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A B S T R A C T   

Despite its potential to overcome the design and processing barriers of traditional subtractive and formative 
manufacturing techniques, the use of laser powder bed fusion (LPBF) metal additive manufacturing is currently 
limited due to its tendency to create flaws. A multitude of LPBF-related flaws, such as part-level deformation, 
cracking, and porosity are linked to the spatiotemporal temperature distribution in the part during the process. 
The temperature distribution, also called the thermal history, is a function of several factors encompassing 
material properties, part geometry and orientation, processing parameters, placement of supports, among others. 
These broad range of factors are difficult and expensive to optimize through empirical testing alone. Conse
quently, fast and accurate models to predict the thermal history are valuable for mitigating flaw formation in 
LPBF-processed parts. In our prior works, we developed a graph theory-based approach for predicting the 
temperature distribution in LPBF parts. This mesh-free approach was compared with both non-proprietary and 
commercial finite element packages, and the thermal history predictions were experimentally validated with in- 
situ infrared thermal imaging data. It was found that the graph theory-derived thermal history predictions 
converged within 30–50% of the time of non-proprietary finite element analysis for a similar level of prediction 
error. However, these prior efforts were based on small prismatic and cylinder-shaped LPBF parts. In this paper, 
our objective was to scale the graph theory approach to predict the thermal history of large volume, complex 
geometry LPBF parts. To realize this objective, we developed and applied three computational strategies to 
predict the thermal history of a stainless steel (SAE 316L) impeller having outside diameter 155 mm and vertical 
height 35 mm (700 layers). The impeller was processed on a Renishaw AM250 LPBF system and required 16 h to 
complete. During the process, in-situ layer-by-layer steady state surface temperature measurements for the 
impeller were obtained using a calibrated longwave infrared thermal camera. As an example of the outcome, on 
implementing one of the three strategies reported in this work, which did not reduce or simplify the part ge
ometry, the thermal history of the impeller was predicted with approximate mean absolute error of 6% (standard 
deviation 0.8%) and root mean square error 23 K (standard deviation 3.7 K). Moreover, the thermal history was 
simulated within 40 min using desktop computing, which is considerably less than the 16 h required to build the 
impeller part. Furthermore, the graph theory thermal history predictions were compared with a proprietary LPBF 
thermal modeling software and non-proprietary finite element simulation. For a similar level of root mean square 
error (28 K), the graph theory approach converged in 17 min, vs. 4.5 h for non-proprietary finite element 
analysis.   
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1. Introduction 

1.1. Motivation 

In the laser powder bed fusion (LPBF) process thin layers of powder 
material are raked or rolled on a platen (powder bed) and selectively 
melted layer-upon-layer using a laser to form a three-dimensional part 
[1]. A key advantage of the LPBF process is that it can reduce multiple 
sub-components to a single part due to its ability to create complex 
features, such as conformal cooling channels, which are difficult, if not 
impossible, to achieve with traditional subtractive and formative pro
cesses [2]. The fewer number of parts leads to reduction in both weight 
and production costs [1]. For example, General Electric developed a 
turboprop engine that consolidated 855 separate parts into just twelve 
LPBF-processed parts, which reduced the weight of the engine by over 
100 lb., and increased its power by 10% [3]. 

Despite these advantages, the LPBF process tends to create flaws, 
such as porosity and deformation in geometry, which in turn can lead to 
inconsistencies in the functional properties of the final part [4]. The 
large variation in part quality hinders the adoption of LPBF in 
safety-critical applications, such as aerospace and biomedical industries. 

Flaw formation in LPBF is influenced by the temperature distribution 
and cooling rate in the part as it is being built [5,6]. Depending on its 
shape, certain regions of the part may retain heat or cool more slowly 
compared to others. The uneven heating and cooling of the part is the 
root cause of flaw formation in LPBF, such as non-uniformity of micro
structure, deformation and cracking [7]. This spatiotemporal tempera
ture distribution, often called the thermal history, is a complex function 
of the part shape (design), processing parameters, build plan (layout), 
and material properties [8]. Therefore, parameters optimized by 
empirical testing of simple-shaped coupons followed by data-driven 
process monitoring may not work for all part shapes [9,10]. 

The consequential effect of part design on the temperature distri
bution, and ultimately on part quality is exemplified in Fig. 1, which 
shows a stainless steel knee implant built on a commercial-grade LPBF 
machine. The knee implant has an overhang region, i.e., a part feature 
where the underside is devoid of material and thus requires anchoring 
supports to prevent collapse. Although the knee implant was processed 
under manufacturer-recommended settings, the poor thermal conduc
tivity of the un-melted powder underneath the overhang section and the 
narrow cross-section of the supports impede heat flow. The heat con
strained in the overhang region, in turn, led to microstructure 

heterogeneity and degraded surface quality [11–13]. 
For ensuring part quality, AM practitioners currently employ 

expensive, multi-stage empirical tests to optimizi processing parameters, 
finalize the part design, suggest the location and orientation of parts on 
the build plate, and ascertain placement of anchoring supports [9]. For 
example, the effect of parameters, such as the laser power and velocity 
on microstructure and porosity have been quantified in the literature 
[14–16]. These optimal parameter sets were developed in the context of 
single-track scans, and simple shapes – typically prismatic coupons and 
so-called dogbone geometries – due to their tractability for post-process 
materials characterization and mechanical testing [7,17]. However, 
prior research has showed that process parameters optimized for one 
type of geometry may not lead to a flaw-free part when used for different 
part geometries and orientations [6,18]. 

Resorting to a purely empirical optimization approach is prohibi
tively expensive and time consuming in LPBF given the cost of the 
powder, relative slow speed of the process, and limited number of 
samples available for testing [19]. Accordingly, fast and accurate models 
to predict the temperature distribution in LPBF parts are valuable in the 
following contexts [8,20–22]. 

• Reduce empirical testing needed for optimization of processing pa
rameters, part features, placement of supports, and build conditions.  

• Augment in-situ sensor data for process monitoring and control.  
• Predict residual stresses, microstructure evolved, and mechanical 

properties. 

Despite the extensive research in computational thermal modeling in 
LPBF using finite element analysis, two challenges are identified in the 
literature [23,24]: (1) predicting the temperature distribution in large 
volume, complex-shaped LPBF parts, and (2) validating the model pre
dictions with in-situ measurements [20]. These gaps are discussed in 
depth in Section 2. 

Existing commercial packages such as Netfabb and Ansys Additive 
predominantly use finite element (FE) analysis to predict the tempera
ture distribution [23,25]. While these commercial packages can predict 
the temperature distribution well within the time to build the part, 
however, the implementation and physical approximations incorpo
rated within these commercial software packages remain proprietary, 
and the accuracy of their predictions remain to be independently vali
dated [20,26]. 

Although non-proprietary FE-based thermal models of the LPBF 
process have been published and validated in the literature, a major gap 
in these efforts is that the thermal history predictions are made in the 
context of simple prismatic shapes with low thermal mass [20,26]. A 
second drawback is that the non-proprietary simulations often require 
longer to converge than the actual time to build the part, chiefly due to 
bottlenecks concerned with FE-mesh generation [25]. Therefore, a 
burgeoning need is to develop computationally efficient thermal models 
to predict the temperature distribution in large volume, complex shaped 
LPBF parts, and subsequently, quantify the prediction accuracy with 
in-situ measurements. This paper is focussed on addressing the forego
ing research need. 

1.2. Objective 

In our previous papers, we developed and validated a mesh-free, 
graph theory-based approach for predicting the temperature distribu
tion (thermal history) of LPBF parts [27–29]. In these prior works we 
compared the graph theory approach to FE analysis and reported that 
the graph theory predictions converged within 30–50% of the time 
required for non-proprietary FE analysis for a similar level of prediction 
error [27–29]. However, a gap in our prior work is that the graph theory 
approach was tested with simple prismatic, cylindrical, and cone-shaped 
geometries. 

The objective of this paper is to scale the graph theory approach to 
Fig. 1. A ~70 mm tall LPBF knee implant with a steep overhang feature shows 
poor surface finish, and coarse microstructure. 
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predict the thermal history of large-volume and complex-shaped LPBF 
parts. To realize this objective, three computational strategies to scale 
the graph theory approach were developed and tested. The test part used 
in this work (Fig. 2) was a stainless steel (SAE 316L) impeller. This part 
was processed on a commercial LPBF system (Renishaw AM250). The 
impeller had an outside diameter approximately 155 mm, vertical 
height 35 mm (250 cm3 volume), and consisted of 700 layers (50 µm 
layer thickness). The impeller in Fig. 2 had a spiraling internal channel, 
and 15 thin-walled fin-like structures each of 4 mm width. The build 
time was close to 16 h. The steady state surface temperature for each 
layer of the impeller was recorded using an in-situ thermal camera. The 
steady state surface temperature is obtained after a layer of powder is 
deposited. In effect, the steady state surface temperature is the end-of- 
cycle temperature after a fresh layer is deposited, but before it is mel
ted by the laser. 

Using one of the computational approaches developed in this work, 
the thermal history of the impeller was simulated within 40 min 
compared to 16 h build time while maintaining the prediction error 
~6% (mean absolute percentage error) and within 25 K (root mean 
squared error) of the experimental data. The standard deviation is 0.8% 
and 3.7 K respectively. The part geometry was not scaled to make it 
simpler or smaller, and the simulations were conducted on a desktop 
computer in the Matlab environment. 

1.3. Challenges with FE-based thermal modeling in AM and prior work in 
graph theory 

The main reason for the computational efficiency of the graph theory 
approach over FE analysis is explained in Section 3.3.3; we provide a 
brief explanation herewith. To obtain the thermal history it is necessary 
to solve the heat diffusion equation. Solving the heat diffusion equation 
is challenging problem in the additive manufacturing context, including 
LPBF, because, the shape of the part (object) is not static but changes as 
material is continually added layer-upon-layer [20]. Consequently, for 
thermal simulation concerning any metal additive manufacturing 

process the part geometry must be repeatedly re-meshed. In other 
words, the computational domain of FE-based models in AM changes 
after each time step. The re-meshing interval can range from the indi
vidual hatch-level to deposition of multiple layers at once depending 
upon the desired resolution. This remeshing is a computationally 
demanding and time-consuming step as it is necessary to label and track 
the location of each FE node. Researchers use two popular approaches to 
simulate the deposition of material in FE analysis, namely, element 
birth-and-death method and quiet element method [23,30]. A hybrid 
method is also used in some commercial software [23]. 

To further speed computation, these meshing strategies are com
bined with a dynamic technique called adaptive meshing [31,32]. In 
adaptive meshing, the element size is not fixed and changes continually 
during the simulation [33,34]. As the simulation progresses 
layer-by-layer, the element size is made larger (i.e., the mesh is made 
coarse) for regions of the part that have a large, bulkier cross-section, 
whereas regions near the boundary of the part and those with intri
cate features tend to have a finer mesh. To speed computation, com
mercial packages have devised proprietary techniques to implement 
adaptive meshing [33–39]. 

Next, in FE methods the continuum heat diffusion equation must be 
solved for each element, which requires matrix inversion, placing 
further computational demands. The graph theory approach has three 
computational advantages over FE analysis. First, the graph theory 
approach is mesh-free. Second, it solves a discrete version of the heat 
diffusion equation that replaces matrix inversion with the matrix 
transpose. Third, the heat diffusion equation is solved without stepping 
through time [27–29]. 

We briefly review our prior work in predicting the temperature 
distribution in LPBF using graph theory [27–29]. Previously, in 
Ref. [28], we verified the graph theory approach with an FE-based 
implementation of Goldak’s double ellipsoid thermal model, and qual
itatively compared the graph theory-derived predictions with a com
mercial package (Netfabb by Autodesk) [40]. 

In Ref. [29] the precision of the temperature trends predicted by 

Fig. 2. Schematic of the impeller-shaped geometry studied in this work (all dimensions are in mm).  
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graph theory approach was verified with Green’s function-based exact 
analytical solutions, finite element and finite difference methods for a 
variety of one- and three-dimensional benchmark heat transfer 
problems. 

In Ref. [27] we experimentally validated the graph theory approach 
with surface temperature measurements obtained using an in-situ 
longwave infrared thermal camera for two LPBF parts, specifically, a 
cylinder (Φ 10 mm × 60 mm vertical height) and a cone-shaped part (Φ 
10 mm × 20 mm vertical height). Additionally, in Ref. [27] both the 
graph theory and finite element-derived thermal history predictions 
were compared with experimental temperature measurements. As an 
example, for the cylinder-shaped test part, the graph theory approach 
predicted the surface temperature trends to within 10% mean absolute 
percentage error and 16 K root mean squared error compared to 
experimental measurements. Furthermore, the graph theory-based 
temperature predictions were made in less than 65 min, which was 
substantially faster than the actual time of 171 min required to build the 
cylinder. In comparison, for an identical level of resolution and pre
diction error, the non-proprietary FE-based approach required over 
175 min 

The rest of this paper is structured as follows. In Section 2, we 
summarize the challenges in thermal modeling and validation in LPBF. 
In Section 3, we describe the experimental methodology, provide a brief 
background of the graph theory approach, and detail the three compu
tational strategies for scaling the graph theory. Results from imple
menting the graph theory approach to the impeller part, along with 
comparison with non-proprietary FE analysis, and Netfabb are reported 
Section 4. Lastly, the conclusions are summarized in Section 5. 

2. Literature review 

The complex thermal interactions specific to LPBF process are 
depicted in Fig. 3. The thermal phenomena in LPBF encompass 
conductive, convective and radiative heat transfer, across three scales, 
namely, meltpool (~100 µm), powder bed (< 1 mm), and part-level 
(> 1 mm) [30,41]. 

This work relates to the part-level thermal aspects which are in turn 
are influenced by the material properties, part design, build plan, and 
processing parameters, such as laser power and velocity settings [42, 
43]. We summarize the recent research and challenges in the prediction 
and subsequent experimental validation of the part temperature distri
bution for large volume components. 

2.1. Part-scale thermal modeling in LPBF 

Thermal modeling is the first in a chain of requirements in the metal 
additive manufacturing industry. A key need is to extend thermal 

modeling for predicting microstructure, residual stresses (deformation), 
and mechanical properties of LPBF parts [20,44,45]. This is a significant 
challenge as the length-scale for the causal thermal phenomena range 
from sub-micrometer (microstructure-level) to tens of millimeters 
(part-level). Hence inaccuracies in the prediction of the temperature 
distribution will be magnified when used in other models. 

Apart from accuracy, to be practically useful, thermal models must 
be computationally efficient when scaled to practical-scale parts with 
complex geometry. An important measure of computational efficiency is 
the simulation time, which must ideally be less than the time required to 
print the part. In this context, a majority of thermal modeling efforts 
have focused on prismatic geometries at the part-level with typical build 
height of 25 mm, and single-track and one-layer test coupons at the 
microstructure and powder bed-levels, respectively [20,46]. Studies that 
reveal the fundamental relationship between the thermal distribution 
and the build quality for challenging shapes, such as thin sections, in
ternal channels, and overhangs, placement of supports are being actively 
researched [11,13]. 

Existing commercial thermal simulation packages in AM predomi
nantly use the FE method [20,23]. As explained previously, a main 
challenge in FE-based modeling of the LPBF process is that the shape of 
the part continually changes as material is deposited, and therefore the 
part has to be repeatedly re-meshed. The meshing of the part is the most 
time-consuming aspect of thermal modeling in AM. Moreover, the 
computation time for meshing scales exponentially with the volume of 
the part. 

Besides proprietary meshing algorithms and opaque physical ap
proximations, commercial packages do not allow the export of node- 
level temperature data needed for independent validation of the ther
mal distribution [33,47]. Furthermore, because in adaptive meshing the 
node size is not constant but changes layer-to-layer, there is likely to be 
an uncertainty in the temperature distribution predicted by commercial 
software for a given region. This uncertainty in temperature prediction 
is liable to cascade into other aspects, such as predicting the 
thermal-induced deformation of LPBF parts. Lastly, while commercial 
software packages have succeeded in reducing the computation time, 
researchers have identified the bourgeoning need for rigorous quanti
fication of the uncertainty in thermal distribution and residual stress 
predictions introduced by adaptive meshing and physical approxima
tions implemented therein [7]. 

Peter et al. [26] recently benchmarked five proprietary simulation 
software, namely, Atlas 3D Sunata, Additive Works Amphyon, MSC 
Simufact, Autodesk Netfabb, and Ansys Additive Print. The accuracy of 
these software was assessed with 11 different test geometries in terms of 
distortion prediction, distortion compensation, recoater crash, and 
support placement. The benchmarking study revealed a large variation 
in prediction accuracy between these commercial software, in one 

Fig. 3. The complex thermal phenomena in LPBF encompass conductive, convective, and radiative heat transfer at multiple scales.  
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instance the root mean square distortion prediction varied as much as 
80%. Peter et al. note that each software had advantages and drawbacks, 
with respect to their predictive capabilities, and therefore a 
one-size-fits-all solution may therefore be elusive. 

While non-proprietary FE models have been validated, the compu
tation time is excessive, it takes days, if not hours to simulate the tem
perature distribution for a few layers [20,41]. As an example, 
Kundakcioglu et al. report that using FE-based thermal model to simu
late just 1 min of LPBF processing for a dia. 2 mm × 0.3 mm impeller 
required 20 h of desktop computing [48]. To overcome this impediment, 
researchers are actively developing mesh-free approaches to predict the 
effect of thermal history on part quality. For example, Hoelzle and co-
workers, developed a thermal modeling approach based on the analogy 
of an electrical network to reduce the computation burden [49]. 

Recently, To and co-workers introduced a GPU-based thermal 
modeling approach, and tested their approach with non-proprietary 
adaptive meshing FE techniques and experimental LPBF data [50]. 
The test part included a cube of side 20 mm, and the temperature during 
the build was measured using a K-type thermocouple embedded in the 
center of the build plate. Their simulation approach when combined 
with adaptive meshing strategies showed over 4–5-fold improvement in 
the computation time over conventional FE-based approaches. 

2.2. Measurement and validation of thermal trends in LPBF 

In the context of validation of thermal models in LPBF, research has 
been predominantly focused on predicting the temperature distribution 
for few layers of simple prismatic and cylindrical shapes using contact- 
based thermocouples [36,51,52]. The temperature distribution is sub
sequently correlated with microstructure evolved and distortion due to 
residual stress [26,32,46,53]. 

Temperature measurements in the literature were made using con
tact thermocouples embedded in the build plate or touching the bottom 
of the part [36,51,52]. A key drawback is that thermocouples embedded 
in the build plate or brazed to the bottom of the part could only track the 
temperature for that specific point, and not the entire part volume or 
surface. Further, a thermocouple embedded within the bottom of the 
part or the build plate would not sufficiently capture the temperature 
distribution on the top surface as the layers are progressively deposited 
and the part grows in size. While it is conceivable to embed thermo
couples within the part after stopping the process, this approach is 
time-consuming, and would inherently alter the thermal history and 
build conditions. 

Promoppatum et al. [54]. studied the effect temperature distribution 
in a large LPBF-processed Inconel 718 test part measuring about 
200 mm × 100 mm × 60 mm (build height) and consisting of 1200 
layers. During the build, temperature data for five points at the bottom 
of the test part were acquired with thermocouples embedded within the 
build plate, such that the head of thermocouple is exposed. The tem
perature readings acquired by the thermocouple plateaued to 200 ◦C 
within 25 layers. Similar plateauing of the temperature trends as a 
function of the build height has been observed in the work of To and 
co-workers [50]. 

An alternative approach to using thermocouples, is to measure the 
surface temperature of the part using an infrared thermal camera, as 
demonstrated in our recent publications [6,27]. The concern with use of 
thermal imaging is that the surface temperature recorded by the thermal 
camera is not the absolute temperature but a relative trend. This is 
because the temperature measured by the thermal camera depends on 
the moment-by-moment emissivity of the surface observed. The emis
sivity is not constant but is a function of the temperature of the measured 
surface, its roughness, and inclination of the thermal camera to the 
surface [55]. 

In other words, the thermal camera must be calibrated to account for 
the emissivity of the part surface. Hyperspectral thermal imaging and 
two-wavelength pyrometry are alternative approaches to obtaining the 

temperature distribution without adjusting for emissivity [55–57]. The 
approach used to calibrate the thermal camera accounting for the ma
terial emissivity is described in depth in Section 3.2.1. 

3. Methods 

3.1. Experiments 

The stainless steel (SAE 316L) impeller shown in Fig. 2 was processed 
on a Renishaw AM 250 LPBF system with the build plate pre-heated to 
about 450 K (180 ◦C). The build parameters are reported in Table 1. The 
experimental setup, shown in Fig. 4, included an infrared thermal 
camera (FLIR A35X) with wavelength in the 7–13 µm range (i.e., the 
longwave infrared spectrum). This setup is identical to the one used in 
our recent work [6,27]. 

The thermal camera was inclined at an angle of 66◦ to the horizontal 
and sealed inside a vacuum-tight box with a germanium window. Sur
face temperature data was acquired at the sampling rate of 60 Hz. The 
response time is approximately 12 ms. Thermal images were captured at 
320 × 256 pixels with a resolution of approximately 1 mm2 per pixel. 

3.2. Data acquisition 

3.2.1. Calibration of the thermal camera readings 
The detailed calibration procedure for the thermal camera, including 

measurement uncertainty quantification, was described in two recent 
publications, Refs. [6,27]. Here we provide a brief summary. A ther
mocouple was inserted in a deep cavity of a LPBF-processed test artifact. 
The test artifact was subsequently heated in a controlled manner. The 
thermocouple in the cavity of the test artifact recorded the absolute 
temperature (of the test artifact), and its surface temperature was ac
quired with the thermal camera. Subsequently, the surface temperature 
trends measured by the thermal camera were mapped to the absolute 
temperature recorded by the thermocouple on fitting a calibration 
function. 

The calibration process is repeated with powder spread over the test 
artifact, and a separate calibration function is developed. Calibration of 
the thermal camera with and without powder ensures that the temper
ature readings account for the change in material emissivity in LPBF 
after a layer of fresh powder is raked on top of a just-fused layer. To 
ascertain the measurement uncertainty in the thermal camera readings 
the calibration procedure is repeated ten times. The 95% confidence 
interval in temperature readings in the 300–800 K interval was in the 
range of 0.1–1% of the mean temperature reading [27]. 

Table 1 
Summary of the material and processing parameters used for building the 
impeller.  

Process Parameter Values [units] 

Laser type and wavelength. 200 W fiber laser, wavelength 
1070 nm 

Laser power, point distance, exposure time 200 W, 60 µm, 80 us 
Inner border parameters - power, point 

distance, exposure time for the test part 
(center cylinder) 

200 W, 40 µm, 90 us 

Outer border parameters - power, point 
distance, exposure time (center 
cylinder) 

110 W, 20 µm, 100 us 

Hatch spacing 110 µm 
Layer thickness 50 µm 
Spot diameter of the laser 65 µm 
Scanning strategy for the bulk section of 

the part 
Meander-type scanning strategy with 
45◦ rotation of scan path between 
layers. 

Build atmosphere Argon 
Build plate preheat temperature 180 ◦C (~450 K) 
Material type SAE 316L stainless steel 
Powder size distribution 10–45 µm  
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3.2.2. Steady state surface temperature measurement 
The region of the impeller from where the temperature data was 

sampled is shown in Fig. 5. This region was selected because it is the 
most contiguous solid volume cross-section within the part boundary in 
the vertical direction. Sampling near the boundary of the part was 
avoided owing to the limited spatial resolution of the thermal camera. 

A 9-pixel × 9-pixel sample (9 mm × 9 mm area) in the main body of 
the part and a 2-pixel × 2-pixel sample (2 mm × 2 mm area) on the fin 
section were chosen for monitoring the surface temperature. The thin 
cross-section of the fin prevented sampling of a larger area. The top-view 
cross sections of the part for select layers and their corresponding 
infrared thermal images immediately after scanning the layers are 
shown alongside in Fig. 6. 

The average raw surface temperature recorded for the regions 
sampled in Fig. 5 are tracked in Fig. 7(a) as function of the layer (build 
height). Shown in Fig. 7(b) is the raw surface temperature signature for a 
zoomed in portion that depicts the presence of three large spikes. The 
rationale for these temperature signatures is as follows.  

(1) The large upward peak corresponds to the time when the laser 
was actively scanning the area demarcated in Fig. 5. The time 
elapsed between two upward spikes denotes the time between 
melting of successive layers, and is termed the interlayer cooling 
time (ILCT). The ILCT is effectively the time between layers.  

(2) After the end of melting of a layer, the recoater returned to fetch 
fresh powder, and momentarily blocked the IR camera field-of- 
view resulting in a large downward spike.  

(3) As the recoater deposited a fresh layer of powder, it again 
momentarily blocked the field-of-view of the IR camera, which 
caused a second downward spike in the temperature signal.  

(4) Marked in Fig. 7(b) is the steady state surface temperature for each 
layer just before the laser starts scanning the next layer. 

In Fig. 8(a), the steady state temperature is tracked as a function of 
the build height for the entire part. In Fig. 8(b) the ILCT is plotted as a 
function of the build height. Since the area to be scanned varies as a 
function of the build height, the ILCT changed continually throughout 
the build. For example, the annular base had a larger area, and hence it 
took longer to scan compared to the fin-shaped features near the top. As 
an example, the ILCT for the base was close to 105 s compared to 15 s for 
the fin. The smaller scan area and shorter ILCT of the fin-shaped features 
leads to accumulation of heat, which in turn will influence the micro
structure evolved [58]. 

In Fig. 8(a), the temperature in the base region was initially low, as 
the heat was conducted away to the build plate and into the substrate 
owing to the large surface area of the base and relatively longer ILCT. 
The temperature increases as more layers are deposited because the 
surrounding powder acts as an insulating medium. The internal cooling 
channel tends to accumulate heat as the roof of the channel is unsup
ported (overhang), and there is unmelted powder trapped inside the 
cavity of the channel. The temperature increase is rapid in the fin region 
due to its small cross section, shorter ILCT, and overhanging geometry. 

Fig. 4. The picture and schematic diagram of the experimental setup used in this work. A long wave infrared (LWIR) thermal camera was inclined at an angle of 66◦

to the horizontal. 

Fig. 5. Region where the surface temperature data is extracted for the impeller.  
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3.3. The graph theory approach for thermal modeling in LPBF 

3.3.1. Solving the heat diffusion equation using graph theory 
To predict the temperature distribution in a LPBF part it is necessary 

to solve the continuum heat diffusion equation, Eq. (1) [38]; FE analysis 
is chiefly used to solve the heat diffusion equation and obtain the 
thermal history of a part [22–25,38,41]. 

ρcp
⏞⏟⏟⏞

Material Properties
∂T(x, y, z, t)

∂t
− k

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
Shape of the Part

T(x, y, z, t)

=
P

v × h × t
= EV

⏞̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅ ⏞
Processing Parameters

(1) 

Solving the heat diffusion equation results in the temperature 
T(x, y, z, t) for a location (x, y, z) inside a part at a time instant t. The term 
EV on the right-hand side is called the energy density [J m−3], and 
represents the energy supplied by the laser to melt a unit volume of 
material. The energy density EV is a function of laser power (P [W]), 
distance between adjacent passes of the laser (h) [m], translation ve
locity (v) [m s−1], and the layer thickness (t) [m]; these are the 
controllable parameters of the LPBF process. 

The material properties are density ρ [kg m−3], specific heat cp 
[J kg−1 K−1], and thermal conductivity k [W m−1 K−1]. The effect of part 
shape is represented in the second derivative term on the left hand side 
of Eq. (1). The second derivative is called the continuous Laplacian. The 
graph theory approach solves a discrete form of the heat diffusion 
equation for the temperature. Then the temperature is adjusted to ac
count for convective and radiative heat transfer phenomena (not shown 

in Eq. (1)). The following is the mathematical reasoning for the graph 
theory approach to solve the heat diffusion equation; this reasoning is 
discussed in detail in Ref. [29]. 

As in existing FE approaches, the energy density EV in Eq. (1) is 
replaced by an initial temperature T(x,y,z, t = 0) = To; where To is the 
melting point of the material. 

∂T(x, y, z, t)
∂ t

− α
(

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)

T(x, y, z, t) = 0; α =
k

ρcp
(2) 

Next, the heat diffusion equation is discretized over M nodes by 
substituting the second order derivative (continuous Laplacian) with the 
discrete Laplacian Matrix (L), 

∂T(x, y, z, t)
∂t

+ α(L)T(x, y, z, t) = 0; (3) 

The eigenvectors (ϕ) and eigenvalues (Λ) of the Laplacian matrix (L) 
are found by solving the eigenvalue equation Lϕ = ϕΛ. If the Laplacian 
matrix is constructed in a manner such that it is diagonally dominant 
and symmetric, its eigenvalues (Λ) will be non-negative, and the ei
genvectors (ϕ) will form an orthogonal bases [59,60]. 

Because the transpose of an orthogonal matrix is the same as its in
verse, hence, ϕ−1 = ϕ′ and ϕϕ′

= 1, then the eigenvalue equation 
Lϕ = ϕΛ may be post-multiplied by ϕ′ to obtain L = ϕΛϕ′. 

Using this relationship in Eq. (3), 

∂T(x, y, z, t)
∂t

+ α(ϕΛϕ
′

)T(x, y, z, t) = 0; (4) 

Eq. (4) is a first order, ordinary linear differential equation, which is 
easily solved as, 

Fig. 6. CAD model and corresponding infrared thermal images of the part at different build heights immediately after the laser has finished melting the layer. The 
scale bar on the right is in Kelvin. The melting point of the material (SAE 316L) is 1600 K. 
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T(x, y, z, t) = e−α(ϕΛϕ′ )tTo (5) 

The term e−α(ϕΛϕ′)t is simplified via a Taylor series expansion, 

e−α(ϕΛϕ
′
)t = 1 −

ϕΛαtϕ
′

1!
+

(ϕΛαtϕ
′

)
2

2!
−

(ϕΛαtϕ
′

)
3

3!
+ …  

= 1 −
ϕΛαtϕ

′

1!
+

(ϕΛαtϕ
′

)(ϕΛαtϕ
′

)

2!
−

(ϕΛαtϕ
′

)(ϕΛαtϕ
′

)(ϕΛαtϕ
′

)

3!
+ …  

substituting ϕϕ
′

= 1, 

e−α(ϕΛϕ
′
)t = ϕϕ

′

−
ϕΛαtϕ

′

1!
+

ϕ(Λαt)2ϕ
′

2!
−

ϕ(Λαt)3ϕ
′

3!
+ … = ϕe−αΛtϕ′ (6) 

Substituting, e−α(ϕΛϕ′ )t = ϕe−αΛtϕ′ into Eq. (5) gives, 

T(x, y, z, t) = ϕe−αΛgtϕ′ To (7) 

Eq. (7) entails that the heat diffusion equation is solved as a function 
of the eigenvalues (Λ) and eigenvectors (ϕ) of the Laplacian Matrix (L), 
constructed on a discrete set of nodes. In Eq. (7) we introduced an 
adjustable coefficient g [m−2] called the gain factor to calibrate the so
lution and adjust the units. The gain factor needs to be calibrated once 
for a particular material, and would thereafter remain constant. 

Indeed, we used the same value of the gain factor from our previous 
works concerning the validation of the graph theory approach with 
thermography data obtained during LPBF of stainless steel parts [27]. 

3.3.2. Heat loss due to convection and radiation 
Thus, per Eq. (7), the temperature of the nodes is estimated consid

ering conductive heat transfer only. Next, heat loss due to radiation and 
convection at the top boundary of the part is included. For this purpose, 
we demarcate the nodes at the top boundary, and adjust the temperature 
of the boundary nodes (Tb) using lumped capacitive theory: 

Tb = e−̃h(Δt) (Tbi − T∞) + T∞ (8)  

Where, T∞ (= 300 K) is the temperature of the surroundings, Tbi is the 
initial temperature of the boundary nodes, Tb is the temperature of the 
boundary nodes after heat loss occurs, Δt is the dimensionless time be
tween laser scans, and h̃ is the normalized combined coefficient of ra
diation (via Stefan-Boltzmann law) and convection (via Newton’s law of 
cooling) from boundary to the surroundings [61]. 

3.3.3. Advantages and limiting assumptions of the graph theory approach 
The graph theory approach has three inherent advantages over FE 

analysis.  

(1) Elimination of mesh-based analysis. The graph theory approach 
represents the part as discrete nodes, which entirely eliminates 
the tedious meshing steps of FE analysis.  

(2) Elimination of matrix inversion steps. While FE analysis rests on 
matrix inversion at each timestep for solving the heat diffusion 
equation, the graph theory approach is based on matrix multi
plication operations, T(x, y, z, t) = ϕe−αΛtϕ′ To, which greatly re
duces the computational burden.  

(3) Simplifying time stepping. The time t for which the heat is diffused 
in the part in Eq. (7) can be set to one large time step without 
computing the temperature at intermediate discrete steps as in FE 
analysis. 

To facilitate computation, the graph theory approach makes the 
following assumptions.  

• Heat transfer-related assumptions. Material properties, such as the 
specific heat are considered to be constant, and do not change with 
temperature. Moreover, effect of the latent heat aspects is not 
considered. In other words, the effect change of state of material 

Fig. 7. (a) The raw surface temperature for the region sampled in Fig. 5. (b) zoomed in region from (a) showing the measurement of the steady state surface 
temperature just before the laser fuses a new layer. (c) The rationale for the various signatures observed in the raw temperature signature in (b). 
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from solid to a liquid, and then back to a solid is not accounted in the 
graph theory approach.  

• Energy source-related assumptions. The laser is considered a point heat 
source, i.e., the shape of the meltpool is not considered in the graph 
theory approach. For example, in the literature, Goldak’s model from 
thermal modeling in welding is often scaled to LPBF [38]. Goldak’s 
model assumes that the a double ellipsoid meltpool shape [40]. 

Furthermore, it was assumed that the topmost layer of the powder 
completely absorbed the incident laser beam. Hence, the graph theory 

approach ignored the effect of reflectivity and powder packing density. 
The main computational bottleneck of the graph is in constructing 

the network graph, and obtaining the eigenvalues (Λ) and eigenvectors 
(ϕ) in Eq. (7). In what follows, we describe three strategies to represent 
the part geometry in the form of a discrete nodes, and subsequently, 
compute the eigenvectors (ϕ) and eigenvalues (Λ) of the Laplacian 
Matrix (L). 

Of these three strategies, Strategy 1 involves populating the entire 
part with nodes. Strategy 2 takes advantage of the radial symmetry of 
the impeller to simulate a representative section of the geometry. 

Fig. 8. (a) Steady state temperature of the top surface at each layer, (b) Interlayer cooling time (ILCT) as a function of the layer height. The ILCT is the time between 
layers. The ILCT is not constant, but is dependent on the surface area melted. The ILCT reduces drastically when processing the fin owing to the thin cross-section, 
which in turn leads to increase in temperature. 

Fig. 9. Graph theory thermal modeling procedure steps for strategy 1.  
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Strategy 3 simulates large horizontal sub-sections of the part, one at a 
time, instead of the entire part, as in Strategy 1. 

3.4. Strategy 1 – represent the entire part geometry as a network graph 

3.4.1. Steps in the approach 
Strategy 1 is depicted in Fig. 9, and was described in our previous 

publications [27,28]. We briefly reiterate the approach for the readers’ 
convenience. The key idea is to solve the heat diffusion equation over a 
network graph constructed over a set of randomly sampled discrete 
nodes in the part using the concept outlined in Section 3.3.1. The graph 
theory approach consists of four steps, these are described herewith. 

Step 1: Convert the entire part into a set of discrete number of nodes (n) 
that are randomly allocated through the part. 

The part geometry is represented in the form of STL file in terms of 
vertices and edges. A number of n vertices is randomly sampled in each 
layer. These randomly sampled vertices are called nodes. The spatial 
position of these nodes is recorded in terms of their cartesian coordinates 
(x,y,z). In the ensuing steps, the temperature at each time step is stored 
at these nodes. The random sampling of the nodes bypasses the expen
sive meshing of FE analysis and is one of the key reasons for the reduced 
computational burden of the graph theory approach. 

Step 2: Construct a network graph among randomly sampled nodes. 
The procedure for constructing a network graph is described in the 

context of Fig. 10. Consider two nodes, πi and πj whose spatial Cartesian 
coordinates are ci ≡ (xi, yi, zi) and cj ≡ (xj,yj,zj). The Euclidean distance 
between πi and a node πj is 

⃦
⃦ci − cj

⃦
⃦ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi − xj)
2

+ (yi − yj)
2

+ (zi − zj)
2

√

. We connect two nodes if they are 
within l mm of each other called the characteristic length. The charac
teristic length is based on the geometry of the part and is set depending 
on the feature with the finest dimension of the part. The concept is that 
there should be no direct heat transfer between nodes that are physically 
far from each other. If two nodes πi and πj are within a radius of l, they 
are connected by an edge whose weight aij is given by, 

ai,j = e−
‖ci− cj‖

2

σ2 ∀ i ∕= j and
⃦
⃦ci − cj

⃦
⃦ ≤ l

ai,j = 0, otherwise
(9) 

The edge weight, aij represents the normalized strength of the 
connection between the nodes πi and πj and has a value between 0 and 1; 
σ2 is the variation of the distance between all nodes that are connected to 
each other, i.e., within a radius of l. Thus, each node is connected to 
every node within a l neighborhood, but not to itself. In this work we set 
l = 3 mm corresponding to the finest feature of the impeller, viz., the fin 

section. 
Next, we make the network graph sparse by removing some edges; 

we only connect a node to a certain number of its nearest neighboring 
nodes (η = 5 in this work). In other words, for a particular node, we 
remove edges farther (in terms of the Euclidean distance) than the 
nearest five by setting their edge weight to zero. The number of nearest 
neighbors (η) is calibrated from experiments from our previous work 
[27]. The sparsening of the network graph is advantageous for compu
tational aspects. 

From a physical perspective, the edge weight aij embodies the 
Gaussian law ‒ called heat kernel — in the following manner. The closer 
a node πi is to another πj, exponentially stronger is the connection (ai,j) 
and hence proportionally greater is the heat transfer between them. 

A matrix is formed by placing aij in a row i and column j, this matrix is 
called the adjacency matrix, A = [ai,j]. 

A =

⎡

⎢
⎢
⎢
⎣

0 a1,2 a1,3 ⋯ a1,N
a2,1 0 a2,3 ⋯ a2,N
a3,1
⋮

aN,1

a3,2
⋮

aN,2

0
⋮

aN,3

⋯
⋱
⋯

a3,N
⋮
0

⎤

⎥
⎥
⎥
⎦

(10) 

The degree of node πi is computed by summing the ith row (column) 
of the adjacency matrix A. 

di∙ =
∑

∀j
ai,j (11) 

The diagonal degree matrix D is formed fromdi∙’s as follows; where n 
is the number of nodes, 

D =

⎡

⎣
d1∙ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ dn∙

⎤

⎦ (12) 

From the adjacency matrix (A) and degree matrix (D), the discrete 
graph Laplacian matrix L will be obtained using the following elemen
tary matrix operations. the discrete Laplacian L can be cast in matrix 
form as, 

L def(D − A)L =

⎡

⎢
⎢
⎢
⎣

+d1⋅ −a1,2 −a1,3 ⋯ −a1,N
−a2,1 +d2⋅ −a2,3 ⋯ −a2,N
−a3,1
⋮
−aN,1

−a3,2
⋮
−aN,2

+d3⋅
⋮
−aN,3

⋯
⋱
⋯

−a3,N
⋮
+dN⋅

⎤

⎥
⎥
⎥
⎦

(13) 

Finally, the Eigen spectra of the Laplacian L, computed using stan
dard methods satisfy the following relationship: 

Lϕ = ϕΛ (14) 

Fig. 10. Constructing a network graph over the part involves two aspects. First, connecting a node to all nodes with a radius l with an edge. Sparsening the graph by 
removing edges that are farther away than the nearest 5 nodes. 
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Because the matrix L is diagonally dominant with non-zero principal 
diagonal elements and negative off-diagonal elements it falls under a 
class of matrices called Stieltjes matrix. For such matrices the eigenvalues 
of L are non-negative (Λ ≥ 0) and eigenvectors are orthogonal to each 
other (ϕϕT = 1). 

Thus constructing the graph in the manner described in Eqs. (9)–(13) 
allows the heat diffusion equation to be solved as a superposition of the 
eigenvalues and eigenvectors of L as explained in the context of Eq. (7). 

Step 3: Simulate the deposition of the entire layer and diffuse the heat 
throughout the network. 

To aid computation, the simulation proceeds in the form of a 
superlayer (metalayer). In this work, we used 10 actual layers each of 
height 50 µm for one superlayer; the thickness of each superlayer was 
therefore 0.5 mm. An entire superlayer is assumed to be deposited at the 
melting point of the material T0 (= 1600 K for SAE 316L). The super- 
layer or meta-layer approach was recently used by Hooper et al. for 
prediction of thermal-induced deformation [53]. Their work shows that 
the deformation predictions derived from a coarse meta-layer FE-based 
thermal model were within 20% of experimental observations [53]. 

By assuming that an entire layer is deposited at the melting point of 
the material, the graph theory approach ignores transient meltpool 
phenomena. To explain further, the meltpool temperature is consider
ably above the melting point of the material, and the transient meltpool 
aspects, such its instantaneous temperature and size are key de
terminants of the microstructure evolution [57]. The graph theory 
approach is therefore intended to capture the effects of part-level ther
mal history, such as distortion, cracking, delamination and failure of 
supports, and not the transient meltpool-related aspects, e.g., micro
structure heterogeneity and granular-level solidification cracking. 

The heat diffuses to the rest of the part below the current layer 
through the connections between the nodes. If the temperature at each 
node is arranged in matrix form, the steady state temperature T after 
time t (where t = interlayer cooling time) is obtained as a function of the 
eigenvectors (ϕ) and eigenvalues (Λ) of the Laplacian matrix (L) of the 
network graph, viz., Eq. (7), repeated herewith: T(x, y, z, t) =

ϕe−αgΛtϕ′T0. 
After the temperature of each node is obtained, convective and 

radiative thermal losses are included for the nodes on the top surface of 
each layer in Eq. (8). 

Step 4: Step 3 is repeated until the part is built. 
A new layer (s)of powder are deposited at the melting point T0. The 

simulation of new powder layers is achieved by adding more nodes on 
top of existing nodes, akin to the element birth-and-death approach used 
in FE-based modeling of AM processes. 

3.4.2. Limitations of Strategy 1 
Strategy 1 is well-suited for relatively small volumes and simple 

geometries such as cylinders and cones, which were analyzed in our 
previous work [27]. There are two drawbacks with Strategy 1 which 
constrains its scalability for large volume parts with complex features. 
First, in Strategy 1 a fixed number of nodes are distributed in the part 
and are allocated randomly with uniform density. Consequently, certain 
features that have a thin cross section tend to have fewer nodes. For 
instance, the cross-sectional area of the fin-like features near the top of 
the part is considerably smaller than the rest of the part. Due to fewer 
nodes in the finer feature compared to the rest of the part, temperature 
distribution estimated in a fine feature will lack accuracy. 

A second limitation from Strategy 1 is also caused by sparse distri
bution of nodes in fine features, such as the overhang section of the 
cooling channel and fins. Since the number of nodes in fine features is 
low, and a fixed number of nodes (η = 5) are connected to each other, 
the nodes in the fine feature regions tend to become connected to the 
nodes in the rest of the part across the boundary of the part and powder. 

In other words, the edge connecting nodes may cross the boundary of 
the part, an occurrence termed as short-circuiting. Examples of short- 

circuiting are shown in Fig. 11. For instance, the edge connecting 
nodes should not cross the boundaries of the part or across the internal 
voids. An approach to avoid short-circuiting in Strategy 1 is to increase 
the node density, which will increase the computation time. 

The third limitation of Strategy 1 is that it is computationally 
intensive. In Strategy 1, a large number of nodes for the entire part must 
be stored in the RAM memory of the desktop computer. Also, the Lap
lacian matrix (L) grows in size with the part. Consequently, the 
computation time increases as layers are added. 

Moreover, at every time step it is necessary to keep track of the 
location and connectivity of every node over the entire part, as well as 
the Laplacian matrix (L), both of which scale as O 2(n) of the number of 
nodes (n). The number of eigenvalues (Λ) and eigenvectors (ϕ) also 
increases with the number of nodes. Consequently, the computation 
time for Strategy 1 scales exponentially with the number of nodes. 

3.5. Strategy 2 - simulation a representative section of the part (part 
scaling) 

In Strategy 2, instead of simulating the entire part, a radial section, or 
a sector, of the part is chosen for layer-by-layer analysis which is shown 
in Fig. 12. The graph thermal modeling steps are identical to the pre
vious Strategy 1 which were described in Section 3.4. 

The drawback with Strategy 2 is that it is best applied to symmetrical 
parts. However, simulating a section of a bigger part is a common 
practice in AM modeling to reduce the computational burden [32,62]. In 
our case, we chose a 24◦ sector as a representative section. 

3.6. Strategy 3 – simulate the part in progressive horizontal subsections, 
and eliminate nodes in preceding subsections 

Strategy 3 is designed to be a generalized approach to simulate any 
geometry. It overcomes the limitations of Strategy 1 by dividing the part 
into horizontal subsections and simulating each subsection in a pro
gressive, piece-wise manner. As opposed to the naïve approach in 
Strategy 1, which populates the entire part with nodes, and stores the 
connections in large adjacency and Laplacian matrices, in Strategy 3, the 
key idea is to remove nodes in previous layers that lie far below the 

Fig. 11. Short-circuiting due to edges crossing the part boundaries and 
reaching across powder. 
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current layer being processed. 
The rationale for removing nodes in previous layers is that the 

temperature cycles would be substantially attenuated by the time they 
reach deeper into the prior layers. This removal of nodes from previous 
layers not only overcomes the computational burden of Strategy 1, but 
also reduces inaccuracy as each sub-section can be populated with a 
large number of nodes. The following steps, also depicted in Fig. 13, 
summarize Strategy 3. 

3.6.1. Steps in the approach 
Step 1 – Use Strategy 1 with sparse nodes to obtain a coarse estimate of 

the thermal history. 
A coarse estimate of the temperature trends for the whole part is 

obtained using Strategy 1 with reduced node density. The purpose of this 
step is to provide a rough estimate of each layer’s thermal history at each 
time step which will be used at later Step 4. 

Step 2 – The part is divided into smaller horizontal subsections (layerwise 
partitioning). 

The part is divided into horizontal subsections, and each subsection 
is populated with discrete nodes and a network graph is created over 
each subsection. Each subsection has its own network graph, hence, 
there are no edges connecting the two adjacent subsections. The height 
of the sub-section is dictated by the maximum size of the Laplacian 
matrix that can be stored in the memory of the computer. In our case, the 
maximum size of the Laplacian matrix that could be stored at any time in 
memory corresponded to a height of 10 mm of the part. 

Fig. 12. Graph theory thermal modeling procedure steps for Strategy 2 involving simulation of a representative cross section of the part.  

Fig. 13. Graph theory procedure steps for Strategy 3.  
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Step 3 – Simulate the deposition of material layer by layer for the first 
subsection. 

The layers were deposited to reach the maximum size of the Lap
lacian matrix (10 mm height). 

Step 4 – Remove nodes in previous subsections. 
After the simulation of the first subsection is finished (10 mm), the 

computer memory is cleared (nodes must be erased), and the tempera
ture of nodes with severed connections is estimated based on Step 1. This 
is done in two sub-steps. 

Step 4.1: Nodes representing the first few layers of the previous 
subsection are removed. The removal of nodes reduces the size of the 
Laplacian matrix, and the number of nodes stored in memory. For 
example, the first 4 mm of the previous sub-section are removed, and 
thus there is now space in the computer memory to accommodate 4 mm 
of new layers to be deposited. The height of the erased nodes is termed as 
moving distance. 

Step 4.2: The removal of nodes causes edge connections to be sev
ered, which changes the topology of the network. One effect of removing 
nodes is that heat tends to accumulate in the nodes with edges connected 
to the erased nodes due to disconnection of the network graph. The 
available initial layers nodes with severed edges are termed interface 
nodes. The temperature of the interface nodes is reinitiated at each time 
step based on the coarse estimates from Step 1. In this work the interface 
nodes were 3 superlayer thickness (1.5 mm). 

Step 5 – Simulate the deposition of a new subsection. 
Fresh layers in the next sub-section are added until the maximum 

number of layers that can be stored in memory is reached. In this work 
fresh layers corresponding to an added 4 mm in height (80 actual layers, 
8 superlayers) were deposited until an incremental height of 10 mm was 
reached (200 actual layers). 

Step 6 - Step 4 and Step 5 are cycled until the part is completely built. 

3.6.2. Limitations of Strategy 3 
The advantage of Strategy 3 is that the computation time is signifi

cantly reduced compared to Strategy 1, and the approach can be 
generalized to any shape. However, a trade-off is that the temperature 
history of the eliminated nodes cannot be tracked for the entire process. 
tradeoff can be mitigated by setting the moving distance to a smaller 
value. However, since the eliminated nodes are significantly below the 
current layers (10 mm in our case), the temperatureat these eliminated 
nodes would have reached the steady state. 

3.7. Simulation parameters 

The graph theory approach requires tuning of three parameters — 
namely, the number of nodes in the volume simulated (n), the number of 
nodes to which each node is connected (η), and the gain factor (g) in Eq. 
(7) which controls the rate of heat diffusion through the nodes. In this 
work, we set η = 5 and g = 1.5 × 104. The number of nearest neighbors 
η and gain factor g were calibrated in our previous work and described in 
depth in Ref. [27]. We did not change these already calibrated param
eters from our previous work in LPBF of stainless steel parts which 
substantiates that the graph theory approach only needs to be calibrated 
once via pilot experiments for a specific material [27]. 

The graph theory simulation parameters and material properties are 
described in Table 2. Also included in Table 2 is a term called charac
teristic length (l, mm). In our previous works, the characteristic length 
(l) was defined as the distance beyond which there should not be any 
physical connection between nodes to avoid short-circuiting, and was 
estimated by measuring the minimum dimension of various features in 
the part. In this work, the thickness of the fin (~3 mm) was one of the 
smallest dimensions, albeit, certain sections of the cooling channels 
were thinner. 

Hence, as a rule of thumb we maintained l = 3 mm. The character
istic length (l) also facilitates estimation of the minimum number of 
nodes (n), as a function of the number of neighbors (η = 5) and volume 

(V) of the geometry simulated via the following relationship: 

n =
η × V
l3 =

5V
27

(15) 

Two metrics were used to assess the accuracy and precision of the 
graph theory approach, namely, the mean absolute percentage error 
(MAPE) and root mean square error (RMSE), shown in Eqs. (15a) and 
(15b), respectively. 

MAPE =
100

k
×

∑k

i=1

⃒
⃒
⃒
⃒
⃒

Ti − T̂ i

Ti

⃒
⃒
⃒
⃒
⃒

(15a)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑k

i=1

(
Ti − T̂ i

)2

k

√
√
√
√
√ (15b)  

where k is the number of instances in time that were compared over the 
duration of the deposition, i is the current instant of time, Ti is the 
measured temperature, and T̂ i is the predicted temperature. 

4. Results and discussion 

4.1. Strategy 1 

Fig. 14 and Table 3 report results for Strategy 1 in terms of mean 
absolute percentage error (MAPE), root mean square error (RMSE, 
[K]), and computational time as a function of number of nodes. The 
volume of the whole part V was ~250,000 mm3, which requires a 
minimum of n = 46,000 nodes based on Eq. (14). From a computa
tional standpoint, the Laplacian and adjacency matrix will each 
consist of over 2 × 109 elements (46,000 rows × 46,000 columns). 
Furthermore, 46,000 eigenvalues and eigenvectors will have to be 
computed. 

Strategy 1 resulted in ~14% MAPE and 47 K RMSE with 64,000 
nodes, and required 10.5 h of computation time. The desktop computer 
used in this work had 128 gigabytes of memory with maximum capacity 
of ~70,000 nodes. Therefore, increasing the number of nodes beyond 
64,000 overwhelmed the memory of the desktop computer. 

While Strategy 1 captures the overall trend in steady state tem
perature distribution, the prediction error is large for sections with 
the internal channel and fins. The main reason for this large error is 
due to short-circuiting of edges across the cooling channel and be
tween the fin and bulk part as depicted in Fig. 11. Accordingly, a large 
number of nodes are need for Strategy 1, an alternative is to thread 
the computation through a GPU using a compiled language, such as 
C++. 

Table 2 
Summary of the simulation parameters used in this work.  

Simulation parameters Values 

Heat loss coefficient from part to 
surroundings, h̃ [W m−2 K]  

1 × 10−5 (Ref. [27]) 

Heat loss coefficient from part to 
substrate (sink), h̃ [W m−2 K]  

1 × 10−2 (Ref. [27]) 

Thermal diffusivity (α), [m2/s] 3 × 10−6 

Density, ρ [kg/m3]  8440 
Melting Point (T0) [K] 1600 
Ambient temperature, T∞ [K]  300 
Characteristic length [mm] 3 
Number of neighbors which is connected 

to each node (η)  
5 

Superlayer thickness [mm] 0.5 (10 actual layers) 
Gain factor (g) 1.5 × 104 

Computational hardware AMD Ryzen Threadripper 3970X, 
@3.7 GHz with 128 GB RAM. 

Computation Software MATLAB2020a  
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4.2. Strategy 2 

In Strategy 2, a representative radial slice of the part is simulated. 
The results for Strategy 2 are shown in Fig. 15 and Table 4. Since the 
volume of the sector chosen (31,000 mm3) is a fraction of the entire part 
volume (250,000 mm3), the sector can be more densely populated with 
nodes compared to Strategy 1, providing more accurate results with 
fewer number of nodes. 

For Strategy 2, from Eq. (14), it was estimated that n = 5800 and 
above would be needed to capture the trends. Indeed, with 6000 nodes, 
the thermal trends were predicted with MAPE ~10%, RMSE 33 K in less 
than 5 min. There is a diminishing return on the accuracy with increase 
in number of nodes. With 24,000 nodes, the graph theory approach 
required about 40 min to converge to a MAPE and RMSE of 3.5% and 
11.8 K, respectively. A tradeoff is at 11,200 nodes, for which the 
simulation converges to 8.6% (MAPE) and 29 K (RMSE) in less than 
18 min. 

We also compared the graph theory solution with a FE analysis, 
based on the pragmatic approach described by Hooper et al. [53]. As 
reported in Fig. 15 and Table 4, to reach a similar level of MAPE 

(< 9%) and RMSE (< 30 K), the graph theory approach used 11,200 
nodes and required 17 min of computation to converge, while the FE 
analysis requires, respectively, 57,710 nodes and 273 min. A qualita
tive comparison of the FE and graph theory solutions is depicted in  
Fig. 16. 

Fig. 14. Comparison of the predicted top surface temperature from Strategy 1 with experimentally observed temperature distribution as a function of number of 
nodes (n). 

Table 3 
Comparison of strategy 1 accuracy and computational time for different node 
densities.  

Number of 
nodes (n) 

MAPE (Std. Dev. over 
three repetitions) 

RMSE (Std. Dev. over 
three repetitions) [K] 

Time 
(minutes) 

3200 55.2 (4.7) 170.4 (19.8) 2 
6400 36.1 (2.6) 110.8 (12.7) 6 
9600 26.7 (2.3) 91.2 (10.2) 16 
19,200 25.4 (1.9) 89.6 (8.6) 39 
25,600 22.8 (2.1) 68.4 (8,2) 53 
34,000 14.7 (1.9) 53.7 (7.5) 236 
64,000 13.6 (1.8) 46.2 (7.4) 634 

The number in the parenthesis indicates the uncertainty (standard deviation) 
over three independent replications. 

Fig. 15. Results from using strategy 2 to simulate a sector of the part layer by 
layer as a function of the number of nodes. With n = 24,000, the graph theory 
predictions converge to within 3.5% (MAPE) and 12 K (RMSE) of the experi
mental measurements within 41 min. The FE approach requires 57,710 nodes 
for a 9% MAPE and 29 K RMSE, and converged in 273 min (4.5 h). 
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4.3. Strategy 3 

The results for Strategy 3 are reported in Table 5 and Fig. 17. In 
Table 5 we summarize results from varying the moving distance (height 
of nodes eliminated), and different number of nodes used for the coarse 
estimation of temperature at the interface nodes in Step 1 of the 
approach. 

The minimum number of nodes per subsection of 10 mm was esti
mated from Eq. (14) as follows. The finest feature, prone to short- 
circuiting are the fin-shaped features, whose total volume amounted 
to V = 26,500 mm3. with characteristic length l = 3 mm, and the 
number of neighboring nodes η = 5, the number of nodes to avoid short- 
circuiting in the fin section of the part was estimated as n = 5000. 

With n = 5000, and moving distance set at 2 mm and lesser, Strategy 
3 predicted the top surface temperature with error within 10% (MAPE) 
and 35 K (RMSE) in approximately 20 min. Doubling the number of 
nodes in each subsection to n = 10,000, and maintaining the same 

moving distance resulted in reduction of MAPE to ~8%, and RMSE less 
than 25 K. 

Fig. 17 shows that Strategy 3 captured the subtle temperature trends 
characteristic of the internal cooling channel and fins. The moving dis
tance impacts the prediction error; a shorter moving distance entails that 
fewer nodes are removed, and hence there is a smoother transition be
tween each subsection. A smaller moving distance, however, increases 
the computational time as more nodes are needed to be stored in 
memory. The total computation time reported in Table 5 includes the 
time required for coarse estimation using Strategy 1. 

4.4. Qualitative comparison with Netfabb 

Here we provide a qualitative comparison of the graph theory results 
with a commercial AM simulation software Autodesk Netfabb. As 
described in Section 2.1, commercial simulation packages, including 
Netfabb, use a proprietary approach for adaptive meshing. The user 
cannot control the number of elements in Netfabb except to choose 
between three simulation modes labeled fastest, medium, and accurate. 
Accordingly, it is not possible to interrogate the temperature at specific 
locations. Therefore, a one-to-one quantitative comparison of Netfabb 
and graph theory predictions cannot be made. Hence, the following 
comparison of the Netfabb solution with the graph theory is intended to 
be only qualitative in nature. We have carried out such a comparison 
with non-proprietary FE, finite difference, and exact analytical solutions 
in our prior publications [27–29], as well is in Section 4.3 vis-à-vis 
Strategy 2. 

Results from Strategy 1 (n = 19,200) and Strategy 2 (n = 12,800) are 
qualitatively compared with graph theory at specific build heights in  
Fig. 18. The graph theory results and Netfabb simulations both predicted 
heat accumulation in the fin region, and fast diffusion in the annulus. For 
both scenarios, the Netfabb simulation was set on the fastest mode. 

Table 4 
Comparison of strategy 2 accuracy and computational time for different node 
densities.  

Graph theory 

Nodes MAPE (Std. Dev. over three 
repetitions) 

RMSE (Std. Dev. over three 
repetitions) [K] 

Time 
(min) 

38,000 3.4 (0.3) 11.6 (2.0) 106 
24,000 3.5 (0.3) 11.8 (2.4) 41 
12,800 7.9 (0.6) 27.5 (3.6) 21 
11,200 8.6 (0.9) 28.1 (3.2) 17 
9600 9.1 (0.9) 30.0 (4.1) 14 
6400 10.1 (1.1) 33.2 (4.9) 5 
Finite element 
Nodes MAPE (Std. Dev. over three 

repetitions) 
RMSE (Std. Dev. over three 
repetitions) [K] 

Time 
(min) 

57,710 8.4 29.4 273 

The number in the parenthesis indicates the uncertainty (standard deviation) 
over three independent replications. 

Fig. 16. Qualitative comparison of the graph theory and finite element solution for Strategy 2. The graph theory approach requires about 1/5th of the time of FE 
analysis (using the DFLUX routine in Abacus) to provide a similar level of accuracy. 

Table 5 
Results from applying strategy 3 with different node densities and window size.  

Moving 
distance 

Number of nodes (n) for 
coarse estimation (Step 
1) 

Nodes in each 
sub-section in 
Step 2 

MAPE (Std. Dev. 
over three 
repetitions) 

RMSE (Std. Dev. over 
three repetitions) [K] 

Computation time for 
coarse estimation (Step 1) 
(min) 

Computation time for 
Steps 4 and 5 (min) 

Total 
Time 
(min) 

8 mm 6400 5000 43.5 (4.1) 117.2 (16.8) 6 5 11 
5 mm 16.9 (3.5) 64.2 (7.7) 7 13 
2 mm 9.5 (0.8) 30.5 (4.8) 11 17 
1 mm 8.1 (0.9) 25.7 (3.8) 16 22 
8 mm 10,000 41.8 (3.7) 109.3 (13.5) 9 15 
5 mm 15.3 (2.8) 60.4 (7.2) 15 21 
2 mm 7.9 (0.8) 23.8 (4.0) 21 27 
1 mm 6.1 (0.8) 22.7 (3.7) 33 39 

The number in the parenthesis indicates the uncertainty (standard deviation) over three independent replications. 
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5. Conclusions and future work 

This work scales the graph theory approach for predicting the ther
mal history of a large stainless steel impeller part made using the laser 
powder bed fusion process (LPBF). The impeller had an outside diameter 
of 155 mm and a vertical height of 35 mm (250,000 mm3). The part was 
built on a Renishaw AM250 commercial LPBF system, and required the 
melting of 700 layers over 16 h of build time. During the build, tem
perature readings of the top surface of the part were acquired using an 
infrared thermal camera operating in the longwave infrared range 
(7–13 µm). This work validated three computational strategies to scale 
the graph theory approach, with the aim of reducing the prediction time 
to less than the actual time to print the part. 

Strategy 1 involved populating the entire part with nodes and con
structing a network graph over these nodes. This strategy was used in 
our previous works for small parts and is found to be computationally 
intensive for large parts as many graph nodes have to be stored in 
memory. For simulating the impeller part using Strategy 1, the best 
result was obtained in 10.5 h and required 64,000 nodes; the mean 
absolute percentage error (MAPE) and root mean square error (RMSE) 
were ~14% and 47 K, respectively. 

Strategy 2 scaled the part geometry by simulating a small represen
tative radial cross section of the impeller. With 6400 nodes, the Strategy 
2 resulted in a MAPE ~10% and RMSE 32 K within 5 min of computa
tion. However, this approach is suitable for symmetrical parts. Doubling 
the number of nodes to 12,800 reduces the MAPE and RMSE to ~8% and 
27.5 K, at the cost of computation time, which increases to ~22 min. 

Strategy 3 used a moving window approach to simulate the thermal 
history in horizontal subsections. Instead of discretizing the entire part 
into nodes and building a large network graph to cover all the nodes in 
the part as in Strategy 1, the part in Strategy 3 was divided into horizontal 
subsections. The thermal history of the part was progressively predicted 
subsection-by-subsection, and to keep the computation tractable and 
avoid overwhelming the memory of the computer, the nodes in prior 
subsections were removed. With number of nodes set at 5000 per section, 
this strategy resulted in a MAPE less than 10% and RMSE less than 30 K 
within 25 min of simulation. The MAPE and RMSE decreased slightly to 
~8% and 25 K when the number of nodes was doubled to 10,000, at the 
cost of computation time, which increased from 30 to 40 min. 

This work thus succeeds in instituting an efficient approach to deploy 
the graph theory-based thermal modeling for predicting the temperature 
distribution in large volume and complex-shaped LPBF parts designed 
for practical applications. The future work is to make the graph theory 
approach more efficient through code parallelization and optimization. 

We aim to leverage the graph theory approach in our future works 
for both prediction and prevention of build failures in LPBF. An avenue 
being explored is to fuse the thermal history predictions from graph 
theory with real-time in-process sensor data in a machine learning 
model to predict flaw formation [63]. 
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