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MaxUp: A Simple Way to Improve Generalization of Neural Network Training
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Abstract

We propose MaxUp, an embarrassingly sim-

ple, highly effective technique for improving the

generalization performance of machine learning

models, especially deep neural networks. The

idea is to generate a set of augmented data

with some random perturbations or transforms,

and minimize the maximum, or worst case loss

over the augmented data. By doing so, we

implicitly introduce a smoothness or robustness

regularization against the random perturbations,

and hence improve the generation performance.

For example, in the case of Gaussian perturba-

tion, MaxUp is asymptotically equivalent to us-

ing the gradient norm of the loss as a penalty

to encourage smoothness. We test MaxUp on

a range of tasks, including image classification,

language modeling, and adversarial certification,

on which MaxUp consistently outperforms the

existing best baseline methods, without introduc-

ing substantial computational overhead. In par-

ticular, we improve ImageNet classification from

the state-of-the-art top-1 accuracy 85.5%without

extra data to 85.8%. Code will be released soon.

1. Introduction

A central theme of machine learning is to alleviate the issue

of overfitting, improving the generalization performance on

testing data. This is often achieved by leveraging important

prior knowledge of the models and data of interest. For ex-

ample, the regularization-based methods introduce penalty

on the complexity of the model, which often amount to en-

forcing certain smoothness properties. Data augmentation

techniques, on the other hand, leverage important invari-

ance properties of the data (such as the shift and rotation

invariance of images) to improve performance. Novel ap-

proaches that exploit important knowledge of the models

and data hold the potential of substantially improving the

performance of machine learning systems.

*Equal contribution 1UT Austin. Correspondence to:
Chengyue Gong <cygong@cs.utexas.edu>.
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We propose MaxUp, a simple yet powerful training method

to improve the generalization performance and alleviate the

over-fitting issue. Different from standard methods that

minimize the average risk on the observed data, MaxUp

generates a set of random perturbations or transforms of

each observed data point, and minimizes the average risk

of the worst augmented data of each data point. This al-

lows us to enforce robustness against the random perturba-

tions and transforms, and hence improve the generalization

performance. MaxUp can easily leverage arbitrary state-

of-the-art data augmentation schemes (e.g. Zhang et al.,

2018; DeVries & Taylor, 2017; Cubuk et al., 2019a), and

substantially improves over them by minimizing the worst

(instead of average) risks on the augmented data, without

adding significant computational ahead.

Theoretically, in the case of Gaussian perturbation, we

show that MaxUp effectively introduces a gradient-norm

regularization term that serves to encourage smoothness of

the loss function, which does not appear in standard data

augmentation methods that minimize the average risk.

MaxUp can be viewed as a “lightweight” variant of adver-

sarial training against adversarial input pertubrations (e.g.

Tramèr et al., 2018; Madry et al., 2017), but is mainly de-

signed to improve the generalization on the clean data, in-

stead of robustness on perturbed data (although MaxUp

does also increase the adversarial robustness in Gaussian

adversarial certification as we shown in our experiments

(Section 4.4)). In addition, compared with standard adver-

sarial training methods such as projected gradient descent

(PGD) (Madry et al., 2017), MaxUp is much simpler and

computationally much faster, and can be easily adapted to

increase various robustness defined by the corresponding

data augmentation schemes.

We test MaxUp on three challenging tasks: image classi-

fication, language modeling, and certified defense against

adversarial examples (Cohen et al., 2019). We find that

MaxUp can leverage the different state-of-the-art data aug-

mentation methods and boost their performance to achieve

new state-of-the-art on a range of tasks, datasets, and neural

architectures. In particular, we set up a new state-of-the-art

result on ImageNet classification without extra data, which

improves the best 85.5% top1 accuracy by Xie et al. (2019)

to 85.8%. For the adversarial certification task, we find

http://arxiv.org/abs/2002.09024v1
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Maxup allows us to train more verifiably robust classifiers

than prior arts such as the PGD-based adversarial training

proposed by Salman et al. (2019).

2. Main Method

We start with introducing the main idea of MaxUp, and then

discuss its effect of introducing smoothness regularization

in Section 2.1.

ERM Giving a dataset Dn = {xi}ni=1, learning often re-

duces to a form of empirical risk minimization (ERM):

min
θ

Ex∼Dn
[L(x, θ)] , (1)

where θ is a parameter of interest (e.g., the weights of a

neural network), and L(x, θ) denotes the loss associated

with data point x. A key issue of ERM is the risk of over-

fitting, especially when the data information is insufficient.

MaxUp We propose MaxUp to alleviate overfitting. The

idea is to generate a set of random augmented data and min-

imize the maximum loss over the augmented data.

Formally, for each data point x in Dn, we generate a set

of perturbed data points {x′
i}mi=1 that are similar to x, and

estimate θ by minimizing the maximum loss over {x′
i}:

MaxUp: min
θ

Ex∼Dn

[

max
i∈[m]

L(x′
i, θ)

]

. (2)

This loss can be easily minimized with stochastic gradient

descent (SGD). Note that the gradient of the maximum loss

is simply the gradient of the worst copy, that is,

∇θ

(

max
i∈[m]

L(x′
i, θ)

)

= ∇θL(x
′
i∗ , θ), (3)

where i∗ = argmaxi∈[m] L(x
′
i, θ). This yields a simple

and practical algorithm shown in Algorithm 1.

In our work, we assume the augmented data {x′
i}mi=1 is

i.i.d. generated from a distribution P(·|x). The P(·|x) can

be based on small perturbations around x, e.g., P(·|x) =
N (x, σ2I), the Gaussian distribution with mean x and

isotropic variance σ2. The P(·|x) can also be constructed

based on invariant data transformations that are widely

used in the data augmentation literature, such as random

crops, equalizing, rotations, and clips for images (see e.g

Cubuk et al., 2019a; DeVries & Taylor, 2017; Cubuk et al.,

2019b).

2.1. MaxUp as a Smoothness Regularization

We provide a theoretical interpretation of Maxup as in-

troducing a gradient-norm regularization to the original

ERM objective to encourage smoothness. Here we con-

sider the simple case of isotropic Gaussian perturbation,

when P(·|x) = N (x, σ2I). For simplifying notation, we

define

L̃P,m(x, θ) := E{x′

i
}m

i=1
∼P(·|x)m

[

max
i∈[m]

L(x′
i, θ)

]

, (4)

which represents the expected MaxUp risk of data point x

with m augmented copies.

Theorem 1 (MaxUp as Gradient-Norm Regularization).

Consider L̃P,m(x, θ) defined in (4) with P(·|x) =
N (x, σ2I). Assume L(x, θ) is second-order differentiable

w.r.t. x. Then

L̃P,m(x, θ) = L(x, θ) + cm,σ ‖∇xL(x, θ)‖2 +O(σ2),

where cm,σ is a constant and cm,σ = Θ(σ
√
logm), where

Θ(·) denotes the big-Theta notation.

Theorem 1 shows that, the expected MaxUp risk can be

viewed as introducing a Lipschitz-like regularization with

the gradient norm ‖∇xL(x, θ)‖2, which encourages the

smoothness of L(x, θ) w.r.t. the input x. The strength of

the regularization is controlled by cm,σ, which depends on

the number of samples m and perturbation magnitude σ.

Proof. Using Taylor expansion, we have

L̃P,m(x, θ)

= E

[

max
i∈[m]

L(x′
i, θ)

]

= L(x, θ) + E

[

max
i∈[m]

(L(x′
i, θ)− L(x, θ))

]

= L(x, θ) + E

[

max
i∈[q]
〈∇xL(x, θ), zi〉

]

+O(σ2),

where we assume zi = x′
i − x, which followsN (0, σ2I).

The rest of the proof is due to the Lemma 1 below.

Lemma 1. Let g be a fixed vector in R
d, and {zi}mi=1 are

m i.i.d. random variables from N (0, σ2I). We have

E

[

max
i∈[m]
〈g, zi〉

]

= cm,σ‖g‖2,

where cm,σ = Θ
(

σ
√
logm

)

.

Proof. Define yi = 〈g, zi〉/ ‖g‖2. Then {yi}mi=1 is

i.i.d. from N (0, σ2). Therefore, cm,σ = E[maxi∈[m] yi],
which is well known to be Θ(σ

√
logm). See e.g.,

Orabona & Pál (2015); Kamath (2015) for bounds re-

lated to E[maxi∈[m] yi]. More specifically, we have

0.23σ
√
logm ≤ cm,σ ≤

√
2σ
√
logm following Kamath

(2015).
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Algorithm 1 MaxUp with Stochastic Gradient Descent

Input: DatasetDn = {xi}ni=1; transformation distribution P(·|x); number of augmented data m; initialization θ0; SGD

parameters (batch size, step size η, etc).

repeat

Draw a mini-batchM from Dn, and update θ via

θ ← θ − ηEx∼M

[

∇θ

(

max
i∈[m]

L(x′
i, θ)

)]

,

where {x′
i}mi=1 are drawn i.i.d. from P(·|x) for each x in the mini batchM. See Equation 3.

until convergence

3. Related Methods and Discussion

MaxUp is closely related to both data augmentation and ad-

versarial training. It can be viewed as an adversarial vari-

ant of data augmentation, in that it minimizes the worse

case loss on the perturbed data, instead of an average loss

like typical data augmentation methods. MaxUp can also

be viewed as a “lightweight” variant of adversarial train-

ing, in that the maximum loss is calculated by simple ran-

dom sampling, instead of more accurate gradient-based op-

timizers for finding the adversarial loss, such as projected

gradient descent (PGD); MaxUp is much simpler and faster

than the PGD-based adversarial training, and is more suit-

able for our purpose of alleviating over-fitting on clean data

(instead of adversarial defense). We now elaborate on these

connections in depth.

3.1. Data Augmentation

Data augmentation has been widely used in machine learn-

ing, especially on image data which admits a rich set

of invariance transforms (e.g. translation, rotation, ran-

dom cropping). Recent augmentation techniques, such

as MixUp (Zhang et al., 2018), CutMix (Yun et al., 2019)

and manifold MixUp (Verma et al., 2019) have been found

highly useful in training deep neural networks, especially

in achieving state-of-the-art results on important image

classification benchmarks such as SVHN, CIFAR and Im-

ageNet. More recently, more advanced methods have been

developed to find the optimal data augmentation policies

using reinforcement learning or adversarial generative net-

work (e.g. Cubuk et al., 2019a;b; Zhang et al., 2020).

MaxUp can easily leverage these advanced data augmen-

tation techniques to achieve good performance. The key

difference, however, is that MaxUp in (2) minimizes the

maximum loss on the augmented data, while typical data

augmentation methods minimize the average loss, that is,

min
θ

Ex∼Dn

[

1

m

m
∑

i=1

L(x′
i, θ)

]

, (5)

which we refer to as standard data augmentation through-

out the paper. It turns out (2) and (5) behave very differ-

ent as regularization mechanisms, in that (5) does not in-

troduce the gradient-norm regularization as (2), and hence

does not have the benefit of having gradient-norm regular-

ization. This is because the first-order term in the Taylor

expansion is canceled out due to the averaging in (5).

Specifically, let P(·|x) be any distribution whose expecta-

tion is x and L(x, θ) is second-order differentiable w.r.t x.

Define the expected loss related to (5) on data point x:

L̂P,m(x, θ) := E{x′

i
}m

i=1
∼P(·|x)m

[

1

m

m
∑

i=1

L(x′
i, θ)

]

. (6)

Then with a simple Taylor expansion, we have

L̂P,m(x, θ) = L(x, θ) +O(σ2),

which misses the gradient-norm regularization term when

compared with MaxUp decomposition in Theorem 1.

Note that the MaxUp update is computationally faster than

the solving (5) with the same m, because we only need

to backpropagate on the worst augmented copy for each

data point (see Equation 3), while solving (5) requires to

backpropagate on all the m copies at each iteration.

3.2. Adversarial Training

Adversarial training has been developed to defense various

adversarial attacks on the data inputs (Madry et al., 2017).

It estimates θ by solving the following problem:

min
θ

Ex∼Dn

[

max
x′∈B(x,r)

L(x′, θ)

]

, (7)

where B(x, r) represents a ball centered at x with radius r
under some metrics (e.g. ℓ0, ℓ1, ℓ2, or ℓ∞ distances). The

inner maximization is often solved by running projected

gradient descent (PGD) for a number of iterations.

MaxUp in (2) can be roughly viewed as solving the inner

adversarial maximization problem in (7) using a “mild”,

or “lightweight” optimizer by randomly drawing m points
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from P(·|x) and finding the best. Such mild adversarial

optimization increases the robustness against the random

perturbation it introduces, and hence enhance the general-

ization performance. Adversarial ideas have also been used

to improvement generalization in a series of recent works

(e.g., Xie et al., 2019; Zhu et al., 2020).

Different from our method, typical adversarial training

methods, especially these based PGD (Madry et al., 2017),

tend to solve the adversarial optimization much more ag-

gressively to achieve higher robustness, but at the cost of

scarifying the accuracy on clean data. There has been

shown a clear trade-off between the accuracy of a classifier

on clean data and its robustness against adversarial attacks

(see e.g., Tsipras et al., 2019; Zhang et al., 2019; Yin et al.,

2019; Schmidt et al., 2018). By using a mild adversarial

optimizer, MaxUp strikes a better balance between the ac-

curacy on clean data and adversarial robustness.

Besides, MaxUp is much more computationally efficient

than PGD-based adversarial training, because it does not

introduce additional back-propagation steps as PGD. In

practice, MaxUp can be equipped with various complex

data augmentation methods (in which case P(·|x) can be

discrete distributions), while PGD-based adversarial train-

ing mostly focuses on perturbations in ℓp balls.

3.3. Online Hard Example Mining

Online hard example mining (OHEM) (Shrivastava et al.,

2016) is a training method originally developed for region-

based objective detection, which improves the performance

of neural networks by picking the hardest examples within

mini batches of stochastic gradient descent (SGD). It can

be viewed as running SGD for minimizing the following

expected loss

min
θ

EM

[

max
x∈M

L(x, θ)

]

,

which amounts to randomly picking a mini-batch M
at each iteration and minimizing the loss of the hard-

est example within M. By doing so, OHEM can fo-

cus more on the hard examples and hence improves

the performance on borderline cases. This makes

OHEM particularly useful for class-imbalance tasks, e.g.

object detection (Shrivastava et al., 2016), person re-

identification (Luo et al., 2019).

Different with MaxUp, the hardest examples in OHEM are

selected in mini-batches consisting of independently se-

lected examples, with no special correlation or similarity.

Mathematically, it can be viewed as reweighing the data

distribution to emphasize harder instances. This is sub-

stantially different from MaxUp, which is designed to en-

force the robustness against existing random data augmen-

tation/perturbation schemes.

Method Top-1 error Top-5 error

Vanilla (He et al., 2016b) 76.3 -

Dropout (Srivastava et al., 2014) 76.8 93.4

DropPath (Larsson et al., 2017) 77.1 93.5

Manifold Mixup (Verma et al., 2019) 77.5 93.8

AutoAugment (Cubuk et al., 2019a) 77.6 93.8

Mixup (Zhang et al., 2018) 77.9 93.9

DropBlock (Ghiasi et al., 2018) 78.3 94.1

CutMix (Yun et al., 2019) 78.6 94.0

MaxUp+CutMix 78.9 94.2

Table 1. Summary of top1 and top5 accuracies on the validation

set of ImageNet for ResNet-50.

4. Experiments

We test our method using both image classification and lan-

guage modeling for which a variety of strong regularization

techniques and data augmentation methods have been pro-

posed. We show that MaxUp can outperform all of these

methods on the most challenging datasets (e.g. ImageNet,

Penn Treebank, and Wikitext-2) and state-of-the-art mod-

els (e.g. ResNet, EfficientNet, AWD-LSTM). In addition,

we apply our method to adversarial certification via Gaus-

sian smoothing (Cohen et al., 2019), for which we find that

MaxUp can outperform both the augmented data baseline

and PGD-based adversarial training baseline.

For all the tasks, if training from scratch, we first train the

model with standard data augmentation with 5 epochs and

then switch to MaxUp.

Time and Memory Cost MaxUp only slightly increase

the time and memory cost compared with standard training.

During MaxUp, we only need to find the worst instance out

of the m augmented copies through forward-propagation,

and then only back-propagate on the worst instance. There-

fore, the additional cost of MaxUp over standard training

is m forward-propagation, which introduces no significant

overhead on both memory and time cost.

4.1. ImageNet

We evaluate MaxUp on ILSVRC2012, a subset of Im-

ageNet classification dataset (Deng et al., 2009). This

dataset contains around 1.3 million training images and

50,000 validation images. We follow the standard data

processing pipeline including scale and aspect ratio distor-

tions, random crops, and horizontal flips in training. Dur-

ing the evaluation, we only use the single-crop setting.

Implementation Details We test MaxUp with

P(·|x) defined by the CutMix data augmentation tech-

nique (Yun et al., 2019) (referred to as MaxUp+CutMix).
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Model Model Size FLOPs +CutMix (%) +MaxUp+CutMix (%)

ResNet-101 44.55M 7.85G 79.83 80.26

ProxylessNet-CPU 7.12M 481M 75.32 75.65

ProxylessNet-GPU 4.36M 470M 75.08 75.42

ProxylessNet-Mobile×1.4 6.86M 603M 76.71 77.17

EfficientNet-B7 66.35M 38.20G 85.22∗ 85.45∗

Fix-EfficientNet-B8 87.42M 101.79G 85.57∗ 85.80∗

Table 2. Top1 accuracies of different models on the validation set of ImageNet 2012. The “∗” indicates that MaxUp is applied to the

pre-trained model and trained for 5 epochs.

CutMix randomly cuts and pasts patches among training

images, while the ground truth labels are also mixed

proportionally to the area of the patches. MaxUp+CutMix

applies CutMix on one image for m times (cutting different

randomly sampled patches), and select the worst case to

do backpropagation.

We test our method on ResNet-50, ResNet-101 (He et al.,

2016b), as well as recent energy-efficient architectures,

including ProxylessNet (Cai et al., 2019) and Efficient-

Net (Tan & Le, 2019). We resize the images to 600 × 600
and 845 × 845 for EfficientNet-B7 and EfficientNet-B8,

respectively (Tan & Le, 2019), for which we process the

images with the data processing pipelines proposed by

Touvron et al. (2019). For the other models, the input im-

age size is 224 × 224. To save computation resources, we

only fine-tune the pre-trained models with MaxUp for a few

epochs. We set m = 4 for MaxUp in the ImageNet-2012

experiments unless indicated otherwise. This means that

we optimize the worst case in 4 augmented samples for

each image.

For ResNet-50, ResNet-101 and ProxylessNets, we train

the models for 20 epochs with learning rate 10−5 and batch

size 256 on 4 GPUs for 20 epochs. For EfficientNet, we fix

the parameters in the batch normalization layers and train

the other parameters with learning rate 10−4 and batch size

1000 for 5 epochs.

As shown in Table 2, for ResNet-50 and ResNet-101, we

achieve the best results among all the data augmentation

method. For EfficientNet-B8, we further improve the state-

of-the-art result on ImageNet with no extra data.

ResNet-50 on ImageNet Table 1 compares a num-

ber of state-of-the-art regularization techniques with

MaxUp+CutMix on ImageNet with ResNet-50.1 We can

see that MaxUp+CutMix achieves better performance com-

pared to all the strong data augmentation and regularization

baselines. From Table 1, we see that CutMix gives the best

top1 error (78.6%) among all the augmentation tasks, but

our method further improves it to 78.9%. DropBlock out-

1All the FLOPS and model size reported in this paper is cal-
culated by https://pypi.org/project/ptflops.

performs all the other methods in terms of the top5 error,

but by augmenting CutMix with MaxUp, we improve the

94.1% top5 error rate obtained by DropbBlock to 94.2%.

More Results on Different Architectures Table 2 shows

the result of ImageNet on ResNet-101, ProxylessNet-

CPU/GPU/Mobile (Cai et al., 2019) and EfficientNet. We

can see that MaxUp consistently improves the results

in all these cases. On ResNet-101, it improves the

79.83% baseline to 80.26%. On ProxylessNet-CPU and

ProxylessNet-GPU, MaxUp enhances the 75.32% and

75.08% top1 accuracy to 75.65% and 75.42%, respectively.

On ProxylessNet-Mobile, we improve the 76.71% top1 ac-

curacy to 77.17%.

For EfficientNet-B7, CutMix enhances the original top1 ac-

curacy 85.0% (by Tan & Le, 2019) to 85.22%. MaxUp

further improves the top1 accuracy to 88.45%. On

Fix-EfficientNet-B8, MaxUp obtains the state-of-the-art

85.80% top1 accuracy. The previous state-of-the-art top1

accuracy, 85.50%, is achieved by EfficientNet-L2.

4.2. CIFAR-10 and CIFAR-100

We test MaxUp equipped with Cutout (DeVries & Taylor,

2017) on CIFAR-10 and CIFAR-100, and denote it by

MaxUp+Cutout. We conduct our method on several neu-

ral architectures, including ResNet-110 (He et al., 2016b),

PreAct-ResNet-110 (He et al., 2016a) and WideResNet-

28-10 (Zagoruyko & Komodakis, 2016). We set m = 10
for WideResNet and m = 4 for the other models. We use

the public code2 and keep their hyper-parameters.

Implementation Details For CIFAR-10 and CIFAR-

100, we use the standard data processing pipeline (mirror+

crop) and train the model with 200 epochs. All the results

reported in this section are averaged over five runs.

We train the models for 200 epochs on the training

set with 256 examples per mini-batch, and evaluate

the trained models on the test set. The learning rate

2The code is downloaded from
https://github.com/junyuseu/pytorch-cifar-models

https://pypi.org/project/ptflops
https://github.com/junyuseu/pytorch-cifar-models
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Model + Cutout + MaxUp+Cutout

ResNet-110 94.84 ± 0.11 95.41± 0.08

PreAct-ResNet-110 95.02 ± 0.15 95.52± 0.06

WideResNet-28-10 96.92 ± 0.16 97.18± 0.06

Table 3. Test accuracy on CIFAR10 for different architectures.

Model + Cutout + MaxUp+Cutout

ResNet-110 73.64 ± 0.15 75.26± 0.21

PreAct-ResNet-110 74.37 ± 0.13 75.63± 0.26

WideResNet-28-10 81.59 ± 0.27 82.48± 0.23

Table 4. Test accuracy on CIFAR100 for different architectures.

starts at 0.1 and is divided by 10 after 100 and 150

epochs for ResNet-110 and PreAct-ResNet-110. For

WideResNet-28-10, we follow the settings in the original

paper (Zagoruyko & Komodakis, 2016), where the learn-

ing rate is divided by 10 after 60, 120 and 180 epochs.

Weight decay is set to 2.5−4 for all the models, and we

do not use dropout.

Results The results on CIFAR-10 and CIFAR-100 are

summarized in Table 3 and Table 4. We can see that the

models trained using MaxUp+Cutout significantly outper-

form the standard Cutout for all the cases.

On CIAFR-10, MaxUp improves the standard Cutout base-

line from 94.84%± 0.11% to 95.41%± 0.08% on ResNet-

110. It also improves the accuracy from 95.02%± 0.15%
to 95.52%± 0.06% on PreAct-ResNet-110.

On CIFAR-100, MaxUp obtains improvements by a large

margin. On ResNet-110 and PreAct-ResNet-110, MaxUp

improves the performance of Cutout from 73.64%±0.15%
and 74.37% ± 0.13% to 75.26% ± 0.21% and 75.63% ±
0.26%, respectively. MaxUp+Cutout also improves the

standard Cutout from 81.59%±0.27% to 82.48%±0.23%
on WideResNet-28-10 on CIFAR-100.

Ablation Study We test MaxUp with different sample

size m and investigate its impact on the performance on

ResNet-100 (a relatively small model) and WideResNet-

28-10 (a larger model).

Table 5 shows the result when we vary the sample size in

m ∈ {1, 4, 10, 20}. Note that MaxUp reduces to the naı̈ve

data augmentation method when m = 1. As shown in Ta-

ble 5, MaxUp with all m > 1 can improve the result of

standard augmentation (m = 1). Setting m = 4 or m = 10
achieves best performance on ResNet-110 , and m = 10
obtains best performance on WideResNet-28-10. We can

see that the results are not sensitive once m is in a proper

range (e.g., m ∈ [4 : 10]), and it is easy to outperform the

standard data augmentation (m = 1) without much tuning

m ResNet-110 WideResNet-28-10

1 73.64 ± 0.15 81.59 ± 0.27

4 75.26 ± 0.21 81.82 ± 0.22

10 75.19 ± 0.13 82.48 ± 0.23

20 74.37 ± 0.18 82.43 ± 0.24

Table 5. Test accuracy on CIFAR100 with ResNet-110 and

WideResNet-28-10, when the sample size m varies.

of m. Furthermore, we suggest to use a large m for large

models, and a small m for relatively small models.

4.3. Language Modeling

For language modeling, we test MaxUp on two benchmark

datasets: Penn Treebank (PTB) and Wikitext-2 (WT2). We

use the code provided by Wang et al. (2019) as our base-

line3, which stacks a three-layer LSTM and implements a

bag of regularization and optimization tricks for neural lan-

guage modeling proposed by Merity et al. (2018), such as

weight tying, word embedding drop and Averaged SGD.

For this task, we apply MaxUp using word embedding

dropout (Merity et al., 2018) as the random data augmen-

tation method. Word embedding dropout implements

dropout on the embedding matrix at the word level, where

the dropout is broadcasted across all the embeddings of all

the word vectors. For the selected words, their embedding

vectors are set to be zero vectors. The other word embed-

dings in the vocabulary are scaled by 1
1−p

, where p is the

probability of embedding dropout.

As the word embedding layer serves as the first layer in a

neural language model, we apply MaxUp in this layer. We

do feed-forward for m times and select the worst case to do

backpropagation for each given sentence. In this section,

we set a small m = 2 since the models are already well-

regularized by other regularization techniques.

Implement Details The PTB corpus (Marcus et al.,

1993) is a standard dataset for benchmarking language

models. It consists of 923k training, 73k validation and

82k test words. We use the processed version provided by

Mikolov et al. (2010) that is widely used for PTB.

The WT2 dataset is introduced in Merity et al. (2018) as

an alternative to PTB. It contains pre-processed Wikipedia

articles, and the training set contains 2 million words.

The training procedure can be decoupled into two stages:

1) optimizing the model with SGD and averaged SGD

(ASGD); 2) restarting ASGD for fine-tuning twice. We ap-

ply MaxUp in both stages, and report the perplexity scores

at the end of the second stage. We also report the perplexity

scores with a recently-proposed post-process method, dy-

3
https://github.com/ChengyueGongR/advsoft

https://github.com/ChengyueGongR/advsoft
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Method Params Valid Test

NAS-RNN (Zoph & Le, 2017) 54M - 62.40

AWD-LSTM (Merity et al., 2018) 24M 58.50 56.50

AWD-LSTM + FRAGE (Gong et al., 2018) 24M 58.10 56.10

AWD-LSTM + MoS (Yang et al., 2018) 22M 56.54 54.44

w/o dynamic evaluation

ADV-AWD-LSTM (Wang et al., 2019) 24M 57.15 55.01

ADV-AWD-LSTM + MaxUp 24M 56.25 54.27

+ dynamic evaluation (Krause et al., 2018)

ADV-AWD-LSTM (Wang et al., 2019) 24M 51.60 51.10

ADV-AWD-LSTM + MaxUp 24M 50.83 50.29

Table 6. Perplexities on the validation and test sets on the Penn Treebank dataset. Smaller perplexities refer to better language modeling

performance. Params denotes the number of model parameters.

Method Params Valid Test

AWD-LSTM (Merity et al., 2018) 33M 68.60 65.80

AWD-LSTM + FRAGE (Gong et al., 2018) 33M 66.50 63.40

AWD-LSTM + MoS (Yang et al., 2018) 35M 63.88 61.45

w/o dynamic evaluation

ADV-AWD-LSTM (Wang et al., 2019) 33M 63.68 61.34

ADV-AWD-LSTM + MaxUp 33M 62.48 60.19

+ dynamic evaluation (Krause et al., 2018)

ADV-AWD-LSTM (Wang et al., 2019) 33M 42.36 40.53

ADV-AWD-LSTM + MaxUp 33M 41.29 39.61

Table 7. Perplexities on the validation and test sets on the WikiText-2 dataset. Smaller perplexities refer to better language modeling

performance. Params denotes the number of model parameters.

namical evaluation (Krause et al., 2018) after the training

process.

Results on PTB and WT2 The results on PTB and

WT2 corpus are illustrated in Table 6 and Table 7, re-

spectively. We calculate the perplexity on the validation

and test set for each method to evaluate its performance.

We can see that MaxUp outperforms the state-of-the-art

results achieved by Frage (Gong et al., 2018) and Mix-

ture of SoftMax (Yang et al., 2018). We further compare

MaxUp to the result of Wang et al. (2019) based on AWD-

LSTM (Merity et al., 2018) at two checkpoints, with or

without dynamic evaluation (Krause et al., 2018). On PTB,

we enhance the baseline from 55.01/51.10 to 54.27/50.29
at these two checkpoints on the test set. On WT2, we

enhance the baseline from 61.34/40.53 to 60.19/39.61 at

these two checkpoints on the test set. Results on valida-

tion set are reported in both Table 6 and 7 to show that the

improvement can not achieved by simple hyper-parameter

tuning on the test set.

4.4. Adversarial Certification

Modern image classifiers are known to be sensi-

tive to small, adversarially-chosen perturbations on in-

puts (Goodfellow et al., 2014). Therefore, for making

high-stakes decisions, it is of critical importance to de-

velop methods with certified robustness, which provide

(high probability) provable guarantees on the correctness

of the prediction subject to arbitrary attacks within certain

perturbation ball.

Recently, Cohen et al. (2019) proposed to construct certi-

fiably robust classifiers against ℓ2 attacks by introducing

Gaussian smoothing on the inputs, which is shown to out-

perform all the previous ℓ2-robust classifiers in CIFAR-

10. There has been two major methods for training such

smoothed classifiers: Cohen et al. (2019) trains the classi-

fier with a Gaussian data augmentation technique, while

Salman et al. (2019) improves the original Gaussian data

augmentation by using PGD (projected gradient descent)

adversarial training, in which PGD is used to find a local

maximal within a given ℓ2 perturbation ball.

In our experiment, we use MaxUp with Gaussian per-

turbation (referred to as MaxUp+Gauss) to train better
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ℓ2 RADIUS (CIFAR-10) 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75
Cohen et al. (2019) (%) 60 43 34 23 17 14 12 10 8 6 4

Salman et al. (2019) (%) 74 57 48 38 33 29 25 19 17 14 12

Ours (%) 74 57 49 40 35 31 27 22 19 17 15

Table 8. Certified accuracy on CIFAR-10 of the best classifiers by different methods, evaluated against ℓ2 attacks of different radiuses.

smoothed classifiers than the methods by Cohen et al.

(2019) and Salman et al. (2019). Like how MaxUp im-

proves upon standard data augmentation, it is natural to ex-

pect that our MaxUp+Gauss can learn more robust classi-

fiers than the standard Gaussian data augmentation method

in Cohen et al. (2019).

Training Details We applied MaxUp to Gaussian aug-

mented data on CIFAR-10 with ResNet-110 (He et al.,

2016b). We follow the training pipelines described in

Salman et al. (2019). We set a batch size of 256, an ini-

tial learning rate of 0.1 which drops by a factor of 10 every

50 epochs, and train the models for 150 epochs.

Evaluation After training the smoothed classifiers, we

evaluation the certified accuracy of different models under

different ℓ2 perturbation sets. Given an input image x and

a perturbation region B, the smoothed classifier is called

certifiably correct if its prediction is correct and has a guar-

anteed lower bound larger than 0.5 in B. The certified accu-

racy is the percentage of images that are certifiably correct.

Following Salman et al. (2019), we calculate the certified

accuracy of all the classifiers for various radius and report

the best results overall of the classifiers. We use the codes

provided by Cohen et al. (2019) to calculate certified ac-

curacy.4

Following Salman et al. (2019), we select the best hyperpa-

rameters with grid search. The only two hyperparameters

of our MaxUp+Gauss are the sample size m and the vari-

ance σ2 of the Gaussian perturbation, which we search in

m ∈ {5, 25, 50, 100, 150} and σ ∈ {0.12, 0.25, 0.5, 1.0}.
In comparison, Salman et al. (2019) requiers to search a

larger number of hyper-parameters, including the number

of steps of the PGD, the number of noise samples, the

maximum ℓ2 perturbation, and the variance of Gaussian

data augmentation during training and testing. Overall,

Salman et al. (2019) requires to train and evaluate over 150

models for hyperparmeter tuning, while MaxUp+Gauss re-

quires only 20 models.

Results We show the certified accuraries on CIFAR-10

in Table 8 under ℓ2 attacks for each ℓ2 radius. We find that

MaxUp outperforms Cohen et al. (2019) for all the ℓ2 ra-

diuses by a large margin. For example, MaxUp can im-

4
https://github.com/locuslab/smoothing

prove the certified accuracy at radius 0.25 from 60% to

74% and improve the 4% accuracy on radius 2.75 to 15%.

MaxUp also outperforms the PGD-based adversarial train-

ing of Salman et al. (2019) for all the radiuses, boosting the

accuracy from 14% to 17% at radius 2.5, and from 12% to

15% at radius 2.75.

In summary, MaxUp clearly outperforms both Cohen et al.

(2019) and Salman et al. (2019). MaxUp is also much

faster and requires less hyperparameter tuning than

Salman et al. (2019). Although the PGD-based method of

Salman et al. (2019) was designed to outperform the orig-

inal method by Cohen et al. (2019), MaxUp+Gauss further

improves upon Salman et al. (2019), likely because MaxUp

with Gaussian perturbation is more compatible with the

Gaussian smoothing based certification of Cohen et al.

(2019) than PGD adversarial optimization.

5. Conclusion

In this paper, we propose MaxUp, a simple and efficient

training algorithms for improving generalization, espe-

cially for deep neural networks. MaxUp can be viewed as a

introducing a gradient-norm smoothness regularization for

Gaussian perturbation, but does not require to evaluate the

gradient norm explicitly, and can be easily combined with

any existing data augmentation methods. We empirically

show that MaxUp can improve the performance of data

augmentation methods in image classification, language

modeling, and certified defense. Especially, we achieve

SOTA performance on ImageNet.

For future works, we will apply MaxUp to more applica-

tions and models, such as BERT (Devlin et al., 2019). Fur-

thermore, we will generalize MaxUp to apply mild adver-

sarial optimization on feature and label spaces for other

challenging tasks in machine learning, including transfer

learning, semi-supervised learning.
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