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Abstract We prove that K-polystable log Fano pairs have reductive automor-
phism groups. In fact, we deduce this statement by establishing more general
results concerning the S-completeness and ®-reductivity of the moduli of K-
semistable log Fano pairs. Assuming the conjecture that K-semistability is an
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open condition, we prove that the Artin stack parametrizing K-semistable Fano
varieties admits a separated good moduli space.

Throughout, we work over an algebraically closed field k of characteristic 0.
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1 Introduction

The construction of moduli spaces parametrizing K-semistable and K-
polystable Fano varieties is a profound goal in the study of Fano varieties. The
K-moduli Conjecture predicts that the moduli functor %nKS‘S, of K-semistable
Q-Fano varieties of dimension # and volume V', which sends a k-scheme S to

Flat proper families X — §, whose geometric fibers are
KS‘S, (S) = K-semistable Q-Fano varieties of dimension n and )
volume V, satisfying Koll4r’s condition (see [12, § 1])

is represented by a finite type Artin stack Z{KS‘S, and it admits a projective good

moduli space %KSS - X, Kps v (see Definition 2.1), whose closed points precisely

parameterize n- dlmensmnal K-polystable Q-Fano varieties of volume V. The
ingredients needed in the construction can be translated into deep properties
of such Fano varieties. See [12, Introduction] for a more detailed discussion
of the prior state of the art.

1.1 Main theorems

In this paper, we show that if the moduli functor %KV is represented by an
Artin stack, then it admits a separated good moduli space (see Step (III) in [12,

Introduction]). A prototype of the good moduli space of a stack is given by the
morphism [X**/G] — X/ G to the geometric invariant theory (GIT) quotient
of a polarized projective variety (X, L) by a reductive group G. However, for
the question of K-stability of Fano varieties, it is not clear how to realize it as a
GIT question: on the one hand, we know there are K-polystable Fano varieties
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Reductivity of the automorphism group 997

which are not asymptotically Chow semistable (see e.g. [32,37]); on the other
hand, the more natural CM line bundle is not positive on the Hilbert scheme
(see [16]).

Roughly speaking, for moduli problems which are not known to be global
GIT quotients, however, we still aim to find a quotient space, such that the
quotient morphism behaves as well as the GIT quotient morphism [ X% /G] —
X/ G from many perspectives (see Definition 2.1). In this note, we adapt
the general framework developed in [4] to the case of K-semistable (Q-Fano
varieties.

Theorem 1.1 The functor %}f‘; satisfies the valuative criterion for S-
completeness (see Definition 2. 3) and ©- reductivity (see Definition 2.7) with
respect to essentially of finite type DVRs.

For an Artin stack of finite type with affine diagonal over a field of char-
acteristic 0, [4, Theorem A] states that the conditions of S-completeness and
®-reductivity are equivalent to the existence of a separated good moduli space.
An immediate corollary is that

Corollary 1.2 Let X C f{nKS‘S, be a subfunctor representable by an Artin stack

of finite type, such that if x € X then {x} C X. Then X admits a separated
good moduli space.

The stack X,, v is an Artin stack with affine diagonal, and it is known that the
semistable locus is bounded (cf. [24]), so it remains to show that %st CX,v
is an open substack (see [12, Step II]). This question was settled shortly after
this paper was first released (see Remark 1.4). For smoothable K-semistable
Fano varieties, the existence of the good moduli space as well as its properness
were settled in [34].

In fact, we prove S-completeness and ®-reductivity of the moduli functor
parameterizing families of K-semistable log Fano pairs. Since S-completeness
implies the reductivity of the automorphism group of any polystable point, we
can conclude:

Theorem 1.3 If (X, D) is a K-polystable log Fano pair, then Aut(X, D) is
reductive.

This theorem has a long history: it is a classical result for Kidhler—Einstein
Fano manifolds in [36] (and even holds in the more general case of polarized
manifolds with constant scalar curvature metrics). For log Fano pairs with a
weak conical Kdhler-Einstein metric, this is a much harder result and it is
a key step in the proofs of the Yau-Tian—Donaldson Conjecture for smooth
Fano manifolds (see e.g. [7,13,40]). Our method is purely algebro-geometric.
In [12], it was shown that if (X, D) is K-stable, then Aut(X, D) is finite. That
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paper also establishes a key ingredient in the proof of Theorem 1.3, the Finite
Generation Condition 3.1. We also note that when X is only K-semistable,
then Aut(X) can be non-reductive (see [14, Example 1.4]).

1.2 Sketch of the proof

We sketch the main ideas in the proof of Theorem 1.1. The conditions of
S-completeness and ®-reductivity of %,lfs‘s/ both involve extending a family
of K-semistable Q-Fano varieties over the complement of a closed point in a
certain regular surface to a family over the entire surface. We first show that the
pushforward sheaves of m-th relative anti-pluri-canonical line bundles extend,
then we prove that the direct sum of these sheaves is finitely generated. After
taking Proj of this algebra, we argue that the central fiber is a K-semistable Q-
Fano variety, which gives the desired extension of the family of K -semistable
Q-Fano varieties. Of course, such finite generation results are highly nontrivial.
Fortunately, for families of K-semistable Fano varieties, the finite generation
needed for S-completeness was essentially settled in [12] and the case for ®-
reductivity is proved in Sect. 5, closely following similar arguments in [33].
This general strategy could conceivably be applied to general K-semistable
polarized varieties; however, the corresponding finite generation statements
(see Conditions 3.1 and 5.1) appear to be very challenging.

We now explain in more detail the proof of S-completeness. We say any
two K-semistable Q-Fano varieties lie in the same S-equivalence class if they
degenerate to a common K-semistable (Q-Fano variety via special test config-
urations (see e.g. [12, Def. 2.6]). The first extensive study of the geometry of
K-semistable Q-Fano varieties belonging to the same S-equivalence class was
completed in [33]. In particular, it was shown that there is a unique object,
namely a K-polystable Q-Fano variety, in each S-equivalence class.

Then in [12], the study of families of K-semistable Fano varieties is
extended from test configurations to families over a curve. Namely, given
two Q-Gorenstein families of K-semistable Q-Fano varieties f: X — C and
f': X" — C over the germ of a pointed smooth curve (C = Spec(R), 0)
and an isomorphism X x¢ (C \ 0) = X’ x¢ (C \ 0), [12] established that
Xo and X, are always S-equivalent. The argument for this fact can be divided
into two parts: (1) one constructs filtrations 7 and F' of V := @,, Vi =
®,, H'(Xo, —-mrKx,) and V' = @, V), = D, H* (X}, —mrKy;) for
some fixed sufficiently divisible  such that gr (V) = @p,, gr (V) is iso-
morphicto gr (V') = &,, grz(V,,), and (2) one shows that the above graded
rings are indeed finitely generated and moreover that their Proj give a common
K-semistable degeneration of X¢ and Xj.

Meanwhile, the property of S-completeness was introduced in [4] as partof a
general criterion for the existence of good moduli space (see Theorem 2.9). The
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Reductivity of the automorphism group 999

first key observation in this paper is that the construction of the filtration in [12]
indeed can be put into this framework of S-completeness. More precisely, in
the current note, we verify that for each fixed m, in the above construction from
[12], the m-th graded module, gr -(V,,,) = gr (V) is precisely the fiber over
0 of the pushforward along ST \ 0 C ST (where ST is a local model of the
quotient [A2 /G, ] with weights 1 and —1—see (1) for the precise definition)
of the locally free sheaf over STy \ 0 obtained by gluing V,, = fix(—mrKyx /C)
and V), = f/(—=mrKyc). Indeed, we show that the graded module in [12]
is the same, up to a grading shift, as the one naturally arising from the module
over STg. Hence by taking the direct sum over all m, we produce a graded
algebra over STy, which is finitely generated exactly by the finite generation
results proved in [12]. Finally, by taking the Proj, we construct the extended
family of K-semistable Q-Fano varieties over STg.

In some sense, the S-completeness criterion in [4] provides a conceptual
framework for enhancing the ‘pointwise’ results in [12,33] to results over
families. Remarkably, this even yields new results for a single Fano variety,
e.g. Theorem 1.3.

To prove the ®-reductivity (see Definition 2.7), we need to show that, given
a family of K-semistable Q-Fano varieties f: X — C over the germ of a
pointed curve (C = Spec(R), 0), any family of test configurations for X x¢
(C\0) over C \ 0 with K-semistable central fibers can be extended to a family
of test configurations for X over C with K-semistable central fibers. When
X/ C itself is a test configuration, the proof is contained in [33]. To establish
the ®-reductivity, we need to generalize the argument in [33] from the base
curve being ® = [A!/G,,] to a more general base curve C. Nevertheless, the
techniques are similar.

Remark 1.4 (Postscript). After the first version of the current paper was writ-
ten, there were two related developments. First, it was proved in [11] and [41]
that, for a family of log Fano pairs, the locus where the fibers are K-semistable
is open. This together with [24] implies the functor %KSS is represented by

an Artin stack of finite type. Therefore, we can apply Theorem 1.2 to }ZKSS
itself and conclude it admits a good moduli space. Second, the moduli functors
of log Fano pairs over a general base has been appropriately defined in [27],
which also can be shown to be represented by an Artin stack. The results in
this paper then confirm this Artin stack also has a good moduli space. For a
detailed account, see [42, Sec. 2.6].
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2 Preliminaries
2.1 Good moduli spaces

In this section, we discuss some general facts about good moduli spaces. The
following definition was introduced in [1].

Definition 2.1 (Good moduli space).If X is an Artin stack of finite type over k,
amorphism ¢: X — X to an algebraic space is called a good moduli space if
(1) ¢+ is exact on the category of coherent O y-modules and (2) Oy — ¢.Ox
is an isomorphism.

Remark 2.2 We note that X is unique as the map X — X is initial for maps
to algebraic spaces [1, Thm. 6.6] and X is necessarily of finite type over & [1,
Thm. 4.16(xi)]. Moreover, two k-points of X" are identified in X if and only
if their closures intersect [1, Thm. 4.16(iv)]. In particular, there is a bijection
between the closed k-points of X’ (i.e. the polystable objects) and the k-points
of X.

The canonical example arises from GIT: if G is a reductive group acting on
a closed G-invariant subscheme X C P(V), where V is a finite dimensional
G -representation, then the morphism

[X¥/G] — X*//G := Proj @ H(X, Ox(m))©

to the GIT quotient is a good moduli space.

However, the K-stability moduli problem does not have a known GIT inter-
pretation. So to prove the moduli stack f{an‘g, yields a good moduli space X ,If I;,S
is quite nontrivial.

2.1.1 S-completeness

Let R be a DVR over k with fraction field K, residue field «, and uniformizing
parameter 7. We define the Artin stack

STk = [Spec(RIs. 11/(st — 7)) /Gu]. (1)

where s and ¢ have weights 1 and —1. This can be viewed as a local model of
the quotient [A2 /Gy, ] where A2 has coordinates s and 7 with weights 1 and
—1; indeed, STy is the base change of the good moduli space [A%/G,,] —
Spec(k[st]) along SpecR — Spec(k[st]) defined by st + 7. We denote by
0 € ST the unique closed point defined by the vanishing of s and ¢. Observe
that STg \ O is the non-separated union Spec(R) UspeC(K) Spec(R).
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Denote ®, = [Al/G,,] as the quotient of the usual scaling action. The
following two cartesian diagrams yield a useful schematic picture of STg

Spec(R)\ /
Spec( /K Gm (2)
Spec(R)

where the maps to the left are open immersions and to the right are closed
immersions.

Definition 2.3 (S-completeness). A stack X over k is S-complete if for any
DVR R and any diagram

STR\0——=X
/7
l - 3)
STr

there exists a unique dotted arrow filling in the diagram.
Moreover, if R is a DVR, we say that X satisfies the valuative criterion for
S-completeness for R if any diagram (3) can be uniquely filled in.

Remark 2.4 This definition was introduced for Artin stacks in [4, § 3.5]. At
the time this paper was written, it was not known if %K "y Was an Artin stack,
so we were careful not to assume this about X'. This questlon has since been
resolved (see Remark 1.4).

Remark 2.5 1If X is Deligne—-Mumford, then X is S-complete if and only if X’
is separated ([4, Prop. 3.44]). If X is an Artin stack with affine diagonal, then
any lift is automatically unique ([4, Prop. 3.40]).

Remark 2.6 If G is a linear algebraic group over k, then BG is S-complete
(equivalently S-complete with respect to essentially of finite type DVRs) if
and only if G is reductive ([4, Prop. 3.45 and Rem. 3.46]). Moreover, as S-
completeness is preserved under closed substacks, it follows that every closed
point (i.e. polystable object) in an Artin stack with affine diagonal, which
is S-complete with respect to essentially of finite type DVRs, has reductive
stabilizer.
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2.1.2 O-reductivity

We define © = [A! /Gy, ] with coordinate x on Al having weight —1, and we
set O = O xi Spec(R) for any DVR R. We let 0 € ®p be the unique closed
point defined by the vanishing of x and the uniformizing parameter 7 € R.
Observe that ®r \ 0 = O Uspec( ) Spec(R). Analogous to (2), we have the
two following cartesian diagrams

Spec(R) /
SpeC( /
where the maps to the left are open immersions and to the right are closed
immersions.

Definition 2.7 (®-reductivity). A stack X over k is O-reductive if for any
DVR R and any diagram

Opr\0——4X
%

e

l . 5)
@R/

there exists a unique dotted arrow filling in the diagram.
Moreover, if R is a DVR, we say that & satisfies the valuative criterion for
®-reductivity for R if any diagram (5) can be uniquely filled in.

Remark 2.8 This definition was introduced in [22]. As with S-completeness, if
X is an Artin stack with affine diagonal, then any lift is automatically unique.

2.1.3 The existence of good moduli spaces

The following criterion is established in [4].

Theorem 2.9 ([4, Thm. A]). Let X be an Artin stack of finite type with affine
diagonal over k. Then X admits a good moduli space X — X with X separated
if and only if X is S-complete and ©O-reductive.

Remark 2.10 The following technical refinement of Theorem 2.9 will be useful
to us as we are unable to verify the valuative criteria for S-completeness and
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Reductivity of the automorphism group 1003

®-reductivity for every DVR R (see Definitions 2.3 and 2.7). To show the
existence of a good moduli space X — X with X separated, it suffices to
verify the valuative criteria for S-completeness and ®-reductivity for DVRs
R essentially of finite type over k ([4, Rmk. 5.5]). Once this is established, it
follows in fact (from applying the converse of Theorem 2.9) that X" satisfies
the valuative criteria for S-completeness and ®-reductivity for all DVRs R.

Remark 2.11 (Comparing with an earlier criterion). In [34], a variant of the
above theorem ([2, Thm. 1.2]) was used to construct a good moduli space
of Q-Gorenstein smoothable, K-semistable Fano varieties. Specifically, [2,
Thm. 1.2] states that if X" is an Artin stack of finite type with affine diagonal
over k, then X admits a good moduli space X — X if the following conditions
hold:

(1) forevery closed point x € X, the stabilizer G, is reductive and there exists
an étale morphism f: W, w) — (X, x) where W = [Spec(A)/G] such
that
(a) f induces an isomorphism of stabilizer groups at all closed points and
(b) f sends closed points to closed p_oints, and

(2) for any k-point y € X, the closure {y} admits a good moduli space.

Vaguely speaking, condition (1a) ensures that the two projections R := W x »
W =2 W induce isomorphism of stabilizer groups while conditions (1b) and
(2) ensure that the projections send closed points to closed points. This is
sufficient to imply that the two projections induce an étale equivalence relation
R =2 W on good moduli spaces and that the algebraic space quotient W/R is
a good moduli space of X Zariski-locally around x.

We would like to explain the general idea of why the properties of S-
completeness and ®-reductivity imply that the above conditions hold. First,
S-completeness implies that G, has a reductive stabilizer (Remark 2.6) and
the existence of an étale morphism f: (W := [Spec(A)/G,], w) — (X, x)
then follows from [3, Thm. 1.2].

S-completeness implies that after shrinking Spec(A), we may arrange that
(1a) holds. A complete argument is given in [4, Prop. 4.4] but we explain
here only how S-completeness implies that f induces an isomorphism of
stabilizer groups at any generization of w. Let £: (Spec(R),0) — (W, w)
be a morphism from a complete DVR R (with fraction field K'). Then

Autyy (Eg) = {maps g: STz \ 0 = W and isomorphisms 8ls20 = & =~ glixo}
= {maps g: STg — W and isomorphisms 8ls#0 = & =~ glizo}
where we have used S-completeness in the second line. There is an analogous
description of Auty(f(§x)). Since f is étale and R is complete, Tannaka

duality implies that any map (STg,0) — (X, x) lifts uniquely to a map
(STg, 0) > (W, w). It follows that Autyy (ég) = Auty (f(ék)).
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1004 J. Alper et al.

Similarly, ®-reductivity implies that after shrinking Spec(A) further, we
may arrange that (1b) holds. A complete argument is given in [4, Prop. 4.4]
but we show here that if £ € VWV is a generization of w such that £ € Wk is
closed where K = k(£), then n := f (&) € X is also closed. Indeed, suppose
n ~» no is a specialization to a closed point in Xk ; this can be realized by a
map A: @ — X.If h: Spec(R) — W is a map from a DVR with fraction
field K realizing the specialization £ ~» w, then A and f o A glue to form
amap ®r \ 0 - X which can be extended (using ®-reductivity) to a map
(®g,0) = (X, x), and this in turn (using étaleness of f and completeness of
R) lifts to a unique map (®g, 0) - (W, w). But since & € Wk is closed, the
image of ®x — W consists of a single point, and thus the same is true for
the image of A. It follows that f(§) = ng € Xk is closed.

Finally, both the S-completeness and ®-reductivity imply that (2) holds.
Let yo € Y := {y} be a closed point and f: (W := [Spec(A)/ Gy, ], wo) —
(Y, yo) be an étale morphism in which we can arrange that wy is the unique
preimage of yo. By Zariski’s main theorem, we may factor f as the composition
of a dense open immersion ¥V < W and a finite morphism ¥ — . Note
that wo € W is necessarily closed and that any other closed point in W is a
specialization of a k-point in WW. As W is also ®-reductive, any k-point has a
unique specialization to a closed point. It follows that wy is the unique closed
point in WV and thus the complement VW \ W is empty. This in turn implies
that f: W — ) is finite étale of degree 1 and thus an isomorphism.

In [34], using analytic results, a stronger result than (2) was obtained, and
as a result, the good moduli space is a scheme instead of merely an algebraic
space.

Lemma 2.12 Let f: X — ) be a finite type monomorphism of Artin stacks
locally of finite type over k such that for every geometric point x : Spec(l) —
X, the image under X; — ) of the closure m C A isclosedin Y. If Y is
®-reductive (resp., S-complete) with respect to essentially of finite type DVRs,
then so is X.

Proof Zariski’s main theorem implies that there is a factorization f: X' <
X — ) where F/’\\;’ < X is an open immersion and X — ) is finite. By [4,
Prop. 3.20(1)], & is also ®-reductive with respect to essentially of finite type
DVRs, so may assume that f is an open immersion. Consider an essentially of
finite type DVR R withresidue field/ = R/m and amorphism/: ®g\0 — X.
Since ) is ®-reductive, & extends to a diagram
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Reductivity of the automorphism group 1005

Spec(l) =% @\ 0~ x
!
Or V.

In particular, if x denotes the composition Spec(/) — O \ 0 — X, we have
a spemahzatlon X~ h(O) in ). The hypotheses imply that h(O) € A} so that
h factors though X'. The argument for S-completeness is analogous. O

2.2 Log Fano pairs and K-stability

In this section, we introduce some basic notions concerning log Fano pairs
and K-stability. For further background information, see [12, Sect. 2] and the
references therein.

A pair (X, D) is composed of a normal variety X and an effective Q-divisor
D on X such that Kx + D is Q-Cartier. See [28, 2.34] for the definitions of
klt, plt, and [c pairs. A pair (X, D) is log Fano if X is projective, (X, D) is klt,
and —Kx — D is ample. A variety X is Q-Fano if (X, 0) is log Fano.

2.2.1 Families of log Fano pairs

Definition 2.13 Let 7 be a normal scheme. A Q-Gorenstein family of log
Fano pairs (X, D) — T is composed of a flat projective morphism between
normal schemes X — T and a Q-divisor D on X satisfying:

(1) Supp(D) does not contain any fiber,
(2) Kx/r + D is Q-Cartier, and
(3) (X7, D7) is alog Fano pair forall t € T.

In (3), D7 denotes the divisorial pullback of D. More generally, if S — T is
a morphism of normal schemes, we set X5 := X xr S and write Dg for the
Q-divisor on X associated to Cycle(D xr S).

A special test configuration of a log Fano pair (X, D) is the data of a G-

equivariant Q-Gorenstein family of log Fano pairs (X, D) — A! with an
isomorphism (X7, D7) ~ (X, D) for {1} — Al

2.2.2 K-stability

Let (X, D) be an n-dimensional log Fano pair. A divisor over X is a prime
divisor E on anormal variety Y with a proper birational morphismu : ¥ — X.
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1006 J. Alper et al.

Following [18], we set
o0
Bx,p(E) = (—Kx — D)"Ax p(E) — / vol(u*(—Kx — D) —tE)dt,
0

where Ax p(E) := 1+ coeff g (Ky — u*(Kx + D)) is the log discrepancy.

Definition 2.14 A log Fano pair (X, D) is

(1) K-semistable if Bx p(E) > 0 for all divisors E over X;

(2) K-stable if Bx p(E) > 0 for all divisors E over X;

(3) K-polystable if it is K-semistable and for any special test configura-
tion of (X, D) — Al of (X, D) with (X, Dy) K-semistable there is
an isomorphism of QQ-Gorenstein families of log Fano pairs (X, D) =~
(X1, Dy1) := (X, D) x Al

The equivalence of the above definition with the original definitions in [15,
39] was proven in [12,19,30,33].

Though the above notions of stability make sense for log Fano pairs over
characteristic zero fields that are not algebraically closed, we will not use
them due to the following issue: Let (Xg, Dk) be a log Fano pair over a
characteristic zero field K and K'/K a field extension. While it is expected
that (Xg, Dg) is K-semistable if and only if (Xg/, Dg/) is K-semistable,
the result is only known when both K and K’ are algebraically closed (for
example, see [10, Cor. 15]).1

The following result proved in [33] will be needed in various places.

Lemma 2.15 ([33]Lem. 3.1). Let (X, D) be a special test configuration of a
K-semistable log Fano pair (X, D) with the central fiber denoted by (X¢, Dy).
IfFut(X, D) = 0, then (X, Do) is K-semistable.

2.3 Flat families of polarized schemes over a surface

We will be considering S-completeness and ®-reductivity of stacks param-
eterizing polarized varieties. Both conditions are formulated in terms of the
existence of extensions of equivariant flat families of polarized varieties over
punctured regular surfaces.

We thus consider a regular noetherian 2-dimensional scheme S, and a closed
point0 € S.Letj : S\0 — S be the open immersion. The key fact that we will
use is that for any finite rank locally free sheaf E on S\ 0, j.(E) is locally free
aswell. j.(E) is coherent because S is normal and 0 has codimension 2, and the

I Since the first version of the current paper was written, this expectation was proved in [43].
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Reductivity of the automorphism group 1007

reflexive sheaf j,(FE) is locally free because any reflexive sheaf on a regular 2-
dimensional scheme is locally free [23, Cor. 1.4]. More precisely, j, induces
an equivalence between the categories of locally free (and more generally,
flat quasi-coherent) sheaves on S \ 0 and on § locally free (respectively, flat
quasi-coherent) sheaves on S, with inverse given by restriction.

Lemma 2.16 Letg : X — S\ O be a flat projective morphism of schemes, and
let L be a relatively ample line bundle on X. Then the following are equivalent:

(1) there exists an extension of q to a flat projective family X — S with an
ample Q-line bundle L extending L;

(2) the algebra @,,- jx(q«(Ox(mL))) is finitely generated as an Og-
algebra; and B

(3) the restriction @,,~ j«(q«(Ox(mL)))|o is finitely generated as a k(0)-
algebra. -

If these conditions hold, then

X = Projg @j*(q*ox(mﬁ))

m>0

is the unique extension, with the polarization O 5(1). If X is equivariant for
an action of G, on S, then so is X.

Proof (1) <& (2): Note that q*(Oz((mE)) is locally free on S for m > 0
because ¢ is flat. It follows that X = Projg(D,, j«(g+Ox(mL))) is a flat
extension of X’ if this algebra is finitely generated, and conversely for any flat
extension I'(X, O (mL)) = ji(g+(Ox(mL))) form > 0.

(3) & (2): Note that (2) = (3) automatically, and finite generation is
local over S by definition, so we may assume S is affine. Then we may lift
a finite homogeneous set of generators of €,,~ o j«(g+(Ox(mL))) ®o; k (0)
to D,,~0 j«(@«(Ox(mL))), and by assumption we may find homogeneous
elements in the latter which generate the algebra D,,>0 4+« (Ox(mL)) after
restriction to S \ 0. Together these define a map of graded (Og-algebras
¢ Oslxt,....,xn] = D,,>0 Jx(@+(Ox(mL))), where the degree of the
generators x; vary but are all > 0. ¢ is surjective after restriction to « (0) and
S\ 0, so because the graded pieces of both algebras are finite Og-modules,
Nakayama’s lemma implies that ¢ is surjective.

Note thatif X is equivariant fora G,,-actionon S, then @, ji(g+(Ox (mL)))
has an additional grading coming from the Gy, -action, and this grading induces
a Gy,-action on & extending the one on X O
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3 S-completeness

In this section, we will prove that the moduli of K-semistable log Fano pairs is
S-complete (Theorem 3.3). We first study S-completeness for quasi-coherent
sheaves in Sect. 3.1 and then S-completeness of polarized varieties in Sect. 3.2.
Applying this to the direct sum of the pushforwards of the m-th tensor product
of the polarization for a family of polarized varieties, this naturally leads to
a finite generation condition on the graded algebra (see Condition 3.1). In
Sect. 3.3, we confirm this condition for K-semistable log Fano pairs.

3.1 S-completeness for coherent sheaves

In this subsection, we establish S-completeness for the stack parameterizing
coherent sheaves on Spec(k) or, in other words, that every flat and coherent
sheaf on ST \ 0 extends uniquely to a flat and coherent sheaf on STg.

We begin by discussing the correspondence between flat coherent sheaves
on O and filtrations. A quasi-coherent sheaf F' on ®; = [Spec(k[x])/G,]
corresponds to a G,,-equivariant quasi-coherent sheaf on Spec(k[x]) or, in

other words, a Z-graded k[x]-module P peZ F,; this in turn corresponds to

diagram of k-vector spaces: --- — Fj4| > F, > F,_1 — ---.The

restriction of F' along Spec(k) —1> Oy is colim(--- — Fpqg 5 F, —

-++) and along BiG,, 9 Oy is the associated graded quasi-coherent sheaf
&b » Fp/XFp11. Moreover, F is flat and coherent over © if and only if each
F) is a finite dimensional k-vector space, the maps x are injective, F, = 0 for
p>0andx: F, — F,_jis an isomorphism for p < 0.

Similarly, if R is a DVR with fraction field K, residue field x and
uniformizing parameter m, then a quasi-coherent sheaf F on STy =
[Spec(R [s,t]/(st — 71)) /G, ] corresponds to a G, -equivariant quasi-coherent
sheaf on Spec(k[s, t]/(st —m)) or, in other words, a Z-graded R[s, t]/(st —m)-
module &, ., F; this in turn corresponds to a diagram of maps of R-modules

PEL
LN ! oty !
— = — =,
\\JFerl(_/Fp\\JFp | SN
S S ) R

such that sz = ts = 7. The reader may wish to refer to the schematic picture
(2) of STg. The restriction of F along

1#0 — . . t t t
e Spec(R) —> STgiscolim(--- — F, = F,_| — ---),

A0 — . . s s s
e Spec(R) — STgiscolim(--- < F), < Fp_j < ---),
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=0 — . . .
e ©, —> STk is the object corresponding to the sequence

(- & Fp/tFpy & Fp 1JtF, & -0,

s=0 —
o O < STgis (- Fy1/sFy > Fp/sF,_| — --),and
=t=0 —
e B.G, <= STpisthe Z-graded k-module P,z Fp/(tFpi1+sFp1).

The sheaf F is flat and coherent over STy if and only ifeach F), is flat and coher-
ent over R, the maps s and ¢ are injective, the induced maps s: F),_/tF, —
Fy/tF), 4 are injective (or equivalently the maps ¢: Fy11/sF, — Fp/sF,
are injective), t: F,, — F),_1 is an isomorphism for p < Oand s: F,_| —
F) is an isomorphism for p > 0.

Let j: STz \ 0 < STg be the open immersion. We will show how to
compute the pushforward of coherent sheaves under this open immersion. Let
Jts Jjs: Spec(R) — STk and Jst - Spec(K) — STk be the open immersions
corresponding to r # 0, s # 0 and st # 0. Let £ be a flat coherent sheaf
on ST \ 0; this corresponds to a pair of R-modules E and E’ together with
an isomorphism «: Ex — E). Under o, we may view both E and E’ as
submodules of Eg. Then j.& = (j)«EN(js)+E' C (jsr)«Ek. As morphisms
of graded R[s, t]/(st — m)-modules, j; and j; correspond to the inclusions
Rl[s, t]/(st —m) C R[t]; and R[s, t]/(st — w) C R[s]s, and j;; corresponds
to R[s, t]/(st —m) C K|[t];. Recalling that t has weight —1, we compute that

Ust)«Ex = Ex ®g RI1), = @) Ext™7,

PEZ
(j)+E = E @g Rl = @D Et ™" C (js)«Ek,
pEZL
(s)«E' = E' ®g Rlsly = @ @? - ENt™P C (ju)«Ex
PEZ

where in the last line we have used the identification s = #~!7. Finally, we
compute that

WKEEPEN@?-EN? c P Ext . (6)

PEZ peZ

If we define the filtration GPE = E N (? - E'), then j.£ is the OSTR -module
given by the diagram

t t t t

— — — —
. GPTIE GPE gr-'g— ...,
e G Ty K

@ Springer



1010 J. Alper et al.

of R-modules where t: GP*'E — GPE is inclusion and s : G’E — GPtE
is multiplication by 7. Note that j,£ is necessarily a flat and coherent Oﬁk‘
module, because non-equivariantly it is the pushforward of a vector bundle
from the complement of a closed point in the regular surface Spec(R[s, t]/(st—

T)).

3.2 S-completeness for polarized varieties

Suppose (X, L) and (X', L") are flat families of polarized varieties over
Spec(R) and a: (Xg, Lg) — (X%, L%) is an isomorphism. Then (X, L)
and (X', L’)_ can be glued along the isomorphism « to a polarized family
(X, L) = STg \ 0. This yields a diagram

X

|

S_TR \O ., S_TR .
Now we state our key condition:

Condition 3.1 (Finite Generation Condition). The OﬁR—algebra @mzo Jqx
Ox(mAL) is finitely generated.

By Lemma 2.16, this condition is equivalent to the existence of a flat exten-
sion of X to a polarized family (X, £) — STg, where

‘)? = PI'_OjﬁR @ ]*Q*OX(mﬁ)

m=>0

and £ = O #(1). To provide a more explicit description for this algebra,
Equation (6) implies that for each m > 0,

JqxOx(mL) = P (HO(X, Ox (mL)) Na? HO(X', Ox:(mL)))t ™7
pEZL

C P H Xk, Ox, (mLy) ",
pEZL

Define a filtration of V,, := H%(X, Ox(mL)) by
GP Vi := H(X, Ox(mL)) Nx” HO(X', Ox/(mL")),
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which consists of sections in V,, with at worst a pole of order p along X;,. We
have a diagram of R-modules

1 t t t
— —_— —
.. p+1 p p—1 .
G TGPV G W
S ) ) S

wheret: GPY'V,, — GPV,, isinclusionand s : G”V,, — GPT1V,, is multipli-
cation by 7. This gives the direct sum P p.m 97 Vin the structure of a bigraded
R[s, t]/(st — m)-algebra. Assume the Finite Generation Condition 3.1 holds,
then the grading in m defines a projective scheme

— : P
P = mSpec(R[s,t]/(st—n)) @ g Vi
p,m

and the grading in p gives an action of G, on P and a linearization of Op(1).
Observe that (X, £) = ([P/G,,], Op(1)).

Example 3.2 Let (X, L) be a polarized x-variety, and let R = «[[¢] and K =
k(). Let (Xg, Lx) > (Xk, Lx) be an automorphism induced from a one-
parameter subgroup «: G, — Aut(X, L). The above construction produces
a flat family (&X', £) over ST which corresponds to the trivial flat family

(X x Spec(Rls, 11/(st — 7)), ptL)

over Spec(R[s, t]/(st — r)) with the G,,-action given by « on the first factor.
Observe that if Aut(X, L) is reductive, then any « € Aut(X, L)(K) is in the
same double coset as a one-parameter subgroup by the Iwahori decomposition,
and it follows that any family over ST \ O obtained by gluing two trivial
families over Spec(R) along an isomorphism « € Aut(X, L)(K) extends to
a family over STg. On the other hand if Aut(X, L) is not reductive, such an
extension need not exist.

3.3 S-completeness for K-semistable log Fano pairs

In this section, we will prove that Condition 3.1 holds for K-semistable log
Fano pairs with anticanonical polarization (Theorem 3.3). This is obtained by
showing that the filtration considered in [12] is equivalent to the filtration in
Sect. 3.2 up to a grading shift. Hence, we can invoke finite generation results
proved in [12] to verify that Condition 3.1 is satisfied and then use a result in
[33] (see Lemma 2.15) to show that the corresponding special fiber of the flat
extension over STy is K-semistable.
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Let R be a DVR essentially of finite type over k with uniformizer , fraction
field K, and residue field «. Let

(X, D) — Spec(R) and (X', D’) — Spec(R)

be (Q-Gorenstein families of log Fano pairs and assume there is a birational
mapa: X --» X’ thatinduces an isomorphism (X g, Dg) — (X%, D%).Fol-
lowing Sect. 3.2, the above data gives a G,,-equivariant Q-Gorenstein family
of log Fano pairs

(X, D) — Spec (R[s, t]/(st —m))\ O, ()

where 0 € Spec (R[s, t]/(st — m)) is the closed point defined by the vanishing
of (s,1).

Theorem 3.3 If (X%, D) and (X/?, D,%) are K-semistable, then the map in (7)
extends uniquely to a G, -equivariant Q-Gorenstein family of log Fano pairs

(X, D) — Spec (R[s, 11/(st — 7)) .

Furthermore, the geometric fiber over 0 is K-semistable.

Remark 3.4 (1) The above theorem immediately implies that .'{,If“f, is S-
complete with respect to essentially of finite type DVRs.

(2) Theorem 3.3 is an extension of [12, Thm 1.1.1], which states that if
(X%, Dy) and (X,%, D,%) are K-semistable, then they degenerate to a com-
mon K-semistable log Fano pair via special test configurations. Indeed, the
restriction of (X, D) — Spec (R[s,t]/(st —m))tos = 0and t = O are
naturally test configurations of (X, D,) and (X, D,) with special fiber
(X0, Do).

(3) The results in [12] are phrased in the setting of families over a smooth
pointed curve, not the spectrum of a DVR. Fortunately, the proofs in [12,
Sect. 5] extend with little change to the more general setting of families
over DVRs which are essentially of finite type over k.

However, the argument does not automatically generalize to families over
the spectrum of a general DVR over k, since a key ingredient in the proof
relies on the MMP, specifically [8]. While the latter results hold for varieties
(and, hence, have natural extensions to essentially of finite type k-schemes),
they are not known to hold more generally.

3.3.1 Filtration from [12]

Consider a diagram over Spec(R)

@ Springer
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Y !
o P
\/ & \4 )
X ————-———- > X
where p and p’ are proper birational morphisms and Y is normal. Write Xo
and X, 6 for the birational transforms of X and X 6 onY.
Fix apositive integer r suchthat L := —r(Kx+D)and L' := —r(Kx/+D')
are Cartier divisors. Let

V= EB Vi = EB H%(X,Ox(mL)) and

meN meN
vii= Vv, = H'X' Ox(mL")
meN meN

denote the section rings of X and X’ with respect to L and L’. We write
Vi = @,, Viem and Vg = @,, Vg, for the restrictions of V to Spec(x)
and Spec(K), respectively. Note that each V), is a flat R-module and satisfies
cohomology and base change, since H (X,0x(mL)) = 0 fori > 0 and
m > 0 by [25, Thm. 10.37]. Therefore, V, and Vg are isomorphic to the
section rings of L, and Lg.

Following [12, Sect. 5.1], for each m € N and p € Z, we set

FPVy :={g € Vul ordgé(g) > pl, 8)
where ord b (g) equals the coefficient of i(’) in div(p*(g)). Observe that

aFP W, = FPV,, NV, 9)
and setting
fpvk,m = im(fpvm QR K — Vm,/c) c Vk,m»

gives a filtration of the section ring V,.. We state two results from [12, Section
5.2] concerning this filtration.

Proposition 3.5 If (Xi, Dy) and (X, D) are K-semistable, then:

(1) The k[t]-algebra @ @ (]-'p V,(,m) t~? and k-algebra EB @ grpr,(ym

meN peZ meN peZ
are finitely generated;

(2) The test configuration (X, D) — Ai of (X, D) induced by the k[t]-
algebra in (1) is special and the geometric fiber over 0 is K-semistable.
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Proof The argument in [12, Sect. 5.2] implies (1) and that the induced test
configuration (X, D) — Ai of (X, Dy) is a special test configuration with
Futaki invariant zero. Since Fut(Xg, D) = Fut(X,, D,) and the latter is zero,
(X, Dx)o must be K-semistable by Lemma 2.15. O

In the proof of Theorem 3.3, we will need to show that the bound-
ary divisor D in (7) extends to a well defined family of cycles over
Spec (R[s, t]/(st — m)).Forthis, let B be a prime divisor in Supp(D) and write
Ig € @,, Vi for the homogenous ideal defining B. Consider the homogenous
ideal

I::@@lm IgNFPVy — etV m) @@gr}' em- (10)

meN peZ meNpeZ

Proposition 3.6 If (Xi, Dy) and (X, DY) are K-semistable, then the sub-
scheme defined by I is of codimension at least one.

Proof Let (X, D) — A; denote the test configuration described in Proposi-
tion 3.5 and write B, for the closure of B, x (Al \0) in X under the imbedding
X, x (Al \ 0) =< AX,. Clearly, the scheme theoretic fiber of B, over 0 is of
codimension one in (X,)o =~ Proj(h,, EBP griVK,m). Since V(1) and the
scheme theoretic fiber of 5, over 0 agree away from a codimension 2 subset
by [12, Prop. 5.13.1], V(1) is also of codimension at least one. m|

In light of the discussion in Sect. 3.2 , observe that

PP (F7vn)t? (11

meNpeZ

has the structure of a Z-graded R[s,t]/(st — m)-module, where the map
N

(FPVu)t™P = (FPTV,,) 17771 is defined by gt 7 + gt P~1. Addi-
tionally,

(@ @ (FP V) t_p) ® Kk[t] ~ @ @ (FPVem)t™P, (12)

meN peZ R[s,t]/(st—m) meN peZ
. . . FPV, __  FPV, ~ D Vin
since (9) implies FVT = wV.nEry, = im FPV, — . . Therefore,

(@@(}—I’Vm)l‘*f’) ® K =~ @@grg_v’(’m’ (13)

meN peZ R[s,t]/(st—m) meN peZ

where R[s, t]/(st — m) — « is the morphism that sends s and ¢ to O.
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The following proposition states that the filtration F* from [12] coincides
with the filtration from Sect. 3.2 up to a shift. See [9, Section 2.5], [19, Claim
5.4] or [30, (64)] for related arguments applied to test configurations.

Proposition 3.7 For each p € Z andm € N,
Fr=mray, =V, Nglv,,
where a = coeff’gé (Ky — p*(Kx + D)).
The intersection in the above proposition is taken after using the iso-

morphism o* : K(X') — K(X) to view V) = HY(X', Ox/(mL’)) as a
R-submodule of K (X).

Proof First, observe that there are natural isomorphisms

7P HO (X', Ox(mL")) ~ H° (X', Ox/(mL’ — pX{))
~ H (Y, Oy (p""(mL' — pX()))
= H° (Y, Oy (mp*L +m(p""L' — p*L) — pp"X{)) .

Next, fix g € HY(X, Ox(mL)) and set G = div(g). By the above isomor-
phisms, g € 7? HO(X', Ox/(mL")) if and only if

G':=p*G+ (m(p""L' — p*L) — pp’"X;) = 0.
Note that G’ is the pullback of a Q-Cartier Q-divisor on X', since
G’ ~gmp*L + (m(p”"L' — p*L) — pp""Xy) ~q p" (mL' — pXy).

Therefore, G’ is effective if and only if p, G’ is effective.
To understand whether or not p, G’ is effective, observe

p"L' = p*L =r ((Ky — p*(Kx + D)) = (Ky — p™*(Kx' + D")))
and, hence,

P (m(p™"L" = p*L) — pp"* X)) = m (r(D" +aXy) —rD") — pX;
= (mra — p)X6

Therefore, p, G’ is effective if and only if coeff X (p*G)+ (mra—p) > 0.0
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3.3.2 Proof of S-completeness

We are now in position to prove Theorem 3.3 as a consequence of the results
in Sects. 3.2 and 3.3.1.

Proof of Theorem 3.3 Following Sect. 3.2 , we consider the Z-graded R[s, t]/
(st — m)-algebra

EBEB (Vi NP V;) (14)

meNpeZ

Note that this algebra equals EB@ (FP=mray,) t=P by Proposition 3.7 and

p—mra
VK m

its restrictionto 0 € Spec(R[s, t] / (st —r) is isomorphic to @@gr

by Equation (13). Since the latter x-algebra is of finite type by Propos1t10n 3.5
(1), Lemma 2.16 implies that the the R[s, ¢]/(st — m)-algebra (14) is finite
type.

Set X = PrO]R[ 1/t ﬂ&??(v NPV~ P) and write D for the
component-wise closure of D x (A\ 0) under the embedding X x (Ai \ 0)
~ X;20 <> X. The grading with respect to p gives a G,,-action on X" that
fixes D.

We claim that X - Spec (R[s, t]/(st — m)) has normal fibers, no compo-
nent of D contains a fiber, and K X—i—D is Q-Cartier. The statement is clear away
from the fiber over 0. Next, note that Xy ~ Proj(D,, D, gt """ Vi m), which

is the fiber over 0 € A,i of the special test configuration in Proposition 3.5.
Hence, XO is normal.

To see X, a Supp(D) fix a prime divisor B in the support of D and write
B for the closure of B X (A'\ 0) in X.If Ip € @P,, Vi is the homogenous
ideal defining B, then B is defined by the homogenous ideal

B PusnFr V)P < PEP (FP Vi) 177
m p m p

Hence, the scheme theoretic fiber of Bover0 e Spec(R[s, t]/(st —m)) agrees
with the vanishing of the ideal in (10). Since the latter ideal defines a locus of
codimension at least one in Xy by Proposition 3.6, Xo Z B.

Tosee K 3 +Dis Q-Cartier, K 3 +Dis Q-Cartier fix a Q-divisor £ on X such
thatmr L isin the linear equivalence class of O 5(m) for a positive integer m. By
construction £| s#0 ~Q (=K% D) |s0. Therefore, L ~o —K%—D+G, for
some Q-divisor G supported on X |s=0. Since X |s=0 1s an irreducible Cartier
divisor, —K  — D must be Q-Cartier.
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Finally, note that (X D)lv -0 —> Al coincides with the special test config-
uration in Proposition 3.5 by (12). Therefore (XO, DO) is a K-semistable log
Fano pair. This implies (X D) — Spec(R[s, t]/(st — m)) is a Q-Gorenstein
family of log Fano pairs and is the unique extension of (7) by Lemma 2.16. O

4 Reductivity of the automorphism group

In this section, we prove that if (X, D) is a K-polystable log Fano pair, then
the automorphism group

Aut(X, D) :={g € Aut(X) | g"D = D}

is reductive (Theorem 1.3).

We note that this result would follow formally from results in the previous
section if one could establish that a suitably defined stack parameterizing
K-semistable log Fano pairs was represented by a finite type Artin stack.
Indeed, Theorem 3.3 would show that this stack is S-complete with respect
to essentially of finite type DVRs and therefore any closed point (i.e. a K-
polystable log Fano pair) has reductive stabilizer (Remark 2.6). We will provide
a direct alternative argument for the reductivity of Aut(X, D) inspired by the
property of S-completeness. Our argument has the advantage that it entirely
avoids the language of stacks.

4.1 Setup

In this section, we fix a log Fano pair (X, D) and write D = Zie 1 @i D;
where the D; are distinct prime divisors. For each a in the coefficient set
{a;|i € I}, set B, := Ua:a[ D;. Choose r sufficiently divisible and large so
that £ := Ox(—r(Kx + D)) is a very ample line bundle.

We will now equip Aut(X, D) with the structure of a linear algebraic group.
Since L is very ample, Aut(X, £) := {g € Aut(X) | g*L£ =~ L} is a linear
algebraic group as it is a closed subgroup of PGL(H%(X, £)). For an element
g € Aut(X), observe that g*D = D if and only if g*(£) >~ £ and for all a in
the coefficient set, g fixes B,. In other words,

Aut(X, D) ={g € Aut(X, L) |Va, g(B,) = B,}

As the conditions that g(B,) = B, are closed conditions, this shows that
Aut(X, D) C Aut(X, £) is a closed subgroup.
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4.2 TIsotrivial families of K-polystable log Fano pairs

We begin by stating a special case of Theorem 3.3 when the family is obtained
by gluing two trivial families.

Let R be a DVR essentially of finite type over k with fraction field K and
residue field k. Fix a birational map Xz --+ Xy that induces an isomorphism
o: (Xg, Dg) - (Xk, Dx). As Spec(R[s, t]/(st — m)) \ O is the union of
Spec(R[s]s) and Spec(R[t];) along Spec(K[s]s) = G, k. we may glue the
two trivial families X grg;, — Spec(R[s]s) and Xg[s, — Spec(R[¢];) along
the G,,-equivariant isomorphism induced by « to obtain a G,,-equivariant
Q-Gorenstein family of log Fano pairs

(X, D) — Spec (R[s, t1/(st — 7)) \ 0. (15)

Note that if we write 3, for the closure of B, x Spec(R[¢];) under the inclusion
XR[t][ — X,then D = ZaBa

Proposition 4.1 If (X, D) is K-polystable, then
(X, D) — Spec (R[s, t]/(st —m))\ 0
extends to a Gy, -equivariant Q-Gorenstein family of log Fano pairs
(X, D) — Spec (R[s, t1/(st — 7)) .

with (2?6, 56) >~ (X#, Dy). Furthermore, if we write D= > aga, where ga
is the closure of B, then each B, is flat over Spec(R[s, t]/(st — 7)) with pure
fibers.

By pure fibers, we mean that the fibers are equidimensional and have no
embedded components.

Proof By Theorem 3.3, the map in (15) extends to a family (2? , 5) with
K-semistable geometric fiber over 0 € Spec (R[s, t]/(st — 7)). Hence, the
restriction (X, D)|s=0 x is naturally a special test configuration of (X#, D)
with K-semistable geometric fiber over 0 € A}C. Since (X, D) is K-polystable,
this test configuration must be a product (i.e. it is isomorphic to (X AL D AL ).

Therefore, (2%, 56) ~ (X%, Dy).

Next, fix a in the coefficient set of D and consider the divisor B,.
By [26, Thm. 4.33], there exists a locally closed decomposition § =
uS; — Spec(R[s, t]/(st — m)) such that a morphism of schemes 77 —
SJ)ec(R[s, t]/(st — m)), with T reduced, factors through § if and only if
Balr — T is flat and has pure fibers. Such locally closed decomposition
is unique by definition.
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Now, the loci {s = 0}, {s # 0} and {r # 0} factor through S, since the
divisorial restrictions By [s—0, Bals-£0 and B, ;0 are trivial families. Therefore,
each of them factors through some locally closed set, denoted by Sp, S; and S>.
However, it then follows that So = S> as {s = 0}N{r # 0} # Pand S| = S, as
{s #0}N{s # 0} # @. Therefore, we have § = So = Spec(R[s, 1]/(st — 7)),
so B, — Spec (R[s, t]/(st — m)) is flat with pure fibers. O

4.3 Reductivity via Iwahori decompositions

Throughout this section, let R = k[[r]] and K = k((7)). Given a linear alge-
braic group G, Iwahori’s theorem (cf. [20, p.52]) states that if G is reductive,
then for any element g € G(K), there exist a, b € G(R) and a one-parameter
subgroup A € Hom(G,,, G) such that g = a - A|x - b, where A|x denotes

the composition Spec(K) — G, = Spec(k[7];) —X> G. If we let A denote
the set of K-points induced by one-parameter subgroups of G, then Iwahori’s
theorem states that if G is reductive, then

G(K) =G(R)AcG(R).

The following argument, which states that the converse also holds, was com-
municated to us by Jun Yu. See [5] for a proof using Artin stacks and
S-completeness.

Proposition 4.2 Let G be alinear algebraic group. If G(K) = G(R)AgG(R),
then G is reductive.

Proof Write G = G, x G, for the Levi decomposition of G. That means, G, is
the unipotent radical of G, which is a (connected) unipotent group over k, and
G is areductive group over k; the map (x; y) — xy where (x € G, y € Gy)
gives a bijection G, x Gy — G.

For any one-parameter subgroup A: G,, — G defined over k, the image of
A consists of semisimple elements. Thus, it is contained in a conjugate of G.
That means, there exists g € G (k) such that Ad(g)(A) has image lying in Gy,
or in other words Ad(g) - A € Ag,. Therefore,

Ac = Ad(G(k))(Ag,) C G(k)Ag,G (k).
Since G = G, % Gy, we get
G(R) = Gu(R) ¥ G4(R) = G4 (R)Gs(R) = Gs(R)Gy(R).
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Combining the above, we get

G(R)AGG(R) C G(R)G(k)Ag,G(k)G(R)
= G(R)Ag,G(R)
= Gu(R)G3(R)AG,Gs(R)G,(R)
= Gu(R)G4(K)G,(R),

where we used Iwahori’s theorem to G in the last equality. Thus, G(R)Ac G
(R) = Gu(R)Gs(K)G,(R).
Suppose

G(K) = G(R)AGG(R) = G4 (R)Gs(K)Gy(R).
Then,

Gu(K) = (GM(R)GS(K)GM(R)) NGy (K)
= Gu(R)(G5(K) N Gu(K))Gu(R) = G4(R).

Since G, is a connected unipotent group, we have G,, = A" as a variety over
k, where n = dim G,,. Then, G,(K) = G, (R) implies that K" = R", which
in turn implies that n = 0 and that G is reductive. O

The following lemma will allow us to work with essentially finite type DVRs
when checking that the hypotheses of Proposition 4.2 are satisfied.

Lemma 4.3 If G is a linear algebraic group, then for any g € G(K), there is
an algebraic point gy such that g - go = G (R), where algebraic means that
g0 € G(k(C)) for the function field k(C) of a smooth curve over k embedded
in K via a dominant morphism Spec(R) — C.

Proof Fix an embedding G C GL,, for some m > 0 and N > 0 so that
N

7N .g71 € My xm(R). By Artin approximation ([6]), we can find an algebraic
point gg € G(K) such that g — go € 7Vt . M. (R). Since ggo_1 =

-1
(1 . %) and £250 € 7 - My (R), we know

g5 =1+ (gog_ g) € GLn(R) N G(K) = G(R).
i=1
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4.4 Proof of reductivity

Theorem 1.3 is an immediate consequence of Lemma 4.2 and the following
proposition.

Proposition 4.4 If (X, D) is a K-polystable log Fano pair, then G =
Aut(X, D) satisfies G(K) = G(R)AgG(R).

Proof Set R = k[[r]] and K = k((;r)). By Lemma 4.3, it suffices to show
that all algebraic points of G (K) are contained in G(R)A G (R). To proceed,
fix a smooth pointed curve x € C with local ring Ry := Oc y, function field
Ko := Frac(Oc ), and an extension of DVRs Ry C R. We will show that if
g € G(Kop), then glxk € G(R)AcG(R).

Consider the isomorphism (Xk,, Dk,) — (Xk,, Dk,) of log Fano pairs
induced by g. This data gives a G,,-equivariant Q-Gorenstein family of log
Fano pairs

(X, D) — Spec (Rols, t]/(st —m))\ O

and we may write D = ) al3,. By Proposition 4.1, the above family
extends to a G, -equivariant Q-Gorenstein family of log Fano pairs_ (X,D) >
Spec(Rols, t]/(st —m)) such that (Xo, Do) =~ (X, D). Moreover, D = ZaB
where each B, is flat over Spec(Rol[s, t]/(st — 7)) with pure fibers. The G-
action on the fiber (Xp, Do) induces a 1-parameter subgroup A : G, — G.

Replace (X, D) with its base change by R to get a family over § :=
Spec (R[s, 1]/ (st — r)). We will show that there is a Gy, -equivariant isomor-
phism (X, D) = (Xs, Ds), where G, acts on (X5, Ds) = (X xS, D x S)
diagonally, via A on the left factor and the standard action S. As every geomet-
ric fiber of the family (X, D) — Spec(R) is isomorphic to the base change of
(X, D) and since each B, is flat over S, the scheme

T :=Isoms((X, D), (Xs, Ds))

parameterizing isomorphisms is a G-torsor over S (c.f. [38, Lemma 2.3.2]).

For any test scheme 7', a T-point of Z consists of a point p € §(T') along with
an isomorphism ¢ : (X D D ») = (X7, D) of families over T. The G,;,-action
on both pairs gives a G,,-action on Z, where for any test scheme 7', a T-point
t € G, (T) actson Z(T) by

- (p @) = (t-p. A - ¢~ - (=) : Xy = X))
Note that the projection Z — S is Gy,-equivariant, and a G,,-equivariant

section of this morphism classifies a G, -equivariant isomorphism of families
(X,D) = (Xs, Ds) over S.
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The projection Z — S is smooth because it is a principal G-bundle and G
is smooth. Let S, be the nth nilpotent thickening of 0 € S. By construction,
we have a G,,-equivariant section so: Sp — Z. By the formal lifting criteria
for smoothness, s¢ extends to a compatible family of ,,-equivariant sections
sn: Sy — Z. We claim that the sections s, algebraize to a G,,-equivariant sec-
tion s: S — Z. The Gy, -actions induce Z-gradings I'(Os) = @, '(Os)a,
I'Os,) = @B,;T(0s,)q and I'(O7) = P, '(O1)4. To prove the exis-
tence of the desired section s: & — Z, it suffices to verify the existence
of a graded homomorphism I'(O7) — I'(Og) extending the given homomor-
phisms I'(O7) — I'(Og, ). To see this, observe that for each d, the compatible
maps I'(O1)q — I'(Os,)a extend to a map I'(O1)g — l(ir_nn I'(Os,)a. The
latter R-module can be explicitly computed to be isomorphic to I'(Og)4 since
R is complete. o

To conclude, let ¢ : (X,D) = (Xg, Ds) be the G,,-equivariant iso-
morphism constructed in the previous paragraph. Restricting to S \ 0 and
quotienting by the G,,-action, ¢ gives an isomorphism between two fami-
lies over Spec(R) Uspec(k) Spec(R). Each family was obtained by gluing two
copies of the trivial family along an isomorphism over Spec(K), the first family
corresponding to g € G(K) and the second to A(r) € G(K). Thus ¢|(s\0)/G,,
corresponds to a pair a,b € G(R) such that a - g = A(rw) - b, and hence
g=a ' A@)-be G(R)AGG(R). O

5 O-reductivity

In this section, we will carry out an analysis similar to that in Sect. 3 for
®-reductivity.

5.1 O-reductivity for coherent sheaves

Let R be a DVR with fraction field K, residue field x and uniformizing
parameter 7. Recall that ® = [A!/G,,] and that ®g = © x Spec(R) =
[Spec(R[x])/Gy,], where x has weight —1. The reader may wish to refer to
the schematic picture (4) of ® g. In this subsection, we establish ®-reductivity
for the stack parameterizing coherent sheaves on Spec(k) or, in other words,
that every flat and coherent sheaf on ®x \ 0 extends uniquely to a flat and
coherent sheaf on ®g.

A quasi-coherent sheaf F' on ® corresponds to a G,,-equivariant quasi-

coherent sheaf on Spec(R[x]) or, in other words, a Z-graded R[x]-module

.. . X X X
D ez Fp; this in turn corresponds to a diagram - -+ = Fpy1 = Fp —

0
Fpy 5 ... of R-modules. The restriction of F to Spec(R) i Or is the
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R-module colim F), and the restriction to O, J—_g Op is the Z-graded «-
module P, F)p/7 Fpp. Moreover, F is flat and coherent over O if and only
if each F), is flat and coherent over R, the maps x: Fj,| — F), are injective,
each F),/Fy. is flat, F;, = 0 for p > 0, and F), stabilize for p < 0.

We will compute the pushforward along the open immersion j: O \ 0 —
®r. Denote the open immersions by

. x7#0 . T #0 . xmw#0
Jx:Spec(R) —— OR, jr: O — Oprand j,: Spec(K) —— Op.

Let £ be a flat coherent sheaf on ® \ 0; this corresponds to a free R-module
E of finite rank and a Z-filtration G*Eg: --- C Q”+1EK C GPEg C ---
of Eg. Then j.& = (ju)«E N (Jz)«G°Ex C (jxx)«Ex. As morphisms of
graded R[x]-modules, j, and j, correspond to the inclusions R[x] C R[x],
and R[x] C K[x], and j, corresponds to R[x] C K[x],. We compute that

(un)+Ex = K[x); ®r Ex = @D Exx?,
pEZ

(j)+E = E ®g RIx)y = @D Ex P C (jen)«Ek,
PEZL

(r)+G*Ex = @GP Ex)x ™" C (jun)+Ex
PEL

Therefore

W= (ENGPEk)x " c P Exx". (16)

PEZL pe’Z

The sheaf j.£ is flat and coherent over ®g, and is given by the filtration
GPE . =ENGPEk of E.

5.2 O-reductivity for polarized families

A polarized family (X, £) over ® \ 0 corresponds to a polarized family
(X, L) over Spec(R) and a polarized family (Xx, Lg) over ®g together with
an isomorphism of (X g, L ) with the fiber of (Xx, L) over 1. The polarized
family (Xk, Lk ) over ©®k corresponds to a test configuration over A}(

Consider the composition X KNC) r\O Le R-

Condition 5.1 (Finite Generation Condition). The Og,-algebra ®m20 Jxqx
Ox(mL) is finitely generated.
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If Condition 5.1 holds, then

.)? = Pr—OjG‘)R @ ]*CI*OX(mAC)’

m=>0

is a flat family of polarized schemes over ®g.

For each m > 0, set V,, := H%(X, Ox(mL)). For each m > 0, the vector
space Vk n := H O(xg, O xx (mL)) inherits a Z-filtration G* Vi ,,,. Equation
(16) yields

Jxq+Ox(mL) = @ (Vm N QPVK,m)x_p C @ Vi mx~P.
PEL PEL

If we set GV, = V,, N GPVk 1, then the direct sum ®p,m grv,, is
a bigraded R[x]-module, where multiplication by x is given by the inclu-
sions G”V,,, — GP~1V,,. The grading in m defines a projective scheme P =
PrOJSpec (RL]) @ G?V,, and the grading in p gives an action of G,, on P

and a hnearlzatlon of Op(1). Observe that (X Oz() = ([P/Gpl, Op(1)).

5.3 O-reductivity for K-semistable log Fano pairs

In this section, we will verify that .’{I‘ESZ satisfies the valuative criterion for
®-reductivity over any essentially finite type DVR. The result follows from
modifying an argument in [33, Sect. 3].

Fix the following notation: Let R be a DVR essentially of finite type over
k with fraction field K and residue field k. We will write x for the parameter
of A!. To avoid confusion, we write O € A}( for the closed point defined by
the vanishing of x and 0 € A}e for the one defined by the vanishing of x and
a uniformizing parameter 7 € R.

Fix a Q-Gorenstein family of log Fano pairs (X, D) — Spec(R) and a
special test configuration (X, Dx) — A}{ of (Xk, D). Following Sect. 5.2
, this data gives a G,,-equivariant Q-Gorenstein family of log Fano pairs

(X,D) — AL \ 0.
Theorem 5.2 Ifthe geometric fibers of (X, D) — Spec(R) and (Xx, D) —
A}{ are K-semistable, then (X, D) — A}e \ O extends uniquely to a G,,-
equivariant Q-Gorenstein family of log Fano pairs
(X,D) — Ak.

Furthermore, the geometric fiber over 0 is K-semistable.
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Throughout the proof, we will use notation similar to that in Sect. 3.3.1.
Specifically, fix a positive integer r such that L := —r(Kx + D) is a Cartier
divisor. Let V := €P,, V;» denote the section ring of X with respect to L.
Recall that each V,, is a flat R-module and the restrictions of V to Spec(K)
and Spec(x), which we denote by Vk := &, Vg, and V. :== @, Vic.m, are
isomorphic to the section rings of Lg and L, respectively.

5.3.1 Extending filtrations defined by a divisor

Let Ek be a divisor over X and write A := Ay, py (Ek). Setting

FeVikm ={f € Vkmlordg, (f) > p}

foreach p € Z and m € N, gives a filtration of V. The filtration Fy of Vi
extends to a filtration F* of V,;, by subbundles by setting

FPVy = FRVk m N Vi

Note that 6§, @p (FPV,,) x~P is a graded R[x]-algebra.
If the above algebra is finitely generated, we set X' := Proj AL (b, D

(FP V) x~P). Since

@ @ (]:me) x P Qrix Rlx,x 1]~ V®R[x,x_l]

meN peZ R

p

there is an isomorphism X x (A!\ 0) ~ X, 0. We write D for the closure of
D x (Al \ 0) under the previous embedding X x (A! \0) — X.

Proposition 5.3 If the geometric fibers of (X, D) — Spec(R) are K-

semistable and Bx, py(Ex) =0, then:

(1) The R[x]-algebra &,, @p (FPVy) x~P is of finite type.

(2) The induced family (X, D) — A}e is a Q-Gorenstein family of log Fano
pairs and (Xg, Dp) is K-semistable.

The proof is a modification of an argument in [33, Sect. 3]. Similar argu-
ments are also used to prove the main theorems in [12]. Throughout, we will
use notation and background material from [12, Sect. 2] on valuations, log
canonical thresholds, and the normalized volume function.

Proof Let (Y,I') — Spec(R) denote the relative cone over (X, D) —
Spec(R) with respect to the polarization L. Hence, ¥ = % R(V) and I’
is defined via pulling back D. Note that (Yx, ') and (Y, ['y) are the cones
over (Xg, Dg) and (X, D).
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Following [12, Sect. 2.5.1], the divisor Eg over X g induces a ray of quasi-
monomial valuations

{vi |t € [0, +00)} C Valy,
satisfying

Ayerg@) = 1/r+1A and a,(v) = P FE™ Vi,

m

For each ¢ € N, there is a divisor Eg 4 over Yk such that g - vi/; =
ord Ex.g- The divisor Ex 4 over Yk extends to a divisor £, over Y. Note that
Ayr(Ey) = Ayg rg(Ek 4) and

a,(ordg,) = @ Fr "V, (17)

meN

To see Equation (17) holds, observe that the order of vanishing of f € Oy
along E, equals the order of vanishing of f - Oy, along Ek ,. Hence, the
statement follows from the definition of F and the formula a,(ordg,. q) =

D, Fr " Vim.
Claim 1. The following holds:

(Ay.rav (Eq) —1ct(Y, T +Y,; a,(ordg, ))) = 0.

lim
q—>0

To prove this claim, for each positive integer g, consider the graded sequence
of ideals on Y, given by

bye = a.(orqu) - Oy,.

Note that aq(ordg, q) = ae(ordg ) Oy by (17). Therefore, the lower semi-
continuity of the log canonical threshold and [12, Eq. (3)] imply

1Ct (YKa FKa bq,.) S ICt (YKa FKa a.(ordEK’q)) S AYK,FK(EK,q) (18)

Additionally,

. dlmK (OYK/bQ,P)
mult(b, o) = pli)moo P+ 1))
dimg (OYK/ap(OrdEK,q))

= A T e e (ordgy ). (19)
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where the left and right equalities is the formula for multiplicity in [29, Thm
3.8] and the center equality follows from (17) and the fact that each 77V, C
V., 1s a subbundle.

We aim to show the inequalities:

g < lct(Y, T'y; bq,o)n+1mUIt(bq,o)
r
n+1 Q 1
< Ayg.rg (Ek,g)" " mult(ae(ordgy ) < —+ o 2) (20)

with Q := (—=Kx, — Dk)" = (=Kx, — D,)". The first inequality follows
from [31, Thm 7] and the assumption that (X, Dy) is K-semistable and the
second from (18) and (19). For the remaining equality, Li’s derivative formula
(for example, see [12, Prop. 2.12]) gives

d vol(v;)

o = (n + DBxg.px (Ex)-

=0+

Since the latter is zero, a Taylor expansion implies

o~ o~ 1 Q 1

Using that vol is scaling invariant, we observe

)n+1

vol(vi/q) = vol(ordgy ) 1= Ay, 1 (k)" 'mult(ay(ordg, )

and (20) follows.
Comparing (19) and (20), we see

1 <1ct(YK, I'e: by .))"“
= ’ <1
1 + 10) (q%) AY[(,F[((EK,({)

Since Ay rg(Ek,q) = Ay,r(Eg) = Ay riy (Ey),
let(Yee, T bge) = lct(Y, I + Y aq(ordg,))

by inversion of adjunction, and (1 + O(q%))l/("“) =1+ O(qiz), it follows
that

Ict(Y. T + Y, au(ord
1—0(1>5C( * Yi: au(orde,)) _

q2 Ay r+y, (Eg) -
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Recall, Ay riy, (Ey) = Ay, r(Ey) = q/r + Ais of order O(q). Therefore,

Ayryy (Eg) —let(Y, T + Y, a,(ordg, )
let(Y, T + Yy; a.(orqu)))
Ay iy, (Eg)

= Ay,r+v. (Eg) (1 -

is of order O (1/q) and the desired limit is O.
Claim 2: For g > 0, there exists an extraction £, C Y, X ¥ such that

(Y, . "(T + Y) + Ey)

is lc. (By an extraction, we mean u is a proper birational morphism, Y, is
normal, E, appears as a divisor on Y, and —E is p-ample.)

Setey := Ay rqy, (Eg) —lct(Y, I +7Y,; a.(orqu)). Since limy o &, =0
by Claim 1, we may fix g > 0 so that ¢, < 1. Hence, [12, Prop. 2.2] may be
applied to get an extraction u : ¥, — Y of E, with

Yy, 1 (T + V) + (1 — g)) Ey)

Ic. Since limy . o &4 = 0, the ACC for log canonical thresholds [21] implies
Yy, u;l I'+Y)+E,)islcforg > 0and the proof of the claim is complete.

Since —E; is p-ample, @peN 1Oy, (—pEy) is a finitely generated Oy -
algebra. Using that

w1k Oy, (—pEg) = ap(ordg,) = @}“P—mq V.

W€ S€€

DD =D P v

peNmeN meN p=—mq

is a finitely generated V-algebra. Since V is a finitely generated R-algebra, it

follows that P (FPV,,)x P is finitely generated R[x]-algebra and we may
m p
consider the degeneration (X, D) — A}e by taking Proj.

We also consider the degeneration (), f‘) of (Y, I') defined by

Y= SpecA}?(@al,x—p) where a;, := Oy, (=pE,) € Oy
pEZL

and T is the degeneration of I" as in [33, Defn. 2.19]. Since (Y’L’ ,u;l TC+Y)+
E,) is Ic, a relative version of [33, Lem. 2.20] implies (J, I + Vy=0 + Vi)
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is lc. Using that (2? 75) is a G,,-quotient of an open set of (), F), we see
(X D—i—X —{—Xx 0) is lc as well.

Observe that (X K, DK) — A is the test configuration induced by the
filtration Fg. By [17, Section 3. 2] this test configuration is normal and
its Futakl invariant 1s a multlple of Bxx,px(Ek), Wthh 1s zero. Since
Fut (X% K) = Fut(XK, DK) and the latter is zero, (X% K) — Al must
be spemal (otherwise [35, Thm. 1] would imply there ex1sts atest confi guratlon
of (X%, Dg) with negative Futaki invariant). Appling Lemma 2.15 gives that
the geometric fiber over Ok is Ig—sgmistable.

We will proceed to show (X,D) — Al is Q-Gorenstein family of log
Fano pairs. Since the statement holds over {71 # 0} and {x _# 0}, it remains to
consider the behavior over 0 € Al Since (X D+ X + Xx 0)islc, K+ D
is Q-Cartier and, by [25, Prop. 2.32.2], D does not contain an irreducible
component of X, N X,—o. We are left to show that the geometric fiber over 0
is a log Fano pair. _

First, we claim that X is normal. By Serre’s criterion, it suffices to show
that XK~is 5 arld Ry. To verify the first condition, note that (X, D) is klt,
since (X, D + X, + Xy—o) is Ic and klt away from {wx = 0}. Therefore, [28,
Prop. 5.25] gmpligs X, 18 CM and, hence, S». For the second condition, note
that Supp (X, + Xy—0) has at worst nodes at codimension two points of X’ by
[25, Prop 2.32.2]. Therefore, & is R in a neighborhood of X, N X;—¢. Since
X \ Xy=0 = X\ X (Al \ 0) and X, is Ry, this implies X} is R;.

Now, recall that the Futaki invariant may be written as a combination of
intersection numbers of line bundles and intersections number are locally con-
stant in flat projective families. Therefore, Fut(X% K) = Fut(XK, 1}) and
the latter is also zero. Since (X, D) is K—semlstable and Fut(XK, D ) =0,
the test configuration (XK, ’D ) — Al must be special (otherwise [35, The-
orem 1] would imply there exists a test configuration with negative Futaki
invariant). Applying Lemma 2.15 gives that the fiber over 0 is K-semistable.

O

5.3.2 Proof of ®-reductivity result

We will now deduce Theorem 5.2 from Proposition 5.3.

Proof of Theorem 5.2 Following Sect. 5.2, the test configuration (X, Dx) —
A}(, corresponds to a Z-filtration Gx of Vk. By setting

G*v,, = Qf; Vkm N Vi for each p € 7Z,

we get a filtration G of V,,, by subbundles, which restricts to the filtration Gg

over Spec(K). We consider the graded R[x]-algebra (D, D ez (G7 Vi) x 77

@ Springer



1030 J. Alper et al.

Since the test configuration (X, D) is special, the filtration Gk is induced
by a divisorial valuation of the form b - ord g, over X [19, Claim 5.4]. Specif-
ically, there is a divisor Ex over X and b € Z- so that

A+[p/b
g[’évK,m = f]n(w e/ -vi,ma

where F is the filtration of Vg defined by Ex and A := Ax, p,(Ek).

Observe that Fut(Xx, Dg) = 0. Indeed, Fut(Xx, Dx) = Fut(Xg, Dg)
and the latter is the same as the Futaki invariant associated to the G,,-action
on (X%, Dg)o. Since the Futaki invariants associated to a G,-action and its
inverse add to zero [33, Lem. 2.23] and (X%, D)o is K-semistable, they must
both be zero.

Now, Bx.p (Ek)is a multiple of Fut(Xg, Dg) by [19, Thm. 5.1]. There-
fore, the value is zero and we may apply Proposition 5.3.1 to see that
D, D » (GP V) x~P is a finitely generated R[x]-module. Furthermore, if we
set

X = ProjA}e ( EB EB (G” Vi) x*P)

meN peN

and D equal to the component-wise closure of D x (Al \ 0) under the embed-
ding

X x (A'\0) = X0 = X,

then (2? , 25) — A}e is a finite base change of the family considered in Propo-
sition 5.3. Hence, (X, D) — A}Q is a Q-Gorenstein family of log Fano pairs
and the geometric fiber over 0 € A}e is K-semistable. By Lemma 2.16, this is

the unique extension of (X, D) — A}a \ 0. O
Proof of Theorem 1.1 The S-completeness and ®-reductivity of %,If*; state-
ments follow immediately from Theorems 3.3 and 5.2. |

Proof of Corollary 1.2 1t follows from Theorem 1.1 and Lemma 2.12 that X
is S-complete and ®-reductive with respect to essentially of finite type DVRs.
Theorem 2.9 and Remark 2.10 imply that X has a separated good moduli space.

O
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