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Abstract We prove that K-polystable log Fano pairs have reductive automor-
phism groups. In fact, we deduce this statement by establishing more general
results concerning the S-completeness and �-reductivity of the moduli of K-
semistable log Fano pairs. Assuming the conjecture that K-semistability is an
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open condition, we prove that theArtin stack parametrizingK-semistable Fano
varieties admits a separated good moduli space.

Throughout, we work over an algebraically closed field k of characteristic 0.
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1 Introduction

The construction of moduli spaces parametrizing K-semistable and K-
polystable Fano varieties is a profound goal in the study of Fano varieties. The
K-moduli Conjecture predicts that the moduli functor XKss

n,V of K-semistable
Q-Fano varieties of dimension n and volume V , which sends a k-scheme S to

XKss
n,V (S) =

⎧
⎨

⎩

Flat proper families X → S, whose geometric fibers are
K-semistable Q-Fano varieties of dimension n and

volume V , satisfying Kollár’s condition (see [12, § 1])

⎫
⎬

⎭
,

is represented by a finite type Artin stackXKss
n,V and it admits a projective good

moduli spaceXKss
n,V → XKps

n,V (seeDefinition 2.1),whose closed points precisely
parameterize n-dimensional K-polystable Q-Fano varieties of volume V . The
ingredients needed in the construction can be translated into deep properties
of such Fano varieties. See [12, Introduction] for a more detailed discussion
of the prior state of the art.

1.1 Main theorems

In this paper, we show that if the moduli functor XKss
n,V is represented by an

Artin stack, then it admits a separated good moduli space (see Step (III) in [12,
Introduction]). A prototype of the good moduli space of a stack is given by the
morphism [X ss/G] → X//G to the geometric invariant theory (GIT) quotient
of a polarized projective variety (X, L) by a reductive group G. However, for
the question of K-stability of Fano varieties, it is not clear how to realize it as a
GIT question: on the one hand, we know there are K-polystable Fano varieties

123



Reductivity of the automorphism group 997

which are not asymptotically Chow semistable (see e.g. [32,37]); on the other
hand, the more natural CM line bundle is not positive on the Hilbert scheme
(see [16]).

Roughly speaking, for moduli problems which are not known to be global
GIT quotients, however, we still aim to find a quotient space, such that the
quotient morphism behaves as well as the GIT quotient morphism [X ss/G] →
X//G from many perspectives (see Definition 2.1). In this note, we adapt
the general framework developed in [4] to the case of K-semistable Q-Fano
varieties.

Theorem 1.1 The functor XKss
n,V satisfies the valuative criterion for S-

completeness (see Definition 2.3) and �-reductivity (see Definition 2.7) with
respect to essentially of finite type DVRs.

For an Artin stack of finite type with affine diagonal over a field of char-
acteristic 0, [4, Theorem A] states that the conditions of S-completeness and
�-reductivity are equivalent to the existence of a separated goodmoduli space.
An immediate corollary is that

Corollary 1.2 Let X ⊂ XKss
n,V be a subfunctor representable by an Artin stack

of finite type, such that if x ∈ X then {x} ⊂ X. Then X admits a separated
good moduli space.

The stackXn,V is anArtin stackwith affine diagonal, and it is known that the
semistable locus is bounded (cf. [24]), so it remains to show thatXKss

n,V ⊂ Xn,V
is an open substack (see [12, Step II]). This question was settled shortly after
this paper was first released (see Remark 1.4). For smoothable K-semistable
Fano varieties, the existence of the goodmoduli space as well as its properness
were settled in [34].

In fact, we prove S-completeness and �-reductivity of the moduli functor
parameterizing families of K-semistable log Fano pairs. Since S-completeness
implies the reductivity of the automorphism group of any polystable point, we
can conclude:

Theorem 1.3 If (X, D) is a K-polystable log Fano pair, then Aut(X, D) is
reductive.

This theorem has a long history: it is a classical result for Kähler–Einstein
Fano manifolds in [36] (and even holds in the more general case of polarized
manifolds with constant scalar curvature metrics). For log Fano pairs with a
weak conical Kähler–Einstein metric, this is a much harder result and it is
a key step in the proofs of the Yau–Tian–Donaldson Conjecture for smooth
Fano manifolds (see e.g. [7,13,40]). Our method is purely algebro-geometric.
In [12], it was shown that if (X, D) is K-stable, then Aut(X, D) is finite. That
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paper also establishes a key ingredient in the proof of Theorem 1.3, the Finite
Generation Condition 3.1. We also note that when X is only K-semistable,
then Aut(X) can be non-reductive (see [14, Example 1.4]).

1.2 Sketch of the proof

We sketch the main ideas in the proof of Theorem 1.1. The conditions of
S-completeness and �-reductivity of XKss

n,V both involve extending a family
of K-semistable Q-Fano varieties over the complement of a closed point in a
certain regular surface to a family over the entire surface.We first show that the
pushforward sheaves ofm-th relative anti-pluri-canonical line bundles extend,
then we prove that the direct sum of these sheaves is finitely generated. After
taking Proj of this algebra, we argue that the central fiber is a K-semistable Q-
Fano variety, which gives the desired extension of the family of K -semistable
Q-Fano varieties.Of course, such finite generation results are highly nontrivial.
Fortunately, for families of K-semistable Fano varieties, the finite generation
needed for S-completeness was essentially settled in [12] and the case for �-
reductivity is proved in Sect. 5, closely following similar arguments in [33].
This general strategy could conceivably be applied to general K-semistable
polarized varieties; however, the corresponding finite generation statements
(see Conditions 3.1 and 5.1) appear to be very challenging.

We now explain in more detail the proof of S-completeness. We say any
two K-semistable Q-Fano varieties lie in the same S-equivalence class if they
degenerate to a common K-semistable Q-Fano variety via special test config-
urations (see e.g. [12, Def. 2.6]). The first extensive study of the geometry of
K-semistable Q-Fano varieties belonging to the same S-equivalence class was
completed in [33]. In particular, it was shown that there is a unique object,
namely a K-polystable Q-Fano variety, in each S-equivalence class.

Then in [12], the study of families of K-semistable Fano varieties is
extended from test configurations to families over a curve. Namely, given
two Q-Gorenstein families of K-semistable Q-Fano varieties f : X → C and
f ′ : X ′ → C over the germ of a pointed smooth curve (C = Spec(R), 0)
and an isomorphism X ×C (C \ 0) ∼= X ′ ×C (C \ 0), [12] established that
X0 and X ′

0 are always S-equivalent. The argument for this fact can be divided
into two parts: (1) one constructs filtrations F and F ′ of V := ⊕

m Vm =⊕
m H0(X0, −mrKX0) and V ′ = ⊕

m V ′
m = ⊕

m H0(X ′
0, −mrKX ′

0
) for

some fixed sufficiently divisible r such that grF (V ) = ⊕
m grF (Vm) is iso-

morphic to grF ′(V ′) = ⊕
m grF ′(V ′

m), and (2) one shows that the above graded
rings are indeed finitely generated and moreover that their Proj give a common
K-semistable degeneration of X0 and X ′

0.
Meanwhile, the property of S-completenesswas introduced in [4] as part of a

general criterion for the existence of goodmoduli space (seeTheorem2.9). The
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first key observation in this paper is that the construction of the filtration in [12]
indeed can be put into this framework of S-completeness. More precisely, in
the current note, we verify that for each fixedm, in the above construction from
[12], them-th graded module, grF (Vm) ∼= grF ′(V ′

m) is precisely the fiber over
0 of the pushforward along STR \0 ⊂ STR (where STR is a local model of the
quotient [A2/Gm] with weights 1 and −1—see (1) for the precise definition)
of the locally free sheaf over STR \0 obtained by gluing Vm = f∗(−mrKX/C )

and V ′
m = f ′∗(−mrKX ′/C). Indeed, we show that the graded module in [12]

is the same, up to a grading shift, as the one naturally arising from the module
over STR . Hence by taking the direct sum over all m, we produce a graded
algebra over STR , which is finitely generated exactly by the finite generation
results proved in [12]. Finally, by taking the Proj, we construct the extended
family of K-semistable Q-Fano varieties over STR .

In some sense, the S-completeness criterion in [4] provides a conceptual
framework for enhancing the ‘pointwise’ results in [12,33] to results over
families. Remarkably, this even yields new results for a single Fano variety,
e.g. Theorem 1.3.

To prove the�-reductivity (see Definition 2.7), we need to show that, given
a family of K-semistable Q-Fano varieties f : X → C over the germ of a
pointed curve (C = Spec(R), 0), any family of test configurations for X ×C
(C \0) over C \0 with K-semistable central fibers can be extended to a family
of test configurations for X over C with K-semistable central fibers. When
X/C itself is a test configuration, the proof is contained in [33]. To establish
the �-reductivity, we need to generalize the argument in [33] from the base
curve being � = [A1/Gm] to a more general base curve C . Nevertheless, the
techniques are similar.

Remark 1.4 (Postscript). After the first version of the current paper was writ-
ten, there were two related developments. First, it was proved in [11] and [41]
that, for a family of log Fano pairs, the locus where the fibers are K-semistable
is open. This together with [24] implies the functor XKss

n,V is represented by

an Artin stack of finite type. Therefore, we can apply Theorem 1.2 to XKss
n,V

itself and conclude it admits a goodmoduli space. Second, the moduli functors
of log Fano pairs over a general base has been appropriately defined in [27],
which also can be shown to be represented by an Artin stack. The results in
this paper then confirm this Artin stack also has a good moduli space. For a
detailed account, see [42, Sec. 2.6].
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2 Preliminaries

2.1 Good moduli spaces

In this section, we discuss some general facts about good moduli spaces. The
following definition was introduced in [1].

Definition 2.1 (Goodmoduli space). IfX is anArtin stack of finite type over k,
a morphism φ : X → X to an algebraic space is called a good moduli space if
(1) φ∗ is exact on the category of coherentOX -modules and (2)OX → φ∗OX
is an isomorphism.

Remark 2.2 We note that X is unique as the map X → X is initial for maps
to algebraic spaces [1, Thm. 6.6] and X is necessarily of finite type over k [1,
Thm. 4.16(xi)]. Moreover, two k-points of X are identified in X if and only
if their closures intersect [1, Thm. 4.16(iv)]. In particular, there is a bijection
between the closed k-points of X (i.e. the polystable objects) and the k-points
of X .

The canonical example arises from GIT: if G is a reductive group acting on
a closed G-invariant subscheme X ⊂ P(V ), where V is a finite dimensional
G-representation, then the morphism

[X ss/G] → X ss//G := Proj
⊕

m

H0(X,OX (m))G

to the GIT quotient is a good moduli space.
However, the K-stability moduli problem does not have a known GIT inter-

pretation. So to prove the moduli stackXKss
n,V yields a good moduli space XKps

n,V
is quite nontrivial.

2.1.1 S-completeness

Let R be a DVR over k with fraction field K , residue field κ , and uniformizing
parameter π . We define the Artin stack

STR := [Spec(R[s, t]/(st − π)
)
/Gm], (1)

where s and t have weights 1 and −1. This can be viewed as a local model of
the quotient [A2/Gm] where A2 has coordinates s and t with weights 1 and
−1; indeed, STR is the base change of the good moduli space [A2/Gm] →
Spec(k[st]) along SpecR → Spec(k[st]) defined by st �→ π . We denote by
0 ∈ STR the unique closed point defined by the vanishing of s and t . Observe
that STR \ 0 is the non-separated union Spec(R)

⋃
Spec(K ) Spec(R).
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Reductivity of the automorphism group 1001

Denote �κ = [A1
κ/Gm] as the quotient of the usual scaling action. The

following two cartesian diagrams yield a useful schematic picture of STR

Spec(R)

s 	=0

�κ

s=0

Spec(K ) STR BκGm

Spec(R)

t 	=0

�κ

t=0

(2)

where the maps to the left are open immersions and to the right are closed
immersions.

Definition 2.3 (S-completeness). A stack X over k is S-complete if for any
DVR R and any diagram

STR \ 0 X

STR

(3)

there exists a unique dotted arrow filling in the diagram.
Moreover, if R is a DVR, we say that X satisfies the valuative criterion for

S-completeness for R if any diagram (3) can be uniquely filled in.

Remark 2.4 This definition was introduced for Artin stacks in [4, § 3.5]. At
the time this paper was written, it was not known if XKss

n,V was an Artin stack,
so we were careful not to assume this about X . This question has since been
resolved (see Remark 1.4).

Remark 2.5 If X is Deligne–Mumford, then X is S-complete if and only if X
is separated ([4, Prop. 3.44]). If X is an Artin stack with affine diagonal, then
any lift is automatically unique ([4, Prop. 3.40]).

Remark 2.6 If G is a linear algebraic group over k, then BG is S-complete
(equivalently S-complete with respect to essentially of finite type DVRs) if
and only if G is reductive ([4, Prop. 3.45 and Rem. 3.46]). Moreover, as S-
completeness is preserved under closed substacks, it follows that every closed
point (i.e. polystable object) in an Artin stack with affine diagonal, which
is S-complete with respect to essentially of finite type DVRs, has reductive
stabilizer.
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2.1.2 �-reductivity

We define � = [A1/Gm] with coordinate x on A1 having weight −1, and we
set �R = �×k Spec(R) for any DVR R. We let 0 ∈ �R be the unique closed
point defined by the vanishing of x and the uniformizing parameter π ∈ R.
Observe that �R \ 0 = �K

⋃
Spec(K ) Spec(R). Analogous to (2), we have the

two following cartesian diagrams

Spec(R)

x 	=0

BRGm

x=0

Spec(K ) �R BκGm

�K

π 	=0

�κ

π=0

(4)

where the maps to the left are open immersions and to the right are closed
immersions.

Definition 2.7 (�-reductivity). A stack X over k is �-reductive if for any
DVR R and any diagram

�R \ 0 X

�R

(5)

there exists a unique dotted arrow filling in the diagram.
Moreover, if R is a DVR, we say that X satisfies the valuative criterion for

�-reductivity for R if any diagram (5) can be uniquely filled in.

Remark 2.8 This definitionwas introduced in [22]. Aswith S-completeness, if
X is an Artin stack with affine diagonal, then any lift is automatically unique.

2.1.3 The existence of good moduli spaces

The following criterion is established in [4].

Theorem 2.9 ([4, Thm. A]). Let X be an Artin stack of finite type with affine
diagonal over k. ThenX admits a goodmoduli spaceX → X with X separated
if and only if X is S-complete and �-reductive.

Remark 2.10 The following technical refinement ofTheorem2.9will be useful
to us as we are unable to verify the valuative criteria for S-completeness and
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Reductivity of the automorphism group 1003

�-reductivity for every DVR R (see Definitions 2.3 and 2.7). To show the
existence of a good moduli space X → X with X separated, it suffices to
verify the valuative criteria for S-completeness and �-reductivity for DVRs
R essentially of finite type over k ([4, Rmk. 5.5]). Once this is established, it
follows in fact (from applying the converse of Theorem 2.9) that X satisfies
the valuative criteria for S-completeness and �-reductivity for all DVRs R.

Remark 2.11 (Comparing with an earlier criterion). In [34], a variant of the
above theorem ([2, Thm. 1.2]) was used to construct a good moduli space
of Q-Gorenstein smoothable, K-semistable Fano varieties. Specifically, [2,
Thm. 1.2] states that if X is an Artin stack of finite type with affine diagonal
over k, thenX admits a goodmoduli spaceX → X if the following conditions
hold:

(1) for every closed point x ∈ X , the stabilizerGx is reductive and there exists
an étale morphism f : (W, w) → (X , x)whereW ∼= [Spec(A)/Gx ] such
that
(a) f induces an isomorphism of stabilizer groups at all closed points and
(b) f sends closed points to closed points, and

(2) for any k-point y ∈ X , the closure {y} admits a good moduli space.

Vaguely speaking, condition (1a) ensures that the two projectionsR := W×X
W ⇒ W induce isomorphism of stabilizer groups while conditions (1b) and
(2) ensure that the projections send closed points to closed points. This is
sufficient to imply that the two projections induce an étale equivalence relation
R ⇒ W on good moduli spaces and that the algebraic space quotient W/R is
a good moduli space of X Zariski-locally around x .

We would like to explain the general idea of why the properties of S-
completeness and �-reductivity imply that the above conditions hold. First,
S-completeness implies that Gx has a reductive stabilizer (Remark 2.6) and
the existence of an étale morphism f : (W := [Spec(A)/Gx ], w) → (X , x)
then follows from [3, Thm. 1.2].

S-completeness implies that after shrinking Spec(A), we may arrange that
(1a) holds. A complete argument is given in [4, Prop. 4.4] but we explain
here only how S-completeness implies that f induces an isomorphism of
stabilizer groups at any generization of w. Let ξ : (Spec(R), 0) → (W, w)
be a morphism from a complete DVR R (with fraction field K ). Then

AutW (ξK ) ∼= {maps g : STR \ 0 → W and isomorphisms g|s 	=0 
 ξ 
 g|t 	=0}
∼= {maps g : STR → W and isomorphisms g|s 	=0 
 ξ 
 g|t 	=0}

where we have used S-completeness in the second line. There is an analogous
description of AutX ( f (ξK )). Since f is étale and R is complete, Tannaka
duality implies that any map (STR, 0) → (X , x) lifts uniquely to a map
(STR, 0) → (W, w). It follows that AutW(ξK ) ∼= AutX ( f (ξK )).
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Similarly, �-reductivity implies that after shrinking Spec(A) further, we
may arrange that (1b) holds. A complete argument is given in [4, Prop. 4.4]
but we show here that if ξ ∈ W is a generization of w such that ξ ∈ WK is
closed where K = k(ξ), then η := f (ξ) ∈ XK is also closed. Indeed, suppose
η � η0 is a specialization to a closed point in XK ; this can be realized by a
map λ : �K → X . If h : Spec(R) → W is a map from a DVR with fraction
field K realizing the specialization ξ � w, then λ and f ◦ h glue to form
a map �R \ 0 → X which can be extended (using �-reductivity) to a map
(�R, 0) → (X , x), and this in turn (using étaleness of f and completeness of
R) lifts to a unique map (�R, 0) → (W, w). But since ξ ∈ WK is closed, the
image of �K → W consists of a single point, and thus the same is true for
the image of λ. It follows that f (ξ) = η0 ∈ XK is closed.

Finally, both the S-completeness and �-reductivity imply that (2) holds.
Let y0 ∈ Y := {y} be a closed point and f : (W := [Spec(A)/Gy0], w0) →
(Y, y0) be an étale morphism in which we can arrange that w0 is the unique
preimage of y0. ByZariski’smain theorem,wemay factor f as the composition
of a dense open immersion W ↪→ W̃ and a finite morphism W̃ → Y . Note
that w0 ∈ W̃ is necessarily closed and that any other closed point in W̃ is a
specialization of a k-point inW . As W̃ is also �-reductive, any k-point has a
unique specialization to a closed point. It follows that w0 is the unique closed
point in W̃ and thus the complement W̃ \ W is empty. This in turn implies
that f : W → Y is finite étale of degree 1 and thus an isomorphism.

In [34], using analytic results, a stronger result than (2) was obtained, and
as a result, the good moduli space is a scheme instead of merely an algebraic
space.

Lemma 2.12 Let f : X → Y be a finite type monomorphism of Artin stacks
locally of finite type over k such that for every geometric point x : Spec(l) →
X , the image under Xl → Yl of the closure {x} ⊂ Xl is closed in Yl . If Y is
�-reductive (resp., S-complete) with respect to essentially of finite type DVRs,
then so is X .

Proof Zariski’s main theorem implies that there is a factorization f : X ↪→
X̃ → Y where X ↪→ X̃ is an open immersion and X̃ → Y is finite. By [4,
Prop. 3.20(1)], X̃ is also �-reductive with respect to essentially of finite type
DVRs, so may assume that f is an open immersion. Consider an essentially of
finite typeDVR Rwith residue field l = R/π and amorphism h : �R\0 → X .
Since Y is �-reductive, h extends to a diagram
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Reductivity of the automorphism group 1005

Spec(l) π=0
�R \ 0 h X

f

�l
π=0

�R
h̃ Y.

In particular, if x denotes the composition Spec(l) → �R \ 0 → X , we have
a specialization x � h̃(0) in Yl . The hypotheses imply that h̃(0) ∈ Xl so that
h̃ factors though X . The argument for S-completeness is analogous. �


2.2 Log Fano pairs and K-stability

In this section, we introduce some basic notions concerning log Fano pairs
and K-stability. For further background information, see [12, Sect. 2] and the
references therein.

A pair (X, D) is composed of a normal variety X and an effectiveQ-divisor
D on X such that KX + D is Q-Cartier. See [28, 2.34] for the definitions of
klt, plt, and lc pairs. A pair (X, D) is log Fano if X is projective, (X, D) is klt,
and −KX − D is ample. A variety X is Q-Fano if (X, 0) is log Fano.

2.2.1 Families of log Fano pairs

Definition 2.13 Let T be a normal scheme. A Q-Gorenstein family of log
Fano pairs (X, D) → T is composed of a flat projective morphism between
normal schemes X → T and a Q-divisor D on X satisfying:

(1) Supp(D) does not contain any fiber,
(2) KX/T + D is Q-Cartier, and
(3) (Xt , Dt ) is a log Fano pair for all t ∈ T .

In (3), Dt denotes the divisorial pullback of D. More generally, if S → T is
a morphism of normal schemes, we set XS := X ×T S and write DS for the
Q-divisor on XS associated to Cycle(D ×T S).

A special test configuration of a log Fano pair (X, D) is the data of a Gm-
equivariant Q-Gorenstein family of log Fano pairs (X ,D) → A1 with an
isomorphism (X1,D1) 
 (X, D) for {1} → A1.

2.2.2 K-stability

Let (X, D) be an n-dimensional log Fano pair. A divisor over X is a prime
divisor E on a normal varietyY with a proper birationalmorphismμ : Y → X .
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Following [18], we set

βX,D(E) = (−KX − D)n AX,D(E) −
∫ ∞

0
vol(μ∗(−KX − D) − t E) dt,

where AX,D(E) := 1 + coeffE (KY − μ∗(KX + D)) is the log discrepancy.

Definition 2.14 A log Fano pair (X, D) is

(1) K-semistable if βX,D(E) ≥ 0 for all divisors E over X ;
(2) K-stable if βX,D(E) > 0 for all divisors E over X ;
(3) K-polystable if it is K-semistable and for any special test configura-

tion of (X ,D) → A1 of (X, D) with (X0,D0) K-semistable there is
an isomorphism of Q-Gorenstein families of log Fano pairs (X ,D) 

(XA1, DA1) := (X, D) × A1.

The equivalence of the above definition with the original definitions in [15,
39] was proven in [12,19,30,33].

Though the above notions of stability make sense for log Fano pairs over
characteristic zero fields that are not algebraically closed, we will not use
them due to the following issue: Let (XK , DK ) be a log Fano pair over a
characteristic zero field K and K ′/K a field extension. While it is expected
that (XK , DK ) is K-semistable if and only if (XK ′, DK ′) is K-semistable,
the result is only known when both K and K ′ are algebraically closed (for
example, see [10, Cor. 15]).1

The following result proved in [33] will be needed in various places.

Lemma 2.15 ([33]Lem. 3.1). Let (X ,D) be a special test configuration of a
K-semistable log Fano pair (X, D)with the central fiber denoted by (X0, D0).
If Fut(X ,D) = 0, then (X0, D0) is K-semistable.

2.3 Flat families of polarized schemes over a surface

We will be considering S-completeness and �-reductivity of stacks param-
eterizing polarized varieties. Both conditions are formulated in terms of the
existence of extensions of equivariant flat families of polarized varieties over
punctured regular surfaces.

We thus consider a regular noetherian 2-dimensional scheme S, and a closed
point 0 ∈ S. Let j : S\0 → S be the open immersion. The key fact that wewill
use is that for any finite rank locally free sheaf E on S \0, j∗(E) is locally free
aswell. j∗(E) is coherent because S is normal and 0 has codimension 2, and the

1 Since the first version of the current paper was written, this expectation was proved in [43].
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Reductivity of the automorphism group 1007

reflexive sheaf j∗(E) is locally free because any reflexive sheaf on a regular 2-
dimensional scheme is locally free [23, Cor. 1.4]. More precisely, j∗ induces
an equivalence between the categories of locally free (and more generally,
flat quasi-coherent) sheaves on S \ 0 and on S locally free (respectively, flat
quasi-coherent) sheaves on S, with inverse given by restriction.

Lemma 2.16 Let q : X → S\0 be a flat projective morphism of schemes, and
letL be a relatively ample line bundle onX . Then the following are equivalent:

(1) there exists an extension of q to a flat projective family X̃ → S with an
ample Q-line bundle L̃ extending L;

(2) the algebra
⊕

m≥0 j∗(q∗(OX (mL))) is finitely generated as an OS-
algebra; and

(3) the restriction
⊕

m≥0 j∗(q∗(OX (mL)))|0 is finitely generated as a κ(0)-
algebra.

If these conditions hold, then

X̃ = ProjS

⎛

⎝
⊕

m≥0

j∗
(
q∗OX (mL)

)

⎞

⎠

is the unique extension, with the polarization OX̃ (1). If X is equivariant for
an action of Gm on S, then so is X̃ .

Proof (1) ⇔ (2): Note that q∗(OX (mL)) is locally free on S for m � 0
because q is flat. It follows that X̃ = ProjS(

⊕
m j∗(q∗OX (mL))) is a flat

extension of X if this algebra is finitely generated, and conversely for any flat
extension �(X̃ ,OX̃ (mL̃)) = j∗(q∗(OX (mL))) for m � 0.

(3) ⇔ (2): Note that (2) ⇒ (3) automatically, and finite generation is
local over S by definition, so we may assume S is affine. Then we may lift
a finite homogeneous set of generators of

⊕
m≥0 j∗(q∗(OX (mL))) ⊗OS κ(0)

to
⊕

m≥0 j∗(q∗(OX (mL))), and by assumption we may find homogeneous
elements in the latter which generate the algebra

⊕
m≥0 q∗(OX (mL)) after

restriction to S \ 0. Together these define a map of graded OS-algebras
φ : OS[x1, . . . , xN ] → ⊕

m≥0 j∗(q∗(OX (mL))), where the degree of the
generators xi vary but are all ≥ 0. φ is surjective after restriction to κ(0) and
S \ 0, so because the graded pieces of both algebras are finite OS-modules,
Nakayama’s lemma implies that φ is surjective.

Note that if X̃ is equivariant for aGm-actionon S, then
⊕

m j∗(q∗(OX (mL)))

has an additional grading coming from theGm-action, and this grading induces
a Gm-action on X̃ extending the one on X . �


123



1008 J. Alper et al.

3 S-completeness

In this section, we will prove that the moduli of K-semistable log Fano pairs is
S-complete (Theorem 3.3). We first study S-completeness for quasi-coherent
sheaves in Sect. 3.1 and then S-completeness of polarized varieties in Sect. 3.2.
Applying this to the direct sum of the pushforwards of them-th tensor product
of the polarization for a family of polarized varieties, this naturally leads to
a finite generation condition on the graded algebra (see Condition 3.1). In
Sect. 3.3, we confirm this condition for K-semistable log Fano pairs.

3.1 S-completeness for coherent sheaves

In this subsection, we establish S-completeness for the stack parameterizing
coherent sheaves on Spec(k) or, in other words, that every flat and coherent
sheaf on STR \ 0 extends uniquely to a flat and coherent sheaf on STR .

We begin by discussing the correspondence between flat coherent sheaves
on �k and filtrations. A quasi-coherent sheaf F on �k = [Spec(k[x])/Gm]
corresponds to a Gm-equivariant quasi-coherent sheaf on Spec(k[x]) or, in
other words, a Z-graded k[x]-module

⊕
p∈Z Fp; this in turn corresponds to

diagram of k-vector spaces: · · · → Fp+1
x−→ Fp

x−→ Fp−1 → · · · . The
restriction of F along Spec(k)

1−→ �k is colim(· · · → Fp+1
x−→ Fp →

· · · ) and along BkGm
0−→ �k is the associated graded quasi-coherent sheaf⊕

p Fp/x Fp+1. Moreover, F is flat and coherent over �k if and only if each
Fp is a finite dimensional k-vector space, the maps x are injective, Fp = 0 for
p � 0 and x : Fp → Fp−1 is an isomorphism for p � 0.
Similarly, if R is a DVR with fraction field K , residue field κ and

uniformizing parameter π , then a quasi-coherent sheaf F on STR =
[Spec(R[s, t]/(st−π)

)
/Gm] corresponds to aGm-equivariant quasi-coherent

sheaf on Spec(k[s, t]/(st−π)) or, in other words, aZ-graded R[s, t]/(st−π)-
module

⊕
p∈Z Fp; this in turn corresponds to a diagramofmaps of R-modules

· · ·
t

Fp+1

t

s
Fp

t

s
Fp−1

t

s
· · ·

s
,

such that st = ts = π . The reader may wish to refer to the schematic picture
(2) of STR . The restriction of F along

• Spec(R)
t 	=0

↪−−→ STR is colim(· · · t−→ Fp
t−→ Fp−1

t−→ · · · ),
• Spec(R)

s 	=0
↪−−→ STR is colim(· · · s←− Fp

s←− Fp−1
s←− · · · ),
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• �κ
t=0

↪−−→ STR is the object corresponding to the sequence

(· · · s←− Fp/t Fp+1
s←− Fp−1/t Fp

s←− · · · ),

• �κ
s=0

↪−−→ STR is (· · · t−→ Fp+1/sFp
t−→ Fp/sFp−1

t−→ · · · ), and
• BκGm

s=t=0
↪−−−→ STR is theZ-graded κ-module

⊕
p∈Z Fp/(t Fp+1+sFp−1).

The sheaf F is flat and coherent over STR if and only if each Fp is flat and coher-
ent over R, the maps s and t are injective, the induced maps s : Fp−1/t Fp →
Fp/t Fp+1 are injective (or equivalently the maps t : Fp+1/sFp → Fp/sFp−1
are injective), t : Fp → Fp−1 is an isomorphism for p � 0 and s : Fp−1 →
Fp is an isomorphism for p � 0.
Let j : STR \ 0 ↪→ STR be the open immersion. We will show how to

compute the pushforward of coherent sheaves under this open immersion. Let
jt , js : Spec(R) → STR and jst : Spec(K ) → STR be the open immersions
corresponding to t 	= 0, s 	= 0 and st 	= 0. Let E be a flat coherent sheaf
on STR \ 0; this corresponds to a pair of R-modules E and E ′ together with
an isomorphism α : EK → E ′

K . Under α, we may view both E and E ′ as
submodules of EK . Then j∗E ∼= ( jt )∗E∩( js)∗E ′ ⊂ ( jst )∗EK . As morphisms
of graded R[s, t]/(st − π)-modules, jt and js correspond to the inclusions
R[s, t]/(st − π) ⊂ R[t]t and R[s, t]/(st − π) ⊂ R[s]s , and jst corresponds
to R[s, t]/(st −π) ⊂ K [t]t . Recalling that t has weight −1, we compute that

( jst )∗EK
∼= EK ⊗R R[t]t ∼=

⊕

p∈Z

EK t
−p,

( jt )∗E ∼= E ⊗R R[t]t ∼=
⊕

p∈Z

Et−p ⊂ ( jst )∗EK ,

( js)∗E ′ ∼= E ′ ⊗R R[s]s ∼=
⊕

p∈Z

(π p · E ′)t−p ⊂ ( jst )∗EK

where in the last line we have used the identification s = t−1π . Finally, we
compute that

j∗E ∼=
⊕

p∈Z

(
E ∩ (π p · E ′)

)
t−p ⊂

⊕

p∈Z

EK t
−p. (6)

If we define the filtration G pE = E ∩ (π p · E ′), then j∗E is theOSTR
-module

given by the diagram

· · ·
t

G p+1E
t

s
G pE

t

s
G p−1E

t

s
· · ·

s
,
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1010 J. Alper et al.

of R-modules where t : G p+1E → G pE is inclusion and s : G pE → G p+1E
is multiplication by π . Note that j∗E is necessarily a flat and coherent OSTR

-
module, because non-equivariantly it is the pushforward of a vector bundle
from the complement of a closed point in the regular surfaceSpec(R[s, t]/(st−
π)).

3.2 S-completeness for polarized varieties

Suppose (X, L) and (X ′, L ′) are flat families of polarized varieties over
Spec(R) and α : (XK , LK ) → (X ′

K , L ′
K ) is an isomorphism. Then (X, L)

and (X ′, L ′) can be glued along the isomorphism α to a polarized family
(X ,L) → STR \ 0. This yields a diagram

X
q

STR \ 0 j
STR .

Now we state our key condition:

Condition 3.1 (Finite Generation Condition). TheOSTR
-algebra

⊕
m≥0 j∗q∗

OX (mL) is finitely generated.

By Lemma 2.16, this condition is equivalent to the existence of a flat exten-
sion of X to a polarized family (X̃ , L̃) → STR , where

X̃ := Proj
STR

⊕

m≥0

j∗q∗OX (mL)

and L̃ = OX̃ (1). To provide a more explicit description for this algebra,
Equation (6) implies that for each m ≥ 0,

j∗q∗OX (mL) ∼=
⊕

p∈Z

(
H0(X,OX (mL)) ∩ π pH0(X ′,OX ′(mL ′))

)
t−p

⊂
⊕

p∈Z

H0(XK ,OXK (mLK ))t−p.

Define a filtration of Vm := H0(X,OX (mL)) by

G pVm := H0(X,OX (mL)) ∩ π pH0(X ′,OX ′(mL ′)),
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which consists of sections in Vm with at worst a pole of order p along X ′
0. We

have a diagram of R-modules

· · ·
t

G p+1Vm
t

s
G pVm

t

s
G p−1Vm

t

s
· · ·

s
,

where t : G p+1Vm → G pVm is inclusion and s : G pVm → G p+1Vm ismultipli-
cation by π . This gives the direct sum

⊕
p,m G pVm the structure of a bigraded

R[s, t]/(st − π)-algebra. Assume the Finite Generation Condition 3.1 holds,
then the grading in m defines a projective scheme

P = Proj
Spec(R[s,t]/(st−π))

⊕

p,m

G pVm

and the grading in p gives an action of Gm on P and a linearization ofOP(1).
Observe that (X̃ , L̃) = ([P/Gm],OP(1)).

Example 3.2 Let (X, L) be a polarized κ-variety, and let R = κ[[t]] and K =
κ((t)). Let (XK , LK ) → (XK , LK ) be an automorphism induced from a one-
parameter subgroup α : Gm → Aut(X, L). The above construction produces
a flat family (X̃ , L̃) over STR which corresponds to the trivial flat family

(
X × Spec(R[s, t]/(st − π)), p∗

1L
)

over Spec(R[s, t]/(st − π)) with the Gm-action given by α on the first factor.
Observe that if Aut(X, L) is reductive, then any α ∈ Aut(X, L)(K ) is in the
same double coset as a one-parameter subgroup by the Iwahori decomposition,
and it follows that any family over STR \ 0 obtained by gluing two trivial
families over Spec(R) along an isomorphism α ∈ Aut(X, L)(K ) extends to
a family over STR . On the other hand if Aut(X, L) is not reductive, such an
extension need not exist.

3.3 S-completeness for K-semistable log Fano pairs

In this section, we will prove that Condition 3.1 holds for K-semistable log
Fano pairs with anticanonical polarization (Theorem 3.3). This is obtained by
showing that the filtration considered in [12] is equivalent to the filtration in
Sect. 3.2 up to a grading shift. Hence, we can invoke finite generation results
proved in [12] to verify that Condition 3.1 is satisfied and then use a result in
[33] (see Lemma 2.15) to show that the corresponding special fiber of the flat
extension over STR is K-semistable.

123



1012 J. Alper et al.

Let R be a DVR essentially of finite type over k with uniformizer π , fraction
field K , and residue field κ . Let

(X, D) → Spec(R) and (X ′, D′) → Spec(R)

be Q-Gorenstein families of log Fano pairs and assume there is a birational
mapα : X ��� X ′ that induces an isomorphism (XK , DK ) → (X ′

K , D′
K ). Fol-

lowing Sect. 3.2, the above data gives a Gm-equivariant Q-Gorenstein family
of log Fano pairs

(X ,D) → Spec (R[s, t]/(st − π)) \ 0, (7)

where 0 ∈ Spec (R[s, t]/(st − π)) is the closed point defined by the vanishing
of (s, t).

Theorem 3.3 If (Xκ , Dκ) and (X ′
κ , D′

κ) are K-semistable, then the map in (7)
extends uniquely to a Gm-equivariant Q-Gorenstein family of log Fano pairs

(X̃ , D̃) → Spec (R[s, t]/(st − π)) .

Furthermore, the geometric fiber over 0 is K-semistable.

Remark 3.4 (1) The above theorem immediately implies that XKss
n,V is S-

complete with respect to essentially of finite type DVRs.
(2) Theorem 3.3 is an extension of [12, Thm 1.1.1], which states that if

(Xκ , Dκ) and (X ′
κ , D′

κ) are K-semistable, then they degenerate to a com-
mon K-semistable log Fano pair via special test configurations. Indeed, the
restriction of (X ,D) → Spec (R[s, t]/(st − π)) to s = 0 and t = 0 are
naturally test configurations of (Xκ , Dκ) and (X ′

κ , D′
κ) with special fiber

(X̃0, D̃0).
(3) The results in [12] are phrased in the setting of families over a smooth

pointed curve, not the spectrum of a DVR. Fortunately, the proofs in [12,
Sect. 5] extend with little change to the more general setting of families
over DVRs which are essentially of finite type over k.

However, the argument does not automatically generalize to families over
the spectrum of a general DVR over k, since a key ingredient in the proof
relies on theMMP, specifically [8].While the latter results hold for varieties
(and, hence, have natural extensions to essentially of finite type k-schemes),
they are not known to hold more generally.

3.3.1 Filtration from [12]

Consider a diagram over Spec(R)
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Reductivity of the automorphism group 1013

Y

X X ′

ρ′ρ

φ′
,

where ρ and ρ′ are proper birational morphisms and Y is normal. Write X̃0
and X̃ ′

0 for the birational transforms of X0 and X ′
0 on Y .

Fix a positive integer r such that L := −r(KX+D) and L ′ := −r(KX ′+D′)
are Cartier divisors. Let

V :=
⊕

m∈N

Vm :=
⊕

m∈N

H0(X,OX (mL)) and

V ′ :=
⊕

m∈N

V ′
m :=

⊕

m∈N

H0(X ′,OX ′(mL ′))

denote the section rings of X and X ′ with respect to L and L ′. We write
Vκ = ⊕

m Vκ,m and VK = ⊕
m VK ,m for the restrictions of V to Spec(κ)

and Spec(K ), respectively. Note that each Vm is a flat R-module and satisfies
cohomology and base change, since Hi (X,OX (mL)) = 0 for i > 0 and
m ≥ 0 by [25, Thm. 10.37]. Therefore, Vκ and VK are isomorphic to the
section rings of Lκ and LK .

Following [12, Sect. 5.1], for each m ∈ N and p ∈ Z, we set

F pVm := {g ∈ Vm | ord X̃ ′
0
(g) ≥ p}, (8)

where ord X̃ ′
0
(g) equals the coefficient of X̃ ′

0 in div(ρ
∗(g)). Observe that

πF p−1Vm = F pVm ∩ πVm (9)

and setting

F pVκ,m := im(F pVm ⊗R κ → Vm,κ ) ⊆ Vκ,m,

gives a filtration of the section ring Vκ . We state two results from [12, Section
5.2] concerning this filtration.

Proposition 3.5 If (Xκ , Dκ) and (X ′
κ , D′

κ) are K-semistable, then:

(1) The κ[t]-algebra
⊕

m∈N

⊕

p∈Z

(F pVκ,m
)
t−p and κ-algebra

⊕

m∈N

⊕

p∈Z

gr pFVκ,m

are finitely generated;
(2) The test configuration (Xκ ,Dκ) → A1

κ of (Xκ , Dκ) induced by the κ[t]-
algebra in (1) is special and the geometric fiber over 0 is K-semistable.
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1014 J. Alper et al.

Proof The argument in [12, Sect. 5.2] implies (1) and that the induced test
configuration (Xκ,Dκ) → A1

κ of (Xκ , Dκ) is a special test configuration with
Futaki invariant zero. Since Fut(Xκ ,Dκ) = Fut(Xκ,Dκ) and the latter is zero,
(Xκ,Dκ)0 must be K-semistable by Lemma 2.15. �


In the proof of Theorem 3.3, we will need to show that the bound-
ary divisor D in (7) extends to a well defined family of cycles over
Spec (R[s, t]/(st − π)). For this, let B be a prime divisor in Supp(D) andwrite
IB ⊆ ⊕

m Vm for the homogenous ideal defining B. Consider the homogenous
ideal

I :=
⊕

m∈N

⊕

p∈Z

im
(
IB ∩ F pVm → gr pFVκ,m

) ⊆
⊕

m∈N

⊕

p∈Z

gr pFVκ,m . (10)

Proposition 3.6 If (Xκ , Dκ) and (X ′
κ , D′

κ) are K-semistable, then the sub-
scheme defined by I is of codimension at least one.

Proof Let (Xκ ,Dκ) → A1
κ denote the test configuration described in Proposi-

tion 3.5 andwriteBκ for the closure of Bκ ×(A1\0) inXκ under the imbedding
Xκ × (A1 \ 0) ↪→ Xκ . Clearly, the scheme theoretic fiber of Bκ over 0 is of
codimension one in (Xκ)0 
 Proj(

⊕
m

⊕
p gr

p
FVκ,m). Since V (I ) and the

scheme theoretic fiber of Bκ over 0 agree away from a codimension 2 subset
by [12, Prop. 5.13.1], V (I ) is also of codimension at least one. �


In light of the discussion in Sect. 3.2 , observe that

⊕

m∈N

⊕

p∈Z

(F pVm
)
t−p (11)

has the structure of a Z-graded R[s, t]/(st − π)-module, where the map
(F pVm) t−p s→ (F p+1Vm

)
t−p−1 is defined by gt−p �→ πgt−p−1. Addi-

tionally,

( ⊕

m∈N

⊕

p∈Z

(F pVm
)
t−p

) ⊗

R[s,t]/(st−π)

κ[t] 

⊕

m∈N

⊕

p∈Z

(F pVκ,m
)
t−p, (12)

since (9) implies F pVm
πF p−1Vm

= F pVm
πVm∩F pVm


 im
(
F pVm → Vm

πVm

)
. Therefore,

( ⊕

m∈N

⊕

p∈Z

(F pVm)t−p
) ⊗

R[s,t]/(st−π)

κ 

⊕

m∈N

⊕

p∈Z

gr pFVκ,m, (13)

where R[s, t]/(st − π) → κ is the morphism that sends s and t to 0.

123



Reductivity of the automorphism group 1015

The following proposition states that the filtration F• from [12] coincides
with the filtration from Sect. 3.2 up to a shift. See [9, Section 2.5], [19, Claim
5.4] or [30, (64)] for related arguments applied to test configurations.

Proposition 3.7 For each p ∈ Z and m ∈ N,

F p−mraVm = Vm ∩ π pV ′
m,

where a := coeff X̃ ′
0
(KY − ρ∗(KX + D)).

The intersection in the above proposition is taken after using the iso-
morphism α∗ : K (X ′) → K (X) to view V ′

m := H0(X ′,OX ′(mL ′)) as a
R-submodule of K (X).

Proof First, observe that there are natural isomorphisms

π pH0 (
X ′,OX ′(mL ′)

) 
 H0 (
X ′,OX ′(mL ′ − pX ′

0)
)


 H0 (
Y,OY

(
ρ′∗(mL ′ − pX ′

0)
))

= H0 (
Y,OY

(
mρ∗L + m(ρ′∗L ′ − ρ∗L) − pρ′∗X ′

0

))
.

Next, fix g ∈ H0(X,OX (mL)) and set G = div(g). By the above isomor-
phisms, g ∈ π pH0(X ′,OX ′(mL ′)) if and only if

G ′ := ρ∗G + (
m(ρ′∗L ′ − ρ∗L) − pρ′∗X ′

0

) ≥ 0.

Note that G ′ is the pullback of a Q-Cartier Q-divisor on X ′, since

G ′ ∼Q mρ∗L + (
m(ρ′∗L ′ − ρ∗L) − pρ′∗X ′

0

) ∼Q ρ′∗(mL ′ − pX ′
0).

Therefore, G ′ is effective if and only if ρ′∗G ′ is effective.
To understand whether or not ρ′∗G ′ is effective, observe

ρ′∗L ′ − ρ∗L = r
((
KY − ρ∗(KX + D)

) − (
KY − ρ′∗(KX ′ + D′)

))

and, hence,

ρ′∗
(
m(ρ′∗L ′ − ρ∗L) − pρ′∗X ′

0

) = m
(
r(D′ + aX ′

0) − r D′) − pX ′
0

= (mra − p)X ′
0

Therefore, ρ′∗G ′ is effective if and only if coeff X̃ ′
0
(ρ∗G) + (mra − p) ≥ 0. �
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3.3.2 Proof of S-completeness

We are now in position to prove Theorem 3.3 as a consequence of the results
in Sects. 3.2 and 3.3.1.

Proof of Theorem 3.3 Following Sect. 3.2 , we consider theZ-graded R[s, t]/
(st − π)-algebra

⊕

m∈N

⊕

p∈Z

(
Vm ∩ π pV ′

m

)
t−p. (14)

Note that this algebra equals
⊕

m

⊕

p

(F p−mraVm
)
t−p by Proposition 3.7 and

its restriction to 0 ∈ Spec(R[s, t]/(st−π) is isomorphic to
⊕

m

⊕

p
gr p−mra

F Vκ,m

by Equation (13). Since the latter κ-algebra is of finite type by Proposition 3.5
(1), Lemma 2.16 implies that the the R[s, t]/(st − π)-algebra (14) is finite
type.

Set X̃ := Proj
R[s,t]/(st−π)

(⊕

m

⊕

p
(Vm ∩ π pV ′

m)t−p
)
and write D̃ for the

component-wise closure of D × (A1 \ 0) under the embedding X × (A1 \ 0)

 X̃t 	=0 ↪→ X̃ . The grading with respect to p gives a Gm-action on X̃ that
fixes D̃.

We claim that X̃ → Spec (R[s, t]/(st − π)) has normal fibers, no compo-
nent of D̃ contains a fiber, and KX̃ +D̃ isQ-Cartier. The statement is clear away
from thefiber over 0.Next, note that X̃0 
 Proj(

⊕
m

⊕
p gr

p−mra
F Vκ,m), which

is the fiber over 0 ∈ A1
κ of the special test configuration in Proposition 3.5.

Hence, X̃0 is normal.
To see X̃0 	⊂ Supp(D̃), fix a prime divisor B in the support of D and write

B̃ for the closure of B × (A1 \ 0) in X̃ . If IB ⊆ ⊕
m Vm is the homogenous

ideal defining B, then B̃ is defined by the homogenous ideal

⊕

m

⊕

p

(IB ∩ F p−mraVm)t−p ⊆
⊕

m

⊕

p

(F p−mraVm
)
t−p.

Hence, the scheme theoretic fiber of B̃ over 0 ∈ Spec(R[s, t]/(st−π)) agrees
with the vanishing of the ideal in (10). Since the latter ideal defines a locus of
codimension at least one in X̃0 by Proposition 3.6, X̃0 	⊂ B.

To see KX̃ +D̃ isQ-Cartier, KX̃ +D̃ isQ-Cartier fix aQ-divisor L̃on X̃ such
thatmrL̃ is in the linear equivalence class ofOX̃ (m) for a positive integerm. By
construction L̃|s 	=0 ∼Q (−KX̃ −D̃)|s 	=0. Therefore, L̃ ∼Q −KX̃ −D̃+G, for
some Q-divisor G supported on X̃ |s=0. Since X̃ |s=0 is an irreducible Cartier
divisor, −KX̃ − D̃ must be Q-Cartier.
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Finally, note that (X̃ , D̃)|s=0 → A1
κ coincides with the special test config-

uration in Proposition 3.5 by (12). Therefore, (X̃0, D̃0) is a K-semistable log
Fano pair. This implies (X̃ , D̃) → Spec(R[s, t]/(st − π)) is a Q-Gorenstein
family of log Fano pairs and is the unique extension of (7) by Lemma 2.16. �


4 Reductivity of the automorphism group

In this section, we prove that if (X, D) is a K-polystable log Fano pair, then
the automorphism group

Aut(X, D) := {g ∈ Aut(X) | g∗D = D}

is reductive (Theorem 1.3).
We note that this result would follow formally from results in the previous

section if one could establish that a suitably defined stack parameterizing
K-semistable log Fano pairs was represented by a finite type Artin stack.
Indeed, Theorem 3.3 would show that this stack is S-complete with respect
to essentially of finite type DVRs and therefore any closed point (i.e. a K-
polystable logFanopair) has reductive stabilizer (Remark2.6).Wewill provide
a direct alternative argument for the reductivity of Aut(X, D) inspired by the
property of S-completeness. Our argument has the advantage that it entirely
avoids the language of stacks.

4.1 Setup

In this section, we fix a log Fano pair (X, D) and write D = ∑
i∈I ai Di

where the Di are distinct prime divisors. For each a in the coefficient set
{ai | i ∈ I }, set Ba := ⋃

a=ai Di . Choose r sufficiently divisible and large so
that L := OX (−r(KX + D)) is a very ample line bundle.

We will now equip Aut(X, D)with the structure of a linear algebraic group.
Since L is very ample, Aut(X,L) := {g ∈ Aut(X) | g∗L 
 L} is a linear
algebraic group as it is a closed subgroup of PGL(H0(X,L)). For an element
g ∈ Aut(X), observe that g∗D = D if and only if g∗(L) 
 L and for all a in
the coefficient set, g fixes Ba . In other words,

Aut(X, D) = {g ∈ Aut(X,L) | ∀a, g(Ba) = Ba }

As the conditions that g(Ba) = Ba are closed conditions, this shows that
Aut(X, D) ⊂ Aut(X,L) is a closed subgroup.
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4.2 Isotrivial families of K-polystable log Fano pairs

We begin by stating a special case of Theorem 3.3 when the family is obtained
by gluing two trivial families.

Let R be a DVR essentially of finite type over k with fraction field K and
residue field κ . Fix a birational map XR ��� XR that induces an isomorphism
α : (XK , DK ) → (XK , DK ). As Spec(R[s, t]/(st − π)) \ 0 is the union of
Spec(R[s]s) and Spec(R[t]t ) along Spec(K [s]s) = Gm,K , we may glue the
two trivial families XR[s]s → Spec(R[s]s) and XR[t]t → Spec(R[t]t ) along
the Gm-equivariant isomorphism induced by α to obtain a Gm-equivariant
Q-Gorenstein family of log Fano pairs

(X ,D) → Spec (R[s, t]/(st − π)) \ 0. (15)

Note that if wewriteBa for the closure of Ba×Spec(R[t]t ) under the inclusion
XR[t]t ↪→ X , then D = ∑

aBa .

Proposition 4.1 If (X, D) is K-polystable, then

(X ,D) → Spec (R[s, t]/(st − π)) \ 0
extends to a Gm-equivariant Q-Gorenstein family of log Fano pairs

(X̃ , D̃) → Spec (R[s, t]/(st − π)) .

with (X̃0, D̃0) 
 (Xκ , Dκ). Furthermore, if we write D̃ = ∑
aB̃a, where B̃a

is the closure of Ba, then each B̃a is flat over Spec(R[s, t]/(st −π)) with pure
fibers.

By pure fibers, we mean that the fibers are equidimensional and have no
embedded components.

Proof By Theorem 3.3, the map in (15) extends to a family (X̃ , D̃) with
K-semistable geometric fiber over 0 ∈ Spec (R[s, t]/(st − π)). Hence, the
restriction (X̃ , D̃)|s=0,κ is naturally a special test configuration of (Xκ , Dκ)

with K-semistable geometric fiber over 0 ∈ A1
κ . Since (X, D) is K-polystable,

this test configuration must be a product (i.e. it is isomorphic to (XA1
κ
, DA1

κ
)).

Therefore, (X̃0, D̃0) 
 (Xκ , Dκ).
Next, fix a in the coefficient set of D and consider the divisor B̃a .

By [26, Thm. 4.33], there exists a locally closed decomposition S =

Si → Spec(R[s, t]/(st − π)) such that a morphism of schemes T →
Spec(R[s, t]/(st − π)), with T reduced, factors through S if and only if
B̃a|T → T is flat and has pure fibers. Such locally closed decomposition
is unique by definition.
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Reductivity of the automorphism group 1019

Now, the loci {s = 0}, {s 	= 0} and {t 	= 0} factor through S, since the
divisorial restrictions B̃a|s=0, B̃a|s 	=0 and B̃a|t 	=0 are trivial families. Therefore,
each of them factors through some locally closed set, denoted by S0, S1 and S2.
However, it then follows that S0 = S2 as {s = 0}∩{t 	= 0} 	= ∅ and S1 = S2 as
{s 	= 0}∩{t 	= 0} 	= ∅. Therefore, we have S = S0 = Spec(R[s, t]/(st −π)),
so B̃a → Spec (R[s, t]/(st − π)) is flat with pure fibers. �


4.3 Reductivity via Iwahori decompositions

Throughout this section, let R = k[[π ]] and K = k((π)). Given a linear alge-
braic group G, Iwahori’s theorem (cf. [20, p.52]) states that if G is reductive,
then for any element g ∈ G(K ), there exist a, b ∈ G(R) and a one-parameter
subgroup λ ∈ Hom(Gm,G) such that g = a · λ|K · b, where λ|K denotes

the composition Spec(K ) → Gm = Spec(k[π ]π)
λ→ G. If we let �G denote

the set of K -points induced by one-parameter subgroups of G, then Iwahori’s
theorem states that if G is reductive, then

G(K ) = G(R)�GG(R).

The following argument, which states that the converse also holds, was com-
municated to us by Jun Yu. See [5] for a proof using Artin stacks and
S-completeness.

Proposition 4.2 LetG bea linear algebraic group. If G(K ) = G(R)�GG(R),
then G is reductive.

Proof WriteG = Gu�Gs for the Levi decomposition ofG. Thatmeans,Gu is
the unipotent radical of G, which is a (connected) unipotent group over k, and
Gs is a reductive group over k; the map (x; y) → xy where (x ∈ Gu, y ∈ Gs)

gives a bijection Gu × Gs → G.
For any one-parameter subgroup λ : Gm → G defined over k, the image of

λ consists of semisimple elements. Thus, it is contained in a conjugate of Gs .
That means, there exists g ∈ G(k) such that Ad(g)(λ) has image lying in Gs ,
or in other words Ad(g) · λ ∈ �Gs . Therefore,

�G = Ad(G(k))(�Gs ) ⊂ G(k)�GsG(k).

Since G = Gu � Gs , we get

G(R) = Gu(R) � Gs(R) = Gu(R)Gs(R) = Gs(R)Gu(R).
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1020 J. Alper et al.

Combining the above, we get

G(R)�GG(R) ⊂ G(R)G(k)�GsG(k)G(R)

= G(R)�GsG(R)

= Gu(R)Gs(R)�GsGs(R)Gu(R)

= Gu(R)Gs(K )Gu(R),

where we used Iwahori’s theorem to Gs in the last equality. Thus, G(R)�GG
(R) = Gu(R)Gs(K )Gu(R).

Suppose

G(K ) = G(R)�GG(R) = Gu(R)Gs(K )Gu(R).

Then,

Gu(K ) = (
Gu(R)Gs(K )Gu(R)

) ∩ Gu(K )

= Gu(R)
(
Gs(K ) ∩ Gu(K )

)
Gu(R) = Gu(R).

Since Gu is a connected unipotent group, we have Gu
∼= An as a variety over

k, where n = dimGu . Then, Gu(K ) = Gu(R) implies that Kn = Rn , which
in turn implies that n = 0 and that G is reductive. �


The following lemmawill allowus toworkwith essentially finite typeDVRs
when checking that the hypotheses of Proposition 4.2 are satisfied.

Lemma 4.3 If G is a linear algebraic group, then for any g ∈ G(K ), there is
an algebraic point g0 such that g · g−1

0 ∈ G(R), where algebraic means that
g0 ∈ G(k(C)) for the function field k(C) of a smooth curve over k embedded
in K via a dominant morphism Spec(R) → C.

Proof Fix an embedding G ⊂ GLm for some m > 0 and N � 0 so that
π N ·g−1 ∈ Mm×m(R). By Artin approximation ([6]), we can find an algebraic
point g0 ∈ G(K ) such that g − g0 ∈ π N+1 · Mm×m(R). Since gg−1

0 =
(
1 − g−g0

g

)−1
and g−g0

g ∈ π · Mm×m(R), we know

g · g−1
0 = 1 +

∞∑

i=1

(
g0 − g

g

)i

∈ GLm(R) ∩ G(K ) = G(R).

�
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4.4 Proof of reductivity

Theorem 1.3 is an immediate consequence of Lemma 4.2 and the following
proposition.

Proposition 4.4 If (X, D) is a K-polystable log Fano pair, then G :=
Aut(X, D) satisfies G(K ) = G(R)�GG(R).

Proof Set R = k[[π ]] and K = k((π)). By Lemma 4.3, it suffices to show
that all algebraic points of G(K ) are contained in G(R)�GG(R). To proceed,
fix a smooth pointed curve x ∈ C with local ring R0 := OC,x , function field
K0 := Frac(OC,x ), and an extension of DVRs R0 ⊂ R. We will show that if
g ∈ G(K0), then g|K ∈ G(R)�GG(R).

Consider the isomorphism (XK0, DK0) → (XK0, DK0) of log Fano pairs
induced by g. This data gives a Gm-equivariant Q-Gorenstein family of log
Fano pairs

(X ,D) → Spec (R0[s, t]/(st − π)) \ 0
and we may write D = ∑

aBa . By Proposition 4.1, the above family
extends to aGm-equivariantQ-Gorenstein family of log Fano pairs (X̃ , D̃) →
Spec(R0[s, t]/(st−π)) such that (X̃0, D̃0) 
 (X, D). Moreover, D̃ = ∑

aB̃a
where each B̃a is flat over Spec(R0[s, t]/(st − π)) with pure fibers. The Gm-
action on the fiber (X̃0, D̃0) induces a 1-parameter subgroup λ : Gm → G.

Replace (X̃ , D̃) with its base change by R to get a family over S :=
Spec (R[s, t]/(st − π)). We will show that there is a Gm-equivariant isomor-
phism (X̃ , D̃) ∼= (XS , DS), where Gm acts on (XS , DS) = (X × S, D × S)

diagonally, via λ on the left factor and the standard action S. As every geomet-
ric fiber of the family (X̃ , D̃) → Spec(R) is isomorphic to the base change of
(X, D) and since each B̃a is flat over S, the scheme

I := IsomS((X̃ , D̃), (XS, DS))

parameterizing isomorphisms is a G-torsor over S (c.f. [38, Lemma 2.3.2]).
For any test scheme T , a T -point of I consists of a point p ∈ S(T ) along with
an isomorphism φ : (X̃p, D̃p) ∼= (XT , DT ) of families over T . TheGm-action
on both pairs gives a Gm-action on I, where for any test scheme T , a T -point
t ∈ Gm(T ) acts on I(T ) by

t · (p, φ) = (
t · p, λ(t) · φ(t−1 · (−)) : X̃t ·p ∼= XT

)
.

Note that the projection I → S is Gm-equivariant, and a Gm-equivariant
section of this morphism classifies a Gm-equivariant isomorphism of families
(X̃ , D̃) ∼= (XS , DS) over S.
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The projection I → S is smooth because it is a principal G-bundle and G
is smooth. Let Sn be the nth nilpotent thickening of 0 ∈ S. By construction,
we have a Gm-equivariant section s0 : S0 → I. By the formal lifting criteria
for smoothness, s0 extends to a compatible family of Gm-equivariant sections
sn : Sn → I. We claim that the sections sn algebraize to aGm-equivariant sec-
tion s : S → I. The Gm-actions induce Z-gradings �(OS) = ⊕

d �(OS)d ,
�(OSn ) = ⊕

d �(OSn )d and �(OI) = ⊕
d �(OI)d . To prove the exis-

tence of the desired section s : S → I, it suffices to verify the existence
of a graded homomorphism �(OI) → �(OS) extending the given homomor-
phisms�(OI) → �(OSn ). To see this, observe that for each d, the compatible
maps �(OI)d → �(OSn )d extend to a map �(OI)d → lim←−n

�(OSn )d . The
latter R-module can be explicitly computed to be isomorphic to �(OS)d since
R is complete.
To conclude, let φ : (X̃ , D̃) ∼= (XS , DS) be the Gm-equivariant iso-

morphism constructed in the previous paragraph. Restricting to S \ 0 and
quotienting by the Gm-action, φ gives an isomorphism between two fami-
lies over Spec(R) ∪Spec(K ) Spec(R). Each family was obtained by gluing two
copies of the trivial family along an isomorphismover Spec(K ), the first family
corresponding to g ∈ G(K ) and the second to λ(π) ∈ G(K ). Thus φ|(S\0)/Gm

corresponds to a pair a, b ∈ G(R) such that a · g = λ(π) · b, and hence
g = a−1 · λ(π) · b ∈ G(R)�GG(R). �


5 �-reductivity

In this section, we will carry out an analysis similar to that in Sect. 3 for
�-reductivity.

5.1 �-reductivity for coherent sheaves

Let R be a DVR with fraction field K , residue field κ and uniformizing
parameter π . Recall that � = [A1/Gm] and that �R = � × Spec(R) =
[Spec(R[x])/Gm], where x has weight −1. The reader may wish to refer to
the schematic picture (4) of�R . In this subsection, we establish�-reductivity
for the stack parameterizing coherent sheaves on Spec(k) or, in other words,
that every flat and coherent sheaf on �R \ 0 extends uniquely to a flat and
coherent sheaf on �R .

A quasi-coherent sheaf F on �R corresponds to a Gm-equivariant quasi-
coherent sheaf on Spec(R[x]) or, in other words, a Z-graded R[x]-module
⊕

p∈Z Fp; this in turn corresponds to a diagram · · · x−→ Fp+1
x−→ Fp

x−→
Fp−1

x−→ · · · of R-modules. The restriction of F to Spec(R)
x 	=0

↪−−→ �R is the

123
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R-module colim Fp and the restriction to �κ
π=0

↪−−→ �R is the Z-graded κ-
module

⊕
p∈Z Fp/πFp. Moreover, F is flat and coherent over�R if and only

if each Fp is flat and coherent over R, the maps x : Fp+1 → Fp are injective,
each Fp/Fp+1 is flat, Fp = 0 for p � 0, and Fp stabilize for p � 0.

We will compute the pushforward along the open immersion j : �R \ 0 ↪→
�R . Denote the open immersions by

jx : Spec(R)
x 	=0

↪−−→ �R, jπ : �K
π 	=0

↪−−→ �R and jxπ : Spec(K )
xπ 	=0

↪−−−→ �R .

Let E be a flat coherent sheaf on �R \ 0; this corresponds to a free R-module
E of finite rank and a Z-filtration G•EK : · · · ⊂ G p+1EK ⊂ G pEK ⊂ · · ·
of EK . Then j∗E = ( jx )∗E ∩ ( jπ)∗G•EK ⊂ ( jxπ)∗EK . As morphisms of
graded R[x]-modules, jx and jπ correspond to the inclusions R[x] ⊂ R[x]x
and R[x] ⊂ K [x], and jxπ corresponds to R[x] ⊂ K [x]x . We compute that

( jxπ)∗EK
∼= K [x]x ⊗R EK

∼=
⊕

p∈Z

EK x
−p,

( jx )∗E ∼= E ⊗R R[x]x ∼=
⊕

p∈Z

Ex−p ⊂ ( jxπ)∗EK ,

( jπ)∗G•EK
∼=

⊕

p∈Z

(G pEK )x−p ⊂ ( jxπ)∗EK

Therefore

j∗E ∼=
⊕

p∈Z

(
E ∩ G pEK

)
x−p ⊂

⊕

p∈Z

EK x
−p. (16)

The sheaf j∗E is flat and coherent over �R , and is given by the filtration
G pE := E ∩ G pEK of E .

5.2 �-reductivity for polarized families

A polarized family (X ,L) over �R \ 0 corresponds to a polarized family
(X, L) over Spec(R) and a polarized family (XK ,LK ) over �K together with
an isomorphism of (XK , LK )with the fiber of (XK ,LK ) over 1. The polarized
family (XK ,LK ) over �K corresponds to a test configuration over A1

K .

Consider the composition X q−→ �R \ 0 j−→ �R .

Condition 5.1 (Finite Generation Condition). The O�R -algebra
⊕

m≥0 j∗q∗
OX (mL) is finitely generated.
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1024 J. Alper et al.

If Condition 5.1 holds, then

X̃ := Proj
�R

⊕

m≥0

j∗q∗OX (mL),

is a flat family of polarized schemes over �R .
For each m ≥ 0, set Vm := H0(X,OX (mL)). For each m ≥ 0, the vector

space VK ,m := H0(XK ,OXK (mLK )) inherits aZ-filtrationG•VK ,m . Equation
(16) yields

j∗q∗OX (mL) ∼=
⊕

p∈Z

(
Vm ∩ G pVK ,m

)
x−p ⊂

⊕

p∈Z

VK ,mx
−p.

If we set G pVm = Vm ∩ G pVK ,m , then the direct sum
⊕

p,m G pVm is
a bigraded R[x]-module, where multiplication by x is given by the inclu-
sions G pVm → G p−1Vm . The grading in m defines a projective scheme P =
Proj

Spec(R[x])
⊕

p,m G pVm and the grading in p gives an action of Gm on P
and a linearization ofOP(1). Observe that (X̃ ,OX̃ (1)) = ([P/Gm],OP(1)).

5.3 �-reductivity for K-semistable log Fano pairs

In this section, we will verify that XKss
V,n satisfies the valuative criterion for

�-reductivity over any essentially finite type DVR. The result follows from
modifying an argument in [33, Sect. 3].

Fix the following notation: Let R be a DVR essentially of finite type over
k with fraction field K and residue field κ . We will write x for the parameter
of A1. To avoid confusion, we write 0K ∈ A1

K for the closed point defined by
the vanishing of x and 0 ∈ A1

R for the one defined by the vanishing of x and
a uniformizing parameter π ∈ R.

Fix a Q-Gorenstein family of log Fano pairs (X, D) → Spec(R) and a
special test configuration (XK ,DK ) → A1

K of (XK , DK ). Following Sect. 5.2
, this data gives a Gm-equivariant Q-Gorenstein family of log Fano pairs

(X ,D) → A1
R \ 0 .

Theorem 5.2 If the geometric fibers of (X, D) → Spec(R) and (XK ,DK ) →
A1

K are K-semistable, then (X ,D) → A1
R \ 0 extends uniquely to a Gm-

equivariant Q-Gorenstein family of log Fano pairs

(X̃ , D̃) → A1
R .

Furthermore, the geometric fiber over 0 is K-semistable.
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Reductivity of the automorphism group 1025

Throughout the proof, we will use notation similar to that in Sect. 3.3.1.
Specifically, fix a positive integer r such that L := −r(KX + D) is a Cartier
divisor. Let V := ⊕

m Vm denote the section ring of X with respect to L .
Recall that each Vm is a flat R-module and the restrictions of V to Spec(K )

and Spec(κ), which we denote by VK := ⊕
m VK ,m and Vκ := ⊕

m Vκ,m , are
isomorphic to the section rings of LK and Lκ , respectively.

5.3.1 Extending filtrations defined by a divisor

Let EK be a divisor over XK and write A := AXK ,DK (EK ). Setting

F p
K VK ,m := { f ∈ VK ,m | ordEK ( f ) ≥ p},

for each p ∈ Z and m ∈ N, gives a filtration of VK . The filtration F•
K of VK ,m

extends to a filtration F• of Vm by subbundles by setting

F pVm := F p
K VK ,m ∩ Vm .

Note that
⊕

m
⊕

p (F pVm) x−p is a graded R[x]-algebra.
If the above algebra is finitely generated, we set X̃ := Proj

A1
R

( ⊕
m

⊕
p

(F pVm) x−p
)
. Since

⊕

m∈N

⊕

p∈Z

(F pVm
)
x−p ⊗R[x] R[x, x−1] 
 V

⊗

R

R[x, x−1]

there is an isomorphism X × (A1 \ 0) 
 X̃x 	=0. We write D̃ for the closure of
D × (A1 \ 0) under the previous embedding X × (A1 \ 0) ↪→ X̃ .

Proposition 5.3 If the geometric fibers of (X, D) → Spec(R) are K-
semistable and βXK ,DK (EK ) = 0, then:

(1) The R[x]-algebra ⊕
m

⊕
p (F pVm) x−p is of finite type.

(2) The induced family (X ,D) → A1
R is a Q-Gorenstein family of log Fano

pairs and (X0,D0) is K-semistable.

The proof is a modification of an argument in [33, Sect. 3]. Similar argu-
ments are also used to prove the main theorems in [12]. Throughout, we will
use notation and background material from [12, Sect. 2] on valuations, log
canonical thresholds, and the normalized volume function.

Proof Let (Y, �) → Spec(R) denote the relative cone over (X, D) →
Spec(R) with respect to the polarization L . Hence, Y = Spec

R
(V ) and �

is defined via pulling back D. Note that (YK , �K ) and (Yκ , �κ) are the cones
over (XK , DK ) and (Xκ , Dκ).
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Following [12, Sect. 2.5.1], the divisor EK over XK induces a ray of quasi-
monomial valuations

{vt | t ∈ [0, +∞)} ⊂ ValYK

satisfying

AYK ,�K (vt ) = 1/r + t A and ap(vt ) =
⊕

m

F (p−m)/t
K VK ,m .

For each q ∈ N, there is a divisor EK ,q over YK such that q · v1/q =
ordEK ,q . The divisor EK ,q over YK extends to a divisor Eq over Y . Note that
AY,�(Eq) = AYK ,�K (EK ,q) and

ap(ordEq ) =
⊕

m∈N

F p−mqVm . (17)

To see Equation (17) holds, observe that the order of vanishing of f ∈ OY
along Eq equals the order of vanishing of f · OYK along EK ,q . Hence, the
statement follows from the definition of F and the formula ap(ordEK ,q ) =
⊕

m F p−mq
K VK ,m .

Claim 1. The following holds:

lim
q→∞

(
AY,�+Yκ (Eq) − lct(Y, � + Yκ; a•(ordEq ))

) = 0.

Toprove this claim, for each positive integerq, consider the graded sequence
of ideals on Yκ given by

bq,• := a•(ordEq ) · OYκ .

Note that a•(ordEK ,q ) = a•(ordEq ) · OYK by (17). Therefore, the lower semi-
continuity of the log canonical threshold and [12, Eq. (3)] imply

lct
(
Yκ , �κ; bq,•

) ≤ lct
(
YK , �K ; a•(ordEK ,q )

) ≤ AYK ,�K (EK ,q) (18)

Additionally,

mult(bq,•) = lim
p→∞

dimκ

(OYκ /bq,p
)

pn+1/(n + 1)!
= lim

p→∞
dimK

(OYK /ap(ordEK ,q )
)

pn+1/(n + 1)! = mult(a•(ordEK ,q )), (19)
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where the left and right equalities is the formula for multiplicity in [29, Thm
3.8] and the center equality follows from (17) and the fact that each F pVm ⊂
Vm is a subbundle.

We aim to show the inequalities:

Q

r
≤ lct(Yκ , �κ; bq,•)n+1mult(bq,•)

≤ AYK ,�K (EK ,q)
n+1mult(a•(ordEK ,q )) ≤ Q

r
+ O

(
1

q2

)

, (20)

with Q := (−KXK − DK )n = (−KXκ − Dκ)n . The first inequality follows
from [31, Thm 7] and the assumption that (Xκ , Dκ) is K-semistable and the
second from (18) and (19). For the remaining equality, Li’s derivative formula
(for example, see [12, Prop. 2.12]) gives

d v̂ol(vt )

dt

∣
∣
∣
∣
t=0+

= (n + 1)βXK ,DK (EK ).

Since the latter is zero, a Taylor expansion implies

v̂ol(v1/q) = v̂ol(v0) + O

(
1

q2

)

= Q

r
+ O

(
1

q2

)

.

Using that v̂ol is scaling invariant, we observe

v̂ol(v1/q) = v̂ol(ordEK ,q ) := AYK ,�K (EK ,q)
n+1mult(a•(ordEK ,q ))

and (20) follows.
Comparing (19) and (20), we see

1

1 + O
(

1
q2

) ≤
(
lct(Yκ , �κ; bq,•)
AYK ,�K (EK ,q)

)n+1

≤ 1.

Since AYK ,�K (EK ,q) = AY,�(Eq) = AY,�+Yκ (Eq),

lct(Yκ , �κ; bq,•) = lct(Y, � + Yκ; a•(ordEq ))

by inversion of adjunction, and (1 + O( 1
q2

))1/(n+1) = 1 + O( 1
q2

), it follows
that

1 − O

(
1

q2

)

≤ lct(Y, � + Yκ; a•(ordEq ))

AY,�+Yκ (Eq)
≤ 1.
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Recall, AY,�+Yκ (Eq) = AY,�(Eq) = q/r + A is of order O(q). Therefore,

AY,�+Yκ (Eq) − lct(Y, � + Yκ; a•(ordEq ))

= AY,�+Yκ (Eq)

(

1 − lct(Y, � + Yκ; a•(ordEq ))

AY,�+Yκ (Eq)

)

is of order O(1/q) and the desired limit is 0.

Claim 2: For q � 0, there exists an extraction Eq ⊂ Yq
μ→ Y such that

(Yq , μ
−1∗ (� + Yκ) + Eq)

is lc. (By an extraction, we mean μ is a proper birational morphism, Yq is
normal, Eq appears as a divisor on Yq , and −Eq is μ-ample.)

Set εk := AY,�+Yκ (Eq)− lct(Y, �+Yκ; a•(ordEq )). Since limq→∞ εq = 0
by Claim 1, we may fix q � 0 so that εq < 1. Hence, [12, Prop. 2.2] may be
applied to get an extraction μ : Yq → Y of Eq with

(Yq , μ
−1∗ (� + Yκ) + (1 − εq)Eq)

lc. Since limq→∞ εq = 0, the ACC for log canonical thresholds [21] implies
(Yq , μ−1∗ (�+Yκ)+Eq) is lc for q � 0 and the proof of the claim is complete.

Since −Eq is μ-ample,
⊕

p∈N μ∗OYq (−pEq) is a finitely generated OY -
algebra. Using that

μ∗OYk (−pEq) = ap(ordEq ) =
⊕

m

F p−mqVm,

we see
⊕

p∈N

⊕

m∈N

F p−mqVm =
⊕

m∈N

⊕

p≥−mq

F pVm

is a finitely generated V -algebra. Since V is a finitely generated R-algebra, it
follows that

⊕

m

⊕

p
(F pVm)x−p is finitely generated R[x]-algebra and we may

consider the degeneration (X̃ , D̃) → A1
R by taking Proj.

We also consider the degeneration (Y, �̃) of (Y, �) defined by

Y := Spec
A1
R

( ⊕

p∈Z

apx
−p

)
, where ap := μ∗OYq (−pEq) ⊆ OY

and �̃ is the degeneration of� as in [33, Defn. 2.19]. Since (Yq , μ−1∗ (�+Yκ)+
Eq) is lc, a relative version of [33, Lem. 2.20] implies (Y, �̃ + Yx=0 + Yκ)
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is lc. Using that (X̃ , D̃) is a Gm-quotient of an open set of (Y, �̃), we see
(X̃ , D̃ + X̃κ + X̃x=0) is lc as well.

Observe that (X̃K , D̃K ) → A1
K is the test configuration induced by the

filtration FK . By [17, Section 3.2], this test configuration is normal and
its Futaki invariant is a multiple of βXK ,DK (EK ), which is zero. Since
Fut(X̃K , D̃K ) = Fut(X̃K , D̃K ) and the latter is zero, (X̃K , D̃K ) → A1

K
must

be special (otherwise [35, Thm. 1] would imply there exists a test configuration
of (XK , DK ) with negative Futaki invariant). Appling Lemma 2.15 gives that
the geometric fiber over 0K is K-semistable.

We will proceed to show (X̃ , D̃) → A1
R is Q-Gorenstein family of log

Fano pairs. Since the statement holds over {π 	= 0} and {x 	= 0}, it remains to
consider the behavior over 0 ∈ A1

R . Since (X̃ , D̃+ X̃κ + X̃x=0) is lc, KX̃ + D̃
is Q-Cartier and, by [25, Prop. 2.32.2], D̃ does not contain an irreducible
component of X̃κ ∩ X̃x=0. We are left to show that the geometric fiber over 0
is a log Fano pair.

First, we claim that X̃κ is normal. By Serre’s criterion, it suffices to show
that X̃κ is S2 and R1. To verify the first condition, note that (X̃ , D̃) is klt,
since (X̃ , D̃ + X̃κ + X̃x=0) is lc and klt away from {πx = 0}. Therefore, [28,
Prop. 5.25] implies Xκ is CM and, hence, S2. For the second condition, note
that Supp(X̃κ + X̃x=0) has at worst nodes at codimension two points of X̃ by
[25, Prop 2.32.2]. Therefore, Xκ is R1 in a neighborhood of Xκ ∩Xx=0. Since
Xκ \ Xx=0 
 Xκ × (A1 \ 0) and Xκ is R1, this implies Xκ is R1.

Now, recall that the Futaki invariant may be written as a combination of
intersection numbers of line bundles and intersections number are locally con-
stant in flat projective families. Therefore, Fut(X̃K , D̃K ) = Fut(X̃κ, D̃κ) and
the latter is also zero. Since (Xκ , Dκ) is K-semistable and Fut(X̃κ, D̃κ) = 0,
the test configuration (X̃κ , D̃κ) → A1

κ must be special (otherwise [35, The-
orem 1] would imply there exists a test configuration with negative Futaki
invariant). Applying Lemma 2.15 gives that the fiber over 0 is K-semistable.

�

5.3.2 Proof of �-reductivity result

We will now deduce Theorem 5.2 from Proposition 5.3.

Proof of Theorem 5.2 FollowingSect. 5.2, the test configuration (XK ,DK ) →
A1

K , corresponds to a Z-filtration GK of VK . By setting

G pVm := G p
K VK ,m ∩ Vm for each p ∈ Z,

we get a filtration G of Vm by subbundles, which restricts to the filtration GK
overSpec(K ).Weconsider the graded R[x]-algebra⊕

m∈N

⊕
p∈Z (G pVm) x−p

.
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Since the test configuration (XK ,DK ) is special, the filtrationGK is induced
by a divisorial valuation of the form b ·ordEk over XK [19, Claim 5.4]. Specif-
ically, there is a divisor EK over XK and b ∈ Z>0 so that

G p
K VK ,m = Fmr A+�p/b�

K VK ,m,

where FK is the filtration of VK defined by EK and A := AXK ,DK (EK ).
Observe that Fut(XK ,DK ) = 0. Indeed, Fut(XK ,DK ) = Fut(XK ,DK )

and the latter is the same as the Futaki invariant associated to the Gm-action
on (XK ,DK )0. Since the Futaki invariants associated to a Gm-action and its
inverse add to zero [33, Lem. 2.23] and (XK ,DK )0 is K-semistable, they must
both be zero.

Now, βXK ,DK (EK ) is a multiple of Fut(XK ,DK ) by [19, Thm. 5.1]. There-
fore, the value is zero and we may apply Proposition 5.3.1 to see that⊕

m
⊕

p (G pVm) x−p is a finitely generated R[x]-module. Furthermore, if we
set

X̃ := Proj
A1
R

( ⊕

m∈N

⊕

p∈N

(G pVm
)
x−p

)

and D̃ equal to the component-wise closure of D× (A1 \ 0) under the embed-
ding

X × (A1 \ 0) 
 X̃ |x 	=0 ↪→ X̃ ,

then (X̃ , D̃) → A1
R is a finite base change of the family considered in Propo-

sition 5.3. Hence, (X̃ , D̃) → A1
R is a Q-Gorenstein family of log Fano pairs

and the geometric fiber over 0 ∈ A1
R is K-semistable. By Lemma 2.16, this is

the unique extension of (X ,D) → A1
R \ 0. �


Proof of Theorem 1.1 The S-completeness and �-reductivity of XKss
n,V state-

ments follow immediately from Theorems 3.3 and 5.2. �

Proof of Corollary 1.2 It follows from Theorem 1.1 and Lemma 2.12 that X
is S-complete and �-reductive with respect to essentially of finite type DVRs.
Theorem2.9 andRemark 2.10 imply thatX has a separated goodmoduli space.

�
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