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Abstract

We propose a new Stein self-repulsive dynamics for obtaining diversified sam-
ples from intractable un-normalized distributions. Our idea is to introduce Stein
variational gradient as a repulsive force to push the samples of Langevin dynam-
ics away from the past trajectories. This simple idea allows us to significantly
decrease the auto-correlation in Langevin dynamics and hence increase the ef-
fective sample size. Importantly, as we establish in our theoretical analysis, the
asymptotic stationary distribution remains correct even with the addition of the
repulsive force, thanks to the special properties of the Stein variational gradient.
We perform extensive empirical studies of our new algorithm, showing that our
method yields much higher sample efficiency and better uncertainty estimation
than vanilla Langevin dynamics.

1 Introduction

Drawing samples from complex un-normalized distributions is one of the most basic problems in
statistics and machine learning, with broad applications to enormous research fields that rely on
probabilistic modeling. Over the past decades, large amounts of methods have been proposed for
approximate sampling, including both Markov Chain Monte Carlo (MCMC) [e.g., Brooks et al.,
2011] and variational inference [e.g., Wainwright et al., 2008, Blei et al., 2017].

MCMC works by simulating Markov chains whose stationary distributions match the distributions
of interest. Despite nice asymptotic theoretical properties, MCMC is widely criticized for its slow
convergence rate in practice. In difficult problems, the samples drawn from MCMC are often found
to have high auto-correlation across time, meaning that the Markov chains explore very slowly in
the configuration space. When this happens, the samples returned by MCMC only approximate a
small local region, and under-estimate the probability of the regions un-explored by the chain.

Stein variational gradient descent (SVGD) [Liu and Wang, 2016] is a different type of approximate
sampling methods designed to overcome the limitation of MCMC. Instead of drawing random sam-
ples sequentially, SVGD evolves a pre-defined number of particles (or sample points) in parallel
with a special interacting particle system to match the distribution of interest by minimizing the KL
divergence. In SVGD, the particles interact with each other to simultaneously move towards the
high probability regions following the gradient direction, and also move away from each other due
to a special repulsive force. As a result, SVGD allows us to obtain diversified samples that correctly
represent the variation of the distribution of interest. SVGD has found applications in various chal-
lenging problems [e.g., Feng et al., 2017, Haarnoja et al., 2017, Pu et al., 2017, Liu et al., 2017a,
Gong et al., 2019]. See Han and Liu [e.g., 2018], Chen et al. [e.g., 2018], Liu et al. [e.g., 2019],
Wang et al. [e.g., 2019a] for examples of extensions.

However, one problem of SVGD is that it theoretically requires to run an infinite number of chains
in parallel in order to approximate the target distribution asymptotically [Liu, 2017]. With a finite
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number of particles, the fixed point of SVGD does still provide a prioritized, partial approxima-
tion to the distribution in terms of the expectation of a special case of functions [Liu and Wang,
2018]. Nevertheless, it is still desirable to develop a variant of “single-chain SVGD”, which only
requires to run a single chain sequentially like MCMC to achieve the correct stationary distribution
asymptotically in time, with no need to take the limit of infinite number of parallel particles.

In this work, we propose an example of single-chain SVGD by integrating the special repulsive
mechanism of SVGD with gradient-based MCMC such as Langevin dynamics. Our idea is to use
repulsive term of SVGD to enforce the samples in MCMC away from the past samples visited at
previous iterations. Such a new self-repulsive dynamics allows us to decrease the auto-correlation in
MCMC and hence increase the mixing rate, but still obtain the same stationary distribution thanks
to the special property of the SVGD repulsive mechanism.

We provide thorough theoretical analysis of our new method, establishing its asymptotic conver-
gence to the target distribution. Such result is highly non-trivial, as our new self-repulsive dynamic
is a non-linear high-order Markov process. Empirically, we evaluate our methods on an array of
challenging sampling tasks, showing that our method yields much better uncertainty estimation and
larger effective sample size.

2 Background: Langevin dynamics & SVGD

This section gives a brief introduction on Langevin dynamics [Rossky et al., 1978] and Stein Varia-
tional Gradient Descent (SVGD) [Liu and Wang, 2016], which we integrate together to develop our
new self-repulsive dynamics for more efficient sampling.

Langevin Dynamics Langevin dynamics is a basic gradient based MCMC method. For a given
target distribution supported on R with density function p*(8) oc exp(—V(8)), where V: R? — R
is the potential function, the (Euler-discrerized) Langevin dynamics simulates a Markov chain with
the following rule:

Orr1 =0, —VV () + /2ner,  er ~N(0,1),

where k denotes the number of iterations, {ek}zozl are independent standard Gaussian noise, and
7 is a step size parameter. It is well known that the limiting distribution of 65 when & — oo
approximates the target distribution when 7 is sufficiently small.

Because the updates in Langevin dynamics are local and incremental, new points generated by
the dynamics can be highly correlated to the past sample, in which case we need to run Langevin
dynamics sufficiently long in order to obtain diverse samples.

Stein Variatinal Gradient Descent (SVGD) Different from Langevin dynamics, SVGD itera-
tively evolves a pre-defined number of particles in parallel. Starting from an initial set of particles
{631 M |, SVGD updates the M particles in parallel by

0; ., =6 +ng(6}; oMy, Vi=1,...,M,

where g(0}; 5,16\4 ) is a velocity field that depends the empirical distribution of the current set of
particles 03/ := ﬁ Z;\il 0gs in the following way,
k

9(65;61") = Eg_s5u| —K(8,6;)VV(6) + VGK(O»%)}
Confining Term Repulsive Term

Here dg is the Dirac measure centered at 8, and hence E,_ ;. [-] denotes averaging on the particles.
k
The K (-, -) is a positive definite kernel, such as the RBF kernel, that can be specified by users.

Note that g(0}; 6}M) consists of a confining term and repulsive term: the confining term pushes
particles to move towards high density region, and the repulsive term prevents the particles from
colliding with each other. It is the balance of these two terms that allows us to asymptotically
approximate the target distribution p*(6) o< exp(—V(80)) at the fixed point, when the number of
particles goes to infinite. We refer the readers to Liu and Wang [2016], Liu [2017], Liu and Wang
[2018] for thorough theoretical justifications of SVGD. But a quick, informal way to justify the



SVGD update is through the Stein’s identity, which shows that the velocity field g(0; p) equals zero
when p equals the true distribution p*, that is, V8’ € R<,

9(0: %) = Eone [~K(6,6')VV(6) + VoK (6,6)] = 0. (1)

This equation shows that, the target distributions forms a fixed point of the update, and SVGD would
converge if the particle distribution 07/ gives a close approximation to the target distribution p*.

3 Stein Self-Repulsive Dynamics

In this work, we propose to integrate Langevin dynamics and SVGD to simultaneously decrease
the auto-correlation of Langevin dynamics and eliminate the need for running parallel chains in
SVGD. The idea is to use Stein repulsive force between the the current particle and the particles
from previous iterations, hence forming a new self-avoiding dynamics with fast convergence speed.
Specifically, assume we run a single Markov chain like Langevin dynamics, where 0, denotes the

sample at the k-th iteration. Denote by S,Jc” the empirical measure of M samples from the past
iterations:

| M
M. _
0y = i 2159k7j67], e = ¢/,
J:

where ¢, is a thinning factor, which scales inversely with the step size 7, introduced to slim the
sequence of past samples. Compared with the 62/ in SVGD, which is averaged over M parallel

particles, S,i” is averaged across time over M past samples. Given this, our Stein self-repulsive
dynamics updates the sample via

Ori1 < O + (—nV(0k) +\/2ner) + nag(Bk; o', )

Langevin Stein Repulsive

in which the particle is updated with the typical Langevin gradient, plus a Stein repulsive force
against the particles from the previous iterations. Here o > 0 is a parameter that controls the mag-
nitude of the Stein repulsive term. In this way, the particles are pushed away from the past samples,
and hence admits lower auto-correlation and faster convergence speed. Importantly, the addition of
the repulsive force does not impact the asymptotic stationary distribution, thanks to Stein’s identity
in (1). This is because if the self-repulsive dynamics has converged to the target distribution p*, such
that 0y, ~ p* for all k, the Stein self-repulsive term would equal to zero in expectation due to Stein’s
identity and hence does not introduce additional bias over Langevin dynamics. Rigorous theoretical
analysis of this idea is developed in Section 4.

Practical Algorithm Because 6 M is averaged across the past samples, it is necessary to introduce
a burn-in phase with the repulsive dynamics. Therefore, our overall procedure works as follows,

0 9k777VV(0k)+\/2776k, k< MCn, 3

T Okt [~V V(O1) +ag(8: 6|+ VIner, k> Me, ©)
It includes two phases. The first phase is the same as the Langevin dynamics which collects the
initial M samples used in the second phase while serves as a warm start. The repulsive gradient
update is introduced in the second phase to encourage the dynamics to visit the under-explored
density region. We call this particular instance of our algorithm Self-Repulsive Langevin dynamics
(SRLD), self-repulsive variants of more general dynamics is discussed in Section 5.

Remark Note that the first phase is introduced to collect the initial M/ samples. However, it’s
not really necessary to generate the initial M samples with Langevin dynamics. We can simply use
some other initialization distribution and get M initial samples from that distribution. In practice,
we find using Langevin dynamics to collect the initial samples is natural and it can also be viewed
as the burn-in phase before sampling, so we use (3) in all of the other experiments.

Remark The general idea of introducing self-repulsive terms inside MCMC or other iterative
algorithms is not new itself. For example, in molecular dynamics simulations, an algorithm called
metadynamics [Laio and Parrinello, 2002] has been widely used, in which the particles are repelled



away from the past samples in a way similar to our method, but with a typical repulsive function,
suchas > D (0, O jc, ), where D(-, ) can be any kind of dis-similarity. However, introducing an
arbitrary repulsive force would alter the stationary distribution of the dynamics, introducing a harm-
ful bias into the algorithm. Besides, the self-adjusting mechanism in Deng et al. [2020b] can also
be viewed as a repulsive force using the multiplier in gradient. The key highlight of our approach,
as reflected by our theoretical results in Section 4, is the unique property of the Stein repulsive term,
that allows us to obtain the correct stationary distribution even with the addition of the repulsive
force.

Remark Recent works [Gallego and Insua, 2018, Zhang et al., 2018] also combine SVGD with
Langevin dynamics, in which, however, the Langevin force is directly added to a set of particles that
evolve in parallel with SVGD. Using our terminology, their system is

k1 = 6+ (—0V(6}) + V/2ne) +nag(8i; 611), e ~N(0,I), Vi=1,... M.

This is significantly different from our method on both motivation and practical algorithm. Their
algorithm still requires to simulate M parallel chains of particles like SVGD, and was proposed to
obtain easier theoretical analysis than the deterministic dynamics of SVGD. Our work is instead mo-
tivated by the practical need of decreasing the auto-correlation in Langevin dynamics, and avoiding
the need of running multiple chains in SVGD, and hence must be based on self-repulsion against
past samples along a single chain.

An Illustrative Example We give ~== True density Hist of repulsive sample === True density Hist of Langevin sample
an illustrative example to show the ~ — Combincadensiy ~ Histofinial sample  —— Combined density  Histofinital sample

key advantage of our self-repulsive
dynamics. Assume that we want
to sample from a bi-variate Gaus-
sian distribution shown in Figure 1.
Unlike standard settings, we assume
that we have already obtained some
initial samples (yellow dots in Fig-
ure 1) before running the dynamics.
The initial samples are assumed to
concentrate on the left part of the
target distribution as shown in Fig-
ure 1. In this extreme case, since the ;
left part of the distribution is over- Initial Sample Initial Sample
explored by the initial samples, it is 7 %  Repulsive Sample 17 x  Langevin Sample
desirable to have the subsequent new

samples to concentrate more on the  Fjgure 1: Illustrating the advantage of our Self-Repulsive
un-explored part of the distribution. [ angevin dynamics. With a set of initial examples locat-
However, standard Langevin dynam-  jng on the left part of the target distribution (yellow dots),
ics does not take this into account,  Gelf-Repulsive Langevin dynamics is forced to explore the
and hence yielding a biased over-  right part more frequently, yielding an accurate approxima-
all representation of the true distri-  tjon when combined with the initial samples. Langevin dy-
bution (left panel). With our self- pamics, however, does not take the past samples into ac-

repulsive dynamics, the new samples  count and yields a poor overall approximation.
are forced to explore the un-explored

region more frequently, allowing us
to obtain a much more accurate approximation when combining the new and initial samples.

X| B

4 Theoretical Analysis of Stein Self-Repulsive Dynamics

We provide theoretical analysis of the self-repulsive dynamics. We establish that our self-repulsive
dynamics converges to the correct target distribution asymptotically, in the limit when particle size
M approaches to infinite and the step size 1 approaches to 0. This is a highly non-trivial task, as the
self-repulsive dynamics is a highly complex, non-linear and high order Markov stochastic process.
We attack this problem by breaking the proof into the following three steps:

(1) At the limit of M — oo (called the mean field limit), we show that practical dynamics in (3) is
closely approximated by a discrete-time mean-field dynamics characterized by (4).



(2) By further taking the limit of 7 — 0T (called the continuous-time limit), the dynamics in (4)
converges to a continuous-time mean-field dynamics characterized by (5).

(3) We show that the dynamics in (5) converges to the target distribution.

Remark As we mentioned in Section 3, we introduce the first phase to collect the initial M
samples for the second phase, and our theoretical analysis follows this setting to make our theory as
close to the practice. However, the theoretical analysis can be generalized to the setting of drawing
M initial samples from some initialization distribution with almost identical argument.

Notations We use ||-|| and (-, -) to represent the ¢ vector norm and inner product, respectively.
The Lipschitz norm and bounded Lipschitz norm of a function f are defined by | f{|;, and || f||gp.-
The KL divergence, Wasserstein-2 distance and Bounded Lipschitz distance between distribution
p1, p2 are denoted as Dy, [p1]|p2], Wa[p1, p2] and Dgy,[p1, p2], respectively.

4.1 Mean-Field and Continuous-Time Limits

To fix the notation, we denote by pj := Law(8}) the distribution of 8y, at time k of the practical
self-repulsive dynamics (3), which we refer to the practical dynamics in the sequel, when the initial
particle 6 is drawn from an initial continuous distribution pg. Note that given pg, the subsequent py,
can be recursively defined through dynamics (3). Due to the diffusion noise in Langevin dynamics,
all pj, are continuous distributions supported on R%. We now introduce the limit dynamics when we
take the mean-field limit (M — +o0) and then the continuous-time limit (p — 07).

Discrete-Time Mean-Field Dynamics ()/ — 4-o00) In the limit of M — oo, our practical dynamics
(3) approaches to the following limit dynamics, in which the delta measures on the particles are
replaced by the actual continuous distributions of the particles,

é ék—UVV(ék)+\/277€k, k< MCn, 4

k+1 = ék+77 [—VV(ék)-i-ag(ék,ﬁQ/j)] ++/2ney, k> Mcﬂ' @
where g}t = L Zj\il Pk—jec, and py := Law(6},) is the (smooth) distribution of 6}, at time-step
k when the dynamics is initialized with 6y ~ po = po. Compared with the practical dynamics
in (3), the difference is that the empirical distribution 0/ is replaced by the smooth distribution

pi. Similar to the recursive definition of pj, following dynamics (3), gy, is also recursively defined
through dynamics (4), starting from po = pg.

As we show in Theorem 4.3, if the auto-correlation of 8, decays fast enough and M is sufficiently
large, 527 is well approximated by the empirical distribution 627 in (3), and further the two dynamics
((3) and (4)) converges to each other in the sense that Ws[py, pr] — 0 as M — oo for any k. Note
that in taking the limit of M — oo, we need to ensure that we run the dynamics for more than Mc,
steps. Otherwise, SRLD degenerates to Langevin dynamics as we stop the chain before we finish
collecting the M samples.

Continuous-Time Mean-Field Dynamics (7 — 0%)  In the limit of zero step size (n — 07), the
discrete-time mean field dynamics in (4) can be shown to converge to the following continuous-time
mean-field dynamics:

dé o —VV(ét)dt-i-dBt, te [O,MC), 5)
YT [-VV(8y) + ag(by, pM)] dt +dB,, t> Me.
where pi = ﬁ Zjvil Pt—jc(+), By is the Brownian motion and p, = Law (G_t) is the distribution

of @, at a continuous time point ¢ with 8 initialized by 8y ~ po = po. We prove that (5) is
closely approximated by (4) with small step size in the sense that Dkr, [px||prn] — 0 asn — 0
in Theorem 4.2, and importantly, the stationary distribution of (5) equals to the target distribution
p*(0) o exp(=V ().

4.2 Assumptions

We first introduce the techinical assumptions used in our theoretical analysis.

Assumption 4.1 (RBF Kernel). We use RBF kernel, i.e. K(61,0,) = exp(— ||61 — 65| /o), for
some fixed 0 < o < oo.



We only assume the RBF kernel for the simplicity of our analysis. However, it is straightforward to
generalize our theoretical result to other positive definite kernels.

Assumption 4.2 (V is dissipative and smooth). Assume that (6, —VV(0)) < by — a, ||0||* and
(IVV(61) — VV(02)| < b1 |61 — 02|. We also assume that ||VV(0)|| < by. Here a; and by are
some finite positive constant.

Assumption 4.3 (Regularity Condition). Assume Eg.,, 161°] > 0. Define pM =
ZjM:l Pk—je, /M, assume there exists az, B < 0o such that

~ 2
E Hg(ek; 6r") — g(Ox; pkM)H
sup

= < az.
k=Mep Supg|<B E ng% 5%) - g(9§plkv[)

2 =

Assumption 4.4 (Strong-convexity). Suppose that (VV (01) — V'V (05),0, — 65) > L |0, — 0,
for a positive constant L.

Remark Assumption 4.2 is standard in the existing Langevin dynamics analysis [see Dalalyan,
2017, Raginsky et al., 2017, Deng et al., 2020a]. Assumption 4.3 is a weak condition as it as-
sumes that the dynamics can not degenerate into one local mode and stop moving anymore. This
assumption is expected to be true when we have diffusion terms like the Gaussian noises in our self-
repulsive dynamics. Assumption 4.4 is a classical assumption on the existing Langevin dynamics
analysis with convex potential Dalalyan [2017], Durmus et al. [2019]. Although being a bit strong,
this assumption broadly applies to posterior inference problem in the limit of big data, as the poste-
rior distribution converges to Gaussian distributions for large training set as shown by Bernstein-von
Mises theorem. It is technically possible to further generalize our results to the non-convex settings
with a refined analysis, which we leave as future work. This work focuses on the classic convex
setting for simplicity.

4.3 Main Theorems

All of the proofs in this section can be found in Appendix E. We first prove that the limiting distri-
bution of the continuous-time mean field dynamics (5) is the target distribution. This is achieved by
writing dynamics (5) into the following (non-linear) partial differential equation:

85 — V- (=VVp) + Ap: t€[0,Mc)
PNV [(-VV + ag(, o)) o] + Apr, > Me.

Theorem 4.1 (Stationary Distribution). Given some finite M, c and o, and suppose that the limit
distribution of (5) exists. Then the limit distribution is unique and satisfies p*(0) x exp(—V(9)).

We then give the upper bound on the discretization error, which can be characterized by analyzing
the KL divergence between py, and py,.

Theorem 4.2 (Time Discretization Error). Given some sufficiently small step size n and choose
a < az/(2by +4/0). Under Assumption 4.1, 4.2, 4.3 and c,, = c/n. we have for some constant C,

O(n+kn2) k< Mc,—1

@) (77 + Mecn + aQMceca2(k”_MC)n2) k> Mcy,.

Dk (7001511 <
e max KL[pznlpz]_{

With this theorem, we can know that if 7 is small enough, then the discretization error is small and
p approximates p closely. Next we give result on the mean field limit of M — co.

Theorem 4.3 (Mean-Field Limit). Under Assumption 4.1, 4.2, 4.3, and 4.4, suppose that we choose
a and 1) such that —(ay — 2aby /o) +nby < 0; 2?‘7"(1)1 +1)<1lay—«a (2b1 + %) > 0; Then there
exists a constant ca, such that when L/a > co and we have

- O (a? M—|—772 > Me,,
Wg[”‘“’p’“]_{o( / ) k< Mey — 1
>~ n .

Thus, if M is sufficiently large, p; can well approximate the p. Combining all the above theorems,
we have the following Corollary showing the convergence of the proposed practical algorithm to the
target distribution.



Corollary 4.1 (Convergence to Target Distribution). Under the assumptions of Theorem 4.1, 4.2
and 4.3, by choosing k,n, M such that kn — oo, exp(Ca?kn)n? = o(1) and % =v(140(1))
with v > 1, we have

lim . Dge [pr, p*] = 0.

k,M—oco,n—0

Remark A careful choice of parameters is needed as our system is a complicated longitudinal
particle system. Also notice that if v < 1, the repulsive dynamics reduces to Langevin dynamics, as
only the samples from the first phase will be collected.

S Extension to General Dynamics

Although we have focused on self-repulsive Langevin dynamics, our Stein self-repulsive idea can
be broadly combined with general gradient-based MCMC. Following Ma et al. [2015], we consider
the following general class of sampling dynamics for drawing samples from p(8) o exp(—V(0)):

d6, = — £(0)dt + \/2D(0)dB;,

where D is a positive semi-definite diffusion matrix that determines the strength of the Brownian
motion and @ is a skew-symmetric curl matrix that can represent the traverse effect [e.g. in Neal
etal., 2011, Ding et al., 2014]. By adding the Stein repulsive force, we obtain the following general
self-repulsive dynamics

if. — {—f(B)dtJr\/Wch t € [0,Mc) ©
"= (£(8) + ag(By; pM)) dt +dB,, t> Mc

where p; := Law(0;) is again the distribution of §; following (6) when initalized at @y ~ po. Similar
to the case of Langevin dynamics, this process also converges to the correct target distribution, and
can be simulated by practical dynamics similar to (3).

Theorem 5.1 (Stationary Distribution). Given some finite M, c and o, and suppose that the limiting
distribution of dynamics (6) exists. Then the limiting distribution is unique and equals the target

distribution p*(0) x exp(=V (0)).

6 Experiments

In this section, we evaluate the proposed method in various challenging tasks. We demonstrate
the effectiveness of SRLD in high dimensions by applying it to sample the posterior of Bayesian
Neural Networks. To demonstrate the superiority of the SRLD in obtaining diversified samples,
we apply SRLD on contextual bandits problem, which requires the sampler efficiently explores the
distribution in order to give good uncertainty estimation.

We include discussion on the parameter tuning and additional experiment on sampling high dimen-
sional Gaussian and Gaussian mixture in Appendix B. Our code is available at https://github.
com/lushleaf/Stein-Repulsive-Dynamics.

6.1 Synthetic Experiment

We first show how the repulsive gradient helps explore the whole distribution using a synthetic
distribution that is easy to visualize. Following Ma et al. [2015], we compare the sampling efficiency
on the following correlated 2D distribution with density

p*([01,02]) o< —62/10 — (4 (02 + 1.2) — 63)° /2.

We compare the SRLD with vanilla Langevin dynamics, and evaluate the sample quality by Maxi-
mum Mean Discrepancy (MMD) [Gretton et al., 2012], Wasserstein-1 Distance and effective sample
size (ESS). Notice that the finite sample quality of gradient based MCMC method is highly related
to the step size. Compared with Langevin dynamics, we have an extra repulsive gradient and thus


https://github.com/lushleaf/Stein-Repulsive-Dynamics
https://github.com/lushleaf/Stein-Repulsive-Dynamics

0.12

MMD Wasserstein Distance Effective Sample Size Autocorrelation
P 1.0

25

Repulsive Dynamics
Langevin Dynamics

| 0.7
0.08+ 1 20

15 0.4

10 0.1

5 L
0.00 0.2 0.2
100 700 1300 1900 100 700 1300 1900 100 700 1300 1900 0 200 400 600 800

Num of samples Num of samples Num of samples Num of lags

Figure 2: Sample quality of SRLD and Langevin dynamics for sampling the correlated 2D distribu-
tion. The auto-correlation is the averaged auto-correlation of the two dimensions.
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Figure 3: Sampling trajectory of the correlated 2D distribution.

we implicitly have larger step size. To rule out this effect, we set different step sizes of the two
dynamics so that the gradient of the two dynamics has the same magnitude.

In addition, to decrease the influence of random noise, the two dynamics are set to have the same
initialization and use the same sequence of Gaussian noise. We collect the sample of every iteration.
We repeat the experiment 20 times with different initialization and sequence of Gaussian noise.

Figure 2 summarizes the result with different metrics. We can see that SRLD has a significantly
smaller MMD and Wasserstein-1 Distance as well as a larger ESS compared with the vanilla
Langevin dynamics. Moreover, the introduced repulsive gradient creates a negative auto-correlation
between samples. Figure 3 shows a typical trajectory of the two sampling dynamics. We can see that
SRLD have a faster mixing rate than vanilla Langevin dynamics. Note that since we use the same
sequence of Gaussian noise for both algorithms, the difference is mainly due to the use of repulsive
gradient rather than the randomness.

6.2 Bayesian Neural Network

Bayesian Neural Network is one of the most important methods in Bayesian Deep Learning with
wide application in practice. Here we test the performance of SRLD on sampling the posterior of
Bayesian Neural Network on the UCI datasets [Dua and Graff, 2017]. We assume the output is
normal distributed, with a two-layer neural network with 50 hidden units and tanh activation to
predict the mean of outputs. All of the datasets are randomly partitioned into 90% for training and
10% for testing. The results are averaged over 20 random trials. We refer readers to Appendix C
for hyper-parameter tuning and other experiment details. Table 1 shows the average test RMSE and
test log-likelihood and their standard deviation. The method that has the best average performance
is marked as boldface. We observe that a large portion of the variance is due to the random partition
of the dataset. Therefore, to show the statistical significance, we use the matched pair ¢-test to test
the statistical significance, mark the methods that perform the best with a significance level of 0.05
with underlines. Note that the results of SRLD/LD and SVGD is not very comparable, because
SRLD/LD are single chain methods which averages across time, and SVGD is a multi-chain method
that only use the results of the last iteration. We provide additional results in Appendix C that SRLD
averaged on 20 particles (across time) can also achieve similar or better results as SVGD with 20
(parallel) particles.



Dataset Ave Test RMSE Ave Test LL
SVGD LD SRLD SVGD LD SRLD
Boston 3.300 + 0.142 3.342 +0.187 3.086 + 0.181 | —4.276 £0.217 —2.678 £0.092 —2.500 + 0.054
Concrete | 4.994 +0.171 4.908 £0.113 4.886 +£0.108 | —5.500 + 0.398 —3.055+ 0.035 —3.034 4+ 0.031
Energy 0.428 +0.016 0.412 +0.016 0.395 4+ 0.016 | —0.781 £0.094 —0.543 +0.014 —0.476 + 0.036
Naval 0.006 4+ 0.000 0.006 4+ 0.002 0.003 4 0.000| 3.056 + 0.034 4.041 + 0.030 4.186 + 0.015
WineRed | 0.655 £ 0.008 0.649 + 0.009 0.639 + 0.009 | —1.040 + 0.018 —1.004 £+ 0.019 —0.970 + 0.016
WineWhite | 0.655 + 0.008 0.692 + 0.003 0.688 + 0.003 | —1.040 + 0.019 —1.047 4+ 0.004 —1.043 £ 0.004
Yacht 0.593 +0.071 0.597 +0.051 0.578 +0.054 | —1.281 +£0.279 —1.187 +0.307 —0.458 + 0.036

Table 1: Averaged test RMSE and test log-likelihood on UCI datasets. Results are averaged over 20
trails. The boldface indicates the method has the best average performance and the underline marks
the methods that perform the best with a significance level of 0.05.

Dataset SVGD LD SRLD
Mushroom 20.7 £ 2.0 4.28 +£0.09 3.80+0.16
Wheel 91.32+0.17 | 38.07+t1.11 | 32.08 = 0.75

Table 2: Cumulative Regrets on two bandits problem (smaller is better). Results are averaged over 10
trails. Boldface indicates the methods with best performance and underline marks the best significant
methods with significant level 0.05.

6.3 Contextual Bandits

We consider the posterior sampling (a.k.a Thompson sampling) algorithm with Bayesian neural
network as the function approximator, to demonstrate the uncertanty estimation provided by SRLD.
We follow the experimental setting from Riquelme et al. [2018]. The only difference is that we
change the optimization of the objective (e.g. evidence lower bound (ELBO) in variational inference
methods) into running MCMC samplers. We compare the SRLD with the Langevin dynamics on
two benchmarks from [Riquelme et al., 2018], and include SVGD as a baseline. For more detailed
introduction, setup, hyper-parameter tuning and experiment details; see Appendix D.

The cumulative regret is shown in Table 2. SVGD is known to have the under-estimated uncertainty
for Bayesian neural network if particle number is limited [Wang et al., 2019b], and as a result, has
the worst performance among the three methods. SRLD is slightly better than vanilla Langevin
dynamics on the simple Mushroom bandits. On the much more harder Wheel bandits, SRLD is
significantly better than the vanilla Langevin dynamics, which shows the improving uncertainty
estimation of our methods within finite number of samples.

7 Conclusion

We propose a Stein self-repulsive dynamics which applies Stein variational gradient to push samples
from MCMC dynamics away from its past trajectories. This allows us to significantly decrease the
auto-correlation of MCMC, increasing the sample efficiency for better estimation. The advantages
of our method are extensive studied both theoretical and empirical analysis in our work. In future
work, we plan to investigate the combination of our Stein self-repulsive idea with more general
MCMC procedures, and explore broader applications.
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A Discussion on Hyper-parameter Tuning

The key hyper-parameters of SRLD are 1. «, which balance the confining gradient and repulsive
gradient; 2. M the number of particles used; 3. o the bandwidth of kernel; 4. ) the stepsize; 5. ¢,
the thinning factor. Among which, o, M and o are the hyper-parameter introduced by the proposed
repulsive gradient and thus we mainly discuss these three hyper-parameter. The number of particles
M and bandwidth of kennel ¢ are introduced by the use the repulsive term in SVGD [Liu and Wang,
2016]. In practice, we find using a similar setting for tuning M and o as that in SVGD [Liu and
Wang, 2016] gives good performance. In specific, in order to obtain good performance, M does not
needs be very large, and similar to SVGD, M = 10 already gives good enough particle approxima-
tion. A good choice of bandwidth ¢ is also important for the kernel. In SVGD, instead of tuning
o, they propose an adaptive way to adjust o during the running of the dynamics. Specifically, they
choose o = med? /log(M), where med is the median of the pairwise distance between the particles
0, i € [M]. In this way, the bandwidth ensures that Zjle K(6:,6]) ~ 1. This adaptive way of
choosing ¢ is also widely used in current approximation inference area, e.g., Liu et al. [2017b], Han
and Liu [2017], Wang et al. [2019b,a]. We also find that applying this adaptive bandwidth is able to
give good empirical performance and thus we also use this method in the implementation. Now we
discuss how choose «. Notice that « serves to balance the confining gradient and repulsive gradient
and based on this motivation, we recommend readers to find a proper « using the samples at burn-in
phase by setting

Mecy,
I el A 4]
Mec, s '
k=1 g(glm 5}{;\4)“
In this way, « balances the two kind of gradients. And then we may further tune « by searching

around this value. An empirical good choice of « is 10 for the data sets we tested and we use o = 10
for all the experiments.

(e

The step size is important for gradient based MCMC, as too large step size gives too large discretiza-
tion error while a too small step size will cause the dynamics converges very slowly. In this paper,
we mainly use validation set to tune the step size. The thinning factor is also a common parameter
is MCMC methods and usually MCMC methods are not sensitive to this parameter. SRLD is not
sensitive to this parameter and we simply set ¢, = 100 for all experiments.

B Additional Experiment Result on Synthetic Data

In this section, we show additional experiment on synthetic data. To further visualize the role of the
proposed stein repulsive gradient, we also apply our method to sample a 2D mixture of Gaussian
distribution (see section B.1). To further study how different o influences sampling high dimension
distribution, we apply SRLD to sample high dimensional Gaussian (section B.2) and high dimen-
sional mixture of Gaussian (section B.3).

B.1 Synthetic 2D Mixture of Gaussian Experiment

MMD Wasserstein Distance Effective Sample Size Autocorrelation
287

0.16- Repulsive Dynamics
Langevin Dynamics

i

100 300 500 700 900 100 300 500 700 900 100 300 500 700 900 0 200 400 600 800
Num of samples Num of samples Num of samples Num of lags

Figure 4: Sample quality and autocorrelation of the mixture distribution. The auto-correlation is the
averaged auto-correlation of the two dimensions.

We aim to show how the repulsive gradient helps the particle escape from the local high density
region by sampling the 2D mixture of Gaussian distribution using SRLD and Langevin dynamics.
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Figure 5: Sampling trajectory of the mixture of Gaussian.
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Figure 6: Sample quality and autocorrelation of the higher dimensional Gaussian distribution. The
auto-correlation is the averaged auto-correlation of all dimensions.

The target density is set to be
p*(8) o 0.5 exp (— 16 — 1| /2) +0.5exp (_ 16 + 1|2 /2),

where @ = [0;,05]" and 1 = [1,1]T. This target distribution have two mode at —1 and 1, and
vanilla Langevin dynamics can stuck in one mode while keeps the another mode under-explored (as
the gradient of energy function can dominate the update of samples). We use the same evaluation
method, step sizes, initialization and Gaussian noise as the previous experiment. We collect one
sample every 100 iterations and the experiment is repeated for 20 times. Figure 4 shows that SRLD
consistently outperforms the Langevin dynamics on all of the evaluation metrics.

To provide more evidence on the effectiveness of SRLD on escaping from local high density region,
we plot the sampling trajectory of SRLD and vanilla Langevin dynamics on the mixture of Gaussian
mentioned in Section 6.1. We can find that, when both of the methods obtain 200 samples, SRLD
have started to explore the second mode, while vanilla Langevin dynamics still stuck in the original
mode. When both of the methods have 250 examples, the vanilla Langevin dynamics just start to
explore the second mode, while our SRLD have already obtained several samples from the second
mode, which shows our methods effectiveness on escaping the local mode.

B.2 Synthetic higher dimensional Gaussian Experiment

To show the performance of SRLD in higher dimensional case with different value of «, we addition-
ally considering the problem on sampling from Gaussian distribution with d = 100 and covariance
3 = 0.51. We run SRLD with o« = 100, 50, 20, 10, 0 and the case a = 0 reduces to Langevin. We
collect 1 sample every 10 iterations. The other experiment setting is the same as the toy examples
in the main text. The results are summarized at Figure 6. In this experiment, we set one SRLD with
an inappropriate « = 100. For this chain, the repulsive gradient gives strong repulsive force and
thus has the largest ESS and the fastest decay of autocorrelation. While the inappropriate value o
induces too much extra approximation error and thus its performance is not as good as these with
smaller o (see MMD and Wasserstein distance). This phenomenon matches our theoretical finding.
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Figure 7: Sample quality and autocorrelation of the higher dimensional mixture distribution. The
auto-correlation is the averaged auto-correlation of all dimensions.

B.3 Synthetic higher dimensional Mixture of Gaussian Experiment

We also consider sampling from the mixture of Gaussian with d = 20. The target density is set to

be
p*(0) x %exp (—0.5 HO - \/2/71”2> + %exp <—O.5 HO + \/2/71H2> ,

where @ = [0y, ...,020]" and 1 = [1,...,;1]". And thus the mean of the two mixture component
is with distance 2v/2. We run SRLD with o = 20,10, 5,0 (and when o = 0, it reduces to LD).
The other experiment setting is the same as the low dimensional mixture Gaussian case. Figure [7]
summarizes the result. As shown in the figure, when a becomes larger, the repulsive forces helps
the sampler better explore the density region.

C BNN on UCI Datasets: Experiment Settings and Additional Results

We first give detailed experiment settings. We set a I'(1, 0.1) prior for the inverse output variance.
We set the mini-batch size to be 100. We run 50000 iterations for each methods, and for LD and
SRLD, the first 40000 iteration is discarded as burn-in. We use a thinning factor of ¢,, = ¢/n = 100
and in total we collect 100 samples from the posterior distribution. For each dataset, we generate 3
extra data splits for tuning the step size for each method. the number of past samples M to be 10. In
all experiments, we use RBF kernel with bandwidth set by the median trick as suggested in Liu and
Wang [2016]. We use a = 10 for all the data sets. For SVGD, we use the original implementation
with 20 particles by Liu and Wang [2016].

We show some additional experiment result on posterior inference on UCI datasets. As mentioned
in Section 6.2, the comparison between SVGD and SRLD is not direct as SVGD is a multiple-chain
method with fewer particles and SRLD is a single chain method with more samples. To show more
detailed comparison, we compare the SVGD with SRLD using the first 20, 40, 60, 80 and 100
samples, denoted as SRLD-n where n is the number of samples used. Table 3 shows the result of
averaged test RMSE and table 4 shows the result of averaged test loglikelihood. For SRLD with
different number of samples, the value is set to be boldface if it has better average performance than
SVGD. If it is statistical significant with significant level 0.05 using a matched pair t-test, we add an
underline on it.

Figure 8 and 9 give some visualized result on the comparison with Langevin dynamics and SRLD.
To rule out the variance of different splitting on the dataset, the errorbar is calculated based on the
difference between RMSE of SRLD and RMSE of Langevin dynamcis in 20 repeats (And similarily
for test log-likelihood). And we only applied the error bar on Langevin dynamics.
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Dataset Ave Test RMSE
SRLD-20 SRLD-40 SRLD-60 SRLD-80 SRLD-100 SVGD

Boston |3.236 +0.174 3.173 £0.176 3.130 £0.173 3.101 +£0.179 3.086 + 0.181 3.300 £ 0.142
Concrete | 4.959 +0.109 4.921 +0.111 4.906 = 0.109 4.891 + 0.108 4.886 +0.108 4.994 £+ 0.171
Energy |0.422 +0.016 0.409 + 0.016 0.405 + 0.016 0.399 + 0.016 0.395 + 0.016 0.428 4+ 0.016
Naval 0.005 + 0.001 0.004 + 0.000 0.003 + 0.000 0.003 + 0.000 0.003 + 0.000 0.006 + 0.000
WineRed | 0.654 + 0.009 0.647 + 0.009 0.644 + 0.009 0.641 + 0.009 0.639 + 0.009 0.655 %+ 0.008
WineWhite | 0.695 £+ 0.003 0.692 £ 0.003 0.690 £+ 0.003 0.689 £ 0.002 0.688 + 0.003 0.655 4+ 0.008
Yacht 0.616 + 0.055 0.608 + 0.052 0.597 +0.051 0.587 + 0.054 0.578 + 0.054 0.593 + 0.071

Table 3: Comparing SRLD with different number of samples with SVGD on test RMSE. The results
are computed over 20 trials. For SRLD, the value is set to be boldface if it has better average
performance than SVGD. The value if with underline if it is significantly better than SVGD with
significant level 0.05 using a matched pair t-test.

Dataset Ave Test LL
SRLD-20 SRLD-40 SRLD-60 SRLD-80 SRLD-100 SVGD
Boston —2.642 4+ .088 —2.582 1+ 0.084 —2.527 +0.612 —2.516 + 0.062 —2.500 + 0.054 —4.276 4+ 0.217
Concrete | —3.084 = 0.036 —3.061 + 0.034 —3.050 + 0.033 —3.040 + 0.031 —3.034 + 0.031 —5.500 4 0.398
Energy —0.580 £ 0.053 —0.536 +£ 0.048 —0.522 +0.046 —0.504 + 0.044 —0.476 + 0.036 —0.781 4+ 0.094
Naval 4.033 £0.230 4.100+0.171 4.140 + 0.015 4.167 + 0.014 4.186 + 0.015 3.056 + 0.034
WineRed | —1.008 + 0.019 —0.990 £+ 0.017 —0.982 +0.016 —0.974 +£0.016 —0.970 +0.016 —1.040+ 0.018
WineWhite | —1.053 + 0.004 —1.049 +0.004 —1.047 +0.004 —1.044 +0.004 —1.043 £0.004 —1.040 + 0.019
Yacht —1.160 +£ 0.256 —0.650+0.173 —0.556 + 0.096 —0.465 + 0.037 —0.458 + 0.036 —1.281 4+ 0.279

Table 4: Comparing SRLD with different number of samples with SVGD on test log-likelihood.
The results are computed over 20 trials. For SRLD, the value is set to be boldface if it has better
average performance than SVGD. The value if with underline if it is significantly better than SVGD
with significant level 0.05 using a matched pair t-test.

D Contextual Bandit: Experiment Settings and More Background

Contextual bandit is a class of online learning problems that can be viewed as a simple reinforcement
learning problem without transition. For a completely understanding of contextual bandit problems,
we refer the readers to the Chapter 4 of [Bubeck et al., 2012]. Here we include the main idea for
completeness. In contextual bandit problems, the agent needs to find out the best action given some
observed context (a.k.a the optimal policy in reinforcement learning). Formally, we define S as
the context set and K as the number of action. Then we can concretely describe the contextual
bandit problems as follows: for each time-step ¢t = 1,2,--- , N, where N is some pre-defined time
horizon (and can be given to the agent), the environment provides a context s; € S to the agent,
then the agent should choose one action a; € {1,2,--- , K} based on context s;. The environment
will return a (stochastic) reward (s, a;) to the agent based on the context s; and the action a; that
similar to the reinforcement learning setting. And notice that, the agent can adjust the strategy at
each time-step, so that this kinds of problems are called “online” learning problem.

Solving the contextual bandit problems is equivalent to find some algorithms that can minimize the
pseudo-regret [Bubeck et al., 2012], which is defined as:

N
—S

Ry = E _ 7

N msﬁ?}’?gf%]{} ;r(st,g(st)) ;T(snat) (7N

where 7 denotes the deterministic mapping from the context set S to actions {1,2,--- , K} (read-

ers can view 7 as a deterministic policy in reinforcement learning). Intuitively, this pseudo-regret
measures the difference of cumulative reward between the action sequence a; and the best action
sequence 7(s;). Thus, an algorithm that can minimize the pseudo-regret (7) can also find the best 7.

Posterior sampling [a.k.a. Thompson sampling; Thompson, 1933] is one of the classical yet success-
ful algorithms that can achieve the state-of-the-art performance in practice [Chapelle and Li, 2011].
It works by first placing an user-specified prior ,udg, ., on the reward 7 (s, a), and each turn make deci-
sion based on the posterior distribution and update it, i.e. update the posterior distribution u; o With

the observation 7(s;—1,at—1) at time ¢t — 1 where a;_1 is selected with the posterior distribution:
each time, the action is selected with the following way:

argmax (s, a),

f(st’ a’) ~ ug,a'
a€{l,2,- K}

ay =
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Figure 8: Comparison between SRLD and Langevin dynamics on test RMSE. The results are com-
puted based on 20 repeats. The error bar is calculated based on RMSE of SRLD - RMSE of Langevin
dynamics in 20 repeats to rule out the variance of different data splitting

i.e., greedy select the action based on the sampled reward from the posterior, thus called ‘“Posterior
Sampling”. Algorithm 1 summarizes the whole procedure of Posterior Sampling.

Algorithm 1 Posterior sampling for contextual bandits

Input: Prior distribution 1. ,, time horizon N
for timet=1,2,--- ;N do
observe a new context s; € S,
sample the reward of each action 7*(s¢,a) ~ ., a € {1,2,--- , K},
select action a; = argmaxX,e(q o ... i} 7(5t,a) and get the reward 7(s¢, ar),
update the posterior pi), with (s, ay).
end for

Notice that all of the reinforcement learning problems face the exploration-exploitation dilemma, so
as the contextual bandit problem. Posterior sampling trade off the exploration and exploitation with
the uncertainty provided by the posterior distribution. So if the posterior uncertainty is not estimated
properly, posterior sampling will perform poorly. To see this, if we over-estimate the uncertainty,
we can explore too-much sub-optimal actions, while if we under-estimate the uncertainty, we can
fail to find the optimal actions. Thus, it is a good benchmark for evaluating the uncertainty provided
by different inference methods.

Though in principle all of the MCMC methods return the samples follow the true posterior if we can
run infinite MCMC steps, in practice we can only obtain finite samples as we only have finite time
to run the MCMC sampler. In this case, the auto-correlation issue can lead to the under-estimate
the uncertainty, which will cause the failure on all of the reinforcement learning problems that need
exploration.

Here, we test the uncertainty provided by vanilla Langevin dynamics and Self-repulsive Langevin
dynamics on two of the benchmark contextual bandit problems suggested by [Riquelme et al., 2018],
called mushroom and wheel. One can read [Riquelme et al., 2018] to find the detail introduction of
this two contextual bandit problems. For completeness, we include it as follows:

Mushroom Mushroom bandit utilizes the data from Mushroom dataset [Schlimmer, 1981], which
includes different kinds of poisonous mushroom and safe mushroom with 22 attributes that can
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Figure 9: Comparison between SRLD and Langevin dynamics on test log-likelihood. The results
are computed based on 20 repeats. The error bar is calculated based on log-likelihood of SRLD -
log-likelihood of Langevin dynamics in 20 repeats to rule out the variance of data splitting.

indicate whether the mushroom is poisonous or not. Blundell et al. [2015] first introduced the
mushroom bandit by designing the following reward function: eating a safe mushroom will give
a +5 reward, while eating a poisonous mushroom will return a reward +5 and —35 with equal
chances. The agent can also choose not to eat the mushroom, which always yield a 0 reward. Same
to [Riquelme et al., 2018], we use 50000 instances in this problem.

Wheel To highlight the need for exploration, [Riquelme et al., 2018] designs the wheel bandit, that
can control the need of exploration with some “exploration parameter” § € (0, 1). The context set S
is the unit circle ||s||2 < 1 in R?, and each turn the context s; is uniformly sampled from S. K =5
possible actions are provided: the first action yields a constant reward r ~ N (u1,02); the reward
corresponding to other actions is determined by the provided context s:

» For s € Ss.t. ||s||2 < 4, all of the four other actions return a suboptimal reward sampled
from N (pu2, 02) for po < pu1.

* For s € Ss.t. |[s|l2 > 9, according to the quarter the context s is in, one of the four
actions becomes optimal. This optimal action gives a reward of N (u3,02) for usz > py,
and another three actions still yield the suboptimal reward N (uso, 02).

Following the setting from [Riquelme et al., 2018], we set u; = 1.2, uo = 1.0, and p3 = 50.

When ¢ approaches 1, the inner circle ||s||2 < § will dominate the unit circle and the first action
becomes the optimal for most of the context. Thus, inference methods with poorly estimated uncer-
tainty will continuously choose the suboptimal action a; for all of the contexts without exploration.
This phenomenon have been confirmed in [Riquelme et al., 2018]. In our experiments, as we want
to evaluate the quality of uncertainty provided by different methods, we set & = 0.95, which is pretty
hard for existing inference methods as shown in [Riquelme et al., 2018], and use 50000 contexts for
evaluation.

Experiment Setup Following [Riquelme et al., 2018], we use a feed-forward network with two
hidden layer of 100 units and ReLU activation. We use the same step-size and thinning factor
¢/n = 100 for vanilla Langevin dynamics and SRLD, and set M = 20, « = 10 on both of the
mushroom and wheel bandits. The update schedule is similar to [Riquelme et al., 2018], and we just
change the optimization step in stochastic variational inference methods into MCMC sampler step
and replace the warm-up of stochastic variational inference methods in Riquelme et al. [2018] with
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Figure 10: Visualization of the wheel bandit (6 = 0.95), taken from [Riquelme et al., 2018].

the burn-in phase of the sampling. Similar to other methods in [Riquelme et al., 2018], we keep the
initial learning rate as 10~! for fast burn-in and the step-size for sampling is tuned on the mushroom
bandit and keep the same for both the mushroom and wheel bandit. As this is an online posterior
inference problem, we only use the last 20 samples to give the prediction. Notice that, in the original
implementation of Riquelme et al. [2018], the authors only update a few steps with new observation
after observing enough data, as the posterior will gradually converge to the true reward distribution
and little update is needed after observing sufficient data. Similar to their implementation, after
observing enough data, we only collect one new sample with the new observation each time. For
SVGD, we use 20 particles to make the comparison fair, and also tune the step-size on the mushroom
bandit.
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E The Detailed analysis of SRLD

E.1 Some additional notation

We use || - [|oo to denote the £, vector norm and define the £, norm of a function f : R — R!
as || f||l ;- Drv denote the Total Variation distance between distribution p1, p> respectively. Also,

as K is R? x RY — R!, we denote Kz .. = supg, g, K(61,02). For simplicity, we may
use || K|, o as [[K|;_ ,_- In the appendix, we also use ¢[p](0) = g(&;p), where g(8; p) is
defined in the main text. For the clearance we define s e/ * Pk = PrL, Tate/n * Pl = Pp and
TM,c* Pt = pM, where pk pk and pM are defined in main text.

E.2 Geometric Ergodicity of SRLD

Before we start the proof of main theorems, we give the following theorem on the geometric er-
godicity of SRLD. It is noticeable that under this assumption, the practical dynamics follows an
(Me¢/n + 1)-order nonlinear autoregressive model when k& > Mc¢/n:

0k+1 = 1p (9k7 "'70k7Mc/7]) + \/%6]“

where

Y Ok, oy O rrcyy) = Ok + 1S —VV(0;) + ad[— Zagk 1o )(8)

Further, if we stack the parameter by @, = [Ok,...,Ok,MC/n]T and define ¥ (©;) =
[¥T (), @Q]T, we have
Ori1 =¥ (Or) + /2nEy,

where Ej = [ekT, o’,..., OT]T . In this way, we formulate ®; as a time homogeneous Markov
Chain. In the following analysis, we only analyze the second phase of SRLD given some initial
stacked particles © 7 /1.

Theorem E.1 (Geometric Ergodicity). Under Assumption 4.1 and Assumption 4.2, suppose we
choose 1 and « such that

2a77 2am, 2om

max (1 — 2nay +n%by + — (b + 1)> <1,

then the Markov Chain of ®y, is stationary, geometrlcally ergodtc, Le., for any ©) = © pr./y_1, we

have
Dy [PF (-, ©0),11(-)] < Q () e,

where v = O(n) is some positive constant, Q(®y) is constant related to ©¢, P* is the k-step
Markov transition kernel and 11 is the stationary distribution.

We defer the proof to Appendix E.5.1.

E.3 Moment Bound

Theorem E.2 (Moment Bound). Under Assumption 4.2, suppose that we have Eg..,, 10> < oo;
and az — o | K| (2by + 2) > 0, we have

2 2 2
Sl;pEeWk 6] v sup Eo~p. 16| v sup Eo-p 16]]

bl+1+77

<Eo. |16 .
<Eonro 6] oKl . @+ 2)

Kl e ?

oo O'

And by Lemma E. 1, we thus have
sup Egrp, [VV(0)|° v sup Eo~p. [VV(0)[° v sup Eo~p, [VV(0)]°

bl(bl +147n)
-« ”K”L Loo (2b1 + %)

<biEg~p, 61" + +1

ay = [[Kllz. ¢

The proof can be found at Appendix E.5.2.

o O
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E.4 Technical Lemma

Definition E.1 (a-mixing). For any two o-algebras A and B, the a-mixing coefficient is defined by

a(A,B)= sup |P(ANB)—-P(A)P(B).
A€A,BEB

Let (Xy,k > 1) be a sequence of real random variable defined on (2, A,P). This sequence is
a-mixing if

a(n) = sup o (Mg, Gk1n) — 0, asn — oo,
E>1

where M; =0 (X;,i1 < j)and G; == o (X;,1 > j) for j > 1. Alternatively, as shown by Theorem
4.4 of Bradley [2007]

_ 1 Cov(f,9) .
a(n) = 1 sup { Hf”aoo ol s f €L (M), g€ Loo (gk+n,)} .

Definition E.2 (8-mixing). For any two o-algebras A and B, the a-mixing coefficient is defined by

I J
BAB) =sup g S5 [P(ANB)) ~ B(A)E(B,)],

i=1 j=1

where the supremum is taken over all pairs of finite partitions { Ay, ..., Ar} and {By, ..., B;} of Q
such that A; € Aand B; € B for each i, j. Let (Xy, k > 1) be a sequence of real random variable
defined on (2, A, P). This sequence is 3-mixing if

B(n) == sup B (M, Gr+n) = 0, asn — oco.
k>1
Proposition E.1 (5-mixing implies a-mixing)). For any two o-algebras A and B,

o (A, B) < %5@4,3).

This proposition can be found in Equation 1.11 of Bradley [2005].

Proposition E.2. A (strictly) stationary Markov Chain is geometric ergodicity if and only if B(n) —
0 at least exponentially fast as n — 0.

This proposition is Theorem 3.7 of Bradley [2005].

Lemma E.1 (Regularity Conditions). By Assumption 4.2, we have |[VV (0)|| < by (||61]| + 1) and
16 = nVV(0)] < (1 —2nas +n?b1) [|6]]° + n?by + 2nbs.

Lemma E.2 (Properties of RBF Kernel). For RBF kernel with bandwidth o, we have | K ||, ., <1
and

|K(6",61) — K(6', 6]

IN

He*('f/"

0, -0
LipH 1— 62|,

Vo K (6',61) — Vo K (6,6,

IN

. Hgl - 02”2‘

2
He—<~>2/a(.)
o Lip

Lemma E.3 (Properties of Stein Operator). For any distribution p such that Eg..,, |[VV (0)| < oo,
we have

1610) ()l ip < He*<')2/o

2
B [TV + |20y
ip g

Lip

16lp](O)]] < 1Kl Eornyp [IIVV(G’) + % (el + IIOII)}

2
< 1Ko br+ oy | (2400 ) 1011] + 01
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Lemma E.4 (Bounded Lipschitz of Stein Operator). Given @', define ¢g/(0) = ¢[de/](0) =
K(0', 0)VV(0’)—|—V1 (0',0). We also denote ¢g/(0) = (g 1(0), ..., por.a(0)] . We have

2
ZH%xi W < 2||VV(0’)||2H6*H~H2/0

Lip
z 60:(0)][%

i=d

2 2 2
+2d ng|9| /79,

Lip

2
2 _ol2
2 -lel2/og,
g Loo

2d

IN

+ 2

2
2
oI /0

L

N2
VvV~

E.5 Proof of Main Theorems
E.5.1 Proof of Theorem E.1

The proof of this theorem is by verifying the condition of Theorem 3.2 of An and Huang [1996].
Suppose ©® = [0, ...,0rrc41], where C' = ¢/, we have

1% (@) = 61 +7{ ~VV(01) + ag[~ zagw 100) H

M
=6, — VvV (6,) + % Z { 161150 —6112/0 2 (91 01, c) — 67H91+j0791I\Q/va(glﬂ.c)
j=1

IN

M
2 no —61450—61112/0
01—77VV(91)+;M;6 +ic T8 0,

M
na _ 0 02/0 2
g 2o ¢ e TS (- VV(0144¢) — B14i0)

- g
j=1
<118~ nV O+ 22T K o114 1611
201 M 1
#3752 Kl <1+<1+ >||91+]c|)
=
1) 4o
< b1+ K], )+n2b1 + 20b,
1= 2na; + 72y + 22 K by ) 16 ||+2‘“7 1Ko b1 +1)  max [8145c]
a1 ! ! ieos] -y
4o
<hi(1+ =K, )+77261+277b1

2a77

2¢
+maX(1—2na1+n2b1+anllK|mm K] 01+ 1)) g 61l

i€[MC+1)
where (1) is by Lemma E.1. Thus, given the step size 7, if we choose 7, a such that

2
2O (0 1)) <1,

max <1 — 2nay +n°by —|— ||K||
then our dynamics is geometric ergodlc.

E.5.2 Proof of Theorem E.2

Continuous-Time Mean Field Dynamics (5) Notice that as our dynamics has two phases and the
first phase can be viewed as an special case of the second phase by setting o« = 0, here we only

analysis the second phase. Define U; = supy/E HO , and thus
s<t
0

815 Ut < E <0t7 (é) + a(b[ﬂ-M,c % ﬁt](ét)> vV 0.
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Now we bound E (6, —V (0) + ag[mar,c * p)(6;) ):

E(6;,—V(6;) + aglmarc * pe](6:))
<by — ask ||6:||* + o ||6; | [|¢[mar,e * i) (62|

<01 = 0a [0 + @ 1K o B 8] By o |19V + 2 <||9||+||0t>]
<b1 = a6 + 0 IR B 6] Eomren [ (16714 1)+ 2 (6] + 611

:bl—( 1K )Euetu TR E||0t||EeWc*pt((bl+ )||o||+b1)

<tr ~ (a2 = 1K1 22 ) 02 4 K1 B 8 B, ( (1142 ) 1671411 )
9 1 M

Sbl — < HKH > U2 +CY||K|| <b1 -+ 0_) M;UtUt—jc+O‘”K”OCblUt
2

<t~ (a2 K1, )Ut+a||K|| (0 2) 02+ el a2 4+ 1)
2

<Or4 1) (o= 1K1 2~ allil (204 2) 02,

where (1) is by E.3. By the assumption that A == as — ||K || 2¢ — o || K[| (201 + 2) > 0, we
have

0
atUt < [(br+1)=AUZ] VO

By Gronwall’s inequality, we have U? < U2 + bl“ (I 55 o U2 = 0, then U, fix and this bound still
holds.) Notice that in the first phase, as a = 0, we have )\ < ag and thus this inequality also holds.

Discrete-Time Mean Field Dynamics (4) Similarly to the analysis of the continuous-time mean
2
, and thus

field dynamics (5), we only give proof of the second phase. Define Uy, = supy/E
s<k

UZ = Uy < [20E (841, ~VV(Bk) + adlmar.ern * ul(Bk) ) + 20| v 0.
By a similarly analysis, we have bound
E (011, =YV (60) + adlmar.esn * r)(01))
< (b1 +1) = \UZ,
— || K| o o (201 + 2) > 0. And thus we have

where A = ay — || K|

Uk ~UE, < [277 (b1 +1) — AUZ_,] +2n%] v O.

It gives that

Uggw

Practical Dynamics (3) The analysis of Practical Dynamics (3) is almost identical to that of the
discrete-time mean field dynamics (4) and thus is omitted here.

+U3.

E.5.3 Proof of Theorem 4.1 and 5.1

Notice that the dynamics in Theorem 4.1 is special case of that in Theorem 5.1 and thus we only
prove Theorem 5.1 here. After some algebra, we can show that the continuity equation of dynamics
(6) is

Ohpe =V - ([=(D(0) + Q(0)) VV(0) + ad[mar.c * pi](01)] o + (D(6) + Q(0)) V) .
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Notice that the limiting distribution satisfies

0= V- ([- (D(0) + Q) VV(8) + aglmusc * poc)(64)] poc + (D(6) + Q(8)) Vo)
= V- ([=(D(6) +Q(8)) VV(0) + ad[psc)(8:)] poo + (D(6) + Q(6)) Vo)
= V- ([=(D(6) +Q(8)) VV(8)] poo + (D(8) + Q(0)) Vo)
+aV - (K% (Vpso — VV(0)ps) Poo) -

which implies that p, x exp(—V(8)) is the stationary distribution.

E.5.4 Proof of Theorem 4.2

In the later proof we use cg4 to represent the quantity

b1—|—1+77
Eo-p, [10]° :
\/ o WO R = —al K @+ 2)

OOOCO’

Recall that there are two dynamics: the continuous-time mean field dynamics (5) and the discretized
version discrete-time mean field Dynamics (4). Notice that here we couple the discrete-time mean
field dynamics with the continuous-time mean field system using the same initialization. Given
any T = nN, forany 0 < ¢t < T, define t = L%Jn We introduce an another continuous-time

interpolation dynamics:

6, _ 1-YV(6) +dB., t e [0, Mc)
' —VV(0,) + ad[mar,e * pi)(0y) + dBy, t> Me,
= Law(6,),
6y = 6, ~ Po,

Notice that here we couples this 1nterpolat10n dynamics with the same Brownian motion as that of
the dynamics of 6. By the definition of 6,, at any ty, := kn for some integrate k € [N], Btk and
6}, has the same distribution. Define p%° = Law(6,) conditioning on 8, = 6 and % = Law(6;)

condmomng on 8, = 6. Followed by the argument of proving Lemma 2 in Dalalyan [2017], if
k> Mc e have

60| ~0
Dk [m”llptf]

[t . o . 2
:1/ IEH—VV( L)+ admare * ps)(8:) + VV(8,) — adlmare * 5:)(6,)|| ds
k—1
1 J+1 N N 2
:ZZ/ E[~9V(6,) + adlmare * 1,](0r,) + YV (8:) — adfmare = pi) (05| ds
j=0"1i
3 j+1 N R 2
SZZ/t. EHVV(Otj)fVV(GS) ds
Jj=0""%
302 F21 ptin o L2
=Y / E[olmase = p1,100,) = Slmare + )8y, ds
j=0 "t
012 k— tit1 R " 2
<ES [ et < p8,) — dlmas 216 ds
j=0 t;
=0 + I + I.
We bound 13, I> and I3 separately.
Bounding /; and /5 By the smoothness of VV, we have
~ ~ 2 ~ 112
|vvie,) - vv@.| < |é, -6

24



And by Lemma E.3 (Lipschitz of Stein Operator), we know that

p[mar.e * ps](01) — dlmar.c * ps)(62)]]

< [He—m%

2 2
Lip ]EGNTFAI’C*ﬁS ||VV(0)|| —|— Hae () / ()

] 161 — 02, -

Lip
And by the Assumption 4.2 and that p, as finite second moment, we have

@[mar,e * ps)(01) — Plmar.c * ps)(02) |
<Ccql|01 — 02,

Combine the two bounds, we have

N ~ 112
0:, — 6, ds.

2 k—1 tit1
nen<ey [Me
j=0"Y1ti

Notice that 6; = ; + [—VV( 1) + adlmare * pi)( AE)} (t—1) —|—jf dB,. By Ito’s lemma, it implies
that

302 K1 ptin R 2
I“LI?’ST%Z/ EHatj—Bs ds
j=0 "t

ey M L ECARETATS

2
< (s —t;)* +2d(s — t;)| ds

k—1
— &Py E H—VV(étj) +ag[mare * pr,)(601)

2
|+ ocarn®.
=0

~ 2
By the assumption that E ‘ 0, is also finite, we have

is finite and étj 4 étj, E ‘ étj

E H—VV( 1) + adlmare * pr)(6:) 2

TR NE
<2 |[VV(8))| + 20%E [ ofmar.c + (00|

<4b? + 402E ‘ 0,

2 9 2 ’ :
20K ((g N bl) Eornyy o 161+ ||0|)

<c2C.
Thus we conclude that

I + I < Ccf (cqkn® + dkn?) .

Bounding /5
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E Hqﬁ[mw,c * ﬁt_j](étj) = ®lmarc * ps](6r;) ‘2

M 2
1 ) A L
=E M ; [¢[ptj*d](0tj) - Qs[psfcl](etj )]
= - E | o[ 2 5 e
ST 60,1 (6:,) — 6lpe-al @)
1 & _ )
:MZ ”EBNPtj—cl¢0t ( ) EGN/)S Cl¢0t ( )H
1=1
1 Y d . ) )
:M ZEétj Z ‘EON[’tjfcz ¢ét_7' 71(0) - Eewpsfcl ¢étj ,1(9)’
1=1 i=1
1 M d _ 2
SM ZEétj Z (H%,,j,i : H v H%t],z H ,p> DRy [pt;—cts Ps—cl]
=1 =1 : Li

By Lemma E.4 and the Assumption 4.4 that V' is at most quadratic growth and that p, has finite
second moment, we have

£, 3 (Jo0, 0_v s, 0],
i=1 *
d B 2 _ 2
:]Eétj Z (quétj 71()H£ v ‘ (bétJ’l()’ Lip)
i=1 *
< |4d %(”9“2/001 BL+4 ‘ef\l-HQ/ff zLEétj VV(étj) 2]
<C(d + cf).

Plug in the above estimation, we have

2
ds

R k=1 ptjp R )
==~ / = H‘f’[ﬂMﬁc * pr,)(0r,) — @lmarc * ps(6:))
§j=0"%

ti+1 q

k—1 M
< OZQC(d + 03) Z/ a7 Z IDZBL [ﬁtjfclv ﬁsfcl} ds
=0 t; =1

k-1 j+1
< a?C(d+cd) Z Z/ DKL [pt;—ct Ps—ct] ds,

definition Pinsker’s
where the last inequality is due to the relation that ]D)QBL < Diy < Dxko.

Overall Bound Combine all the estimation, we have

k—1 M t
. 1 j+1 N _
Dkr, [Ptk ||ﬂ?,?] C(d+ Z Vi Z/ D [t;—cls Ps—et] ds + Cci (cikn® + dkn?)
7=0 =17t
k—1

i\H
M:

=a*C(d+ c?)

<
Il
o
I

1
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Similar, if & < A€ —1, we have

_B0 || A0
Dict [0 177

1 [ . 12
:Z/ ]EHVV( L) — vV(8,)| ds
2 k— 1/ i+1
b%nS’“Zl 2 dkbn?
< E[vvi@,)| + =
12 = 4
<b%’l73k63 n dkb3n?
- 12 4
Define
_ 60| 500
up = sup Dgr, [P§ 119 ] ;
SE[tk,tet1])

and U, = l %nax , u;. We conclude that for k > %, for any k' < k,
e{o0

.....

k—1 M h
1 A _
U < O‘QC(d + 03) Z M Z/ Dkr |:Pt gn—ci\? Ptsin—ci +8:| ds + ch (szk‘n3 + dknz)
=0 1=1 70 ( n ) ( n )
k—1

M
<a’C(d+c2) Z U (it +Cc3 (3kn® + dkn?)

=

(]
Sl

(=)
=

<

k—1
Q*C(d+ch)n Y _Uj+ Cch (cakn® + dkn?) .
j=0

For k < < which is a simpler case, we have
U <C (773kc§l + dkn2) <CMec (7763 +d)n
‘We bound the case when k& > %,
k-1
Uy < a*C(d+ c3)n Z U; + Cc (c3kn® + dkn?) .
§=0

If we take 7 sufficiently small, such that c2kn? < dkn?, we have

k—1

Ur < a*C(d+ci)n y_ Uj + 2Ccdkn’
§=0
k-1
a*C(d+ A Z U;+n).

§=0
Define n = a*C(d + ¢2)n and we can choose 7 small enough such that ' < 1/2 and n < 1/2.
Without loss of generality, we also assume 1’ > 7 and thus we have

k-1
Uk < U/Z(Uj‘f‘??/)-
§=0
Also we assume Uy, > 7/, otherwise we conclude that U, < n’. We thus have U, < ¢ Zf;é U
where ¢ = 2n’. Suppose that Unee _; = 2 < CMc (770(21 + d) 1 and some algebra (which reduces to
n

Pascal’s triangle) shows that

L Mec

Up <azq(l+q)" .
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We conclude that Uy, < xq(1 + ¢)*~!. Notice that ¢ = 2a*C(d + ¢2)n. Thus for any k > Mc/n,

= zq(1 4 ¢)kn=Me)/n

_ xq(l + q)2a2C(d+ci)(lm—Mc)/q

< 2202C(d + 63)62a20(d+ci)(knch)n

< CMeco?® (nci +d) (d + cﬁ)eQazc(dﬂg)(kn—MC)nQ)
for sufficiently small 7. Combine the above two estimations, we have

U, < C (n*kc + dkn* + n) ] . k< Mc/n—1
=Y CMea? (nc% + d) (d + c3)ee Cld+e)(bn=Me)yp2 L Oy | > Me/y '

Notice that now we have U, = max sup Dk, [f)fo HH[)?O}, which is a function of 8,. We
B l€{0’~~,k}se[0,n] K K
thenbound Uy = max  sup Dxr, [pin+s||pim]. Notice that the KL divergence has the following

1€{0,....k}s¢ [0,7]
variational representation:

Dxw[p1]lp2] = sup [Ep, f—Epef],
where the f is chosen in the set that E,, f and E e/ exist. And thus we have

D1, [ﬁln+sHp~ln] = sup |:E90NP0 (Eﬁeo f- Eﬁeo ef)}
f in

In+s

< Egym py SUD [(Eﬁeo f~Ejoef )] .
f i

In+s

And thus Uy, < Uy. Also the inequality that
Up= max sup Dy [pigsllfm] > max  Dgr [olla
i s Dt Pyl > _nax, i o )]

holds naturally by definition. We complete the proof.

E.5.5 Proof of Theorem 4.3

The constant h; is defined as

2
2
v |le=112/0
BL

2
2 -lel2/og,
g

2 (e
2=/
e ()

hy = \Y%

BL

Lip
Now we start the proof. We couple the process of 8;, and 0 by the same gaussian noise ey, in every

- it
iteration and same initialization 8y = 6y. For k < Mc¢/n—1,E HBk — 0y, H =0andfork > Mc/n
we have the following inequality,

S
=2nE <9k — 0, —VV(0)) + VV(ék)>
+2nal <9k - éka @ﬂﬁ ﬁ/[: 69k—jc/n](9k) = BT at ey * ﬁk](ék)>
j=1

2

M
FPE |-V (0,) + aqﬁ[% S dor ., )(01) + TV (Bk) — adlmaresn * 7il(0)
J=1
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By the log-concavity, we have

E <9k — 0y, —VV(8)) + VV(ék)>

2
S—LEHOk —ng ;

for some positive constant L. And also, as 7 is small, the last term on the right side of the equation
is small term. Thus our main target is to bound the second term. We decompose the second term on
the left side of the equation by

M
E <9k — 0, ¢[% Z%kﬂ-c](ek) — O[T ase/n * ﬁk](ék)>

M
=E <0k — O, ¢[% > 00, 0] (Ok) = Olmaresn * Pk](9k)>
i=1

+E <0k — 6y, T at,e/m * Pr)(Ok) — A[Tas,c/m * ﬁk](ek)>

+E <9k - ék’7 ¢[7TM,C/7; * ﬁk](ek) - (rb[TrM,c/n * ﬁk}(ek)
=0 + I + I.

~_—

We bound I, I5 and I3 independently.
Bounding 7,
By Holder’s inequality,
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We bound the second term on the right side of the inequality. Define
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given any 6. By Theorem E.1 that @, is geometric ergodicity and thus is S-mixing with exponen-
tially fast decay rate by Proposition E.2. And by Proposition E.1, we know that @y is also a-mixing
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with exponentially fast decay rate. We have the following estimation
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for some positive constant r that characterize the decay rate of o mixing. Notice that here 7 is
canceled because the decay rate of mixing is O(n) (on the power of exponential) and ¢/ = O(n~1).
Combine this two estimations, we have
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Bounding /> By Holder’s inequality, we have
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We bound the second term in the right side of the inequality.
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Plug in the above estimation and by the relation that Dg;, < W; < W5, we have
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And combined all the estimation and by the definition of Wasserstein-distance, we conclude that
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Bounding /3
By Holder’s inequality,

~ |12 ~ 2
By < \JE |00 = 8B [bimascn + (00 — blmar s+ )80

We bound the last term on the right side of the inequality. By assumption and Lemma E.3, we have
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And combine the estimation, we have
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prove the bound of Uy, by induction. We take the hypothesis that U <
and notice that the hypothesis holds for Uy = 0. By the hypothesis, we have
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where the last second inequality holds by (1 — q) (04 + %q) > 1. Thus we complete the argument

of induction and we have, for any £k,
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E.6 Proof of Technical Lemmas
E.6.1 Proof of Lemma E.1

For the first part:
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E.6.2 Proof of Lemma E.2
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E.6.3 Proof of Lemma E.3

For any distribution p such that [ ||[VeV (8)|| p(0)d6 < oo,
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E.6.4 Proof of Lemma E.4

Given any 6,
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This finishes the first part of the lemma.
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