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control, motion isolation, and synchronous energy harvesting. This paper studies the ex-
act nonlinear dynamics of a simply-supported beam carrying a nonlinear spring-inerter-
damper energy absorber for primary resonance vibration reduction. The nonlinear gow-
erning equations of the system are derived from the energy method by considening the

Keywords: midplane stretching, structural discontinuity, and nonlinear boundary conditions at the
Inerter-tamper spring-inerter-damper location of the beam and directly solved using the method of mulk
Vibration absorber tiple scales. The nonlinear frequency correction factor, frequency response function, peak
Energy sink nonlinear frequency response, and bifurcation frequency are obtained and imvestigated for
Vibration reduction variows system parameters. The influence of the location, spring stiffness, inertial mass,

Nonlinear dynamics

and damping of the nonlinear vibration absorber on the beam dynamics, including nat-
Method of multiple scales

ural frequency, mode shape, and nonlinear frequency response, are studied. The stiffness
and mass of the nonlinear vibration absorber are optimally tuned to minimize the peak
nonlinear frequency response of the beam. The results show that ignoring the nonlinear
boundary conditions at the spring-inerter-damper location could kead to serious under
estimation of the nonlinear frequency responses. The nonlinear stiffness of the wibration
absorber enhances the system nonlinearity but has no contribution to the peak nonlinear
frequency response of the beam. Increasing the damping of the vibration absorber could
effectively mitigate the beam wibration. When the nominal frequency of the absorber is
tuned to be close to the natural frequency of the beam, the beam wvibration is mosthy re-
duced.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Vibrarion absorbers, rypically consisting of three elements, ie., a spring, a mass, and a damper, are widely used for
passive vibrarion conrrol 1o profect engineering SIrucrures in various environments, The kinetic energy of primary strucrures
is pumped to the subordinate vibration absorbers in the forms of the potenrial energy of the spring, inertial energy of the
mass, and finally dissipared by the damper, Vibration absorbers are careporized inoo linear and nonlinear systems, which
serve, in essence, as energy sinks because of their capability of rransferring, absorbing, and dissiparting vibration energy.
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Mevertheless, the nonlinear vibration absorber (NVA) is substantially different from a nonlinear energy sink (NES) whose
spring is essentially nonlinear, ie., no linear stiffness component [1]. Generally, the NVA includes a nonlinear spring with
both linear and nonlinear components. Therefore, it is also referred o as the variant NES [2]. Linear vibration absorbers or
energy sinks are only effective at the system resonant frequency |3.4), Consequently, significant performance degradartion
happens if the excitation frequency slightly deviares away from the resonant frequency. However, engineering sIrucrures are
usually exposed to the ambient environment, containing multiple or random frequency components,

Monlinear systems have been featured with broadband frequency response curves thar either bend o the right or left
hand depending on the types of nonlinear stiffness. The extended frequency bandwidrh enables passive energy transfer from
primary strucrures to the artached MESs over a wide range of frequencies. Therefore, it could effectively improve vibration
reducrion peformance |5). Jiang er al. repored thar the NES is capable of absorbing steady-state vibration of a weakly
coupled system over a relatively broad frequency range [G]. Mao er al. found rhar an oprimized nonlinear torsional energy
sink could restrain up o 90% vibration of the flexible primary structure [7]. Zhang er al. concluded thar the ungrounded
MNES has a grear porential for the vibrarion contmol of an axially moving beam based on the numerical smdy 8], Moreover,
the internal resonance, nonlinear mode interaction, and super- and subharmonics in possession of nonlinear systems allow
MNESs o receive and dissipate vibration energy by a series of resonance caprures with highly energeric strucrural modes
[9,10]. Recently, Chen et al. developed a magnetic bi-stable NES for seismic conorol of building structures and proved that
the broadband internal resonance caprures are essential for good perfformance [11]. Sigalov et al. showed thar an inertially-
coupled rtarional NES is capable of engaging in resonance with the linear oscillator and accomplishes the rargered energy
rransfer over a wide frequency bandwidth [10]. As most research focuses on a single NES, Taghipour and Dardel found thart
the system with rwo NESs achieved more robust dynamics against the parameter changes of the primary scrucrure subjecred
o harmonic excitations |12],

Beams carrying a vibrarion absorber or NES have been extensively investigated because numerous mechanical compo-
nents and infrastructural somuctures can be modeled as beams in pracrice, Pakdemirli and Mayefh reported rhart the frequency
response curves of a simply-suppored beam depend on the beam midplane strerching and the parameters of the amached
spring-mass system [13). Later, Ozkaya er al. extended the study by considering different beam boundary conditions and ig-
noring the nonlinear spring element o facilitare the analysis of the midplane strerching effect [14). Georgiades and Vakakis
showed thar the NES could irreversibly absorb shock energy and achieve broadband targered energy ransfer from a flexible
linear beam subjected o shock excitation [15), Samani et al, studied the performance of NESs with monomial, polynomial,
and piecewise stiffness for the concrol of a beam subjecred o a2 moving load/vehicle [16). Chiiba et al. proposed an oprimal
design thar could confine the vibration energy of a simply-supported beam into a ser of vibration absorbers and then used
piezoelectric elements o harvester the confined energy [17). A parametric analysis was conducted w find the optimal pa-
rameters thar minimize the vibration amplicude, Parseh et al. compared the steady-stare dynamics of a linear Euler-Bernoulli
beam carrying an MES and a linear tuned mass damper (TMD) [12]. The robustness of the steady-state dynamics of the beam
with the NES was also examined for different beam boundary conditions [5). Larer, Parseh et al also studied the nonlinear
damped beam coupled o the NES and found a significant reduction in the amplitude vibration [19),

Beams with joints, supports, and amachmenrs, such as NESs. TMDs, and NVAs, are usually referred o as discontinuous
beams [20]. The discontinuity could lead o significant abrupt changes in boundary conditions ar the installation position
of the amachment, particularly as the stiffness of the spring and the weight of the mass are comparable o these of the
beam, However, most studies didn't consider the abrupr change in the boundary conditions of the disconrinuous beam art
the vibration absorber or NES location, and the mode shapes of the beam alone were widely used in the modeling for
simplicity. Only a few works have taken into account the effec of the accessory elements (spring-mass, vibrarion absorber,
or NE5) on the boundary condition, namral frequency. and mode shapes of the primary beam [13.14.21], However, recent
research has shown thar the ignorance of the effects of the changes in the boundary condition and the accessory unit could
result in exrreme overestimation of the vibration amplitude and detuning frequency by BO% and 1200%, respecively [21].
This impact can be even more prominent when the paramerers of the vibration absorber or NES are ned. Nevertheless,
oprimally tuning the parameters is substantally desirable for maximum vibration reducrion. Starosversky and Gendelman
demonstrated thar a properly muned NES could annihilare dangerous periodic regimes arising due o the nonlinearity of the
system [22). The vibration absorption characreristics of the NES can be enhanced by appropriately tuning irs mass ratio and
installation position on a beam [22]. The parameters of the amached NES on a nonlinear beam were oprimized using both
the sensitivity analysis and particle swarm oprimizarion algorithm to achieve good efficiency of the rargered energy ransfer
[24).

Research has shown thar a larger mass element of the NES is preferable o enhance rhe vibration suppression of a truss
core sandwich beam for efficient nonlinear energy rransfer [25), This is mainly because a larger mass in the NES can smore
more inemia energy ransferred from the primary structure, However, implementing the NES with a large physical mass unit
can be a practical challenge since large space 10 accommodare the NES and the resultant long stroke is usually not available
for most primary systems. Zang et al, proposed a lever-like NES by connecting the NES with the primary system through a
lever o reduce the physical mass, which could substantially amplify the reaction effect of the NES [26,27). Recently, a two-
rerminal mechanical device, namely, inerer, has received explosively increasing amention for passive concrol anributed o
its distinct advaniage of the mass-amplification effect. The device can be realized by rack-pinion and ball-screw mechanisms
and provides an inemial force propomional o the relarive acceleration berween the two terminals 23], For instance, a 300-
kg apparent mass was achieved by a ball-screw device with only 2-kg physical mass [29]. Feng et al. developed a nonlinear

2



F Qim and L Zup Joumal of Smmd and Vibmsion 509 (2021 ) 16245

inertia design comprising of rotarional discs and leverage o improve the vibration isolation ar kow frequencies andjor in a
broadband frequency range [20). Javidialesaadi and Wierschem placed an inemer berween the NES mass and the primary
system o enhance the passive vibration conrrol with a reduction in the RMS response by 20% - 25% compared o the
system with a typical NES [21]. Zhang er al. demonstrated that an NES-inerer is more effecrive in vibration suppression
than a convenient MNES in rerms of the energy dissipation and frequency amplitude responses [32). Recently, Chen et al.
replaced the physical mass with an inerter o reduce the weight of the artached energy absorber and achieved effective
multi-mode resonance contmol of a composite plare over a wide frequency range [33]. Jin et al. proposed two inerter-based
vibration absorbers with the elements in different configurations for minimizing the vibration response of a beam and found
the inerer-based dynamic vibration absorber achieved bemer performance than a rraditional dynamic vibration absorber
for the vibration conmrol of a simply-supported beam [34]. To the author’s best knowledge, no effort has been devored o
understanding the exact nonlinear dynamics and vibration reduction of a simply-suppomed beam carrying a mned inemer-
based NVA by considering the abrupt changes in the boundary conditions of the beam ar the NVA location. Nevertheless,
it is essenrial o reduce the physical mass of the absorber withour sacrificing vibration reduction performance, particularly
for beams since modern engineering systems, such as large-span bridges, super high-risk buildings, and spacecraft have an
increasing requirement o light beam-like strucrures,

This paper studies the exacr nonlinear dynamics of a simply-supporred beam carrying an inemer-based NVA (variant NES)
by considering the changes in the boundary conditions of the beam-spring-inerter-damper (BSID) system. A two-rerminal
inerter is used o replace the physical mass element in the raditional NVA w reduce the overall weight, The inerter and
damper used in this study are assumed o be created by an elecrromagnetic generator that converts the vibration energy into
electricity and is connecred o an exrernal elecrrical resistor for energy dissiparion. The inerter was configured in parallel
with the damper to simulate the rotational electromagnetic energy harvesting device [35] which is connecred to the beam
through a nonlinear spring, The governing equations of the BSID system are derived by energy method and analyrically
solved using the method of multiple scales (MMS) 1o derive the analyrtical solutions, The narural frequencies, nonlinear
correction facror, and frequency responses curves are obrained. The influence of the parameters of the NVA on the dynamic
characteristics of the beam and the primary resonance vibration reducrion performance is studied by analyrical analysis and
numerical simularions. The optimum parameters of the NES are runed, and the analytical condition that minimizes the peak
frequency response of the beam is formulated and numerically verified.

2. Theoretical modeling

The schematic diagram of the considered system is illustrared in Figo 1{a), which consists of a simply-supported beam
of lengrth L and an amached NVA at the location of x =x,. The conventional NVA comprising three elements, ie. a mass,
a nonlinear spring. and a damper, is shown in Fig 1{b) [1322,35,37], which could be configured in different layours, The
other end of the conventional NVA could be either free or grounded, leading 1o different system dynamics, A large mass is
usually needed o achieve better energy absorbing performance =o that the beam vibration could be effectively conrrolled.
However, accommaodating a large mass and its long motion stroke requires a large space thar results in an awkward overall
system, This study proposes o use a spring-inemer-damper NVA, as illustrared in Fig. 1{c), o substiture the conventional
NVA with the main purpose of reducing the physical weight of the mass element. The inemer damper is a two-rerminal
mechanical device with an embedded rorational elecrromagnetic generator and flywheel thar could be realized by rack-
pinion of balk-screw mechanisms converting mechanical rranslation motion into roation. As an example, Fig. 1(d) shows an
inerter-damper based on the ball-screw mechanism initally designed for energy harvesting from railway rack vibrarions

Nnnlmcar vibration ahsorbr:rs (NVAz)
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Fig. 1. The beam-spring-inerer-damper (BSID) system: (2) the overall system; (b) a typical nonlinear vibration sbsorber [13]; (c) propased nonlinear
Spring-inenef-0amper vibraton absorber; (d) example of an energy Narvesting inerter-0amper Dased on te balk-screw mechanism [35]
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[35], This device provides an inertial force proportional o the relative acceleration berween its two terminals and elecrrical
damping due o the shunied external resistive load. For the proposed system, it is essential 1o fix the borrom end of the
spring-inerter-damper o the ground to achieve the relative motion berween the two terminals of the device, In addirion o
vibration absorption, another pracrical application example of the proposed system is the railway energy harvesting from
rrain-rrack vibrations [35), The mrain-track segment berween two ballasts could be modeled as a simphy-supponed beam,
The rotational elecrromagnetic energy harvester with a fiywheel connecred o the beam with a spring could be modeled as
a nonlinear spring-inerter-damper vibrarion absorber,

Let o.E, and A denote the density, Young's modulus, and cross-sectional area of the beam, I be the moment of inertia of
the beam's cross section with respect o the neutral axis, b be the inertia mass of the inerter, and k, and ky be the linear
and nonlinear stiffness of the nonlinear spring. Considering the potentially abrupt changes in the boundary conditions of
the beam ar the NVA location (x =x,). e.2.. bending moment and shear forces, the beam is modeled as two segments in this
study, The rotal kinetic and porential energy of the system can be writen as

TP I S
T=Ef.; ,t:qfw,mHifJr pVid + bW (1)

_1m oyl Ifl P ]fx‘ AT 1[[ LAY
”‘Ej: Elw))?dx+ 5 [ Elwiyaes g [ EA(uf + 3wf )*dx+ ‘E.-‘I.(u!+§w1)dx

—%ku[wu{x;)—w_c]‘+13ks[wuxs}—wa]3 (2)
where wy and w, are the mansverse displacements of the beam segments on the right and left sides of the inerter-basad
NVA, 1y and uy are the axial displacements of the right and left beam segments, and w is the linear stroke of the inemer.
The prime and over dots denore the derivarives with respect o the spartial coordinate x and time ¢, respectively. It's worth
mentioning that the axial inertial of the beam is ignored in the study because of the insignificance of the axial moton
compared with the rransverse morion for the simph-suppomed beam, Assume the damping coefficients of the right and
left beam segments are ¢; and ¢, while ¢y is the damping coefficient of the inemer-damper, The vimual work done by the
generalized damping forces can be written as

Xy
EW:—f C|W|&W1dx—fEzwzawlli!—fg“'gﬁw; (1)
0 %
The system is subjected to Hamilton's principle
fza{r-u+wm:=u (4)
h

Substituting Eqs. (1), (2], and (3] into Eq. (4) and performing the vararional operation, one can obtain the governing equa-
rions and boundary conditions of the BSID system as follows.

Eﬂ(u;+%w:‘2)’=ﬂ. i=1.2 ()
i w i - 1 ey 1

oA + Elwy +r:.‘--'-'.=l:'.-‘.[(uI + Wi }wi] (6)

Mﬂ —k|[W'||:J!;j —Wﬂl_k_':lwl[xs}—WQ]';—fgWg =0 (T:I

where i = 1.2 indicare the left and right beam segments, The boundary conditions ar the two ends (x = 0. L) of the simply-
supported beam and the location (x =x;) of the NVA are also derived from Hamilton's principle and given by

w0t =wilt) =0, wall.t)=wi{lt)=0 (8)
WX £) = Wals, £ Wy (e, 1) =W (s, ). WY (s, £) = W3 (. 1) (9)
ETwi{" (%, t) — EIwy' (., ) — ky[wy (.. £) — wa e )] — ks[wy (2, £) —wa ()P =0 (10}
Uy (0,6) = 0. uy(L.t) =0, uﬁl{xs.rj+%Wf(xs.rj—[u;{x;.r}+%w;“{x;.r}] —0 (1)
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It should be notved thar the displacements in the boundary conditions (8)-(11) are writeen as the funcrions of borh coordi-
nate x and time ¢ for clarity, which are dropped in other equarions for simplicity, Integrating Eq. (5), using the boundary
conditions in Eq. (11), and adding the two equartions together, one has

1 1 1 B 1
W= W= — —wi —w
uj QW'F I + 5 Wj 2'_[ A 2*.-'n'11:l.at+‘£;l 21.»%&:::1:1:] (12)
Substituting Eqs, (5) and (12) into Eg. (6), the governing Eq, (6) can be rewritien as
. ; . EA v 1 L1
W _ it . o
pdwn + Elwy + cw = —21(1: ZWI‘ |:lx+_£. zwfdx}m (13)
. ; ) EA e L1
+ w Wy = — —wrd a2 a5
PAWS + EIWS 4+ oWy EL(L' 2w'1 |:lx+_£. 2w¢dx}w2 [14)

It's worth mentioning that the terms in the right-hand side of Eqs. (13) and [ 14) are induced by the axial motions of the
beam, which are referred o as the strerching of the midplane [13], the follwing dimensionless quanrities are inrroduced o
nondimensionalize the system,

w__w,- X E_f II|Ef B b
A A A £ ATy S Y 1)
where the parameter g is termed as the mass ratio of the inerter o the toral mass of the beam, Substituting the dimen-
sionless guantities into the governing Eqs. (7], (13)-14), one has

(15)

L. - T1_a 1
w.+2glw.+wﬁ”_1(J£ 57 cnr+frr wafdw)w'{ (16)
L. - T1_a 1
w1+2g1w1+w;”_1(}£ ¥ cnr+frr AL (17)
LWy + 28 W5 — iy [ (. £) =W | — i@ (.t - @ =0 (18)

7 L =T =N I L 8 . " . " AL kyd kgl
where £; = %EI‘-.,-' o f2= EET-.," A and £y = :jh,."lﬁi are dimensionless damping ranios, A = 55, xp =~ and xy = —ﬁ—
are dimensionless linear and nonlinear stiffness of the nonlinear spring. Subsrituting the dimensionless quantiries into the
boundary conditions (8)-(11), one has

W (0,F) =W, (0.F) = 0. Wy(0,F) =W (0.5) = 0 (19)
W, £) =Wain.B), Wiin.0)=Wi(n, £), #Win.6) =w;(n.0) (20}
W . E) =W (., ) — iy [ W (0. ) — W (F) ] — sea[ Wy (. E) — W () * =0 (21

Adding forcing terms o the governing Eqs. (16) and (17) and dropping the over hat for simplicity from all the displace-
ment and rime variables, one has

_ . Ul 1 —
ﬁ'|+2§_‘lwl+w’f’=1(f lw?dx+f 1w!‘fdx}w"[’+FlcusQr (22)
b 2 2
- ", o, _
w1+2§_‘1w1+w;"=l(f W |:b|:+f gwiids Jwj +F, cos (23)
b 2 2
[y 4 28 Wy — oy [ (17, £) —wa] — i wy (. 0) —ws P =0 (24)
wi(0.6) = wi(0.£) = 0, wa(L.t) =wi(Lt) =0 (25)
wiin.t) =waln. o), wiln t) =wiin. t), wim.t)=wi{n.t) (26)
Wi £} — Wi (. ) — iy [wy (000 — wat)] — safwy (. £) —wa (0P =0 (27)

where Ty and F» are the excitation amplitude and £2 is the excitaton frequency.
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3. Multiple scales solutions

Since the purpose of this study is o investigate the primary resonance vibration reduction of the beam, only the primary
resonance response is considered, and the method of multiple scales [38] is employed o derive the approximare analyrical
solution of the frequency response. The damping and forcing terms in the governing equarions are ordered as small verms,
ie. £;=¢2f and Ty = &*F, i=1,2, so thar these terms counter the effect of the weakly nonlinear rerms. To apply the
method of multiple scales, the solutions of the displacements are expanded in the fast and low time scales of Ty =¢ and
T, = £2r as follows

W) = ewy (6. Tp. To) + Wi (x. Tp. Ta) (28)
Walin t) = ewy (%, Tp. To) + 2wz, Tp. To) (29)
wait) = ewan (To. Te) + £*wa (To, Ta) (30
The time derivatives of the solutions with respect o the multiple scale time can be obrained based on the chain rule by
(V=Dp+e"Dy+---. ("1 =D0F+2Dp0y +--- (31)

where D = /8T, Substituting Eqs. (28)-431) into the governing equations of morion in Eqs, (22)-{24) and the boundary
conditions in Eqs, (25)-(27), and equating the coefficients of the like order of £, one can obrain the linear and nonlinear
governing equarions and boundary conditions for the first and third order of = as follows

Order = :
Diwy +wii =0 (32)
Diw +wi =0 (33)
pDgws — i fwn —wn] =0 (34)
Wi (DT =wii0.Tpd =0, wy(1.Tpl=wi{1.Tp) =0 (35)
Wy (N, To) =wz (. Tod. wyin. To) =wi (0, To). wip(n. To) =whin. To) (36)
Wit To) —wii(n, To) — kg [wy(n. Ty) —wy (Tp)] =0 (37)
Order =3 ;
. L L 1
Ddwys + W = —2DgDawyy — 2, Dawy; + EU; hﬁ‘,dx+£] w!‘jdx]w'ﬁ +F cos (38)
¥ |4 J" q o l F T
Ddwyy + W, — —2DgDywyy — 265 Dgws, + E[ L widy + J;] w;,dx]wzl +Fcosft (39)

pDFwss + KyWay = —2uDgDawyy — 283 Dgwyy — kywya(n. L)

—x;[Wh (7.8 — 3w, (. E)way — w7, W, —wjl] (40)
W0 Tpd) =wiy(0.Tp) =0, wa(l.Tpl=wi(1.Tg) =0 (417
wis (7. To) = waa (1. To). Wi (. To) = Wiy (7. To)., Wiy (. To) = wi (. To) (42)

wii(n. Ta) — wii{m. Ta) — k1 [wia(n. To) —waa(Ta)]
K [w{. (0. Ta) — 3w, (0. Todw (Ta) — 3wy (0. To)w (Ta) — wi, (Tu}] -0 (43)
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3.1, Linear analysis

The Eqgs. (32)-(34) at the order of ¢ are second order linear differential equarions and Eqs. (35)-(37) are the associared
linear boundary conditions. Using the separation of variables, the solurions are assumed o have the following forms

wi e To.T2) = [AT)E + e ] (44)
W To.To) = [T +ce. [Yat0) (45)
w00, Ty) = [ATE" 1 cc. v (46)

where « is the primary resonant frequency of the system, Y;(x) are the mode shape funcrions, A is the complex amplitude
of the response, and cc. denotes the complex conjugate of the preceding rerms. Substituting the solutions in Eqs. (44)-(46)
into the linear governing Eqs, (32)-(34) and the linear boundary conditions in Eqs, [35)-(37). one has

¥ — Yy =0 4N
YE i, =0 (48)
¥y =¥, (MW (49)
Vil =¥ (0 =0, Y=(1) =¥ (1) =0 (500
Yiin) =Ya(m). ¥{(n) =¥i(n). ¥{'(m) =¥{(n) (51)
Yimim) = ¥Yar(n) — kY (p(1 — 9 =0 (32)

where ¥ = ﬁﬁ and Eq. (49) has been subsritured inoo the boundary condition to obrain Eq. (52), Eq. (49) shows thart

Y3 characterizing the motion patern of the inerer is a function of the beam mode shape at the installation locarion, linear
stiffness of the NVA, mass ratio, and the natural frequency of the system,

The solutions o Eqs. (47) and (48) are the mode shapes of the two beam segments, which have exactly analyrical forms
as follows

¥y(x) = cyy 5in Bx + €33 005 Bx + Cp3 sinh Bx + ¢y cosh Sx (53)

¥aix) = €21 5in Bx + c22 c0s Bx + Cz3 sinh Bx + ca4 cosh Bx (34)

where g = /o, g (i=1.2 and j=1.2,3.4]) are the constant coefficients w be determined by the linear boundary condi-
rions, Substituting the mode shapes into the linear boundary conditions in Eqs, (50) and (51), one can obtain

¥;(x) = ¢[tanh A cos Aritan B — tan £ sin Ax — tan 8 cosh An(tanh 5 — tanh £) sinh Bx] (55)

¥5(x) = ¢[tanh A sin An(sin fx — tan A cos fx) — tan B sinh Snisinh Sx — tanh A cosh Bx)] (5&)
where ¢ could be derermined from the omhogonal condition of mode shapes using Eqs. (47) ~ (52) and is given by

- 1 1

&= (57)

,_fu(mw,)z + ([ P+ [y V2ax) = \/l:i*; + (3 P+ ) T2ax)

where r is the number of linear vibration modes, ¥, = Ty, (g, in terms of Eq, (4940, = '—:l@- and
¥i-(x} = tanh & cos Snian S0 — tan & ) sin &x — tan & cosh Sp{tanh & — tanh & ) sinh Sx (58)
Y (%) = tanh S sin &nisin Sx — tan & cos Sx) — tan & sinh S&npisinh S — tanh & cosh Sx) (53)
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It is observed thar the coefficient & includes the comtributions of the mode shapes of both the beam and the NVA. As
the linear stiffness «; = 0, it will deZENerae M & = ————_———— Which is the modal normalization coefficient of the
\,"c_@?frdn_r‘!?g.ﬁr}
segmenied beam only. Substituting Eqs. (55) and (56) inoo the boundary condition (52), the rranscendental equarion can be

obrained as the following after some marhemarical manipulation.

[ﬁg tanh 8 cos® By + k) (‘J - ﬁ)taﬂhﬁ slnﬁncﬂsﬁn]{t&nﬁn—tanﬁj
+ [ﬁg tan £ cosh® B — k1 (l - ﬁz)tanﬂ sinhﬁnmshﬁn]{t&nhﬁn —tanh 8)

+,E-"[I:anhﬁ5in Bni(—tan £sin fn — cos An) — tan £ sin An(cosh A — tanh 8 sinhﬁrrj] =0 (=0}

Solving the rranscendental equation using numerical methods yields the values of g and the namural frequencies of the
beam-spring-inemer-damper system. It can be seen that both the mode shapes in Eqs, (55+(56) and the rranscendental
Eq. (60) are quite complex due o the imvolvement of the spring-inerter-damper NVA and the considerarion of the changes
in the boundary conditions of the beam ar the NVA location. The dependence of the narural frequencies and mode shapes
on the linear spring stiffness. inermia mass, and location of the NVA is characterized by the parameters xy, e, and # in
Eqs. (55)-60), The influence of these paramerers on the mode shapes and narural frequencies will be discussed larer based
on the simulation resulrs,

3.2 Nonlinear analysis

The nonlinear govemning Eqs. (381-(40) have a solurion only if a solvability condition is satisfied [12,14]. The solurions
of the nonlinear governing equarions usually comprise two pans. One pam conrribures o the secular terms associated with
e thar finally gives the solvability condirion, while the orther one leads o the higherorder harmonic terms thar coneribure
o the non-homogeneous solution, Based on the method of multiple scales, the goal here is o find the nonlinear frequency
response funcrion from the solvability condition by eliminating the secular terms. Therefore, the solutions are assumed 1o
consist of secular and nonsecular terms o find the solvability condition, which are wrirten as

Wi, Tg, Tod = dby (2. T2 )8 ™ + oo+ Wi (x. Ta. Ty) (61)
waa(x, To. Ta) = d(x Ta)e™™ 5 o+ Waix, To, Ta) (62)
Way(Tp. T2} = dy (T2 )e™™ 4 oo+ Wy (T Ta) (63)

where ¢; are the pams conmributing 1o the secular terms while W; are unigue and free of secular. It is worth mentioning
thar the funcrion ¢; substantially rakes partial nonlinear mode shapes into account, In other words, the concriburions of the
nonlinear mode shapes o the secular terms are assumed o be ¢, Since this study only considers the primary resonance
response, the exciration frequency is assumed to be near o one of the namral frequencies, which could be wrinten by

Q=w+ etor (B4)

where o is a deruning parameter. Substituting the solurions in Eqs. (61)-(63) together with Egs. (44)-(46] into the nonlinear
gwverning Egs. (38)-(40) and equating the coefficients of the secular terms associated with e on both sides of each
equarion, one could obrain

. _ T [ )
B — iy = —2iw (A’ + mAW1 + %LW.( Jﬁ ¥2dx + f Vfdx} "y ';—'e'ﬂz (65)
n
i : r 3 Iy g 2 ! i i FJ iTh
8% — iy = 20K + MAN; + A A(J‘; ¥; dx+f v )Vy + Ze (66)
n
(K1 — e iy = —2pie(A’ + EAN; + kg (7) + kA AN () - Ya P (67)

Substituting the solutions in Eqs. (61)-(62) mgether with Eqs. (44)-(456) into the nonlinear boundary conditions in
Eqs. (41)-(43) yields

@ (0.T) = 0.1 =0, (1. T) =df(1.T) =0 (G8)

di(n.Ta) = dnin.T2). ¢(n.Ta) =¢in. To). (0. Te) =d4(n.Ta) (65)
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0. T) — (0. Ta) = by (e (1 — W)+ 2pienA’ + AN () + AN () (1 — W (70)

where Eqs, (49) and (57) have been used in deriving Eq. (70). Integrating Eq. (65)=Y; from O w n and Eq. (66)=Y; from
n w1, the following equarion is derived by combining the resultant equarions and considering the boundary conditions in
Eqs. (50)-(52) and (6369

1
16~ 42/ ) = )Y, iy (1 — ) — 2+ c) ([ tan [ vier)

3 - b 1 b 1
+—Lw.( f ¥idx + J" Vf:ix)( f ¥7Yyd + f Y/ o)
2
0 n 0 ]

gitls ¢ o1 1
+ U’ Fl'r’|dx+f Flfzdx) ()
7\, .

where the damping coefficients of the two beam segments are assumed to be identical, ie. £y = &3, and the derivatives
of the mode shapes, ie. ¥{"x) = Y] (%), ¥ i) = ¥ (%), have bee used m derive Eq. (71). Combining [70)x=Y; (n) with
Eq. (71) yields the solvability condition of the nonlinear problem which is given by

M“E[x_;\"l‘{n}[] — gyt —%blb_.;] = —Ziw(A" + L1400 — iwp(A + LAY + %me‘ﬂ’ 72)
where the coefficients by. by, by, and by are defined by

. [ no 1 ] 1
b= [Viaxs [ ¥iax b= ['vpaxs [vgax b= [ vnacs [ v
o n o ] 0 ]

T 1
by = Jf F¥,de + Jf FyYadx 73
0 L]

Integraring the expressions in by by pars yields by = —b». The steps wenrt through above 1o derive Eq. (72) is substantially a
process of canceling the unknown functions ¢ including pamial nonlinear mode shapes, as well as their derivarives, by use
of the nonlinear governing equations and boundary conditions. The first term on the lefi-hand side and the second rerm on
the right-hand side of the solvability condition Eq, (72) are from the nonlinear boundary condition in Eq. (710), The second
term on the lefi-hand side is due o the inclusion of the midplane strerching effect of the beam (b, and by ).

Expanding the complex amplitude A into the polar form as

A= %a[me"ﬂﬂ (74)

where @ and 4 are the real amplitude and phase angle of the solution. Substituting Eq. (74) into the solvability condition in
Eq. (72) and separaring the real and imaginary parts, one can obiain the modulation equations of the amplitude and phase
TESpONSes as

. 1 .
whsd’ = _(bm + ng;mivfmj}m +gbasiny (75)
¥ 3 4 4 1 - 1
wbsay’ — whsay — Eu-"[xg'ﬁ il — Wyt — ?-_b;bg] + gbacosy (76)

where bs = by + u?¥ ).y =oTy -6, and 3’ = o — #". It is noted that the second term pd2Y7(n) in the coefficient bs
is originated from the nonlinear boundary condition in Eq. (70). In order wo calculare the nonlinear frequencies, the damping,
excitarion, and demuning paramerer in Eqs. (75) and (76) are ser o zero, which leads w

o’ = 0.and thus a = constant @7
3a* 1
B=—y= Rab: I:Kg'l"[t[i?}['l—'-l-'}d—ilblb_{l = fa? (78)

where # = -h—iglk'g'ff{q][l — Wy* — Labyby] is referred m as the nonlinear frequency correction factor [14]. It can be seen

thar the nonlinear frequency correction facror is induced by the nonlinear spring stiffness x5 of the NVA and the midplane
stretching by and by of the beam. The nonlinear frequency is thus given by

ty = i + tra® (79)
The steady-state periodic solurions can be numerically solved from the nonlinear frequency response funcrion, which could
be derived from Eqs, (75) and (76) by seming @ = ' =0 and eliminating the trigonometric functions, The nonlinear fre-
quency response funcrion is
3 1 . . by -
| - wbsao + g [akitomy 1 - Wyt - 3200 |2+ | [B1 + e w2¥Em) a2 = () (s0)

g
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And the phase angle is given by
[bi&1 + s WYi () Jwa

¥ = arctan
—ibgaer + o [rc;\"i‘[i?}[‘l — Wy - %I-.bzb-_{]

(81}

Eq. (80) is a sixth-order nonlinear equarion, from which multiple solurions of the real amplitude a can be numerically solved
with the given frequency and deruning paramerer. The stability of the solurions can be derermined from the eigenvalues of
the Jaccobian marrix in Eq. (82), which is obtained from Eqs, (75) and (76).

) I:%"E %%i| —Il?(blfl+ﬂfﬂ1ll!\"11[ﬂl) —ra +§E[n\"i’(n}(1 —w}.‘*_%lbzbs] )
=g a0 |= _
¥ El [g-&[artma-wr- L) & (b + pew¥i ()
The detuning paramerer o can be solved as the function of the amplitude a and frequency « from Eq, (E0), which is
3a . g 1 1 [rbay, [ . ]2 )
* = Son: [x;n il — Wyt — zlbm_-;] - mﬂbﬂf[ )2 - (bm + L] m})mu (83)

3.3, Tuned spring-inercer-damper nenlinear vibracion absorber (TSID-NVA )

The parameters of the NVA characrerize the nonlinear frequency response function of the beam in Eq, (20), including the
damping ratio £y, mass raco g, and siffness & and x5 in addition o the beam sorucural paramerers and exrernal excita-
rion, Tuning these parameters could change the dynamics of the beam and the energy exchange berween the beam and the
NVA. One general applicarion of the MVA is vibration reduction and control of the host strucrure ir artaches o by absorbing,
converting, and dissipating kinetic energy |8.24,39.40], The energy absorprion and dissipation capabilities of the proposed
TSID-NVA substanuially rely on these parameters of the NVA. Therefore, this subsection explores the nonlinear dynamics of
the beam by tuning the paramerers of the spring-inemer-damper NVA based on the nonlinear frequency response, specif-
ically, the peak nonlinear frequency response of the beam. The backbone curve describing the peak nonlinear frequency
response is exrracted from the nonlinear frequency response funcrion in Eq. (80) by raking the partal differentiation of the
amplitude a with respect ro the detuning parameter o and sering gg =0.

. g (84)

i[xs'l’i’(rﬂ{l — Wy ilbm]

With the given system parameters, the backbone curve in Eq. (84) is the trajectory of the peak frequency responses over the
varying excitation frequency (the detuning parameter « ), Combining Eq. (33) with (84) to eliminare the detuning parameter
o, one can obtain the peak nonlinear frequency response of the beam as

by
z[bm + #cﬂﬂ“‘ﬁz(n}]w

Eq. (85) suggests that the resonant peak frequency response of the beam is a funcrion of the excitation ampliude associared
with by, damping ratio £ of the beam, damping ratio £y of the NVA, mass ratio w, and the location parameter 5 of the NVA,
By substituting Eq. (E5) back intwo Eqg. (B4), one could ger the detuning parameter corresponding to the bifurcation point or
jumping down frequency. Interestingly, the peak nonlinear frequency response of the beam is independent of the nonlinear
stiffness of the NVA. Anocher observation on Eq, (85) is that (L will degrade o the peak frequency response of the beam
alone when either the mass r@tio g =0 0r &) =0 (¥ =0}, or both of them are zero, which is

oy = =t
penk = 2b Ly

This is essentially the rypical resonant frequency response function of a simplified single-degree-of-freedom (SDOF) beam,
where by and by are dimensionless modal mass and mdal force, respectively, as defined in Eq. (73). This indicares that the
NVA has no contriburion o the vibration absorprion of the beam when either mass rario g =0 or &y =0, or both of them
are zero, and the system regresses o the beam alone,

For vibration control, one of the widely used performance indexes is defined as the peak response of the system, ie.,
Opek- The minimization of this performance index is referred w as the H,, control [41]. Therefore, the parameters of the
spring-inerter-damper NVA are usually desired o une o the oprimal values that minimize the peak frequency response of
the beam o be conmolled. Eq. (B5) also shows thar increasing the damping of both the beam and the NVA could effecrively
mitigare the resonant vibration of the beam. For the elecromagnetic energy harvesting NVA, the damping is induced by
the externally shuneed electronics, usually simulared as a resistive load in the modeling [25), Therefore, the damping of the
MVA could be tuned by adjusting the exrernal resistance in the circuit. However, it is necessary 1o clarify that the oprimally

(85)

Opegk =

(86)
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runed system for the best vibration reducrion of the beam might not be oprimal from the perspecrive of energy harvestng,
aiming o maximize the power ourpur. In rurn, the optimally muned NVA for the maximum power ourtput might not be
optimal for vibration reduction. A more detailed discussion from the perspectives of the oprimal vibrarion reduction and
energy harvesting respectively is referred o [42]. It is worth mentioning that the parameter W is defined as a funcrion of
the linear stiffness x; and the mass ratio g of the NVA referred to the Subsecrion 3.1, Most importantly, it is observed that

as w= x-'llx?ll' ¥ — po, which leads 1o Dpc — 0. This implies the optimal paramerers of the NVA should be tuned o sarisfy

W= ,.I-"% for the effective vibration reduction of the beam. It is nored that -,,"@ is the dimensionless nominal frequency of
the MVA. This means the nominal frequency of the NVA should be runed o the narural frequency of the system o achieve
the maximum reduction in the vibration amplitude, However, it should be emphasized here thar the namral frequency e
of the system also depends on «y and g, according to the rranscendental Eq. (60). Therefore, ir's impossible o directly
solve for the explicit expressions of rthe oprimal NVA paramerers by minimizing the resonant peak frequency response in
Eq. (84) because of the imvolvement of the complex transcendental equarion, Nevertheless, a parameter analysis could be
numerically conducred o armain the oprimal linear spring stiffness &y and mass ratio g of the spring-inerer-damper NVA
given excitation amplitude and other system paramerers,

4. Model verification, numerical results, and discussion

MNumerical simulations were conducted in this secrion o verify the analytical nonlinear dynamics model and solurions of
the beam-spring-inerter-damper system and o study the influence of system paramerers on the dynamics, Otherwise stated,
the dimensionless parameters used in the simulations are sy =iy =27t p=05. 5 =L =t =005 4 =1 and p=03.
The direct numerical integration of the governing equartions was conducted o validare the analyrical solurions, The influence
of the system paramerers, particularly the parameters of the NVA, on the nonlinear frequencies, firsm mode shape, and
nonlinear frequency responses of the BSID system are studied and discussed. The optimally muned spring-inerer-damper
NVA for the minimization of the peak frequency response is investigared and validared based on the numerical simulations,

4.1, Model verificacion

To verify the analyrtical solurions against the numerical simulation results, the governing equations of the sysrem are de-
coupled and reduced o the first modal equarion wsing the method of the separation of variables, The solurions are assumed
w be w; = %o Y {%)dnit). where guic) is the nth modal coordinare, n is the number of mode, i= 1.2 are the number
of the beam segments, and Y, are the nth mode shapes in Eqs. (55) and (56). Substituring the solution inm Eqs. (22) and
[23), the governing equation of the beam can be reduced o the first modal vibration equarion after some marhemarical
manipulation, which is given by

f+ 2600+ whg— A bz, g = Da cosar (871
25, b,

The subscript of the first modal coordinate is left our for simplicity. The cubic nonlinear rerm in the above equation is
induced by the midplane strerching, Direct numerical integration was performed o the first modal equation ar different
excitation frequencies, The amplitudes of the time-domain steady-stare responses are collecred ar every frequency point of
interest and compared with the analytical nonlinear frequency responses, The nonlinear stiffness &y and damping &y are
ignored in the simulations since the reduced-order Eq. (87 ) doesn't consider the effecr of the nonlinear boundary conditions
at the NVA locarion, The zero initial conditions are used in the numerical simulations, as a consequence of which only one
stable solurion could be obmained in the multple solurion region, Fig. 2{a) presenrs the numerical simulation results and
the analyrical nonlinear frequency responses for Ff =F, = 0.3 and three different values of the mass ratio w. ie 0,001, 02,
and 0.5 The numerical results perfectly agree with the anabytical solutions when the mass ratio is very small | u=0001),
However, the discrepancy emerges and becomes significant as the inerance increases. This is because Eq. (87) is obrained
from the linear mode shapes, which don't consider the effect of the nonlinear boundary conditions ar the NVA location. In
contrast, the analytical model does include thar as shown in Eqs. (68)-(70). As the inertance increases, the nonlinear bound-
ary conditions become stronger and cherefore are non-ignorable. As shown in Fig 2 (a). ignoring the nonlinear boundary
conditions could lead to serious underestimartion of the nonlinear frequency responses in the numerical simulations.

To explain the discrepancy berween the numerical and analytical results theoretically, the frequency response amplitude
of the system is obained from Eq. (E7) by further neglecing the nonlinear term induced by the midplane smrerching, which

is given by
() (%)
1= || @ Errher  \ TRt o (88)

where the excitation frequency is assumed o be in the vicinity of the resonant frequency and can be wrinen by @ = e+ o,
which has been substitured into Fq. (88) and the small-term o2 is ignored, Similarly, neglecting the nonlinear stffness and

n
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Fig. 1. Comparison of the numerical resuls and analyrical solutions of the nonlinear frequency responses (o, = 2a* oy = 0.4 =y =005, {3 = 0.0,4 =
1.0, 5 - 0.3, and R — F; — 0.3), (a} consider the nonlinear boundary condicion effect in e analyrical solutaons, () ignare the noalinear boundary conditian
effect in e 3I'.I3]]'Ijl:3| salarions

Table 1
The linear narural Irequencies e (radjs) of te ESID system with the spring-inener-damper NVA ar varioas locations (q) and te comparisan
with these of the BSM sysiem.

1* mode ™ mode ¥ mode 4 mode Sth mode
T D Esmn] BEID BSM[12] ESID  BSM[I3] BSID BSM[13] BSID BEM[13]
00 OB 987 10,48 30,48 EEEI B3 15781 15781 4674 D4ET4
01 929 1098 [19.36M4151 3524 8031 TLIE 15005 13167 24754 11GEI
0z EM 127 [20.36M460 3235 2101 TEOE 158.36 150,55 24674 D4ET4
03 7O 1430 [2176M538 1324 BI05  E7.IE 15835 14620 24754 21280
04 ED0 15 [I5.05M217 3675 BIES  B104 15007 13633 24674 D4ET4
05 675 1555 (ZE.D0)30.48  39.48 9119 7RIz 157.01 15781 24754 21212

midplane srerching effect in the analytical nonlinear frequency response funcrion in Eq. (E0) and solving for the amplitude
response, one has

@ [ @
Ogy = - - = T - (B9)
(%“;crw} + (L) (r:rw+ —l—h—'—} + (L)

where bs = by +_u\W'r‘f{r;} has been substitured inm the above equarion, Comparing Eq. (B9) wo Eg. (88), one can see one

addirional rerm pb i) is included in the analyrical solution in Eg. (89). This term is actually from the coefficient b; and is

originated from the nonlinear boundary conditions in Eq. (70), By seming the second verm in the coefficient bs 1o zero, the
effect of the nonlinear boundary conditions in the analytical solurions is ignored, and the deteriorated analyrical solurions
are ploed in Fig. 2(b) ogecher with the numerical resulrs. It is noted thar the neglect of the midplane stretching effect in
Eqs. (88) and (E9) is o derive the explicit expression of the frequency response for an intuitive comparison. The numerical
and analyrical resulis in Fig. 2(b) include the midplane scretching effect. As expected. the numerical resulrs almost perfectly
march the analyrical solutions withour considering the nonlinear boundary conditions. This implies thar the presented an-
alyrical nonlinear dynamics model and solutions are more accurate because of the involvement of the nonlinear boundary
conditions ar the NVA location, pamiculary for a large inertance,

42 Nawmrd frequencies and mode shapes

This subsecrion studies the influence of rhe sysiem paramerers on the system's narural frequencies and mode shapes,
The narural frequency « = £* of the BSID system is firstly derived by numerically solving the rranscendental Eg. (60). The
first five narural frequencies of the BSID system with the NVA deployed ar different locations (varying n) are presented
in Table 1. and compared with these of the rypical beam-spring-mass (BSM) system in literamure [13]. As the geometrical
symmetry of the system, the results are only presented for the cases of 5 = 0.5, At p =0, the NVA is located at the left
support position and thus does not affect the beam dynamics, which means both the BSID and BSM systems degenerate 1o
the simply-supported beam alone, In such a case, the first five natural frequencies of the BSID system are the same as these
of the BSM system in Ref[13], as presented in the first row of Table 1, This agreement further validares the correciness and
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Fig. 1 The infuence of (2) the spring-inemer-damper location an the first mode shape(k, = Zv* and g - 0L5), (blhe linear spring stiffness (p — 0.2 and
= 0.5). and (c) the ineria mass (K, — 24 and n = 0.Z)d) the 5 mode shape for g = 0.2 and the 4% mode shape far g = 0.5 [k = 2o and p = 0.5)

accuracy of the presented model, In conrrast with the increasing trend in the first narural frequency of the BSM system,
the first narural frequency of the BSID system decreases as the NVA shifis o the middle point of the beam. Furthermore,
another mode of the NVA vibrarion emerges berween the first and the second beam vibration modes, the narural frequencies
of which are given in the parentheses along with the second beam vibration frequencies. The BSID system has higher narural
frequencies than the BSM system for the higher modes apart from these highlighted in gray. Interestingly, it is found that
the second and fourth narural frequencies of the two systems for n = 0.5, the fifth narural frequencies for 5 = 0.2 and 0.4,
are idenrical with the these of the simply-supporied beam alone. This implies that neither the proposed spring-inemer-
damper NVA nor the ypical spring-mass NVA influences the second and fourth narural frequencies when = 0.5, and the
fifth narural frequency when 5 = 0.2 and 0.4. This is because these locarions are either the strain nodes of the mode shapes
or the NVA mode. These findings provide a basis for the design of the BESID system, especially for the specific modal control
of the beam vibrarion.

The first mode shape of the proposed BSID system is derived from Eqs. (55) and (56) and plomed in Fig. 3 (a) for the
varying NVA locarion (g). Fig. 3(b) for the varying linear stiffness (&), and Fig. 3 {c) for the varying inertia mass (p). The
circular markers indicate the mode shape of the NVA. Fig. 3 (a) shows that the location of the NVA has a remarkable
influence on the first mode shape of the beam. The first mode shape is not symmetric abour the middle point of the beam
amy longer like thar of a general simply-supported beam excepr for 5 = 0.5 (NVA ar the midpoint of the beam). Insread,
it shifts to the right hand as the location parameter n increases from 0.1 o 0.4 (the NVA moves o the right side). The
influence of the NVA on the first mode shape of the left half segment is more significant than on thar of the right half
segment because the NVA is deployed within the left half segment of the beam. These findings conclude thar the spring-
inerter-damper NVA has a slight impact on the first mode shape of the simply-supponed beam when deployed ar the
midpoint {n =0.5) but can significantly differ first mode shape when installed ar the locations away from the midpoint.

The linear stiffness & of the spring exhibits remarkable influence on the vibrarion mode of the NVA bur the slight impact
on the first mode shape of the beam, as shown in Fig. 3(b). There will be no linear vibration for NVA when &, = 0.0 and
the NVA has no influence on the first mode shape of the beam, The NVA shows a large amplitude vibrarion when a soft
spring is used, ie. &y =0.57% and the first mode shape of the beam is slightly shifted w the lefi-hand side. When the
linear sriffness of the NVA becomes much larger (k) = 5.074) compared with the beam stiffness, the connecrion berween
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the NVA and the beam close o rigidity, and thus the NVA always vibrares along with the beam. The vibration mode of
the NVA is complerely the same with the beam ar the installation position as the linear stiffness further increases, eg.,
iy = 2007*, Fig, 3 (c) sugeests thar the inertial mass also has a remarkable effect on the first mode of the beam and the
NVA, When the inertial mass is minimal (g = 0.001), the NVA follows the beam vibration ar the installation location and
fails to reduce the beam vibration, The first mode shape of the beam slightly skews to the left-hand side as the inerial mass
increases, The beam vibration cannot bring the NVA in motion any more as the inemial mass becomes huge, eg., e = 50,
and the beam vibration mode is notably changed by the stronger constraint of the NVA due o the large inertial mass, As an
example, Fig. 2 (d) plors the fifth mode shape for 5 =02 and the fourth mode shape for 5 = 0.5 o demonstrare thar the
NVA vibration modes are nodes and, therefore, the corresponding frequencies of the system are the same with the these
of the beam alone, as shown with the gray background in Table 1. These results demonstrare thar the mode shapes of the
beam could be changed to varying degrees by the NVA with different parameters and locations. This influence of the NVA
parameters and location on the mode shapes of the beam was not considered in most studies that modeled the beam as a
continuous one using the mode shapes of a typical simply-suppomed beam, bur can result in significant errors.

4.3 Nonlinear frequencies

The nonlinear frequencies cy are caloulared with respect o the vibration amplitede from Eq, (79) for various values of
the NV A location parameter 5 and the nonlinear stiffness «y. which are plomed in Fig. 4(a) and (b). respecrively. The results
show that the position of the NVA has a prominent influence on the nonlinear frequency of the BSID system, The nonlinear
frequency and the nonlinearity of the system decrease as the NVA shifts o the cenrer of the beam. This resulr is contrary o
the findings of the rypical BSM system |13), where the system has the maximum nonlinear frequency and highest nonlinear-
ity when the NVA locares at the midpoint of the beam, The nonlinear stiffness x4 of the NVA also significantly contribures
o the variation of the nonlinear frequency, Fiz. 4(b) suggests thar the nonlinear frequency increases along with the nonlin-
ear stiffness at the same vibrarion amplitede. The increment of the nonlinear frequency induced by the nonlinear stiffness
&3 i5 even more significant as the frequency response amplitude a becomes larger. Fig, 4 (c) plors the nonlinear frequency
correction factor &, which gives more intuitive evidence on the contributions of the location parameter 5 and the nonlinear
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stiffness &y of the NVA o the nonlinear frequency. The nonlinear frequency correction factor is almost the same when NVA
is near o the ends of the beam for different values of the nonlinear stiffness x5, which implies the nonlinear stiffness of
the NVA has little effect and weak conrriburions to the system nonlinearity, which is dominared by the midplane strerching
effect. As the NVA moves to the middle of the beam, the nonlinear frequency correcrion facror shows a decreasing trend for
a2 small nonlinear stiffness «y. However, as the nonlinear stiffness increases (ixy = 300x%), the frequency correction factor
has an increasing mend in 0 < 5 < 0.2(0.8 < i « 1.0y and decreasing trend in 0.2 « 5 < 0.5(0.5 = 5 « 0.8}, This change in
the trend of the frequency correction factor is because the nonlinear stiffness &y gradually dominates the nonlinearity of
the system as it inCreases,

To study the influence of the midplane strerching on the nonlinearity, Fig. 4 (d) plors the frequency correcrion factor for
different values of x5 without the consideration of the midplane strerching effect. Comparing Fig. 4 (d) with (c), one can
find thar the frequency correction factor curve over different NVA locarions along the length of the beam is smaller and
maintzins the M shape in Fig. 4 (d). Bur the curve in Fig. 4 (c) has a U shape for a smaller x5y and gradually urns o the M
shape as x4 increases, This reveals that the nonlinearity is dominared by the midplane sirerching effect when x5 is smaller,
Bur when ir increases (i.e.= 300x%), the nonlinear stiffness «, gradually becomes dominant, Eqg. (78) can also explain this,
which shows the frequency correcrion factor is composed of rwo terms thar are respectively associared with the nonlinear
stiffness &y and the midplane strerching induced coefficient by,

44. Nonlinear frequency response

The nonlinear frequency response curves are derived by numerically solving Eq. (80) with the given detuning parameter
o and the excitation amplitudes of F; =F, =0.3. The dimensionless damping ratios of &y = £3 = 0,05 for the beam struc-
ture and &y =0.05 fnr_l:he MVA are used in the simulations, A smaller linear stiffness of &y = 0274 is chosen w tune the

nominal frequency 1.."1% of the NVA close to the first narural frequency of the BSID system for berrer vibration reduction

performance, Fig. 5(a) and (b) shows the first and second mode nonlinear frequency response curves for the cases thar the
spring-inerter-damper NVA is installed ar various locations. The solid lines are stable solutions, while the dashed lines are
unstable solutions determined by the eigenvalues of the Jacobian marrix in Eq. (82), The curves with circular markers are
the trajectories of the peak nonlinear frequency responses, A minimum is observed ar the locarion near n = 0.15, which
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suggests that the beam vibration is mostly reduced by the NVA deployed ar this location and is thus termed as the oprimal
position. Scrutiny ar this kocation reveals thar the first natural frequency of the system is 5.82, which is close o the nominal

natural frequency of the NVA, ie., 1',1":‘_'- = 6.24. According to the analysis in Subsecrion 3.3, the beam vibration could be well

reduced as the nominal narural frequency of the NVA is close o the namral frequency of the system,

For the second mode vibrarions, only the frequency responses of the system with 5 = 0.0 ~ .49 are plorted in Fig. 5(b)
since the frequency responses for n close o 0.5 is much larger and is therefore separately plotred in Fig. 5(c) for a berrer
view. The second mode frequency response curves show almost no nonlinearity. The peak value of the second mode fre-
quency response increases firstly and then reaches an exiremum ar i = 0.35 and then gradually decreases, All the second
made frequency responses are much smaller compared with the first mode responses in Fig. 5(a), which implies thar the
second mode vibrarion is ignorable when the system subjects o the exciration in the vicinity of the primary frequency.
The amplitude of the second mode vibration at 5 = 0.5 as ploned in Fig. 5{c) is much larger than these in Fig. 5(b) for
1 = 0.0 ~ 049 bur still muech smaller than that of the first mode vibration. This is because the second mode shape of the
beam is significantly changed when n = 0.5 and is quite different from these when 5 = 0.0 -~ 0.49, As an example, Fig. 5(d)
plors the second mode shapes of the system for =02, 047, and 05, which shows the difference,

The influence of the other system paramerers, including the damping rarios, nonlinear stiffness x5, and the mass rato
o on the frequency responses, are also explored in this subsection, The nonlinear frequency responses of the BSID system
with different damping of the NVA are plorted in Fig 6{a). The vibration of the beam decreases as the damping rato &
becomes larger because the damper dissipates more energy in the NVA as the damping rario increases, The quick drop in
the peak nonlinear frequency response along with the augment of damping &5, as shown by the thick curve with the circular
markers, is consistent with the analytical analysis in Subsection 3.3 based on Eq. (85), The nonlinear frequency curve shows
stronger nonlinearity by increasingly bending 1o the right-hand side as the nonlinear stiffness x5 becomes larger, as shown
in Fig. G(b). As expected and found in Subsecrion 3.3, the resonant peak nonlinear frequency response keeps unchanged
with the varying nonlinear stiffness «y of the NVA. The mass rario g has a greatr effect on the nonlinear dynamics of the
beam, as shown in Fig. 6(c), which suggests that the nonlinear frequency response of the system decreases as the mass ratio

e increases, It is found thar the nominal frequency ."lg of the NVA is much larger than the first natral frequency e of the
system when the mass rario is smaller and thus the vibrarion reduction performance is worse, As the mass ratio increases,
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borh the nominal frequency of the NVA and the first natural frequency of the system reduce and ger closer with each other,
and therefore the vibration is significantly reduced. Rz, G(d) suggests that boch the frequency response and monlinearicy of
the beam increase as the excitation amplicude aggrandizes. The resonant peak nonlinear frequency responses indicared by
the line with circular markers rises linearly along with the increasing excitation amplitude, which follows the observarion
from Eq. (85) because the conrriburtion of the excitation amplitude is reflected in the numerator by of the peak frequency
response fUncrion dp.

The effect of the parameters of the NVA on the system dynamics can also be studied by the bifurcarion diagrams [ 19] and
the phase angle derived in Eq. (85) in additional o the nonlinear frequency response. As an example, the phase angle
of the system at the varying nonlinear stiffness x5 is ploted in Fig. 7(a) for the given demuning parameter o=05 at the
excitation amplitude of / =F= 05, It shows that only one stable solution exists when the nonlinear stiffness sy is very
small because the system nonlinearity is very weak, and thus there is only one lower-branch solution at the given deruning
frequency, as shown in Fig. G(b). As the nonlinear stiffness increases, the system nonlinearity gradually becomes stronger,
which is reflected in the more severe bend of the frequency response curve, as shown in Fig. 6{b), As the frequency bends
more o the right-hand side, three solutions, including two stable ones atr the higher and lower branches and one unstable
one, emerge at the given deruning frequency. The dark background in Fig. 7(a) shows the nonlinear stiffness range thart the
system has mulriple solutions, The bifurcation diagram over the varying mass ratio is plotted in Fig. 7(b) for the detuning
parameter «=0.16 ar the same excitation amplitude of f; = F,= 0.5. The results show thar the mass ratio has a more complex
influence on the nonlinear dynamics of the system. The system has multiple solutions at the selecred detuning frequency in
wo different ranges of the mass rario as marked in dark backegrounds in Fig. 7(bl

The vibration reduction performance of the proposed spring-inemer-damper NVA (SID-NVA) is evaluared by comparing
with that of the purely nonlinear vibrarion absorber (Purely-NVA), which only has the nonlinear stiffness component, and
therefore the linear stiffness «y is set o zero, The nonlinear frequency responses of the system with the proposed SID-
MNVA and the Purely-NVA are plomed in Fig. 8{a) for «y = 27* and 10, respectively. The proposed SID-NVA exhibits much
betrer vibrarion reduction capability than the Purely-NVA for the considered owo different values of the nonlinear stiffness,
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The comparison is also carried our for different NVA locations, Fig, 8(b) plots the nonlinear frequency responses of the two
systems for n =02 and 0.5, respectively, The SID-NVA ourperforms the Purely-MVA in the vibration suppression at both
locarions.

4.5, Peak nonfinear frequency response with the muned spring-inerrer-damper NVA

To find the optimal tuning parameters of the NVA, the peak nonlinear frequency responses of the beam are compured
from Eq. (85) and presented in Fig, 9{a) for the varying mass ratio g and linear stiffness ;. All the other sysiem parameters
and the excitations remain unchanged as previously declared. It can be seen thar there is always an optimal combinarion
of the two parameters o and & in the range of interest that is corresponding o the minimum of the peak nonlinear fre-
quency responses. Fig. Wb) gives the contour plot of the peak nonlinear frequency response for different mass ratio and
—‘2—1 for a clearer view on the oprimal muning paramerers as well as the associared minimum resonant peak, The smallest

peak nonlinear frequency response is observed at the region thar =L W is close o 1, ie, o == 1,."— This numerical simulation
result complies with the conclusion drawn in the Subsection 3.3 thar the optimal parameters of the mass rario g and linear
stiffness &y of the NVA need o satisfy « = -.,."@ for the maximum reduction in beam vibration, It is worth noting thar there
is 2 jump in the peak response of the beam as the mass ratio increases in the range of 0,05 ~ 1.0, which is cnn‘espcnding
o the indenrions in the contour plot in Fig. %b). This is because as the mass r@rio increases in such a range 1,." gradually

approaches 1o w, bur it cannot be exactly tuned o equal 1o « which would place the rranscendental Eq, (60) in an ill con-
dition (the denominator (k) — ) approaches w zero). To further inruitively demonstrate this conclusion, the nonlinear
frequency responses of the beam with three different combinations of the wo parameters p and «. corresponding o the
parameter regions marked by the pentagrams at A, B, and C points in Fig. 9{b), are plotred in Fig. 9(c). The three combina-
rions of the two parameters are deliberarely chosen o represent three rypical cases of the NVA that are corresponding 1o
_‘;l; =1, =L = 1, and —';-;- <= 1. The corresponding peak nonlinear frequency responses are also marked by the pentagrams

e B
along with the capiral lemers A, B, and C in Fig. 9{c]. The results suggest that case A with the parameters of the NVA sartis-
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fying F_"m'*' == 1 has the smallest frequency response compared with the other two cases. This fumther confirms the analyrical

analysis thar the paramerers should be oprimally tuned o make the nominal frequency of the NVA close o the system's
natural frequency 1o achieve the best vibration control of the beam. It is worth mentioning thar the namral frequency e is
also dependent on the two tuning parameters studied here.

Fiz. @ (d) presents the peak monlinear frequency response of the beam with respect w different damping ratios & = &z of
the beam structure and &5 of the NVA. It shows thar the peak nonlinear frequency response drops rapidly as either or both
of the damping rarios of the beam and MVA increase, which is also in accordance with the analysis in the Subsecrion 2.3 and
the results in Fig. G6(a). This is because significant damping enhances the energy dissipation capability of the NVA, Therefore,
it concludes that increasing the damping of the spring-inemer-damper NVA could be an effective way to reduce the vibrarion
of the beam in addition o enlarge the damping of the beam structure.

5. Conclusion

This paper smdies the exacr nonlinear dynamics of a simphy-supported beam with a nonlinear spring-inerer-damper
vibration absorber (NVA). A two-terminal electromagnetic rotational inemer device is used o replace the mass and damping
elements in the typical NVA 1o reduce the physical mass. Unlike most existing studies employing the mode shapes of the
simply-supported beam alone, this study considers the abrupt changes in the boundary conditions at the NVA location and
the midplane strerching of the primary beam o develop an exact nonlinear dynamics model for the beam-spring-inermer-
damper system. The system governing equarions are derived from the energy method and directly solved by the method of
multiple scales for the approximare analytical solurions, The analytical model was verified with the simulation resulis ob-
rained by numerically integrating the governing equartions. The results demonstrate thar neglecting the nonlinear boundary
conditions ar the spring-inemer-damper location results in severe underestimarion of the nonlinear frequency responses. The
influence of the parameters and location of the NVA on the nonlinear dynamics of the beam, including namral frequencies,
nonlinear frequency correction factor, nonlinear frequency responses, and vibration reduction performance, is studied and
discussed. The oprimal uning condition of the NVA is analyrically found o minimize the peak nonlinear frequency response
of the primary beam.

The location of the MWA has an evidemt influence on the namral frequencies of the system excepr for these near w the
strain nodes of the mode shapes. The NVA has a slight impact on the first mode shape of the beam when insalled ar the
midpoint bur can significantly differ when inszlled at the locations away from the midpoint. The nonlinear stiffness of
the MVA enhances the system nonlinearity but has no contriburtion o the peak nonlinear frequency response of the beam,
The optimally uned NVA could significantly reduce the peak nonlinear frequency response of the beam, and the oprimal
runing condition is analyrically formulared and numerically verified. A comparison study on the peak nonlinear frequency
responses of the beam with various paramerers of the NVA further validared the analyrical analysis,
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