2002.09024v1 [cs.LG] 20 Feb 2020

arxiv

MaxUp: A Simple Way to Improve Generalization of Neural Network Training

Chengyue Gong* ! Tongzheng Ren*! Mao Ye'! Qiang Liu'

Abstract

We propose MaxUp, an embarrassingly sim-
ple, highly effective technique for improving the
generalization performance of machine learning
models, especially deep neural networks. The
idea is to generate a set of augmented data
with some random perturbations or transforms,
and minimize the maximum, or worst case loss
over the augmented data. By doing so, we
implicitly introduce a smoothness or robustness
regularization against the random perturbations,
and hence improve the generation performance.
For example, in the case of Gaussian perturba-
tion, MaxUp is asymptotically equivalent to us-
ing the gradient norm of the loss as a penalty
to encourage smoothness. We test MaxUp on
a range of tasks, including image classification,
language modeling, and adversarial certification,
on which MaxUp consistently outperforms the
existing best baseline methods, without introduc-
ing substantial computational overhead. In par-
ticular, we improve ImageNet classification from
the state-of-the-art top-1 accuracy 85.5% without
extra data to 85.8%. Code will be released soon.

1. Introduction

A central theme of machine learning is to alleviate the issue
of overfitting, improving the generalization performance on
testing data. This is often achieved by leveraging important
prior knowledge of the models and data of interest. For ex-
ample, the regularization-based methods introduce penalty
on the complexity of the model, which often amount to en-
forcing certain smoothness properties. Data augmentation
techniques, on the other hand, leverage important invari-
ance properties of the data (such as the shift and rotation
invariance of images) to improve performance. Novel ap-
proaches that exploit important knowledge of the models
and data hold the potential of substantially improving the
performance of machine learning systems.

“Equal contribution 'UT Austin.
Chengyue Gong <cygong@cs.utexas.edu>.

Correspondence to:

Preprint

We propose MaxUp, a simple yet powerful training method
to improve the generalization performance and alleviate the
over-fitting issue. Different from standard methods that
minimize the average risk on the observed data, MaxUp
generates a set of random perturbations or transforms of
each observed data point, and minimizes the average risk
of the worst augmented data of each data point. This al-
lows us to enforce robustness against the random perturba-
tions and transforms, and hence improve the generalization
performance. MaxUp can easily leverage arbitrary state-
of-the-art data augmentation schemes (e.g. Zhang et al.,
2018; DeVries & Taylor, 2017; Cubuk et al., 2019a), and
substantially improves over them by minimizing the worst
(instead of average) risks on the augmented data, without
adding significant computational ahead.

Theoretically, in the case of Gaussian perturbation, we
show that MaxUp effectively introduces a gradient-norm
regularization term that serves to encourage smoothness of
the loss function, which does not appear in standard data
augmentation methods that minimize the average risk.

MaxUp can be viewed as a “lightweight” variant of adver-
sarial training against adversarial input pertubrations (e.g.
Tramer et al., 2018; Madry et al., 2017), but is mainly de-
signed to improve the generalization on the clean data, in-
stead of robustness on perturbed data (although MaxUp
does also increase the adversarial robustness in Gaussian
adversarial certification as we shown in our experiments
(Section 4.4)). In addition, compared with standard adver-
sarial training methods such as projected gradient descent
(PGD) (Madry et al., 2017), MaxUp is much simpler and
computationally much faster, and can be easily adapted to
increase various robustness defined by the corresponding
data augmentation schemes.

We test MaxUp on three challenging tasks: image classi-
fication, language modeling, and certified defense against
adversarial examples (Cohen et al., 2019). We find that
MaxUp can leverage the different state-of-the-art data aug-
mentation methods and boost their performance to achieve
new state-of-the-art on a range of tasks, datasets, and neural
architectures. In particular, we set up a new state-of-the-art
result on ImageNet classification without extra data, which
improves the best 85.5% top1 accuracy by Xie et al. (2019)
to 85.8%. For the adversarial certification task, we find

http://arxiv.org/abs/2002.09024v1

MaxUp: A Simple Way to Improve Generalization of Neural Network Training

Maxup allows us to train more verifiably robust classifiers
than prior arts such as the PGD-based adversarial training
proposed by Salman et al. (2019).

2. Main Method

We start with introducing the main idea of MaxUp, and then
discuss its effect of introducing smoothness regularization
in Section 2.1.

ERM Giving a dataset D,, = {;}"_,, learning often re-
duces to a form of empirical risk minimization (ERM):

meinIEmNDn [L(x,0)], (1)

where 0 is a parameter of interest (e.g., the weights of a
neural network), and L(x,) denotes the loss associated
with data point . A key issue of ERM is the risk of over-
fitting, especially when the data information is insufficient.

MaxUp We propose MaxUp to alleviate overfitting. The
idea is to generate a set of random augmented data and min-
imize the maximum loss over the augmented data.

Formally, for each data point « in D,,, we generate a set
of perturbed data points {a/}™; that are similar to &, and
estimate @ by minimizing the maximum loss over {«} }:

MaxUp:

minE,p, {max L(z), 0)] N)
o i€ [m]

This loss can be easily minimized with stochastic gradient

descent (SGD). Note that the gradient of the maximum loss

is simply the gradient of the worst copy, that is,

Vo (max L(:B;,O)) = Ve¢L(z}.,0), 3)

i€[m]

where i* = argmax;c(,,) L(z;,0). This yields a simple
and practical algorithm shown in Algorithm 1.

In our work, we assume the augmented data {x}7, is
i.i.d. generated from a distribution P(:|x). The P(-|x) can
be based on small perturbations around x, e.g., P(-|x) =
N (z,0%I), the Gaussian distribution with mean = and
isotropic variance o2. The P(-|x) can also be constructed
based on invariant data transformations that are widely
used in the data augmentation literature, such as random
crops, equalizing, rotations, and clips for images (see e.g
Cubuk et al., 2019a; DeVries & Taylor, 2017; Cubuk et al.,
2019b).

2.1. MaxUp as a Smoothness Regularization

We provide a theoretical interpretation of Maxup as in-
troducing a gradient-norm regularization to the original

ERM objective to encourage smoothness. Here we con-
sider the simple case of isotropic Gaussian perturbation,
when P(-|z) = N (zx,0?I). For simplifying notation, we
define

Lpm(x,0) = E(arym p(aym {rg[a)ﬁ L(x), 0)} . (4
which represents the expected MaxUp risk of data point x
with m augmented copies.

Theorem 1 (MaxUp as Gradient-Norm Regularization).
Consider Ly ,(x,0) defined in (4) with P(-|x) =
N (z,0%I). Assume L(z, 0) is second-order differentiable
w.r.t. . Then

Lpm(z,0) = L(x,0) + ¢y | VaL(z,)|, + O(c?),

where ¢, » is a constant and ¢y, » = ©(o+/logm), where
O(-) denotes the big-Theta notation.

Theorem 1 shows that, the expected MaxUp risk can be
viewed as introducing a Lipschitz-like regularization with
the gradient norm ||V, L(x,0)|2, which encourages the
smoothness of L(x,0) w.r.t. the input x. The strength of
the regularization is controlled by ¢, », which depends on
the number of samples m and perturbation magnitude o.

Proof. Using Taylor expansion, we have
Lp,m(z,0)

~ 5 |max L(e!.0)

i€[m]

= L(z,0) +E {max (L(x},0) — L(z, 9))}

i€[m]

= L(z,0) +E {max(VmL(m, 0), zﬁ] +0(?),

i€(q]

where we assume z; = x} — @, which follows N (0, o%1).
The rest of the proof is due to the Lemma 1 below. O

Lemma 1. Let g be a fixed vector in RY, and {z;}1, are
m i.i.d. random variables from N (0,*I). We have

E {max]@,z»] = emollgle,

i€[m
where ¢y, ., = © (cr\/log m) .

Proof. Define y; = (g,z:)/lgll;- Then {y;}i", is
ii.d. from N'(0,02). Therefore, ¢p.o = E[max;e () vil,
which is well known to be ©(cy/logm). See e.g.,
Orabona & Pal (2015); Kamath (2015) for bounds re-
lated to E[max;c), y:]. More specifically, we have
0.230y/Togm < ¢pmo < V20+/ITogm following Kamath
(2015). O

MaxUp: A Simple Way to Improve Generalization of Neural Network Training

Algorithm 1 MaxUp with Stochastic Gradient Descent

Input: Dataset D,, = {;}}" ; transformation distribution P(-|«); number of augmented data m; initialization 8; SGD

parameters (batch size, step size 7, etc).
repeat
Draw a mini-batch M from D,,, and update 6 via

0« 0 —nEzm {Vg <m[ax] L(z}, 0)”)
1E(m

where {@}}" ; are drawn i.i.d. from P(-|x) for each « in the mini batch M. See Equation 3.

until convergence

3. Related Methods and Discussion

MaxUp is closely related to both data augmentation and ad-
versarial training. It can be viewed as an adversarial vari-
ant of data augmentation, in that it minimizes the worse
case loss on the perturbed data, instead of an average loss
like typical data augmentation methods. MaxUp can also
be viewed as a “lightweight” variant of adversarial train-
ing, in that the maximum loss is calculated by simple ran-
dom sampling, instead of more accurate gradient-based op-
timizers for finding the adversarial loss, such as projected
gradient descent (PGD); MaxUp is much simpler and faster
than the PGD-based adversarial training, and is more suit-
able for our purpose of alleviating over-fitting on clean data
(instead of adversarial defense). We now elaborate on these
connections in depth.

3.1. Data Augmentation

Data augmentation has been widely used in machine learn-
ing, especially on image data which admits a rich set
of invariance transforms (e.g. translation, rotation, ran-
dom cropping). Recent augmentation techniques, such
as MixUp (Zhang et al., 2018), CutMix (Yun et al., 2019)
and manifold MixUp (Verma et al., 2019) have been found
highly useful in training deep neural networks, especially
in achieving state-of-the-art results on important image
classification benchmarks such as SVHN, CIFAR and Im-
ageNet. More recently, more advanced methods have been
developed to find the optimal data augmentation policies
using reinforcement learning or adversarial generative net-
work (e.g. Cubuk et al., 2019a;b; Zhang et al., 2020).

MaxUp can easily leverage these advanced data augmen-
tation techniques to achieve good performance. The key
difference, however, is that MaxUp in (2) minimizes the
maximum loss on the augmented data, while typical data
augmentation methods minimize the average loss, that is,

. 1 /
melnEmNDn [E ;L(.’BZ,O)] 5 (5)

which we refer to as standard data augmentation through-

out the paper. It turns out (2) and (5) behave very differ-
ent as regularization mechanisms, in that (5) does not in-
troduce the gradient-norm regularization as (2), and hence
does not have the benefit of having gradient-norm regular-
ization. This is because the first-order term in the Taylor
expansion is canceled out due to the averaging in (5).

Specifically, let P(-|z) be any distribution whose expecta-
tion is @ and L(x, 0) is second-order differentiable w.r.t .
Define the expected loss related to (5) on data point x:

. 1 &
LRm(:I},G) = E{mfi};il,vp(.‘m)m lg E L(w;,e)] . (6)
i=1

Then with a simple Taylor expansion, we have
Lp,m(z,0) = L(z,0) + O(c?),

which misses the gradient-norm regularization term when
compared with MaxUp decomposition in Theorem 1.

Note that the MaxUp update is computationally faster than
the solving (5) with the same m, because we only need
to backpropagate on the worst augmented copy for each
data point (see Equation 3), while solving (5) requires to
backpropagate on all the m copies at each iteration.

3.2. Adversarial Training

Adversarial training has been developed to defense various
adversarial attacks on the data inputs (Madry et al., 2017).
It estimates @ by solving the following problem:

max L(z',0)|, (7

minE,p,
6 z'eB(x,r)

where B(x,) represents a ball centered at & with radius r
under some metrics (e.g. o, {1, {2, or £, distances). The
inner maximization is often solved by running projected
gradient descent (PGD) for a number of iterations.

MaxUp in (2) can be roughly viewed as solving the inner
adversarial maximization problem in (7) using a “mild”,
or “lightweight” optimizer by randomly drawing m points

MaxUp: A Simple Way to Improve Generalization of Neural Network Training

from P(-|x) and finding the best. Such mild adversarial
optimization increases the robustness against the random
perturbation it introduces, and hence enhance the general-
ization performance. Adversarial ideas have also been used
to improvement generalization in a series of recent works
(e.g., Xie et al., 2019; Zhu et al., 2020).

Different from our method, typical adversarial training
methods, especially these based PGD (Madry et al., 2017),
tend to solve the adversarial optimization much more ag-
gressively to achieve higher robustness, but at the cost of
scarifying the accuracy on clean data. There has been
shown a clear trade-off between the accuracy of a classifier
on clean data and its robustness against adversarial attacks
(see e.g., Tsipras et al., 2019; Zhang et al., 2019; Yin et al.,
2019; Schmidtet al., 2018). By using a mild adversarial
optimizer, MaxUp strikes a better balance between the ac-
curacy on clean data and adversarial robustness.

Besides, MaxUp is much more computationally efficient
than PGD-based adversarial training, because it does not
introduce additional back-propagation steps as PGD. In
practice, MaxUp can be equipped with various complex
data augmentation methods (in which case P(-|x) can be
discrete distributions), while PGD-based adversarial train-
ing mostly focuses on perturbations in £, balls.

3.3. Online Hard Example Mining

Online hard example mining (OHEM) (Shrivastava et al.,
2016) is a training method originally developed for region-
based objective detection, which improves the performance
of neural networks by picking the hardest examples within
mini batches of stochastic gradient descent (SGD). It can
be viewed as running SGD for minimizing the following
expected loss

inlE L]
min [mMX (x,)},

which amounts to randomly picking a mini-batch M
at each iteration and minimizing the loss of the hard-
est example within M. By doing so, OHEM can fo-
cus more on the hard examples and hence improves
the performance on borderline cases. This makes
OHEM particularly useful for class-imbalance tasks, e.g.
object detection (Shrivastavaetal., 2016), person re-
identification (Luo et al., 2019).

Different with MaxUp, the hardest examples in OHEM are
selected in mini-batches consisting of independently se-
lected examples, with no special correlation or similarity.
Mathematically, it can be viewed as reweighing the data
distribution to emphasize harder instances. This is sub-
stantially different from MaxUp, which is designed to en-
force the robustness against existing random data augmen-
tation/perturbation schemes.

Method Top-1 error Top-5 error
Vanilla (e et a1, 2016b) 76.3 -
Dropout (srivastavaet al., 2014) 76.8 934
DropPath (Larsson et al., 2017) 77.1 93 5
Manifold Mixup (vermaet al., 2019) 77.5 93.8
AutoAugment (Cubuket al., 2019a) 77.6 93.8
Mixup (zhang etal., 2018) 77.9 93.9
DropBlock (Ghiasi et at., 2018) 78.3 94.1
CutMixX (Yun et al., 2019) 78.6 94.0
MaxUp+CutMix 78.9 94.2

Table 1. Summary of topl and top5 accuracies on the validation
set of ImageNet for ResNet-50.

4. Experiments

We test our method using both image classification and lan-
guage modeling for which a variety of strong regularization
techniques and data augmentation methods have been pro-
posed. We show that MaxUp can outperform all of these
methods on the most challenging datasets (e.g. ImageNet,
Penn Treebank, and Wikitext-2) and state-of-the-art mod-
els (e.g. ResNet, EfficientNet, AWD-LSTM). In addition,
we apply our method to adversarial certification via Gaus-
sian smoothing (Cohen et al., 2019), for which we find that
MaxUp can outperform both the augmented data baseline
and PGD-based adversarial training baseline.

For all the tasks, if training from scratch, we first train the
model with standard data augmentation with 5 epochs and
then switch to MaxUp.

Time and Memory Cost MaxUp only slightly increase
the time and memory cost compared with standard training.
During MaxUp, we only need to find the worst instance out
of the m augmented copies through forward-propagation,
and then only back-propagate on the worst instance. There-
fore, the additional cost of MaxUp over standard training
is m forward-propagation, which introduces no significant
overhead on both memory and time cost.

4.1. ImageNet

We evaluate MaxUp on ILSVRC2012, a subset of Im-
ageNet classification dataset (Deng et al., 2009). This
dataset contains around 1.3 million training images and
50,000 validation images. We follow the standard data
processing pipeline including scale and aspect ratio distor-
tions, random crops, and horizontal flips in training. Dur-
ing the evaluation, we only use the single-crop setting.

Implementation Details We test MaxUp with
P(-|x) defined by the CutMix data augmentation tech-
nique (Yun et al., 2019) (referred to as MaxUp+CutMix).

MaxUp: A Simple Way to Improve Generalization of Neural Network Training

Model Model Size | FLOPs | +CutMix (%) +MaxUp+CutMix (%)
ResNet-101 44.55M 7.85G 79.83 80.26
ProxylessNet-CPU 7.12M 481M 75.32 75.65
ProxylessNet-GPU 4.36M 470M 75.08 75.42
ProxylessNet-Mobile x1.4 6.86M 603M 76.71 7717
EfficientNet-B7 66.35M 38.20G 85.22* 85.45*
Fix-EfficientNet-B8 87.42M 101.79G 85.57* 85.80"

@9

Table 2. Top1 accuracies of different models on the validation set of ImageNet 2012. The “x” indicates that MaxUp is applied to the

pre-trained model and trained for 5 epochs.

CutMix randomly cuts and pasts patches among training
images, while the ground truth labels are also mixed
proportionally to the area of the patches. MaxUp+CutMix
applies CutMix on one image for m times (cutting different
randomly sampled patches), and select the worst case to
do backpropagation.

We test our method on ResNet-50, ResNet-101 (He et al.,
2016b), as well as recent energy-efficient architectures,
including ProxylessNet (Cai et al., 2019) and Efficient-
Net (Tan & Le, 2019). We resize the images to 600 x 600
and 845 x 845 for EfficientNet-B7 and EfficientNet-B8,
respectively (Tan & Le, 2019), for which we process the
images with the data processing pipelines proposed by
Touvron et al. (2019). For the other models, the input im-
age size is 224 x 224. To save computation resources, we
only fine-tune the pre-trained models with MaxUp for a few
epochs. We set m = 4 for MaxUp in the ImageNet-2012
experiments unless indicated otherwise. This means that
we optimize the worst case in 4 augmented samples for
each image.

For ResNet-50, ResNet-101 and ProxylessNets, we train
the models for 20 epochs with learning rate 10~° and batch
size 256 on 4 GPUs for 20 epochs. For EfficientNet, we fix
the parameters in the batch normalization layers and train
the other parameters with learning rate 10~* and batch size
1000 for 5 epochs.

As shown in Table 2, for ResNet-50 and ResNet-101, we
achieve the best results among all the data augmentation
method. For EfficientNet-B8, we further improve the state-
of-the-art result on ImageNet with no extra data.

ResNet-50 on ImageNet Table 1 compares a num-
ber of state-of-the-art regularization techniques with
MaxUp+CutMix on ImageNet with ResNet-50.! We can
see that MaxUp+CutMix achieves better performance com-
pared to all the strong data augmentation and regularization
baselines. From Table 1, we see that CutMix gives the best
topl error (78.6%) among all the augmentation tasks, but
our method further improves it to 78.9%. DropBlock out-

'All the FLOPS and model size reported in this paper is cal-
culated by https://pypi.org/project/ptflops.

performs all the other methods in terms of the top5 error,
but by augmenting CutMix with MaxUp, we improve the
94.1% top5 error rate obtained by DropbBlock to 94.2%.

More Results on Different Architectures Table 2 shows
the result of ImageNet on ResNet-101, ProxylessNet-
CPU/GPU/Mobile (Cai et al., 2019) and EfficientNet. We
can see that MaxUp consistently improves the results
in all these cases. On ResNet-101, it improves the
79.83% baseline to 80.26%. On ProxylessNet-CPU and
ProxylessNet-GPU, MaxUp enhances the 75.32% and
75.08% top1 accuracy to 75.65% and 75.42%, respectively.
On ProxylessNet-Mobile, we improve the 76.71% top1 ac-
curacy to 77.17%.

For EfficientNet-B7, CutMix enhances the original top1 ac-
curacy 85.0% (by Tan & Le, 2019) to 85.22%. MaxUp
further improves the topl accuracy to 88.45%. On
Fix-EfficientNet-B8, MaxUp obtains the state-of-the-art
85.80% topl accuracy. The previous state-of-the-art topl
accuracy, 85.50%, is achieved by EfficientNet-L2.

4.2. CIFAR-10 and CIFAR-100

We test MaxUp equipped with Cutout (DeVries & Taylor,
2017) on CIFAR-10 and CIFAR-100, and denote it by
MaxUp+Cutout. We conduct our method on several neu-
ral architectures, including ResNet-110 (He et al., 2016b),
PreAct-ResNet-110 (He et al., 2016a) and WideResNet-
28-10 (Zagoruyko & Komodakis, 2016). We set m = 10
for WideResNet and m = 4 for the other models. We use
the public code? and keep their hyper-parameters.

Implementation Details For CIFAR-10 and CIFAR-
100, we use the standard data processing pipeline (mirror+
crop) and train the model with 200 epochs. All the results
reported in this section are averaged over five runs.

We train the models for 200 epochs on the training
set with 256 examples per mini-batch, and evaluate
the trained models on the test set. The learning rate

>The code is downloaded from

https://github.com/Jjunyuseu/pytorch-cifar-models

https://pypi.org/project/ptflops
https://github.com/junyuseu/pytorch-cifar-models

MaxUp: A Simple Way to Improve Generalization of Neural Network Training

Model + Cutout + MaxUp+Cutout
ResNet-110 94.84 £0.11 95.41 £ 0.08
PreAct-ResNet-110 | 95.02 £+ 0.15 95.52 £ 0.06
WideResNet-28-10 | 96.92 + 0.16 97.18 £ 0.06

Table 3. Test accuracy on CIFAR1O0 for different architectures.

Model + Cutout + MaxUp+Cutout
ResNet-110 73.64 £0.15 75.26 £ 0.21
PreAct-ResNet-110 | 74.37 £ 0.13 75.63 £ 0.26
WideResNet-28-10 | 81.59 + 0.27 82.48 + 0.23

Table 4. Test accuracy on CIFAR100 for different architectures.

starts at 0.1 and is divided by 10 after 100 and 150
epochs for ResNet-110 and PreAct-ResNet-110. For
WideResNet-28-10, we follow the settings in the original
paper (Zagoruyko & Komodakis, 2016), where the learn-
ing rate is divided by 10 after 60, 120 and 180 epochs.
Weight decay is set to 2.5~* for all the models, and we
do not use dropout.

Results The results on CIFAR-10 and CIFAR-100 are
summarized in Table 3 and Table 4. We can see that the
models trained using MaxUp+Cutout significantly outper-
form the standard Cutout for all the cases.

On CIAFR-10, MaxUp improves the standard Cutout base-
line from 94.84% + 0.11% to 95.41% =+ 0.08% on ResNet-
110. It also improves the accuracy from 95.02% =+ 0.15%
t0 95.52% =+ 0.06% on PreAct-ResNet-110.

On CIFAR-100, MaxUp obtains improvements by a large
margin. On ResNet-110 and PreAct-ResNet-110, MaxUp
improves the performance of Cutout from 73.64% +0.15%
and 74.37% + 0.13% to 75.26% + 0.21% and 75.63% =+
0.26%, respectively. MaxUp+Cutout also improves the
standard Cutout from 81.59% =+ 0.27% to 82.48% + 0.23%
on WideResNet-28-10 on CIFAR-100.

Ablation Study We test MaxUp with different sample
size m and investigate its impact on the performance on
ResNet-100 (a relatively small model) and WideResNet-
28-10 (a larger model).

Table 5 shows the result when we vary the sample size in
m € {1,4,10,20}. Note that MaxUp reduces to the naive
data augmentation method when m = 1. As shown in Ta-
ble 5, MaxUp with all m > 1 can improve the result of
standard augmentation (m = 1). Settingm = 4 orm = 10
achieves best performance on ResNet-110 , and m = 10
obtains best performance on WideResNet-28-10. We can
see that the results are not sensitive once m is in a proper
range (e.g., m € [4 : 10]), and it is easy to outperform the
standard data augmentation (m = 1) without much tuning

m | ResNet-110 | WideResNet-28-10
1 | 73.64 £0.15 81.59 +£0.27
4 | 7526 £0.21 81.82 +£0.22
10 | 75.19 £0.13 82.48 + 0.23
20 | 74.37 £0.18 82.43 +0.24

Table 5. Test accuracy on CIFAR100 with ResNet-110 and
WideResNet-28-10, when the sample size m varies.

of m. Furthermore, we suggest to use a large m for large
models, and a small m for relatively small models.

4.3. Language Modeling

For language modeling, we test MaxUp on two benchmark
datasets: Penn Treebank (PTB) and Wikitext-2 (WT2). We
use the code provided by Wang et al. (2019) as our base-
line3, which stacks a three-layer LSTM and implements a
bag of regularization and optimization tricks for neural lan-
guage modeling proposed by Merity et al. (2018), such as
weight tying, word embedding drop and Averaged SGD.

For this task, we apply MaxUp using word embedding
dropout (Merity et al., 2018) as the random data augmen-
tation method. Word embedding dropout implements
dropout on the embedding matrix at the word level, where
the dropout is broadcasted across all the embeddings of all
the word vectors. For the selected words, their embedding
vectors are set to be zero vectors. The other word embed-
dings in the vocabulary are scaled by ﬁ, where p is the
probability of embedding dropout.

As the word embedding layer serves as the first layer in a
neural language model, we apply MaxUp in this layer. We
do feed-forward for m times and select the worst case to do
backpropagation for each given sentence. In this section,
we set a small m = 2 since the models are already well-
regularized by other regularization techniques.

Implement Details The PTB corpus (Marcus et al.,
1993) is a standard dataset for benchmarking language
models. It consists of 923k training, 73k validation and
82k test words. We use the processed version provided by
Mikolov et al. (2010) that is widely used for PTB.

The WT2 dataset is introduced in Merity et al. (2018) as
an alternative to PTB. It contains pre-processed Wikipedia
articles, and the training set contains 2 million words.

The training procedure can be decoupled into two stages:
1) optimizing the model with SGD and averaged SGD
(ASGD); 2) restarting ASGD for fine-tuning twice. We ap-
ply MaxUp in both stages, and report the perplexity scores
at the end of the second stage. We also report the perplexity
scores with a recently-proposed post-process method, dy-

*https://github.com/ChengyueGongR/advsoft

https://github.com/ChengyueGongR/advsoft

MaxUp: A Simple Way to Improve Generalization of Neural Network Training

Method Params Valid Test

NAS-RNN (Zoph & Le, 2017) 54M - 62.40
AWD-LSTM (Merity et al., 2018) 24M 58.50 56.50
AWD-LSTM + FRAGE (Gong et al., 2018) 24M 58.10 56.10
AWD-LSTM + MoS (Yang et al., 2018) 22M 56.54 54.44
w/o dynamic evaluation

ADV-AWD-LSTM (Wang et al., 2019) 24M 57.15 55.01
ADV-AWD-LSTM + MaxUp 24M 56.25 54.27
+ dynamic evaluation (Krause et al., 2018)

ADV-AWD-LSTM (Wang et al., 2019) 24M 51.60 51.10
ADV-AWD-LSTM + MaxUp 24M 50.83 50.29

Table 6. Perplexities on the validation and test sets on the Penn Treebank dataset. Smaller perplexities refer to better language modeling

performance. Params denotes the number of model parameters.

Method Params Valid Test

AWD-LSTM (Merity et al., 2018) 33M 68.60 65.80
AWD-LSTM + FRAGE (Gong et al., 2018) 33M 66.50 63.40
AWD-LSTM + MoS (Yang et al., 2018) 35M 63.88 61.45
w/o dynamic evaluation

ADV-AWD-LSTM (Wang et al., 2019) 33M 63.68 61.34
ADV-AWD-LSTM + MaxUp 33M 62.48 60.19
+ dynamic evaluation (Krause et al., 2018)

ADV-AWD-LSTM (Wang et al., 2019) 33M 42.36 40.53
ADV-AWD-LSTM + MaxUp 33M 41.29 39.61

Table 7. Perplexities on the validation and test sets on the WikiText-2 dataset. Smaller perplexities refer to better language modeling

performance. Params denotes the number of model parameters.

namical evaluation (Krause et al., 2018) after the training
process.

Results on PTB and WT2 The results on PTB and
WT2 corpus are illustrated in Table 6 and Table 7, re-
spectively. We calculate the perplexity on the validation
and test set for each method to evaluate its performance.
We can see that MaxUp outperforms the state-of-the-art
results achieved by Frage (Gonget al., 2018) and Mix-
ture of SoftMax (Yang et al., 2018). We further compare
MaxUp to the result of Wang et al. (2019) based on AWD-
LSTM (Merity et al., 2018) at two checkpoints, with or
without dynamic evaluation (Krause et al., 2018). On PTB,
we enhance the baseline from 55.01/51.10 to 54.27/50.29
at these two checkpoints on the test set. On WT2, we
enhance the baseline from 61.34/40.53 to 60.19/39.61 at
these two checkpoints on the test set. Results on valida-
tion set are reported in both Table 6 and 7 to show that the
improvement can not achieved by simple hyper-parameter
tuning on the test set.

4.4. Adversarial Certification

Modern image classifiers are known to be sensi-
tive to small, adversarially-chosen perturbations on in-
puts (Goodfellow et al., 2014). Therefore, for making
high-stakes decisions, it is of critical importance to de-
velop methods with certified robustness, which provide
(high probability) provable guarantees on the correctness
of the prediction subject to arbitrary attacks within certain
perturbation ball.

Recently, Cohen et al. (2019) proposed to construct certi-
fiably robust classifiers against /o attacks by introducing
Gaussian smoothing on the inputs, which is shown to out-
perform all the previous f»-robust classifiers in CIFAR-
10. There has been two major methods for training such
smoothed classifiers: Cohen et al. (2019) trains the classi-
fier with a Gaussian data augmentation technique, while
Salman et al. (2019) improves the original Gaussian data
augmentation by using PGD (projected gradient descent)
adversarial training, in which PGD is used to find a local
maximal within a given ¢, perturbation ball.

In our experiment, we use MaxUp with Gaussian per-
turbation (referred to as MaxUp+Gauss) to train better

MaxUp: A Simple Way to Improve Generalization of Neural Network Training

7> RADIUS (CIFAR-10) | 0.25 0.5 0.75 1.0 125 15 175 2.0 225 25 2.75
Cohenetal. (2019) (%) | 60 43 34 23 17 14 12 10 8 6 4
Salmanetal. (2019) (%) | 74 57 48 38 33 29 25 19 17 14 12
Ours (%) 74 57 49 40 35 31 27 22 19 17 15

Table 8. Certified accuracy on CIFAR-10 of the best classifiers by different methods, evaluated against ¢ attacks of different radiuses.

smoothed classifiers than the methods by Cohen et al.
(2019) and Salman et al. (2019). Like how MaxUp im-
proves upon standard data augmentation, it is natural to ex-
pect that our MaxUp+Gauss can learn more robust classi-
fiers than the standard Gaussian data augmentation method
in Cohen et al. (2019).

Training Details We applied MaxUp to Gaussian aug-
mented data on CIFAR-10 with ResNet-110 (He et al.,
2016b). We follow the training pipelines described in
Salman et al. (2019). We set a batch size of 256, an ini-
tial learning rate of 0.1 which drops by a factor of 10 every
50 epochs, and train the models for 150 epochs.

Evaluation After training the smoothed classifiers, we
evaluation the certified accuracy of different models under
different {5 perturbation sets. Given an input image x and
a perturbation region B, the smoothed classifier is called
certifiably correct if its prediction is correct and has a guar-
anteed lower bound larger than 0.5 in B. The certified accu-
racy is the percentage of images that are certifiably correct.
Following Salman et al. (2019), we calculate the certified
accuracy of all the classifiers for various radius and report
the best results overall of the classifiers. We use the codes
provided by Cohen et al. (2019) to calculate certified ac-
curacy.*

Following Salman et al. (2019), we select the best hyperpa-
rameters with grid search. The only two hyperparameters
of our MaxUp+Gauss are the sample size m and the vari-
ance o2 of the Gaussian perturbation, which we search in
m € {5,25,50,100,150} and o € {0.12,0.25,0.5,1.0}.
In comparison, Salman et al. (2019) requiers to search a
larger number of hyper-parameters, including the number
of steps of the PGD, the number of noise samples, the
maximum /¢, perturbation, and the variance of Gaussian
data augmentation during training and testing. Overall,
Salman et al. (2019) requires to train and evaluate over 150
models for hyperparmeter tuning, while MaxUp+Gauss re-
quires only 20 models.

Results We show the certified accuraries on CIFAR-10
in Table 8 under /5 attacks for each /5 radius. We find that
MaxUp outperforms Cohen et al. (2019) for all the ¢, ra-
diuses by a large margin. For example, MaxUp can im-

*https://github.com/locuslab/smoothing

prove the certified accuracy at radius 0.25 from 60% to
74% and improve the 4% accuracy on radius 2.75 to 15%.
MaxUp also outperforms the PGD-based adversarial train-
ing of Salman et al. (2019) for all the radiuses, boosting the
accuracy from 14% to 17% at radius 2.5, and from 12% to
15% at radius 2.75.

In summary, MaxUp clearly outperforms both Cohen et al.
(2019) and Salman et al. (2019). MaxUp is also much
faster and requires less hyperparameter tuning than
Salman et al. (2019). Although the PGD-based method of
Salman et al. (2019) was designed to outperform the orig-
inal method by Cohen et al. (2019), MaxUp+Gauss further
improves upon Salman et al. (2019), likely because MaxUp
with Gaussian perturbation is more compatible with the
Gaussian smoothing based certification of Cohen et al.
(2019) than PGD adversarial optimization.

5. Conclusion

In this paper, we propose MaxUp, a simple and efficient
training algorithms for improving generalization, espe-
cially for deep neural networks. MaxUp can be viewed as a
introducing a gradient-norm smoothness regularization for
Gaussian perturbation, but does not require to evaluate the
gradient norm explicitly, and can be easily combined with
any existing data augmentation methods. We empirically
show that MaxUp can improve the performance of data
augmentation methods in image classification, language
modeling, and certified defense. Especially, we achieve
SOTA performance on ImageNet.

For future works, we will apply MaxUp to more applica-
tions and models, such as BERT (Devlin et al., 2019). Fur-
thermore, we will generalize MaxUp to apply mild adver-
sarial optimization on feature and label spaces for other
challenging tasks in machine learning, including transfer
learning, semi-supervised learning.

References

Cai, H., Zhu, L., and Han, S. Proxylessnas: Direct neural
architecture search on target task and hardware. I/CLR,
2019.

Cohen, J. M., Rosenfeld, E., and Kolter, J. Z. Certified ad-
versarial robustness via randomized smoothing. ICML,
2019.

https://github.com/locuslab/smoothing

MaxUp: A Simple Way to Improve Generalization of Neural Network Training

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le,
Q. V. Autoaugment: Learning augmentation policies
from data. CVPR, 2019a.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. Ran-
daugment: Practical data augmentation with no separate
search. arXiv preprint arXiv:1909.13719,2019b.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In CVPR, pp. 248-255. IEEE, 20009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. 2019.

DeVries, T. and Taylor, G. W. Improved regularization
of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552,2017.

Ghiasi, G., Lin, T.-Y., and Le, Q. V. Dropblock: A regular-
ization method for convolutional networks. In NeurIPS,
pp- 10727-10737,2018.

Gong, C., He, D., Tan, X., Qin, T., Wang, L., and Liu, T.-
Y. Frage: Frequency-agnostic word representation. In
NeurlPS, pp. 1334-1345, 2018.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. /CLR, 2014.

He, K., Zhang, X., Ren, S., and Sun, J. Identity map-
pings in deep residual networks. In ECCV, pp. 630-645.
Springer, 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, pp. 770-778,
2016b.

Kamath, G. Bounds on the expectation of the maximum of
samples from a gaussian. URL http://www. gautamka-
math. com/writings/gaussian max. pdf, 2015.

Krause, B., Kahembwe, E., Murray, I., and Renals, S. Dy-
namic evaluation of neural sequence models. ICML,
2018.

Larsson, G., Maire, M., and Shakhnarovich, G. Fractal-
net: Ultra-deep neural networks without residuals. ICLR,
2017.

Luo, H., Gu, Y., Liao, X., Lai, S., and Jiang, W. Bag
of tricks and a strong baseline for deep person re-
identification. In CVPRW, pp. 0-0, 2019.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. /CLR, 2017.

Marcus, M., Santorini, B., and Marcinkiewicz, M. A.
Building a large annotated corpus of english: The penn
treebank. 1993.

Merity, S., Keskar, N. S., and Socher, R. Regularizing and
optimizing Istm language models. /CLR, 2018.

Mikolov, T., Karafiat, M., Burget, L., éernocky, J., and
Khudanpur, S. Recurrent neural network based language
model. In ISCA, 2010.

Orabona, F. and Pédl, D. Optimal non-asymptotic lower
bound on the minimax regret of learning with expert ad-
vice. arXiv preprint arXiv:1511.02176,2015.

Salman, H., Yang, G., Li, J., Zhang, P., Zhang, H., Razen-
shteyn, 1., and Bubeck, S. Provably robust deep learning
via adversarially trained smoothed classifiers. NeurIPS,
2019.

Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and
Madry, A. Adversarially robust generalization requires
more data. In NeurIPS, pp. 5014-5026, 2018.

Shrivastava, A., Gupta, A., and Girshick, R. Training
region-based object detectors with online hard example
mining. In CVPR, pp. 761-769, 2016.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. JMLR, pp. 1929-1958,
2014.

Tan, M. and Le, Q. V. Efficientnet: Rethinking model scal-
ing for convolutional neural networks. ICML, 2019.

Touvron, H., Vedaldi, A., Douze, M., and Jégou, H. Fix-
ing the train-test resolution discrepancy. arXiv preprint
arXiv:1906.06423,2019.

Tramer, F., Kurakin, A., Papernot, N., Goodfellow, I.,
Boneh, D., and McDaniel, P. Ensemble adversarial train-
ing: Attacks and defenses. /CLR, 2018.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and
Madry, A. Robustness may be at odds with accuracy. In
ICLR, 2019.

Verma, V., Lamb, A., Beckham, C., Courville, A.,
Mitliagkis, 1., and Bengio, Y. Manifold mixup: Encour-
aging meaningful on-manifold interpolation as a regular-
izer. ICML, 2019.

Wang, D., Gong, C., and Liu, Q. Improving neural lan-
guage modeling via adversarial training. /CML, 2019.

Xie, C., Tan, M., Gong, B., Wang, J., Yuille, A., and Le,
Q. V. Adversarial examples improve image recognition.
arXiv preprint arXiv:1911.09665,2019.

MaxUp: A Simple Way to Improve Generalization of Neural Network Training

Yang, Z., Dai, Z., Salakhutdinov, R., and Cohen, W. W.
Breaking the softmax bottleneck: A high-rank RNN lan-
guage model. In ICLR, 2018.

Yin, D., Kannan, R., and Bartlett, P. Rademacher complex-
ity for adversarially robust generalization. In /ICML, pp.
7085-7094, 2019.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo,
Y. Cutmix: Regularization strategy to train strong clas-
sifiers with localizable features. ICCV, 2019.

Zagoruyko, S. and Komodakis, N. Wide residual net-
works. In BMVC, pp. 87.1-87.12. BMVA Press, Septem-
ber 2016.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.
mixup: Beyond empirical risk minimization. In /CLR,
2018.

Zhang, H., Yu, Y., Jiao, J., Xing, E., Ghaoui, L. E., and
Jordan, M. Theoretically principled trade-off between
robustness and accuracy. In Chaudhuri, K. and Salakhut-
dinov, R. (eds.), ICML, pp. 7472-7482,2019.

Zhang, X., Wang, Q., Zhang, J., and Zhong, Z. Adversarial
autoaugment. /CLR, 2020.

Zhu, C., Cheng, Y., Gan, Z., Sun, S., Goldstein, T., and Liu,
J. Freelb: Enhanced adversarial training for language
understanding. /CLR, 2020.

Zoph, B. and Le, Q. V. Neural architecture search with
reinforcement learning. ICLR, 2017.

