantize MobileNet-v2 due to the group convolution layers,
while our method nearly recovers the full-precision accu-
racy. Our method achieves similar performance with Data
Free Quantization (Nagel et al. 2019) (71.19% Top-1 accu-
racy with 8-bit MobileNet-v2), which focuses on 8-bit quan-
tization on MobileNets only. Note that this method is orthog-
onal to ours and we expect to obtain more improvement by
combining with it.

Per-channel Quantization For per-channel quantization,
we compare our method with another SOTA baseline, Ban-
ner, Nahshan, and Soudry (2019). Banner, Nahshan, and
Soudry (2019) requires physical per-channel mixed preci-
sion computation since it assigns different bits to different
channels. We denote it as ’Mixed Precision (MP)’. All net-
works are quantized with asymmetric per-channel quantiza-
tion (B 6= 0). Since per-channel quantization has higher pre-
cision, weight clipping is not performed for naive quantiza-
tion, which means that K = max(|w|). We quantize both
weights and activations to 4 bits. Experiment results are pre-
sented in Table. 8.

Our method outperforms MP on VGG19-BN and
Inception-v3 even without weight clipping. After perform-
ing weight clipping with Eq. 13, our method beats MP on
5 out of 6 networks, except for ResNet-101. On VGG19-
BN, Inception-v3 and MobileNet-v2, compared with MP,
the Top-1 accuracy of our method after clipping is more than

https://pytorch.org/


Model Bits (W/A) Method Acc (Top-1/Top-5) (%) Size OPs

VGG19-BN

32/32 Full-Precision 74.24/91.85 76.42MB -

4/8
w/o Multipoint 60.81/83.68 9.55MB 9.754G

OCS (Zhao et al. 2019) 62.11/84.59 10.70MB 10.924G
Ours 64.06/86.14 9.59MB 10.923G

ResNet-18

32/32 Full-Precision 69.76/89.08 42.56MB -

4/8
w/o Multipoint 54.04/78.10 5.32MB 847.78M

OCS (Zhao et al. 2019) 58.05/81.57 6.20MB 988.51M
Ours 61.68/84.03 5.37MB 983.22M

ResNet-101

32/32 Full-Precision 77.37/93.56 161.68MB -

4/8
w/o Multipoint 61.04/83.02 20.21MB 3.841G

OCS (Zhao et al. 2019) 70.27/89.73 23.40MB 4.448G
Ours 73.09/91.34 20.86MB 4.446G

WideResNet-50

32/32 Full-Precision 78.51/94.09 262.64MB -

4/8
w/o Multipoint 61.78/83.60 31.83MB 5.639G

OCS (Zhao et al. 2019) 68.54/88.68 35.97MB 6.372G
Ours 70.47/89.43 32.08MB 6.365G

Inception-v3

32/32 Full-Precision 77.45/93.56 82.96MB -

4/8
w/o Multipoint 5.17/12.85 10.37MB 2.846G

OCS (Zhao et al. 2019) 8.49/17.75 12.16MB 3.338G
Ours 33.89/56.07 10.42MB 3.337G

Mobilenet-v2

32/32 Full-Precision 71.78/90.19 8.36MB -

8/8
w/o Multipoint 0.06/0.15 2.090MB 299.49M

OCS (Zhao et al. 2019) N/A N/A N/A
Ours 70.70/89.70 2.091MB 357.29M

Table 2: Per-layer quantization on ImageNet Benchmark (W=Weight, A=Activation, M=106, G=109, Acc=Accuracy). Bold
refers to the method with highest Top-1 accuracy. Note that OCS cannot be applied to MobileNet-V2 because it cannot deal
with group convolution.

2% higher. In the experiments, all the memory overhead is
smaller than 5% and the computation overhead is no more
than 17% compared with the naive QNN.

Experiment Results on PASCAL VOC Object
Detection Benchmark

We test Single Shot MultiBox Object Detector (SSD), which
is a well-known object detection framework. We use an
open-source implementation 2. The backbone network is
VGG16. We apply per-layer quantization and per-channel
quantization on all the layers, excluding localization lay-
ers and classification layers. Due to the GPU memory con-
straint, the calibration set only contains 6 images. We mea-
sure the mean average precision (mAP), size and OPs of the
quantized model. We perform activation clipping and weight
clipping for both settings.

In per-layer quantization, our method increases the per-
formance of the baseline by over 1% mAP (72.86% −→
74.10%). When weight is quantized to 3-bit, our method
boost the baseline by 4.38% mAP (42.56% −→ 46.94%)
with little memory overhead of 0.01MB. Our method also
performs well in per-channel quantization. It improves the
baseline by 0.41% mAP for 4-bit quantization and 1.09%
mAP for 3-bit quantization. Generally, our method performs
better when the bit width goes smaller.

2https://github.com/amdegroot/ssd.pytorch
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Figure 2: The trade-off between computational cost and
performance of a quantized ResNet-101 (W4A8). ‘Base-
line’ is the naive QNN without multipoint quantization
(OPs=3.841G). ‘Random’ uses multipoint quantization but
channels are randomly added, while our method adds chan-
nels according to their output error.

Analysis of the Algorithm
We provide a case study of ResNet-101 under per-layer
quantization to analyze the algorithm. More results can be
found in the appendix.

Computation Overhead and Performance: Fig. 2
demonstrates how the performance of different methods
changes as the computational cost changes. Our method ob-
tains huge gain with only a little overhead. OCS cannot per-
form comparably with our method at the beginning, but it
catches up when the computational cost is large enough. The
performance of ‘Random’ is consistently the worst among

https://github.com/amdegroot/ssd.pytorch


Model Bits (W/A) Method Acc (Top-1/Top-5) (%) Size OPs

VGG19-BN

32/32 Full-Precision 74.24/91.85 76.42MB -

4/4

w/o Multipoint 52.08/76.19 9.55MB 4.877G
MP (Banner, Nahshan, and Soudry 2019) 70.59/90.08 9.55MB 4.877G

Ours 71.96/90.75 9.63MB 5.525G
Ours + Clip 72.78/91.23 9.58MB 5.354G

ResNet-18

32/32 Full-Precision 69.76/89.08 42.56MB -

4/4

w/o Multipoint 57.00/80.40 5.32MB 423.89M
MP (Banner, Nahshan, and Soudry 2019) 64.78/85.90 5.32MB 423.89M

Ours 64.29/85.59 5.39MB 494.16M
Ours + Clip 65.89/86.68 5.41MB 470.89M

ResNet-50

32/32 Full-Precision 76.15/92.87 89.44MB -

4/4

w/o Multipoint 65.88/86.93 11.18MB 992.28M
MP (Banner, Nahshan, and Soudry 2019) 72.52/90.80 11.18MB 992.28M

Ours 71.88/90.43 11.33MB 1.148G
Ours + Clip 72.67/91.11 11.32MB 1.128G

ResNet-101

32/32 Full-Precision 77.37/93.56 161.68MB -

4/4

w/o Multipoint 69.67/89.21 20.21MB 1.920G
MP (Banner, Nahshan, and Soudry 2019) 74.22/91.95 20.21MB 1.920G

Ours 71.56/90.36 20.82MB 2.177G
Ours+Clip 72.85/91.16 21.04MB 2.189G

Inception-v3

32/32 Full-Precision 77.45/93.56 82.96MB -

4/4

w/o Multipoint 12.12/25.24 10.37MB 1.423G
MP (Banner, Nahshan, and Soudry 2019) 60.64/82.15 10.37MB 1.423G

Ours 61.22/83.27 10.44MB 1.692G
Ours+Clip 65.49/86.72 10.38MB 1.519G

Mobilenet-v2

32/32 Full-Precision 71.78/90.19 8.36MB -

4/4

w/o Multipoint 6.86/16.76 1.04MB 74.87M
MP (Banner, Nahshan, and Soudry 2019) 42.61/67.78 1.04MB 74.87M

Ours 27.52/50.80 1.05MB 91.16M
Ours+Clip 55.54/79.10 1.045MB 85.88M

Table 3: Per-channel quantization on ImageNet Benchmark (W=Weight, A=Activation, M=106, G=109, MP=Mixed Precision,
Acc=Accuracy). Note that MP requires specialized hardware. Bold refers to the method with highest Top-1 accuracy. ‘Clip’
means using the optimal clipping factor K∗ by solving Eq. 13.

(a) Per-layer Quantization

W/A Method mAP(%) Size(MB) OPs(G)
32/32 FP 77.43 100.24 -

4/8 w/o Multipoint 72.86 12.53 15.69
Ours 74.10 12.63 17.58

3/8 w/o Multipoint 42.56 9.40 11.76
Ours 46.94 9.41 12.18

(b) Per-channel Quantization

W/A Method mAP(%) Size(MB) OPs(G)
32/32 FP 77.43 100.24 -

4/4 w/o Multipoint 73.17 12.53 7.843
Ours 73.58 12.62 8.636

3/3 w/o Multipoint 59.37 9.40 4.412
Ours 60.46 9.43 4.733

Table 4: Post-training quantization result on SSD-VGG16
(mAP=mean average precision, FP=Full-Precision). Bold
refers to the method with highest mAP.

all three methods, implying the importance of choosing ap-
propriate channels for multipoint quantization.

Where Multipoint Quantization is Applied: Fig 3
shows the relative increment of size in each layer. We ob-
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Figure 3: Relative increment of size in each layer of a quan-
tized ResNet-101 with multipoint quantization. The layers
close to the input have large relative increment, while the
layers after the 30-th layer have only negligible increment.

serve that the layers close to the input have more relative
increment of size compared with later layers.

Conclusions
We propose multipoint quantization for post-training quanti-
zation, which is hardware-friendly and effective. It performs
favorably compared with state-of-the-art methods.
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A. Proof of Theorem 1
Notice that in the main text, we define a∗i , w̃

∗
i = arg min

a,w̃
‖ri − aw̃‖ as the optimal solution of each iterations (see Equ (6)).

While this can not be solved and in practice we use a∗i = arg min
a

∥∥∥ri − a [ ria ]Q∥∥∥ and w̃∗i =
[
ri

a∗i

]
Q

. This slightly abuses the

notation as the two a∗i and w̃∗i are actually different. We do this mainly for notation simplicity in the main text. In the proof we

distinguish the notations. We use a∗i , w̃
∗
i = arg min

a,w̃
‖ri − aw̃‖ , ai = arg min

a

∥∥∥ri − a [ ria ]Q∥∥∥ and w̃i =
[
ri

ai

]
Q

in this proof.

In our proof, we only consider the simplest case when b = 2, which means Q = {−1, 0, 1}. It can be generalized to b > 2
easily. Define Qvec :=

{
[v]Q | v ∈ Rd

}
, Qw

vec :=
{

2 ‖w‖ [v]Q | v ∈ Rd
}

andM = conv(Qw
vec), where conv(S) denotes the

convex hull of set S. It is obvious that w is an interior point ofM. Now we define the following intermediate update scheme.
Given the current residual vector ri, without loss of generality, we assume all the elements of ri are different (if some of them
are equal, we can simply treat them as the same elements). We define

w̃′i = arg max
w∈M

〈ri,w〉

a′i = arg min
a∈[0,1]

∥∥ri − aw̃′i∥∥ .
Notice that as the objective is linear and we thus have

w̃′i = arg max
w∈Qw

vec

〈ri,w〉 .

Without loss of generality, we assume w̃′i 6= 0, as in this case, we have ri = 0 and the algorithm should be terminated. Simple

algebra shows that a′i =
〈w̃′i,ri〉
‖w̃′i‖2

. Notice that as we assume w̃′i 6= 0, we have
∥∥w̃′i∥∥ ≥ 2 ‖w‖. This gives that

a′i ≤
1

2 ‖w‖

〈
w̃′i∥∥w̃′i∥∥ , ri

〉
≤ ‖ri‖

2 ‖w‖
≤ ‖r0‖

2 ‖w‖
=

1

2
.

Hence the optimal solution under the constraint of a′i ∈ [0, 1] is also a′i =
〈w̃′i,ri〉
‖w̃′i‖2

. Given the current residual vector, we also

define
(a∗i , w̃

∗
i ) = arg min

a∈[0,1],w∈Qw
vec

‖ri − aw‖ .

By the definition, we have ‖ri − a∗i w̃
∗
i ‖ ≤

∥∥ri − a′iw̃′i∥∥ . We have the following inequalities:

‖ri − a∗i w̃∗i ‖
2 ≤

∥∥ri − a′iw̃′i∥∥2
= ‖ri‖2 − 2a′i

〈
w̃′i, ri

〉
+ (a′i)

2
∥∥w̃′i∥∥2

= ‖ri‖2 −

(〈
w̃′i, ri

〉∥∥w̃′i∥∥
)2

.

Notice that as we showed that w is an interior point ofM, we have
(
〈w̃′i,ri〉
‖w̃′i‖

)2

≥ q ‖ri‖2, for some q ∈ (0, 1]. This gives that

‖ri − a∗i w̃∗i ‖
2 ≤ (1− q) ‖ri‖2 .

We define
(a∗∗i , w̃

∗∗
i ) = arg min

a∈[0,2‖w‖],w∈Qvec

‖ri − aw‖ .

And it is obvious that we have ‖ri − a∗i w̃
∗
i ‖

2
= ‖ri − a∗∗i w̃∗∗i ‖

2. Next we bound the difference between ‖ri − a∗∗i w̃∗∗i ‖
2 and

‖ri − aiw̃i‖2 . Notice that for any a > 0, we have[ q
a

]
= 1 ∗ I {q ≥ 0.5a}+ 0 ∗ I {q ∈ (−0.5a, 0.5a)} − 1 ∗ I {q ≤ −0.5a} .

Without loss of generality we assume that ||ri,1| − 0.5a∗∗i | ≤ ||ri,j | − 0.5a∗∗i |, for any j ≥ 2. Without loss of generality,
we also suppose that |ri,1| ≥ 0.5a∗∗i . Under the assumption of grid search, there exists a′′i in the search space such that



a∗∗i −∆ri ≤ a′′i ≤ a∗∗i . For any j ≥ 2, if |ri,j | ≥ 0.5a∗∗i , then |ri,j | ≥ 0.5a
′′

i . Now we consider the case of |ri,j | < 0.5a∗∗i . By
the assumption that ||ri,1| − 0.5a∗∗i | ≤ ||ri,j | − 0.5a∗∗i |, for any j ≥ 2, we have

0.5a∗∗i − |ri,j | ≥ |ri,1| − 0.5a∗∗i =⇒ a∗∗i ≥ |ri,1|+ |ri,j | .

This gives that

0.5a′′i − |ri,j |
≥0.5 (a∗∗i −∆ri

)− |ri,j |
≥0.5 (|ri,1|+ |ri,j | −∆ri

)− |ri,j |
=0.5 (|ri,1| − |ri,j | −∆ri)

=0.5 (||ri,1| − |ri,j || −∆ri
)

≥0.25 ||ri,1| − |ri,j ||
>0.

Here the last inequality is from the assumption that ∆ri
> 0. Thus we have for any j ∈ {1, ..., d},

[
ri,j
a∗∗i

]
=
[
ri,j
a′′i

]
. The case

for ri,1 < 0.5a∗∗i is similar by choosing a∗∗i ≤ a′′i ≤ a∗∗i + ∆ri . This concludes that we have a′′i in the search region such that

|a∗∗i − a′′i | ≤ ∆ri and
[

ri

a∗∗i

]
Q

=
[
ri

a′′i

]
Q
. Thus we have∥∥∥∥∥ri − a′′i
[
ri
a′′i

]
Q

∥∥∥∥∥
2

− ‖ri − a∗∗i w̃∗∗i ‖
2

=− 2 (a′′i − a∗∗i )

〈
ri,

[
ri
a′′i

]
Q

〉
+
(

(a′′i )
2 − (a∗∗i )

2
)∥∥∥∥∥
[
ri
a′′i

]
Q

∥∥∥∥∥
2

≤ηc,

for some constant c. We have

‖ri − aiw̃i‖2 ≤

∥∥∥∥∥ri − a′′i
[
ri
a′′i

]
Q

∥∥∥∥∥
2

≤ ‖ri − a∗∗i w̃∗∗i ‖
2

+ cη

≤ (1− q) ‖ri‖2 + cη

This gives that (
‖ri − aiw̃i‖2 −

cη

q

)
≤ (1− q)

(
‖ri‖2 −

cη

q

)
.

Apply the above inequality iteratively, we have

‖ri‖2 = O
(
(1− q)i + η

)
.

B. Experiment Details
We provide more details of our algorithm in the experiments. For per-layer and per-channel quantization, the optimal clipping
factor are obtained by uniform grid search from [0.05 : 0.05 : 1] × max(|a|). For the first and last layer, we search for the
optimal clipping factor on weights from [0.05 : 0.05 : 1] × max(|w|). The optimal clipping factors for weights are obtained
before performing multipoint quantization and we keep them fixed afterwards. For fair comparison, the quantization of the
Batch Normalization layers are quantized in the same way as the baselines. When comparing with OCS, the BN layers are
not quantized. When comparing with (Banner, Nahshan, and Soudry 2019), the BN layers are absorbed into the weights and
quantized together with the weights. Similar strategy for SSD quantization is adopted, i.e., the BN layers are kept full-precision
for per-layer setting and absorbed in the per-channel setting.

The hyperparameter ε for different networks in different settings are listed in Table 5 and Table 6.

C. 3-bit Quantization
We present the results of 3-bit quantization in this section. 3-bit quantization is more aggressive and the accuracy of the QNN
is typically much lower than 4-bit. As before, we report the results of per-layer quantization and per-channel quantization. All
the hyper-parameters are the same as 4-bit quantization except for ε.



Network VGG19-BN ResNet-18 ResNet-101 WideResNet-50 Inception-v3 Mobilenet-v2

ε 50 15 0.25 1 100 10

Table 5: ε for per-layer quantization (W/A = 4/8)

Network VGG19-BN ResNet-18 ResNet-50 ResNet-101 Inception-v3 Mobilenet-v2

ε 10 8 0.7 0.2 50 1

Table 6: ε for per-channel quantization (W/A = 4/4)

Model Bits (W/A) Method Acc (Top-1/Top-5) Size OPs ε

VGG19-BN
32/32 Full-Precision 74.24%/91.85% 76.42MB - -

3/8
w/o Multipoint 4.71%/12.33% 7.16MB 7.315G -

Ours 20.58%/40.38% 7.22MB 8.648G 100

ResNet-18
32/32 Full-Precision 69.76%/89.08% 42.56MB - -

3/8
w/o Multipoint 9.83%/24.89% 3.99MB 635.83M -

Ours 26.16%/49.29% 4.01MB 714.53M 100

WideResNet-50
32/32 Full-Precision 78.51%/94.09% 262.64MB - -

3/8
No Boosting 4.36%/10.64% 23.87MB 4.229G -

Ours 18.43%/35.34% 23.97MB 4.554G 5

Table 7: Per-layer quantization on ImageNet Benchmark (W=Weight, A=Activation, M=106, G=109, Acc=Accuracy)

Model Bits (W/A) Method Acc (Top-1/Top-5) Size OPs ε

VGG19-BN
32/32 Full-Precision 74.24%/91.85% 76.42MB - -

3/3
w/o Multipoint 0.10%/0.492% 7.16MB 2.743G -
Ours + Clip 65.81%/87.25% 7.19MB 3.099G 50

ResNet-18
32/32 Full-Precision 69.76%/89.08% 42.56MB - -

3/3
w/o Multipoint 0.11%/0.55% 3.99MB 238.44M -
Ours + Clip 43.75%/69.16% 4.06MB 265.90M 20

MobileNet-v2
32/32 Full-Precision 71.78%/90.19% 8.36MB - -

3/3
w/o Multipoint 0.11%/0.64% 0.78MB 42.12M -

Ours+Clip 5.21%/14.33% 0.79MB 58.65M 50

Table 8: Per-channel quantization on ImageNet Benchmark (W=Weight, A=Activation, M=106, G=109, Acc=Accuracy)



D. Additional Figures
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Figure 4: The trade-off between computational cost and per-
formance of a per-layer quantized WideResNet-50 (W4A8).
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Figure 5: Relative increment of size in each layer of a per-
layer quantized WideResNet-50 with multipoint quantiza-
tion (W4A8).
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Figure 6: The trade-off between computational cost and per-
formance of a per-channel quantized ResNet-18 (W4A4).
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Figure 7: Relative increment of size in each layer of a per-
channel quantized ResNet-18 with multipoint quantization
(W4A4).

(a) Computation flowchart of typical dot product in a QNN

(b) Computation flowchart of dot product of multipoint quantization

Figure 8: Flow charts of typical and multipoint quantization.
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Figure 9: The error plot of the output in a quantized ResNet-
18. The red dot is the mean of output error of all channels
in the corresponding layer. The dark bars show the maxi-
mum and minimum. The shallow region indicates the 15-th
to 85-th percentile. Observations: (1) only a small portion
of neurons have large error; (2) the starting layers are more
sensitive to quantization.
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