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Abstract

Despite the great success of deep learning, recent works show that large deep
neural networks are often highly redundant and can be significantly reduced in size.
However, the theoretical question of how much we can prune a neural network
given a specified tolerance of accuracy drop is still open. This paper provides one
answer to this question by proposing a greedy optimization based pruning method.
The proposed method has the guarantee that the discrepancy between the pruned
network and the original network decays with exponentially fast rate w.r.t. the
size of the pruned network, under weak assumptions that apply for most practical
settings. Empirically, our method improves prior arts on pruning various network
architectures including ResNet, MobilenetV2/V3 on ImageNet.

1 Introduction

Large-scale deep neural networks have achieved remarkable success on complex cognitive tasks,
including image classification, e.g., He et al. (2016), speech recognition, e.g., Amodei et al. (2016)
and machine translation, e.g.,Wu et al. (2016). However, a drawback of the modern large-scale DNNs
is their low inference speed and high energy cost, which makes it less appealing to deploy those
models on edge devices such as mobile phones and Internet of Things (Cai et al., 2019).

It has been shown that network pruning (Han et al., 2015) is an effective technique to reduce the
size of the DNNs without a significant drop of accuracy. However, most existing works on network
pruning are based on heuristics, leaving the theoretical questions largely open on what kind of network
can be effectively pruned, how much we can prune a DNN given a specified tolerance of accuracy
drop and how to achieve it with a practical and computationally efficient procedure.

Recently, a line of works on network pruning with theoretical guarantees have emerged, including
sensitivity-based methods (Baykal et al., 2019b; Liebenwein et al., 2020), coreset-based methods
(Baykal et al., 2019a; Mussay et al., 2020), greedy forward selection (Ye et al., 2020). Both the
sensitivity-based and coreset-based methods prune the network by sampling and bound the error
caused pruning via concentration inequalities. They show that the error introduced by pruning decays
with an O(n−1) rate w.r.t. the size n of pruned network. This is comparable to the asymptotic error
obtained by directly training a neural network of size n with gradient descent descent, which is also
O(n−1) following the mean field analysis of Mei et al. (2018); Araújo et al. (2019); Sirignano &
Spiliopoulos (2019). More recently, Ye et al. (2020) proposed the first pruning method that achieves
a faster O(n−2) error rate and is hence provably better than direct training with gradient descent. See
Table 1 for a summary on those works.

However, the analysis of Ye et al. (2020) only applies to two-layer networks and requires the original
network to be sufficiently over-parameterized. In this paper, we proposed a new greedy optimization
based pruning method, which learns sub-networks of size n with a significantly smallerO(exp(−cn))
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Rate No Over-param Deep Net
Baykal et al. (2019b); Liebenwein et al. (2020) O(n−1) X X

Baykal et al. (2019a); Mussay et al. (2020) O(n−1) X X
Ye et al. (2020) O(n−2) × ×

This paper O(exp(−cn)) X X
Table 1: Overview on theoretical guaranteed pruning methods. Rate above gives how the error due to
pruning decays as the size of the pruned network (n) increases. Column ‘No Over-param’ denotes
whether the method applies to an original network that is not over-parameterized in order to obtained
the rate. Column ‘Deep net’ denotes whether the analysis applies to deep networks.

error rate, improving the rate from polynomial to exponential. In addition, our theoretical rate only
requires weak assumptions that hold for most networks in practice, without requiring the the original
networks to be overparameterized as Ye et al. (2020). Different from the Lottery Ticket Hypothesis
(Frankle & Carbin, 2018), which selects the winning tickets that give good performance when
trained in isolation from initialization, our approach finds the tickets (that already won) from a fully
converged network.

Practically, our algorithm is simple and easy to implement. In addition, we introduce practical
speedup techniques to further improve the time efficiency. Empirically, our method improves the
prior arts on network pruning under various network structures including ResNet-34 (He et al., 2016),
MobileNetV2 (Sandler et al., 2018) and MobileNetV3 (Howard et al., 2019) on ImageNet (Deng
et al., 2009) as well as DGCNN (Wang et al., 2019) on ModelNet40 (Wu et al., 2015) on point cloud
classification.

Notation We use notation [N ] := 1, ..., N for the set of the first N positive integers. All the vector
norms ‖·‖ are assumed to be `2 norm. We denote the vector `0 norm by ‖·‖0. ‖·‖Lip denotes the
Lipschitz norm for functions. I{·} indicates the indicator function.

2 Background and Method

Problem Setup Given a pre-trained deep neural network with L layers: F (x) = FL ◦FL−1 ◦ · · · ◦
F2 ◦ F1(x), where the `-th layer F` consisting of N neurons forms a mapping of form

F`(z) =
1

N

N∑
i=1

σ(θ`i , z),

with z as a proper input of the `-th layer, which is the output of the previous ` − 1 layers. Here
σ(θ, ·) is a general nonlinear map parameterized by θ that represents a neuron or other module
in the network. For example, in a fully connected layer, we have σ(θ, z) = w1σ+(w>2 z) with
θ = [w1,w2] and σ+ an activation function such as ReLU or Tanh. In a convolution layer, we have
σ(θ, z) = w1σ+(w2 ∗ z), where ∗ denotes the convolution operator. In this paper we may call
σ(θ`i , ·) the neuron i or the i-th neuron for simplicity. Without loss of generality, we assume each
layer in the given deep network has the same number of neurons using the same activation function.

The goal of network pruning is to construct a thinner network by replacing each layer with a subset of
n < N neurons. For simplicity of presentation, we focus on pruning a single layer F` for now and we
discuss how to apply our algorithm in a layer-wise fashion to prune the whole network in section 2.4.

To prune the `-th layer, the goal is to replace F` with a thinner layer f`,A with n < N neurons:

f`,A(z) =

N∑
i=1

aiσ(θ`i , z), A = [a1, ..., aN ] ∈ ΩN , ‖A‖0 ≤ n,

where Ω[N ] is the probability simplex on the N neurons, that is,

ΩN =
{
v : v = [v1, ..., vN ] ∈ RN , vi ≥ 0, ∀i ∈ [N ] and

N∑
i=1

vi = 1
}
.

2



By enforcing thatA ∈ ΩN , we prune the layer by finding the best convex combination of a subset of
neurons. The constraint that

∑
i ai = 1 ensures that the overall magnitude of the output of the layer

after pruning matches that of the original network even when a lot neurons are moved. We denote the
network with the `-th layer replaced by f`,A as fA, i.e.,

fA = FL ◦ ... ◦ F`+1 ◦ f`,A ◦ F`−1 ◦ ... ◦ F1.

Given an observed dataset Dm := (x(i), y(i))mi=1 with m data points. We want to chooseA such that
the pruned network fA is close to the original F as much as possible, measured by the regression
discrepancy loss,

D[fA, F ] = Ex∼Dm

[
(fA(x)− F (x))

2
]
.

Our algorithm and theoretical analysis can be extended to other discrepancy losses such as the
cross-entropy. The problem of pruning the `-th layer can be formulated by the following constraint
problem

min
A

D[fA, F ], s.t. A ∈ ΩN , ‖A‖0 ≤ n. (1)

This yields a challenging sparse optimization problem, which we address using greedy optimization,
yielding algorithms that are both theoretically guaranteed and practically efficient.

2.1 Pruning with Greedy Local Imitation

We first introduce a simply greedy algorithm via local imitation for searching a good solution of
problem (1). The pruned network can be viewed as

H ◦ f`,A(z) = H ◦

(
N∑
i=1

aiσ(θ`i , z)

)
.

Here z is the output of the `− 1-th layers and H = FL ◦ ... ◦ F`+1 is the mapping of the later layers.
Denote z(i) = F`−1 ◦ ...◦F1(x(i)). The setD`m := (z(i))mi=1 denotes the distribution of training data
pushed through the first `− 1 layers. Suppose H is Lipschitz continuous, which typically holds for
neural networks, we are about to upper bound D[fA, F ] by D[fA, F ] ≤ ‖H‖2Lip D̄[f`,A, F`], where
D̄ is the local discrepancy loss measuring the discrepancy on the output of the `-th layer between the
pruned and original network

D̄[f`,A, F`] = Ez∼D`
m
‖f`,A(z)− F`(z))‖2 .

In local imitation, we construct f`,A such that its output well imitates the output of F`, i.e.,

min
A

D̄[f`,A, F`], s.t. A ∈ ΩN , ‖A‖0 ≤ n. (2)

Importantly, different from the original loss D[·] in (1), the layer-wise local discrepancy loss D̄[·]
is convex w.r.t. A and enjoys good geometric property for enabling fast exponential error rate via
greedy optimization, as we show in sequel. On the other hand, as the final discrepancy D is controlled
by the local discrepancy D̄, i.e., minimizing D̄ effectively minimizes D.

The local imitation is a bi-directional greedy optimization for solving (2). It starts with an empty
layer, and sequentially adds, removes or adjusts neurons that yield the largest decrease of the
loss. Specifically, denote by f`,A(k) the layer we obtained at the k-th iteration with A(k) =
[a1(k), ..., aN (k)]. We start with selecting the single best neuron that minimizes the loss:

f`,A(0) = σ(θ`i∗0 , ·), with i∗0 = arg min
i∈[N ]

D̄[σ(θ`i , ·), F`(·)] (3)

where i∗0 is the index of the selected neuron; correspondingly, we have ai(0) = I{i = i∗0}.
At iteration k, we search for the best neuron i∗k and step size γ∗k that minimizes the loss most, i.e.,

[i∗k, γ
∗
k ] = arg min

i∈[N ],γ∈Ui

D̄
[
(1− γ)f`,A(k) + γσ(θ`i , ·), F`

]
. (4)
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Then we update f`,A(k) to f`,A(k+1) = (1 − γ∗k)f`,A(k) + γ∗kσ(θ`i , ·). Here Ui in (4) is the search
interval of the step size γ. We set Ui = [0, 1] if the i-th neuron has not been selected yet (i.e.,
ai(k) = 0) and Ui = [−ai(k)/(1− ai(k)), 1] if the neuron has already been added (i.e., ai(k) > 0).
Therefore, this update can correspond to adding or removing a neuron, or simply adjusting the weight
of existing neurons: the i∗k-th neuron is added into the pruned network f`,A if we have ai∗k(k) = 0,
and it is removed from f`,A if we have γ∗k = −ai∗k(k)/(1− ai∗k(k)); no new neuron is added or
removed if otherwise.

We stop the iteration when a convergence criterion, i.e., D̄ ≤ ε, is met.

Solving Greedy Optimization in (4) A naive way to solve problem (4) is by enumerating each
neuron and solving the corresponding inner minimization on γ. This is computational costly as it
requires computing the forward pass in neural network many times. However, given i, the local
discrepancy loss is a quadratic function w.r.t. γ. Combined with some special property of the local
imitation algorithms, we are able to solve (4) with only computing the forward pass in network once.
We refer readers to Appendix 5.1 for details

2.1.1 Greedy Local Imitation Decays Error Exponentially Fast

Now we proceed to give the convergence rate for the proposed local imitation algorithm. We introduce
the following assumption.

Assumption 1 Assume that for any i ∈ [N ], z(j) ∈ D`m, we have
∥∥σ(θ`i , z

(j))
∥∥ ≤ c1 and ‖H‖Lip ≤

c1 for some c1 <∞.

Assumption 1 holds when network parameters and data are bounded and the activation is Lipschitz
continuous, which is very mild and holds for most network in practice. The following theorem
characterizes the convergence of local imitation showing that the error caused by pruning decays
exponentially fast when the number of neurons in the pruned model increases.

Theorem 1 (Convergence Rate) Under assumption 1, at each step k of the greedy optimization
in (2), we obtain a layer with no more than k neurons (i.e., ‖A(k)‖0 ≤ k), whose loss satisfies
D[fA(k), F ] ≤ ‖H‖2Lip D̄[f`,A(k), F`] = O (exp(−λ`k)), where λ` > 0 is a strictly positive constant.
That is, the loss decays exponentially with the number of neurons in f`,A(k).

Remark Minimizing γ over Ui can be viewed as line searching the optimal step size for adjusting
neuron i. We may also consider to choose a proper fixed step size, e.g., γ = 1/(k+ 1) instead of line
searching, in which case the optimization in (2) is simplified into

min
i∈[N ]

D̄
[(
kf`,A(k) + σ(θ`i , ·)

)
/(k + 1), F`

]
, (5)

which can be shown to give anO(k−2) error at the k-th step under the same assumption as Theorem 1.
See Appendix 5.2 for more details.

2.2 Pruning with Greedy Global Imitation

The local imitation method uses a surrogate local discrepancy loss which is convex w.r.t. A to prune
the networks. Despite the good property of local imitation, the use of surrogate loss can be ineffective
for some layers. For example, during the iteration of local imitation, the best neuron that minimizes
the surrogate loss is not necessarily the best one that minimizes the actual discrepancy loss.

We propose a second pruning method, which directly minimizing the original discrepancy loss.
This method follows the similar greedy fashion as the local imitation. We initialize the network by
fA(0) = H2 ◦ f`,A(0) ◦H1 = H2 ◦ (

∑N
i=1 ai(0)σ(θ`i , ·)) ◦H1, where

ai(0) = I{i = i∗0}, i∗0 = arg min
i∈[N ]

D[H2 ◦ σ(θ`i , ·) ◦H1, F ], (6)

and H1 = F`−1 ◦ · · · ◦ F1 and H2 := FL ◦ · · · ◦ F`+1. Similarly, at each iteration, We adjust the
network in a greedy way by solving the following problem:

min
i∈([N ]

min
γ∈Ui

D
[
H2 ◦

(
(1− γ) f`,A(k) + γσ(θ`i , ·)

)
◦H1, F

]
. (7)
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However, solving problem (7) is computationally costly as the loss is non-convex w.r.t. A and thus
solving the inner minimization on γ requires exhaustive search. To reduce the computational cost, in
iteration k, we instead consider the following problem

min
i∈[N ]

D
[
H2 ◦

(
(1− γk) f`,A(k) + γkσ(θ`i , ·)

)
◦H1, F

]
, γk = (1 + k)−1. (8)

Suppose that i∗k gives that solution of problem (8), we update the network by setting
ai(k + 1) = (1− γk)ai(k) + γkI{i = i∗k}.

And we end the iteration when convergence criterion is met. Notice that different from local imitation,
the algorithm adjusts A based on the final output of the network instead of the ‘local’ output of the
pruned layer and thus we name it global imitation.

Different from the local imitation, due to the nonlinear of H2, besides Assumption 1, obtaining a
convergence rate for the global imitation requires several additional assumptions characterizing the
linearity of H2 as well as the geometric property of the pruned layer.

Theorem 2 Under Assumption 1 and some additional assumptions, specified in Appendix 5.3, on the
linearity of H2 and initialization, we have D[fA(k), F ] = O(k−2) and ‖A(k)‖0 ≤ k.

2.2.1 Accelerating Global Imitation via Taylor Approximation

A native way to solve problem (8) is by enumerating all the neurons and calculating
D
[
H ◦

(
(1− γk) f`,A(k) + γkσ(θ`i , ·)

)
, F
]
, which has at leastO(Nn) time complexity for pruning

a layer with N neurons to n neurons. Here we propose a technique to reduce the computational cost
via Taylor approximation. At iteration k, for any neuron i ∈ [N ], we have

D
[
H ◦

[
(1− γk)f`,A(k) + γkσ(θ`i , ·)

]
, F
]

=
1

k + 1
grA(k),i +O

(
(k + 1)−2

)
,

where we define

grA(k),i =
∂

∂γ
D
[
H ◦

[
(1− γ)f`,A(k) + γσ(θi, ·)

]
, F
] ∣∣∣∣
γ=0

.

Thus, when k is large enough (which we find 25 is sufficient in practice), this approximation allows
us to find the (near) optimal solution with small error of problem (8) by finding the neuron with the
largest grA,i. Simple algebra shows that

grA,i = 2

n∑
j=1

(I{j = i} − aj) rA,i, where

rA,i := Ez∼D`
m

[
(H ◦ f`,A(z)−H ◦ F`(z))H ′(f`,A(z))σ(θ`i , z)

]
.

Therefore, we can easily calculate grA(k),i for all i ∈ [N ] once we obtain rA(k),i for all i ∈ [N ].
In appendix, we show that rA(k),i can be easily computed with automatic differentiation function
in common deep learning libraries by introducing some ancillary parameters into the model. See
Appendix 5.4 for details. If we choose to use this approximation when k > k̃ for some k̃ > 0, we
reduce the complexity from O(Nn) to O(n).

2.3 Pruning vs GD: Numerical Verification of the Rate

Our result implies that the subnetwork fA obtained by pruning gives D[fA, F ] = O (exp(−λn))
where n is the number of neurons remained in the pruned layer. In comparison, the mean field
analysis (Araújo et al., 2019; Mei et al., 2018) suggests that directly train a network with same size as
the pruned model gives O

(
n−1

)
discrepancy loss. This suggests that pruning is provably better than

training. We conduct a numerical experiment to verify the theoretical result. Given some simulated
dataset, we firstly train a two hidden layer neural network with 100 neurons for each layer. And we
prune the layer close to the input to different number of neurons using the local and global imitation.
We also train the network with different number of neurons for the pruned layer and 100 neurons for
the other one. Figure 1 plots the discrepancy loss and the number of neurons of the pruned layer. The
empirical result matches our theoretical findings. We refer readers to Appendix 5.5 for more details.
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Algorithm 1 The Greedy Local/Global Imitation
1: Input: A pretrained network F with L layers. The targeted layer index ` for pruning. Method =
∈ {local, global}

2: Initialize f`,A using (3) for local imitation else (6) for global imitation.
3: while convergence criterion is not met do
4: Randomly sample a mini-batch data D̂.
5: Update f`,A by solving (4) for local imitation or (8) for global imitation, using data D̂.
6: end while
7: Return: The pruned layer f`,A.

Algorithm 2 Layer-wise Prune
1: Input: pretrained network F with L layers.
2: for ` = 1, 2, ..., L do
3: Obtain the pruned layer f`,Alocal by local imitation on F with target layer `.
4: Obtain the pruned layer f`,Aglobal by global imitation on F with target layer `.
5: Replace the `-th layer F` of F with f`,Alocal if local imitation is better, else f`,Aglobal .
6: end for
7: Return: The pruned network F .

2.4 Practical Algorithm: Pruning All Layers

1 6 11 16 21 26
Num of neurons

21

19

17

15

13

11

9

7

Lo
ss

 (l
og

 sc
al

e)

Local Imitation
Direct Train
Global Imitation

Figure 1: Discrepancy loss of
the pruned model and train-from-
scratch network with different sizes.
The loss is in logarithm scale.

In section 2.1 and 2.2 we introduce how to use the greedy
local/global imitation to prune a certain layer in a network.
In order to prune the whole network, we apply the greedy
optimization scheme in a layer-wise fashion. Starting from
the full network F , we apply the pruning method to prune the
first layer (the one that is closest to the input) F1 to f1, which
returns a pruned network F prune,1 = FL ◦ FL−1 ◦ · · · ◦ F2 ◦ f1.
We then apply the pruning method to prune the second layer
F2 in F prune,1 and continue until all the layers are pruned. By
applying the pruning algorithm in this manner we prune the
whole network.

The local imitation and global imitation perform differently
when pruning different layers. To combine their advantages,
when pruning each layer, both methods are applied individu-
ally with same convergence criterion and the one gives better
performance is picked up. In this paper, we stop pruning when
the discrepancy loss D of the pruned model is smaller than
a user specified threshold. The method prunes more neurons
at convergence is selected. If both methods prune the same
number of neurons, then the one with smaller discrepancy loss is chosen. Algorithm 1 summarizes
the procedure of local and global imitation and Algorithm 2 gives the layer-wise scheme on pruning
the whole deep network.

The exponential decay rate can be obtained by iteratively applying our theory on each layer. Suppose
the pruned model F pruned has n neurons at each layer, we have D[F pruned, F ] = O(exp(−λn)). We
refer reader to Appendix 5.6 for details. Also notice that the exponential decay rate also holds for
Algorithm 1 as it chooses the method with smaller loss.

3 Experiment

3.1 Comparing the Local and Global Imitation

Our first experiment aims to analyze the performance of local and global imitation for pruning deep
neural network for image classification. We first apply both methods to a pretrained VGG-11 on
CIFAR-10 dataset. We prune all the 8 convolution layers individual (when pruning one layer, the

6
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Figure 2: Pruning convolution layers on VGG11 using local and global imitation. From left to right
and from top to bottom corresponds to the first (the one close to input) to the last convolution layers.

other layers remain unpruned) using both local and global imitation in order to compare these two
methods side by side. Code for reproducing can be found at https://github.com/lushleaf/
Network-Pruning-Greedy-Forward-Selection.

Settings The full network is trained with SGD optimizer with momentum 0.9. We use 128 batch
size with initial learning rate 0.1 and train the model for 160 epochs. We decay the learning rate by
0.1 at the 80-th and the 120-th epochs. During pruning we use 128 batch size. We do not apply the
Taylor approximation tricks to global imitation for this experiment. we use cross entropy between the
pruned model and original model as discrepancy loss.

Result Figure 2 summarizes the result. Overall, we find the local and global imitation performs
differently on different layers. The local imitation tends to decreases the loss faster on layer that is
more close to input and with less neurons. While global imitation tends to performs much better than
local imitation on layer that are close to output.

Combining Local and Global Imitation Outperforms Both In practice, we find purely pruning
with local imitation tends gives worse result than pruning only with global imitation. However,
combining the local imitation with global imitation performs better than pruning only with global
imitation. To show this, we apply local and global imitation with the same setting as in section
2.4 on pruning ResNet34 and MobileNetV2 on ImageNet. For comparison, pruning with only
global imitation is also applied. The local+global setting achieves 73.5 top1 accuracy on the pruned
ResNet34 with 2.2G FLOPs and 72.2 top1 accuracy on the pruned MobileNetV2 with 245M FLOPs.
While pruning with only global imitation only achieve 73.2 top1 accuracy on ResNet34 and 72.1 top1
accuracy on MobileNetV2 with same FLOPs. The experimental settings are in Section 3.2.

3.2 Imagenet Experiment

We use ILSVRC2012, a subset of ImageNet (Deng et al., 2009) which consists of about 1.28 million
training images and 50000 validation images with 1000 different classes.

Setting We apply our method on pruning ResNet34 (traditional large architecture) (He et al., 2016),
MobileNetV2 (efficient architecture) (Sandler et al., 2018) and MobileNetV3-small (an very small
efficient architecture) (Howard et al., 2019) on ImageNet.

We use batch size 64 for both local and global imitation. We set the algorithm to converge when
the gap between the cross entropy training loss before pruning and after pruning is smaller than ε.
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Model Method Top-1 Acc Size (M) FLOPs

ResNet34

Full Model (He et al., 2016) 73.4 21.8 3.68G
L1 norm (Li et al., 2017) 72.1 - 2.79G

Neural Imp (Molchanov et al., 2019) 72.8 - 2.83G
Rethink (Liu et al., 2018) 72.9 - 2.79G

More is Less (Dong et al., 2017) 73.0 - 2.75G
GFS (Ye et al., 2020) 73.5 17.2 2.64G

Ours 73.5 14.9 2.20G
SPF (He et al., 2018a) 71.8 - 2.17G

FPGM (He et al., 2019) 72.5 - 2.16G
GFS (Ye et al., 2020) 72.9 14.7 2.07G

Ours 73.3 13.5 1.90G

MobileNetV2

Full Model (Sandler et al., 2018) 72.2 3.5 314M
GFS (Ye et al., 2020) 71.9 3.2 258M

Ours 72.2 3.2 245M
Uniform (Sandler et al., 2018) 70.4 2.9 220M

AMC (He et al., 2018b) 70.8 2.9 220M
Meta Pruning (Liu et al., 2019) 71.2 - 217M

LeGR (Chin et al., 2019) 71.4 - 224M
GFS (Ye et al., 2020) 71.6 2.9 220M

Ours 71.7 2.9 218M
ThiNet (Luo et al., 2017) 68.6 - 175M

DPL (Zhuang et al., 2018) 68.9 - 175M
GFS (Ye et al., 2020) 70.4 2.3 170M

Ours 70.5 2.3 170M

MobileNetV3-Small

Full Model (Howard et al., 2019) 67.5 2.5 64M
Uniform (Howard et al., 2019) 65.4 2.0 47M

GFS (Ye et al., 2020) 65.8 2.0 49M
Ours 66.4 2.0 48M

Table 2: Result on pruning deep neural networks on ImageNet.

We vary ε to get pruned model with different sizes. When conducting global imitation, we use the
Taylor approximation trick introduced in section 2.2.1 to accelerate global imitation. We start the
approximation when the number of neurons is larger than 25 and we evaluate the top 5 neurons with
largest grA,i and pick up the best one to adjust. We find that this setting is able to produce the same
pruning result as the exact version while substantially reduces the computation cost.

We finetune the pruned models with standard SGD optimizer with momentum 0.9 and weight decay
5 × 10−5. All the pruned models are finetuned for 150 epochs with batch size 256 using cosine
learning rate decay (Loshchilov & Hutter, 2016). We use initial learning 0.001 for ResNet34 and
0.01 for MobileNetV2 and MobileNetv3. We resize images to 224× 224 resolution and adopt the
standard data augumentation scheme (mirroring and shifting).

Result Table 2 reports the top1 accuracy, FLOPs and model size of the pruned network. Our algorithm
consistently improves prior arts on network pruning.

3.3 DGCNN Experiment

We conduct experiment on the point cloud classification tasks on ModelNet40. Since the network
structure used to extract the global information in point cloud usually requires to aggregate features
from neighbor points, the high feature dimension heavily influence the forward time. We deploy
our method on DGCNN. We compare with several baselines, including PointNet (Qi et al., 2017a),
PointNet++ (Qi et al., 2017b), DGCNN with different width multipliers, and signed splitting steepest
descent(Wu et al., 2020), which obtains a compact DGCNN by growing a extremely thin model.
Table 3 shows that our method produces networks with comparable accuracy while with much less
inference time. We refer readers to Appendix 5.7 for details of experiment settings.
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Model Acc. Forward time (ms) # Param (M)
PointNet (Qi et al., 2017a) 89.2 32.19 2.85
PointNet++ (Qi et al., 2017b) 90.7 331.4 0.86
DGCNN (1.0x) 92.6 60.12 1.81
DGCNN (0.75x) 92.4 48.06 1.64
S3D (Wu et al., 2020) 92.9 42.06 1.51
Ours 92.9 37.43 1.49
DGCNN (0.5x) 92.3 38.90 1.52
Ours 92.7 28.06 1.31
DGCNN (0.25x) 91.8 30.90 1.42
Ours 92.5 24.06 1.24

Table 3: Results on the ModelNet40 classification task.

4 Related Work

Greedy Method Our method is highly related to Ye et al. (2020), which is also a greedy method
with O(n−2) error rate for pruning over-parameterized two layer network. In comparison, we
obtain exponential decay rate for pruning deep neural network with no requirement on the over-
parameterization of full model. Our local imitation method is also related to Frank Wolfe algorithm
(Frank & Wolfe, 1956). Compared with it, our local imitation is a bi-level greedy joint optimization
method while Frank Wolfe first searches for best direction and then conduct descent greedily.

Theory on Lottery Ticket Hypothesis (Malach et al., 2020) aims to prove the existence of sub-
network inside a random network that well approximates an unknown target network which has finite
width and depth. It shows that a sufficiently large random network (with a specific structure) contains
such a subnetwork with width of higher order compared with the targeted network. Later Pensia
et al. (2020); Orseau et al. (2020) improve the result by reducing the size of the original random
network. Elesedy et al. (2020) also gives analysis of Lottery Ticket Hypothesis in linear model using
the tool from compressive sensing. Compared with our method, their theoretical results require strong
structure assumptions on the full model and pruned model. Besides, they fail to give an efficient
algorithm to search for the subnetwork for deep learning model in practice. Notice that Ye et al.
(2020) also gives analysis on Lottery Ticket Hypothesis and it is straightforward to combine their
framework and our analysis to give faster rate.

Structured Pruning Existing methods on structured pruning includes the sparsity regularization
based training methods, e.g., Molchanov et al. (2017a); Liu et al. (2017); Ye et al. (2018); Huang &
Wang (2018); criterion based methods, e.g., Molchanov et al. (2017b); Li et al. (2017); Molchanov
et al. (2019), reconstruction error based method, e.g., He et al. (2017); Luo et al. (2017); Zhuang
et al. (2018); Yu et al. (2018) and direct search method, e.g., He et al. (2018b); Liu et al. (2019).
Our local imitation falls into the class of reconstruction error based method. Compared with those
existing works, the proposed greedy optimization method enjoys good convergence property under
weak assumptions and achieve better practical performance. Zhou et al. (2020) proposes a layer-wise
imitation based training method for training deep and thin network, which is able to reduce the
optimization error caused by the depth of the network. Their work is orthogonal to our work as we
focus on reducing the error caused by small width.

5 Conclusion

This paper proposes a greedy optimization based pruning method, which is guaranteed to find a set
of winning tickets (neurons) that approximates the fully trained unpruned network with exponential
decay error rate w.r.t the number of selected tickets. The proposed pruning method is efficient with
small time and space complexity and can be generally applied to various modern deep learning
models.
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Appendix

We introduce the following extra notations which are used in several parts of the Appendix. Suppose
that θ`i , i ∈ [N ] is the weight of theN neurons of the `-th layer in the original network F . We simplify
the notation by denoting θ`i = θi, i ∈ [N ]. Suppose σ(θ, z) ∈ Rd, we define the data-dependent
feature by

φMatrix (θ) =
[
σ(θ, z(1)), ..., σ(θ, z(m))

]>
∈ Rm×d,

and its vectorization

φ(θ) =
[
vec>

(
σ(θ, z(1))

)
, ..., vec>

(
σ(θ, z(m))

)]>
∈ Rmd.

We also define hi = φ(θi), i ∈ [N ], h̄ = 1
N

∑N
i=1 hi and hA =

∑N
i=1 aihi with A =

[a1, a2, ..., aN ]. Define M = conv ({φ(θi) | i ∈ [N ]}) as the convex hull generated by the set
{φ(θi) | i ∈ [N ]}. Given some set M ⊆ Rd, we denote the relative interior of M by riM , the
closure of M by clM and the affine hull of M by AffM . We define B(x0, r) as the ball centered at
x0 with radius r.

5.1 Details on Solving (4) for Local Imitation

Now we describe the approach to solve problem (4) with only compute one forward pass. Define

Vi,A(γ) = D̄[(1− γ)f`,A + γσ(θ`i , ·), F`] = γ2gi,A − 2γqi,A + D̄[f`,A, F`],

where qi,A = Ez∼D`
m

[
(F` − f`,A)

(
σ(θ`i , ·)− f`,A

)]
, gi,A = Ez∼D`

m

[(
σ(θ`i , ·)− f`,A

)2]
.

Notice that it is easy to obtain σ(θ`i , z
(j)) for all i ∈ [N ] and j ∈ [m] by feeding the dataset into the

neural network once, as it is the output of neuron i in layer j. And thus qi,A(k) and gi,A(k) can be
calculated cheaply given σ(θ`i , z

(j)), i ∈ [N ] and j ∈ [m]. Define γ̃i,A(k) = qi,A(k)/gi,A(k), which
is the optimum of Vi,A(k)(γ) w.r.t. γ given i (here the optimization of γ is unconstrained). The
following theorem shows some properties of the greedy local imitation method.

Theorem 3 Under assumption 1, if D̄[f`,A(k), F`] > 0, then we have γ̃`,i∗`,k < 1.

Now we proceed to show how to obtain i∗k and γ∗k efficiently. Suppose at iteration k, D̄[f`,A(k), F`] >
0 (otherwise the algorithm has converged). Given some neuron i with ai(k) = 0, we first calculate
γ̃i,A(k). If γ̃i,A(k) ∈ (0, 1), then we define the score of this neuron by the decrease of loss with this
neuron selected, i.e.,

scoreA(k)(i) := D̄[f`,A, F`]− min
γ∈Ui

Vi,A(k)(γ) = −q2
i,A(k)/gi,A(k).

If γ̃i,A(k) ≥ 1, then from Theorem 3, we know that i 6= i∗k. If γ̃i,A(k) ≤ 0 and if i = i∗k, we have
γ∗k = 0, which implies that D̄[f`,A(k+1), F`] = D̄[f`,A(k), F`]. It makes contradiction to Theorem 3,
which implies that i 6= i∗k. In this two cases, since neuron i is not the optimal neuron to select, we can
safely set scoreA(k)(i) = 0. For neuron i with ai(k) > 0. Similarly, if γ̃i,A(k) ≥ 1, then i 6= i∗k and
thus we set scoreA(k)(i) = 0. If γ̃i,A(k) ∈ Ui, then similarly scoreA(k)(i) = −q2

i,A(k)/gi,A(k). If
γ̃i,A(k) < −ai(k)/(1− ai(k)), then

scoreA(k)(i) = Vi,A(k)(−ai(k)/(1− ai(k))).

And thus we have i∗k = arg max
i∈[N ]

scoreA(k)(i). Notice that the score of most neuron can be

calculated cheaply using qi,A(k) and gi,A(k). The only exception are neuron with ai(k) > 0 and
γ̃i,A(k) < −ai(k)/(1− ai(k)). However, its score can be calculated using σ(θ`i , ·) and thus no extra
forward pass is required.
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5.2 Local Imitation with Fixed Step Sizes

In this section we give detailed discussion on local imitation with a fixed step size scheme shown in
Section 2.2.1. Different from the greedy optimization (4), in this scheme, as the step size is fixed, the
solution returned in each iteration is no better than the one of (4). As a consequence, it gives slower
convergence rate.

Theorem 4 Under Assumption 1, at each step k of the greedy optimization in 5, we have
D[fA(k), F ] ≤ ‖H‖2Lip D̄

[
f`,A(k), F`

]
= O((k + 1)−2) and ‖A(k)‖0 ≤ k + 1.

5.3 Theory on Greedy Global Imitation

Now we give the theoretical result on greedy global imitation. Denote κ1 = supA∈ΩN

‖H◦h̄−H◦hA‖
‖h̄−◦hA‖ ,

κ2 = supA∈ΩN

‖h̄−◦hA‖
‖H◦h̄−H◦hA‖ and D as the diameter ofM, which is defined in Lemma 5. Notice

that κ1κ2 ≥ 1. Using Lemma 3, we know that h̄ ∈ riM, which indicate that there exists some λ > 0
such that

B(h̄, λ) ∩ AffM⊆M,

where B(h̄, λ) denotes the ball with radius λ centered at h̄.

Theorem 5 (Complete Version of Theorem 2) Suppose Assumption 1 holds. Further suppose that
1. D2 ≥ κ2

1κ
2
2(D2 − λ2); 2. at initialization

∥∥h̄− hA(0)

∥∥ ≤ R; 3. κ1D ≤ R, where we define R =
κ2
1κ2λ+κ1

√
κ2
1κ

2
2(λ2−D2)+D2

(κ2
1κ

2
2−1)

(R = +∞ if κ1κ2 = 1). Then we have D[fA(k), F ] = O((k + 1)−2),
and ‖A(k)‖0 ≤ k + 1.

Remark Here the descending property of global imitation is influenced by the non-linear mapping
H . As a consequence, the algorithm gives good convergence property when the whole dynamics
is guaranteed to stay in a proper convergence region (R). The first extra assumption assumes the
existence of this convergence region; The second extra assumption assumes a good initialization to
ensure the dynamics stays in the convergence region at initialization; The third assumption can be
roughly interpreted as assuming the dynamics will not jump out of the convergence region during
descending. Notice that the extra assumptions holds when κ1 and κ2 is sufficiently close to 1.

5.4 Details on Taylor Approximation Tricks

In this section we give details on the computation of Taylor approximation tricks. Notice that

grA,i =
∂

∂γ
D [H ◦ [(1− γ)f`,A + γσ(θi, ·)] , F ]

∣∣∣∣
γ=0

=
∂

∂γ
Ez∼D`

m
(H ◦ [(1− γ)f`,A(z) + γσ(θi, z)]−H ◦ F`(z))

2

∣∣∣∣
γ=0

=2Ez∼D`
m

(H ◦ [(1− γ)f`,A(z) + γσ(θi, z)]−H ◦ F`(z))
∂

∂γ
(H ◦ [(1− γ)f`,A(z) + γσ(θi, z)])

∣∣∣∣
γ=0

=2Ez∼D`
m

(H ◦ f`,A(z)−H ◦ F`(z))H ′ (f`,A(z)) (σ(θi, z)− f`,A(z))

=2Ez∼D`
m

(H ◦ f`,A(z)−H ◦ F`(z))H ′ (f`,A(z))

σ(θi, z)−
N∑
j=1

ajσ(θj , z)


=2

N∑
j=1

(I{j = i} − aj) rA,j .

Thus the key quantities we want to obtain is

rA,i = Ez∼D`
m

[
(H ◦ f`,A(z)−H ◦ F`(z))H ′(f`,A(z))σ(θ`i , z)

]
.
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And once we obtain rA,i, we are able to calculate grA,i = 2
∑N
j=1 (I {j = i} − aj) rA,j . Now

we introduce how to calculate rA,i efficiently by introducing an ancillary variable. Suppose when
pruning layer `, we have

f`,A(z) =

N∑
i=1

aiσ(θ`i , z) =

N∑
i=1

(ai + bi)σ(θ`i , z), where bi = 0 ∀i ∈ [N ].

Here bi is the introduced ancillary variable, which alway takes 0 value. We have

∂

∂bi
Ez∼D`

m

(
H ◦

(
N∑
i=1

(ai + bi)σ(θ`i , z)

)
−H ◦ F`(z)

)2 ∣∣∣∣
bi=0

=Ez∼D`
m

(H ◦ f`,A(z)−H ◦ F`(z))
∂

∂bi
(H ◦ f`,A)

∣∣∣∣
bi=0

=Ez∼D`
m

(H ◦ f`,A(z)−H ◦ F`(z))H ′(f`,A)
∂

∂bi
f`,A

∣∣∣∣
bi=0

=Ez∼D`
m

(H ◦ f`,A(z)−H ◦ F`(z))H ′(f`,A)
∂

∂bi

(
N∑
i=1

(ai + bi)σ(θ`i , z)

)∣∣∣∣
bi=0

=Ez∼D`
m

(H ◦ f`,A(z)−H ◦ F`(z))H ′(f`,A)σ(θ`i , z)

=rA,i.

This for implementation in practice, we can introduce bi with its value fixed 0 and calculate its
gradient using, which is rA,i using the auto differentiate operator in common deep learning libraries.

5.5 Details on Numeric Verification of Rate

In this section, we give details on the toy experiment on verifying numeric rate. We first introduce
the problem setup for the comparison between pruning and direct gradient training in obtaining small
network. We use the two-hidden-layer deep mean field network formulated by Araújo et al. (2019).
Suppose that the second hidden layer (the one close to output) has 50 neurons; the first hidden layer
(the one close to input) has n ≤ 50 neurons with 50 dimensional feature map; and the input has 100
dimension. That is, we consider the following deep mean field network

Fn(x) = F2 ◦ Fn1 (x),

where

Fn1 (x) =
1

n

n∑
i=1

a1,iReLU(b>1,ix)

with x ∈ R100, b1,i ∈ R100×50, a1,i ∈ R. And

F2(z) =
1

50

50∑
i=1

a2,iReLU(b>2,iz),

with z ∈ R50, b2,i ∈ R50, a1,i ∈ R. Suppose that we train the original network FN with N = 50
neuron at the first hidden layer using gradient descent defined in Araújo et al. (2019) for T time
(T < ∞) with random initialization. To obtain a small network with n neurons at the first hidden
layer, we consider two approaches. In the first approach, we prune the first hidden layer of the trained
FN using local imitation to obtain Fnlocal where n indicates the number of neurons remained in the
first hidden layer. In the second approach, we direct train the network Fndirect train with n neurons in
the first layer using the same gradient descent dynamics, initialization and training time as that in
training FN . By the analysis in Araújo et al. (2019), we have D[Fndirect train, F

N ] = O(n−1). And by
Theorem 1, we have D[Fnlocal, F

N ] = O(exp(−λn)) for some λ > 0. This implies that pruning is
provably much better than directly training in obtaining compact neural network.

Now we introduce the experiment settings. To simulate the data, we first generate a random network

Fgen(x) = (exp (w2/10)− 0.5)
> Tanh(sin (2πw1)

>
x/5)/1000,
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where w1 ∈ R1000×100 and w2 ∈ R1000 is generated by randomly sampling from uniform dis-
tribution Unif[0, 1] (each element is sampled independently). And then we generate the training
data by sampling feature x from Unif[0, 1] (each coordinate is sampled independently) and then
generate label y = Fgen(x). The simulated training dataset consists of 200 data points. We initialize
the parameters of FN and Fndirect train from standard Gaussian distribution with variance 1, N (0, 1)
(each element are initialized independently) and both FN and Fndirect train are trained using the same
and sufficiently long time to ensure convergence. We also include the pruned model using global
imitation, which is denoted as Fnglobal. The pruned models are not finetuned. We vary different n and
summarize the discrepancy.

5.6 Theory on Pruning All Layers

In the main text, we mainly discuss the convergence rate of pruning one layer. In this section, we
discuss how to apply our convergence rate for single layer pruning to obtain an overall convergence
rate. Following the layer-wise procedure introduced in Section 2.4, suppose that the algorithms
prunes F` to f`,A`

, ` ∈ [L]. And thus, during the layer-wise pruning, the algorithm generates a
sequence of pruned networks

f[0] = FL ◦ FL−1 ◦ ... ◦ F3 ◦ F2 ◦ F1

f[1] = FL ◦ FL−1 ◦ ... ◦ F3 ◦ F2 ◦ f1,A1

f[2] = FL ◦ FL−1 ◦ ... ◦ F3 ◦ f2,A2
◦ f1,A1

...
f[L−1] = FL ◦ fL−1,AL−1

◦ ... ◦ f3,A3
◦ f2,A2

◦ f1,A1

f[L] = fL,AL
◦ fL−1,AL−1

◦ ... ◦ f3,A3 ◦ f2,A2 ◦ f1,A1

Thus here f[`] is the network with the first ` layers pruned, f[L] is the final pruned network with all
layers pruned and f[0] is the original network. Notice that f[`] is obtained by pruning the `-th layer of
f[`−1]. In this step, we suppose that we try both greedy local and global imitation and obtain f`,Alocal

`

and f`,Aglobal
`

with
∥∥Alocal

`

∥∥
0

=
∥∥∥Aglobal

`

∥∥∥
0
. And if D[FL ◦ ...F`+1 ◦ f`,Alocal

`
◦ ... ◦ f1,A1 , f[`−1]] ≤

D[FL ◦ ...F`+1 ◦ f`,Aglobal
`
◦ ... ◦ f1,A1

, f[`−1]], we setA` = Alocal
` , else we setA` = Aglobal

` . Define

H[`] = FL◦FL−1◦...◦F`+1, ` ∈ [L−1] (hereH[L−1] = FL) and z(i)
[`] = f`−1,A`−1

◦...◦f1,A1
(x(i)),

` ∈ [L − 1] (here we define z(i)
[1] = x(i)). The set D[`]

m :=
(
z

(i)
[`]

)m
i=1

denotes the distribution of
training data pushed through the first `− 1 layers.

We introduce the following assumption on the boundedness.

Assumption 2 Assume that for any i ∈ [N ], ` ∈ [L− 1], z(j)
[`] ∈ D

[`]
m , we have

∥∥∥σ(θ`i , z
(j)
[`] )
∥∥∥ ≤ c2

and
∥∥H[`]

∥∥
Lip ≤ c2 for some c2 <∞.

Theorem 6 (Overall Convergence) Under assumption 2, we have
√

D[f[L], F ] =

O
(∑L

`=1 exp
(
−λ`

2 ‖A`‖0
))

, with λ` > 0 for all ` ∈ [L] depending on f[`−1].

5.7 DGCNN Experiment

We deploy our method on DGCNN (Wang et al., 2019). DGCNN contains 4 EdgeConv layers that use
K-Nearest-Neighbor(KNN) to aggregate the information from the output of convolution operation.
Pruning the convolution operation in EdgeConv can significantly speed up the KNN operation and
therefor make the whole model more computational efficient.

Settings The full network is trained with SGD optimizer with momentum 0.9 and weight decay
1× 10−4. We train the model using 64 batch size with an initial learning rate 0.1 for 250 epochs. We
apply cosine learning rate scheduler during the training and decrease the learning rate to 0.001 at the
final epoch. During the pruning, we use 32 batch sizes and the other settings keep the same as our
ImageNet experiment in Section 3.2.
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Technical Lemmas

We introduce several technical Lemmas that are useful for proving the main theorems.

Lemma 1 Given some convex set M ⊂ Rd, for any q1 ∈ riM and q2 ∈ clM . Then all the points
from the half-segment [q1, q2) belongs to the relative interior of M , i.e.,

[q1, q2)=̂ {(1− λ)q1 + λq2 | 0 ≤ λ < 1} ⊆ riM.

Lemma 2 Let M be a convex set in Rd, then if M is nonempty, then the relative interior of M is
nonempty.

Lemma 1 and 2 are classic results from convex optimization.

Lemma 3 Define
M = conv {q | q ∈ S} ,

where S = {q1, ..., qn} ⊆ Rd with 1 ≤ n <∞. Define q̄ = 1
n

∑n
i=1 qi, then q̄ ∈ riM .

Lemma 4 Suppose that for some λ > 0 such that
(
B(h̄, λ) ∩ AffM

)
⊆ M, then

maxs∈M
〈
h̄− hA, h̄− s

〉
≥ λ

∥∥h̄− hA∥∥.

Lemma 5 Under Assumption 1, for any h,h′ ∈ M, ‖h− h′‖ ≤ D for some D ≤ 2
√
mc1. Here

D can be viewed as the diameter ofM.

Lemma 6 Under assumption 1, suppose s̃∗k = arg min
s∈M

〈
h̄− hA(k), s− hA(k)

〉
and γ̃∗k =

arg min
γ∈[0,1]

∥∥hA(k) + γ
(
s̃∗k − hA(k)

)
− h̄

∥∥2
, then

∥∥hA(k) + γ̃∗k
(
s̃∗k − hA(k)

)
− h̄

∥∥2 ≤ ρ
∥∥hA(k) − h̄

∥∥2
,

for some ρ ∈ (0, 1).

Lemma 7 Consider the following number sequence x2
k+1 ≤ ax2

k − bxk + c. Suppose that this
number sequence satisfies the following conditions: (1) a > 1, b ≥ 0, c ≥ 0; (2) xk ≥ 0 for any k;
(3) (a− 1)x2 − bx2 + c has two real roots z1 ≤ z2; (we allow z1 = z2); (4)

√
c ≤ z2; (5) x0 ≤ z2.

Then supk xk ≤ z2.

Proof of Main Theorems

5.7.1 Proof of Theorem 1

Using Lemma 3, we know that h̄ ∈ riM, which indicate that there exists some λ > 0 such that

B(h̄, λ) ∩ AffM⊆M,

where B(h̄, λ) denotes the ball with radius λ centered at h̄. Define Extre(M) as the set of extreme
points ofM, we know that Extre(M) ⊆ {h1, ...,hN}. Consider the following problem

min
s∈M

〈
h̄− hA(k), s− hA(k)

〉
.

As the objective
〈
h̄− hA(k), s− hA(k)

〉
is linear w.r.t. s, we know that s ∈ Extre(M) ⊆

{h1, ...,hN}. Also, for any i ∈ [N ], we have [0, 1] ⊆ Ui. This gives that

min
i∈[N ]

min
γ∈Ui

D̄[(1− γ)f`,A(k) + γσ(θi, ·), F`] ≤ min
γ∈[0,1]

∥∥hA(k) + γ
(
s̃∗k − hA(k)

)
− h̄

∥∥2

≤ (1− λ2/D2)
∥∥hA(k) − h̄

∥∥2
,

where s̃∗k = arg mins∈M
〈
h̄− hA(k), s− hA(k)

〉
. Here the last inequality is by Lemma 6. This

gives that ∥∥hA(k+1) − h̄
∥∥2 ≤ (1− λ2/D2)

∥∥hA(k) − h̄
∥∥2
.
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And thus we have ∥∥hA(k) − h̄
∥∥2 ≤ (1− λ2/D2)k

∥∥hA(0) − h̄
∥∥2
.

And thus we have

D[fA(k), F ] ≤ c21(1− λ2/D2)k
∥∥hA(0) − h̄

∥∥2 ≤ c21(1− λ2/D2)‖A(k)‖0
∥∥hA(0) − h̄

∥∥2
,

where the last inequality is by ‖A(k)‖0 ≤ k.

Proof of Theorem 3

Notice that if we have

〈
h̄−hA(k),hi∗

k
−hA(k)

〉
∥∥∥hi∗

k
−hA(k)

∥∥∥2 ≥ 1, then γ∗k = 1 and in this case,

∥∥hA(k+1) − h̄
∥∥ = D̄[σ(θi∗k , ·), F (·)] ≥ D̄[σ(θi∗0 , ·), F (·)].

On the other hand, since 0 <
∥∥h̄− hA(k)

∥∥, by the argument in proving Theorem 1, we have∥∥h̄− hA(k+1)

∥∥ ≤√1− λ2/D2
∥∥h̄− hA(k)

∥∥ < ∥∥h̄− hA(k)

∥∥ .
This gives that ∥∥h̄− hA(k+1)

∥∥ < ∥∥h̄− hA(k)

∥∥ ≤ D̄[σ(θi∗0 , ·), F (·)],
which makes contradiction.

Proof of Theorem 4

Using Lemma 3, we know that h̄ ∈ riM, which indicate that there exists some λ > 0 such that

B(h̄, λ) ∩ AffM⊆M,

where B(h̄, λ) denotes the ball with radius λ centered at h̄. Following the same argument of Ye
et al. (2020) in proving theorem 2, we have

∥∥h̄− hA(k)

∥∥2
= O((k + 1)−2). The result that

‖A(k)‖0 ≤ k + 1 is obvious as in each iteration, the number of nonzero elements in A at most
increases by 1.

Proof of Theorem 5

Suppose that at iteration k, we have hA(k). And the global imitation algorithm returns hA(k+1)

with f`.A(k+1) = H2 ◦
[
(1− γk)f`,A(k) + σ(θi∗k , ·)

]
◦ H1. We also define i′k as the solution of

local imitation. And we let fA′(k+1) = H2 ◦
[
(1− γk)f`,A(k) + σ(θi′k , ·)

]
◦H1. Define wk+1 =

(k + 1)(h̄ − hA(k)), w′k+1 = (k + 1)
(
h− hA′(k)

)
, Wk+1 = (k + 1)

(
H ◦ h̄−H ◦ hA(k)

)
and

W ′
k+1 = (k + 1)

(
H ◦ h̄−H ◦ hA′(k)

)
. We have

‖Wk+1‖2 ≤
∥∥W ′

k+1

∥∥2

= (k + 1)2
∥∥H ◦ h̄−H ◦ hA′(k)

∥∥2

(1)

≤ κ2
1(k + 1)2

∥∥h̄− hA′(k)

∥∥2

= κ2
1

∥∥w′k+1

∥∥2

(2)

≤ κ2
1

(
‖wk‖2 − 2λ ‖wk‖+D2

)
(3)

≤ κ2
1

(
κ2

2 ‖W k‖2 − κ22λ ‖W k‖+D2
)

= κ2
1κ

2
2 ‖W k‖2 − 2κ2

1κ2λ ‖W k‖+ κ2
1D

2.

Here D is the quantities defined in Lemma 5, (1) and (3) use the definition of κ1 and κ2 and
(2) is by the argument of Ye et al. (2020) in proving Theorem 2 (notice that their argument also
applies to the case that h̄ is in the relative interior of M, which is proved by Lemma 3, instead

18



of that h̄ is in the interior of M). By the assumption that D2 ≥ κ2
1κ

2
2(D2 − λ2), the formula

κ2
1κ

2
2x

2 − 2κ2
1κ2λx+ κ2

1D
2 = x2 has two real root, denoted by z1 ≤ z2, where

z1 =
κ2

1κ2λ− κ1

√
κ2

1κ
2
2(λ2 −D2) +D2

(κ2
1κ

2
2 − 1)

z2 =
κ2

1κ2λ+ κ1

√
κ2

1κ
2
2(λ2 −D2) +D2

(κ2
1κ

2
2 − 1)

.

We define q1 = κ2
1κ

2
2 and q2 = κ2

1κ2, and we have

‖Wk+1‖2 ≤ q1 ‖W k‖2 − 2q2λ ‖W k‖+ κ2
1D

2.

If q1 = 1, then the rate holds by directly applying the argument of Ye et al. (2020) in proving Theorem
2. If q1 > 1, we know that 2q2λ ≥ 0 and κ2

1D
2 ≥ 0; ‖W k‖ ≥ 0 for any k by its definition; the

formula q1x
2 − 2q2λx+ κ2

1D
2 = x2 has two real roots z1 ≤ z2; z2 ≥ κ1D by the assumption; and

‖Wk+1‖ ≤ z2 by the assumption. Using Lemma 7, we have, for any k,

‖Wk‖ ≤ z2,

which implies that ∥∥H ◦ h̄−H ◦ hA(k)

∥∥2
= O((k + 1)−2),

and thus D[fA(k), F ] = O(k−2). The result that ‖A(k)‖0 ≤ k + 1 is obvious as in each iteration,
‖A(k)‖0 at most increase 1.

Proof of Theorem 6

When pruning the `-th layer, if this layer is pruned by local imitation, by applying Theorem 1 on the
`-th layer of f[`−1], we have√

D[f[`], f[`−1]] = O
(

exp(−λ`
2
‖A`‖0)

)
,

for some λ` > 0. Else if this layer is pruned by global imitation, we have√
D[f[`], f[`−1]] ≤

√
D[FL ◦ ...F`+1 ◦ f`,Alocal

`
◦ ... ◦ f1,A1

, f[`−1]]

= O
(

exp(−λ`
2

∥∥Alocal
`

∥∥
0
)

)
= O

(
exp(−λ`

2
‖A`‖0)

)
.

Using triangle inequality, we know that√
D[f[L], F ] ≤

L∑
`=1

√
D[f[`], f[`−1]] = O

(
L∑
`=1

exp

(
−λ`

2
‖A`‖0

))
,

with λ` > 0 for all ` ∈ [L].

Proof of Technical Lemmas

Proof of Lemma 3

The case that n = 1 is trivial and we consider the case that n ≥ 2. By the definition, we know that
M is an non-empty and closed convex set. And thus by Lemma 2, riM is not empty. Define

q̃ ∈ riM, q̃ =

n∑
i=1

αiqi,

n∑
i=1

αi = 1 and αi ≥ 0 ∀i ∈ [n].

We define αmax = maxi∈[n] αi. Notice that αmax ≥ 1/n, otherwise, if αmax < 1/n, we have∑n
i=1 αi ≤ nαmax < 1, which makes contradiction. If αmax = 1/n, then αi = 1/n for all i ∈ [n],

otherwise,
∑n
i=1 αi < 1, which makes contradiction. In the case that αmax = 1/n, we have already

obtained the desired result.
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Now we assume αmax >
1
n . Define λ = 1 − 1

nαmax
∈ [0, 1) and βi = αmax−αi

nαmax−1 . Notice this gives
that

n∑
i=1

βi =

n∑
i=1

αmax − αi
nαmax − 1

=
nαmax −

∑n
i=1 αi

nαmax − 1
= 1 and βi ≥ 0 ∀i ∈ [n].

We define q′ =
∑n
i=1 βiqi and by the property of βi and the definition ofM , we have q′ ∈M = clM .

Notice that

q̄ =
1

n

n∑
i=1

qi = (1− λ)

n∑
i=1

αiqi + λ

n∑
i=1

βi.

Using Lemma 1, we know that q̄ ∈ riM .

5.8 Proof of Lemma 4

Notice that by choosing s′ = h̄− λ h̄−hA

‖h̄−hA‖ ∈ M, we have

max
s∈M

〈
h̄− hA, h̄− s

〉
≥
〈
h̄− hA, h̄− s′

〉
= λ

∥∥h̄− hA∥∥ .
5.9 Proof of Lemma 5

Notice that for any i ∈ [N ],

‖hi‖ =

√√√√ m∑
j=1

σ2(θi, z(j)) ≤
√
mc1.

And for any h ∈M, we have h =
∑N
i=1 βihi, for some βi ≥ 0 and

∑N
i=1 βi = 1, which gives that

‖h‖ =

∥∥∥∥∥
N∑
i=1

βihi

∥∥∥∥∥ ≤
n∑
i=1

βi ‖hi‖ ≤
√
mc1.

Proof of Lemma 6

Proof of this Lemma follows standard argument in analyzing Frank Wolfe algorithm. We include it
for the completeness. Notice that
s̃∗k = arg min

s∈M

〈
h̄− hA(k), s− hA(k)

〉
= arg min

s∈M

〈
h̄− hA(k), s− h̄

〉
= −arg max

s∈M

〈
h̄− hA(k), h̄− s

〉
.

Using Lemma 4, we know that
〈
h̄− hA(k), h̄− s̃∗k

〉
≤ −λ

∥∥h̄− hA(k)

∥∥. Notice that〈
h̄− hA(k), s̃

∗
k − hA(k)

〉
=
〈
h̄− hA(k), h̄− hA(k) + s̃∗k − h̄

〉
=−

〈
h̄− hA(k), h̄− s̃∗k

〉
+
∥∥h̄− hA(k)

∥∥2

≤− 2
〈
h̄− hA(k), h̄− s̃∗k

〉
+
∥∥h̄− hA(k)

∥∥2
+
∥∥h̄− s̃∗k∥∥2

=
∥∥(h̄− hA(k)

)
−
(
h̄− s̃∗k

)∥∥2
=
∥∥hA(k) − s̃∗k

∥∥2
,

where the last inequality uses the fact that
〈
h̄− hA(k), h̄− s̃∗k

〉
≤ 0. This gives that 0 ≤〈

h̄− hA(k), s̃
∗
k − hA(k)

〉
≤
∥∥hA(k) − s̃∗k

∥∥2
. And thus we have

min
γ∈[0,1]

∥∥hA(k) − h̄
∥∥2 − 2γ

〈
h̄− hA(k), s̃

∗
k − hA(k)

〉
+ γ2

∥∥s̃∗k − hA(k)

∥∥2

=
∥∥hA(k) − h̄

∥∥2 −
〈
h̄− hA(k), s̃

∗
k − hA(k)

〉2∥∥hA(k) − s̃∗k
∥∥2

≤
∥∥hA(k) − h̄

∥∥2 − λ2

∥∥h̄− hA(k)

∥∥2∥∥hA(k) − s̃∗k
∥∥2

≤(1− λ2/D2)
∥∥hA(k) − h̄

∥∥2
,

where the last inequality is by Lemma 5.
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Proof of Lemma 7

Define f(x) = ax2−bx+c. By assumption (1) and assumption (3), for any z ∈ [z1, z2], f(z)−z2 ≤
0. We proof the desired result by induction. Suppose that xk ∈ [0, z2]. Case 1: xk ∈ [z1, z2] and in
this case,

x2
k+1 ≤ f(xk) ≤ x2

k ≤ z2
2 .

Case 2: xk ∈ [0, z1) and in this case

x2
k+1 ≤ f(x1) ≤ max

z∈[0,z1]
f(z) ≤ max(f(0), f(z1)) = max(c, z2

1).

This gives that xk+1 ≤ max(
√
c, z1) ≤ max(z2, z1) = z2. The desired result follows by induction.
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