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Automated systems like self-driving cars and “smart” thermostats are a 
challenge for fault-based legal regimes like negligence because they have the 
potential to behave in unpredictable ways.  How can people who build and deploy 
complex automated systems be said to be at fault when they could not have 
reasonably anticipated the behavior (and thus risk) of their tools? 

Part of the problem is that the legal system has yet to settle on the language for 
identifying culpable behavior in the design and deployment for automated 
systems.  In this article we offer an education theory of fault for autonomous 
systems—a new way to think about fault for all the relevant stakeholders who 
create and deploy “smart” technologies.  We argue that the most important 
failures that lead autonomous systems to cause unpredictable harm are due to 
the lack of communication, clarity, and education between the procurer, 
developer, and users of these technologies.  

In other words, while it is hard to exert meaningful control over automated 
systems to get them to act predictably, developers and procurers have great 
control over how much they test these tools and articulate their limits to all the 
other relevant parties.  This makes testing and education one of the most legally 
relevant point of failures when automated systems harm people.  By recognizing 
a responsibility to test and educate each other, foreseeable errors can be 
reduced, more accurate expectations can be set, and autonomous systems can 
be made more predictable and safer.
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INTRODUCTION 

In the American tort law system, the concept of “fault” is one 
principle for shifting the risk of loss in any given context.1  In other words, 
parties that are “at fault” due to their culpable behavior should be held 
liable for the harms they caused rather than requiring the victim of the 
harm to bear the loss.  The concept of fault in legal regimes is often 
premised on failing to reasonably protect against foreseeable harms.2  
Judges and lawmakers ask what control (allegedly) culpable actors have 
over the system and the risks associated with the exercise, or failure to 
exercise, that control.  Complex autonomous systems like those in self-
driving cars, “smart” thermostats, and autonomous warehouses present 
a difficult problem for fault-based legal regimes like torts for one simple 
reason: they have the potential to behave in unpredictable ways.3 

How can people who build and deploy automated and intelligent 
systems be said to be at fault when they could not have reasonably 
anticipated the behavior (and thus risk) of an automated and intelligent 
system?  As a very real case, the Tesla autopilot crash on May 7, 2016, that 
killed Joshua Brown was partly user fault (he was watching a movie) but 
also the fault of a sensor system that thought a truck was a cloud.4  Perhaps 
the software and hardware designers should have included this test case, 
but how many more cases like this are there, and how would you 
enumerate them?  Is it fair to blame just the creators when automated 
systems act in unpredictable ways? 

This dilemma has tied lawmakers, judges, and academics in knots.  
Some scholars have suggested that the difficulty in assessing fault in the 

 

1 See Robert E. Keeton, Conditional Fault in the Law of Torts, 72 HARV. L. REV. 
401, 401–02 (1959) (“[C]ourts should leave a loss where they find it unless good reason 
for shifting it appears. . . . In modern Anglo-American tort law, fault has been 
considered the one generally acceptable reason for such loss shifting. For more than a 
century, at least, fault has been the principal theme of tort law.”); Brown v. Kendall, 
60 Mass. 292, 298 (1850) (holding that defendants are liable for certain harms in tort 
only if they intended to cause the harm or if they are at fault in causing them). 

2 A related concept is that of “duty” towards others. RESTATEMENT (THIRD) OF 

TORTS: PHYSICAL & EMOTIONAL HARM § 7 (AM. L. INST. 2010) (“An actor ordinarily has a 
duty to exercise reasonable care when the actor's conduct creates a risk of physical 
harm.”); Those who breach their duty to others in the language of the tort of 
negligence are said to be at fault. David G. Owen, Philosophical Foundations of Fault in 
Tort Law, in PHILOSOPHICAL FOUNDATIONS OF TORT LAW 201 (David G. Owen ed., 1995); 
RESTATEMENT (THIRD) OF TORTS: PHYSICAL & EMOTIONAL HARM § 3 (2010); See also O.W. 

HOLMES, THE COMMON LAW 77, 96 (1881). 
3 See Harry Surden & Mary-Anne Williams, Technological Opacity, 

Predictability, and Self-Driving Cars, 38 CARDOZO L. REV. 121, 125 (2016). 
4 Neal E. Boudette, Tesla’s Self-Driving System Cleared in Deadly Crash, N.Y. 

TIMES (Jan. 19, 2017), https://www.nytimes.com/2017/01/19/business/tesla-model-s-
autopilot-fatal-crash.html?_r=0.  
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design of automated, intelligent, and machine learning systems means a 
strict liability regime that holds producers liable for harm regardless of 
fault is preferable to an arbitrary or attenuated finding of fault.5  We agree 
with many of the valid reasons why strict liability for harms caused by 
autonomous systems might be the best approach.  However, fault-based 
approaches might be more attractive to courts, lawmakers, and industry 
if the right framework and language were used to establish a basis of fault 
in the creation, deployment, and use of autonomous systems. 

We think part of the problem with our discussion of fault is that we 
have yet to settle on the best approach and language to use to specifically 
target culpable behavior in the design and deployment for automated 
systems.  The purpose of this paper is to offer an additional structured and 
nuanced way of thinking about the duties and culpable behavior of all the 
relevant stakeholders in the creation and deployment of autonomous 
systems.  We argue that some of the most articulable failures in the 
creation and deployment of unpredictable systems lie in the lack of 
communication, clarity, and education between the procurer, developer, 
and users of automated systems.  In other words, while it is hard to exert 
meaningful “control” over automated systems to get them to act 
predictably, developers and procurers have great control over how much 
they test and articulate the limits of an automated technology to all the 
other relevant parties.  This makes education through testing and 
teaching one of the most legally relevant point of failures when automated 
systems harm people. 

As part of our proposed framework for identifying culpable 
behavior, we identify four specific and foreseeable education-failure 
points in the creation, deployment, and use of automated systems which 
contribute to harm caused by the unpredictability of autonomous 
systems.  These failures are Syntactic  (failure of sensors to identify 
objects and actions—i.e., the truck is a cloud), Semantic (failure to 
correctly translate human intent into algorithms, i.e., detect all objects 
you might run into), Testing (failure to test the system in expected 
scenarios - i.e., testing back-lit white objects) and Warning (failure to 
clearly articulate the limitations of the system—i.e., tell the user that the 

 

5 David Vladeck has made a compelling case for strict liability for parties that 
cause harm via automated vehicles, writing: “There are four strong policy reasons to 
establish a strict liability regime for this category of cases.  First, providing redress for 
persons injured through no fault of their own is an important value in its own right. . . . 
Second, a strict liability regime is warranted because, in contrast to the injured party, 
the vehicle's creators are in a position to either absorb the costs, or through pricing 
decisions, to spread the burden of loss widely. . . . Third, a strict liability regime will 
spare all concerned the enormous transaction costs that would be expended if parties 
had to litigate liability issues involving driver-less cars where fault cannot be 
established. . . . And fourth, a predictable liability regime may better spur innovation 
than a less predictable system that depends on a quixotic search for, and then 
assignment of, fault.” David C. Vladeck, Machines Without Principals: Liability Rules 
and Artificial Intelligence, 89 WASH. L. REV. 117, 146–47 (2014). 
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sensors are not sufficient to operate with the sun in certain positions or 
that an automated car cannot be predictably operated off-road). 

To clarify, we are not arguing that our theory of culpability is 
preferable in all contexts.  We reiterate our belief that arguments to hold 
manufacturers of automated systems strictly liable for harm they cause in 
certain contexts are compelling.  Our goal for this paper is much more 
modest.  We simply aim to introduce another possible way to think about 
the justifications for the law to shift liability for harms related to the 
creation and use of automated systems.  In doing so, we aim to add to the 
developing body of literature in this field that includes theories of strict 
liability, res ipsa loquiter, common carrier liability, and proximity-driven 
liability, among others.6 

This article proceeds in three parts. In Part I, we highlight the 
control and predictability gap in autonomous systems.  This part provides 
a brief background into the process of designing and implementing 
autonomous systems and highlights the limits of how predictable (and 
controllable) these systems can be in practice.  This part also highlights 
how the limits of predictability pose problems for traditional fault-based 
legal regimes like tort law. 

In Part II, we introduce our theory of fault as a failure to properly 
test and educate other stakeholders on the goals, limitations, and 
foreseeable errors of an automated system.  Specifically, we articulate 
four education-failure points where lack of clarification between the 
stakeholders and identification of foreseeable errors results in automated 
systems (potentially) acting in harmful and unpredictable ways.  These 
four education-failure points also provide a pathway for the stakeholders 

 

6 See Bryant Walker Smith, Proximity-Driven Liability, 102 GEO. L. J. 1777, 
1779 (2014) (“This Article argues that growing proximity could significantly expand 
sellers' point-of-sale and post-sale obligations toward people endangered by their 
products.”). See also Andrew Selbst, Negligence and AI’s Human Users, 100 B.U. L. 

REV. 1315 (2020); Rebecca Crootof, The Internet of Torts: Expanding Civil Liability 
Standards to Address Corporate Remote Interference, 69 DUKE L. J. 583-667 (2019); 
Ryan Calo, Robotics and the Lessons of Cyberlaw, 103 CALIF. L. REV. 513, 555 (2015) 
[hereinafter Calo, Lessons of Cyberlaw] (“There will be situations, particularly as 
emergent systems interact with one another, wherein otherwise useful technology will 
legitimately surprise all involved. Should these systems prove deeply useful to society, 
as many envision, some other formulation than foreseeability may be necessary to 
assess liability.”); M. Ryan Calo, Open Robotics, 70 MD. L. REV. 571, 582-83 (2011) 
[hereinafter Calo, Open Robotics];  “Tort law is ordinarily unwilling to let people 
injured through no fault of their own bear costs imposed by others. So the question 
then becomes, ‘Who pays?’ The only feasible approach, it would seem, would be to 
infer a defect of some kind on the theory that the accident itself is proof of defect, even 
if there is compelling evidence that cuts against a defect theory.  There is precedent for 
courts making such an inference, which is simply a restatement of res ipsa loquitor.” 
Vladeck, supra note 5, at 128; Jack Boeglin, The Costs of Self-Driving Cars: Reconciling 
Freedom and Privacy with Tort Liability in Autonomous Vehicle Regulation, 17 YALE J. 

L. & TECH. 171, 175 (2015); Julie Goodrich, Driving Miss Daisy: An Autonomous 
Chauffeur System, 51 HOUS. L. REV. 265, 267 (2013). 
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to provide or demand evidence of due diligence at a more fine-grained 
level by explicitly elucidating the actions they have or should have taken 
to reduce potential harm. 

The relevant stakeholders in the development and use of any 
automated system are end-users (the people using the technology), 
procurers or merchants (the people putting together application-specific 
systems for the end-users), and developers (the people developing the 
low-level technology used in the systems). 

There are at least four different kinds of educational failures that 
create problems in autonomous systems: Syntactic, Semantic, Testing, 
and Warning.  These are not independent because education is a two-way 
street: For example, Semantic failures have as their counterpart Warning 
failures. 

1) Syntactic failures occur when developers fail to communicate to 
procurers the many different ways in which robotic systems might fail to 
identify real world objects.  This error occurs because of a mismatch 
between the precision of artificial sensors and the robustness of human 
senses.  Developers must identify such possible failures and communicate 
them to procurers in order to provide a full picture of the many different 
implementation problems. 

2) Semantic failures occur when the human-articulated goals and 
intentions for autonomous systems are not translated correctly into 
software.  Semantic failure can occur both between developers and 
procurers, and procurers and end-users (procurers or end-users 
incorrectly expressing their requirements to the developer and procurer, 
respectively).  Similar to the Syntactic failure, it is largely the procurer 
(developer)'s responsibility to educate the end-user (procurer) on how 
they have translated the end-user (procurer)'s human-language 
statements into algorithms, and to clarify vocabulary usage. 

3) Testing failures occur when a necessary syntactic or semantic 
test is simply missing from the test set. This is largely the developer's 
fault, but could also be the fault of the procurer for not fully articulating 
all of the desired use cases.  Testing failures can also occur when the 
necessary syntactic or semantic tests are not conducted appropriately or 
are otherwise invalid. 

4) Warning failures occur when users are not appropriately made 
aware of avoidable problems caused by the unpredictability of systems 
(the developer to the procurer or the procurer to the end-user).  With 
respect to end-users, these failures are widely recognized in the law of 
product safety as a warning failure to be balanced with design defects.  
Warning failures are, in many ways, the inverse of semantic failures.  
Warning failures flow from developer to procurer to end-user, while 
semantic failures flow from procurer to developer. 

Part III considers the impact of conceptualizing education-failures 
as culpable behavior.  By articulating and isolating these educational 
failures, courts and lawmakers could better attribute responsibility 
among multiple actors working together to create complex and 
unpredictable autonomous systems.  Such a framework could practically 
and legally allocate responsibility for testing, translation, and 
communication.  It could also encourage more innovation, iteration, and 
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realistic design and implementation that better sets and syncs with user 
expectations about how robotic systems will operate.  
Automated systems will probably always find new ways to surprise us.  But 
by recognizing the relevant parties’ responsibility to test and educate each 
other, foreseeable errors can be reduced, more accurate expectations can 
be set, and autonomous robots can be made more predictable and safer.  
We cannot “control” automated technologies in the traditional sense.  But 
we can control how much we learn and teach each other about how these 
systems might work. 

I. THE CONTROL AND PREDICTABILITY GAP IN AUTONOMOUS SYSTEMS 

Robots are controlled by computer software, and computer 
software is deterministic.  Presented with the same set of inputs, it will 
produce the same set of outputs every time.  However, the software that 
controls robots is also complex.  In particular, it often consists of several 
programs running in parallel, cooperatively controlling the robot.  It is 
also driven by sensor data, allowing the robot to respond intelligently to 
a changing world.  These two facts, along with our pre-conceived (and 
often wrong) human assumptions about what a robot should do, conspire 
to make most robot systems unpredictable when operating in the real 
world. 

As a concrete example, consider the incident in early February, 
2015 in South Korea where a robot vacuum cleaner accidentally drove 
over a sleeping woman's hair, sucking it into the cleaning mechanism, 
necessitating the intervention of a team of paramedics.7  The robot in 
question is simple by the standards of autonomous systems.  However, an 
interaction between the sensor data, the control program, and the 
assumptions of its victim led to unpredictable behavior and harm. 

The robot presumably did not sense the woman's hair as an 
obstacle, so the control software did not avoid it.  The woman may have 
assumed that the robot would avoid her as she slept on a mat on the floor, 
although this may not have been a case that the designers of the system 
actually thought about, since sleeping on mats on the floor is a culturally-
specific act, more common in Asian countries than in Europe or the 
Americas.  Even a simple robot, in a relatively simple situation, acted in a 
way that did not match a human's predictions, and a relatively significant 
harm was caused. 

The unpredictability of complex automated systems is both one of 
its greatest virtues and one of its greatest obstacles to safe, sustainable 
adoption in society. Much of the point of automating some tasks is to see 
if automated systems can more efficiently or effectively complete work in 
new and previously unknown ways.  Scholars and professionals use the 

 

7 Justin McCurry, South Korean Woman's Hair 'Eaten' by Robot Vacuum 
Cleaner as She Slept, GUARDIAN (Feb. 8, 2015, 11;53 PM), 
https://www.theguardian.com/world/2015/feb/09/south-korean-womans-hair-eaten-
by-robot-vacuum-cleaner-as-she-slept. 
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term “emergence” to describe this new exceptional trait of robotics.8  
Ryan Calo wrote, “emergent behavior can lead to solutions no human 
would have come to on her own.  Something approaching creativity can 
emerge from feeding data into a complex system and allowing it to iterate 
toward a semi-arbitrary goal.”9 

Unfortunately, the complexity of the decision-making process for 
robots and the vagaries of human behavior easily render the robot's 
behavior unpredictable outside of highly controlled settings, at which 
point the system can become dangerous.  A self-driving wheelchair might 
interpret an empty space on a city street as an empty “sidewalk,” and 
thus, more desirable to drive through than a crowded sidewalk, simply 
because no curb was sensed at a certain point in the road. 

Automated cars must deal with changing environments.10  Rain 
and snow can render some robot sensors largely useless.  They must also 
deal with unexpected situations, such as a shopping cart rolling into the 
street.  It is difficult to test all of the possible unexpected situations cars 
might encounter.  Even humans have difficulty with novel situations.  But 
humans’ basic knowledge and understanding of physics serve as a reliable 
backup.  Autonomous systems have yet to replicate this reliable 
background knowledge. 

When autonomous systems behave in predictable ways for a large 
number of circumstances, industry can design safeguards for their use 
and deploy them more broadly.  Warnings to users are more effective for 
autonomous systems because the warnings can be made more specific and 
reliable.  If an automated car has been thoroughly tested on paved 
surfaces and only becomes unpredictable with grass or other unfamiliar 
terrain, then these cars can either be designed to stay on the pavement 
or, if the uncertainty and risk is small enough, can be designed to merely 
warn users that the car will not function properly unless it is on the 
pavement.  Such specific warnings are preferable to broad disclaimers 
about the unpredictability of a robot’s behaviors, which do not accurately 
guide users, and indeed, force users to accept large amounts of risk when 
using an automated technology. 

The challenge for industry, then, is to make robots as predictable 
as possible while still preserving the usefulness of emergent behavior.  
How can developers control an autonomous system so that it "behaves" 
in expected ways?  How can they discover what robots will do in a new 
situation? 

The answer is, of course, that no one can make robots completely 
predictable.  Developers can provide guidelines, examples, and test data 
that they hope will cause systems to behave in a desired (and predictable) 
way.  The autonomous system will generalize the data developers give it.  
But roboticists do not directly control how complex robots will respond to 

 

8  See Calo, Lessons of Cyberlaw, supra note 6, at 539.  
9 Id. 
10 See Harry Surden & Mary Anne Williams, How Self-Driving Cars Work (May 

25, 2016) (unpublished manuscript) (available at 
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2784465). 
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new input.  Predicting a robotic system's behavior is challenging for two 
reasons. 

First, the complex functions and algorithms underlying the system 
do not always interpolate data in a predictable way.  The field of control 
theory has spent decades developing mathematical techniques that 
guarantee that small changes in a robot's sensor readings will result in 
predictable changes in behavior, over a well-specified range of possible 
sensor readings.11  However, today's robots are often complex enough 
that they go beyond traditional control theory, and rely on other, less 
predictable mathematical models.  These models can tackle harder 
problems, but they lack the predictability offered by control theoretical 
approaches. 

As an example, consider the thermostat in your house.  If you put 
it up by one degree, then the heat will come on, and the temperature will 
ramp up to the desired setting.  This is because the system controlled by 
the thermostat is well-modeled by traditional control theoretic 
techniques, and the response to turning the control is predictable.  Turn 
it a little, and you get a small surge of heat.  Turn it a lot, and you get a 
bigger surge.  The mathematical relationship between the inputs (the 
setting) and the outputs (the temperature) is simple and well understood.  
If we were to use a more complex model, such as the currently popular 
deep convolutional neural network model, we lose this predictability.  
There is no way to predict the effects of a small change in the thermostat 
setting, unless we have seen that exact small change before.12 

Second, and more subtly, autonomous systems operate on 
sensors, internal representations, and outputs that only approximately 
(if at all) match similar human semantic notions.  For example, a human 
in a red shirt may be represented as a blob of red pixels of a certain size in 
an image, which could easily be confused with a picture of an apple of the 
same size.  A naïve human would be utterly confused by why the 
autonomous system labeled an apple as a person in a red shirt, but it 
makes perfect sense to the autonomous system. 

The sensors that robots use are, at their heart, devices for turning 
physical properties of the world (which we cannot directly measure) into 
electrical signals (which we can measure).  This transduction always 
involves small errors, known as measurement errors, due to the physical 
processes involved.  It also contains no semantics about the world; red 
photons are red photons, regardless of whether they came from a shirt or 
an apple.  And in the end, everything comes out as just a number. 

When humans recognize and categorize objects, they rely not only 
on the colors that they see, but on a vast store of semantic knowledge 
about what they might be looking at.  Shirts are approximately the size of 

 

11 See, e.g., NORMAN S. NISE, CONTROL SYSTEMS ENGINEERING (Dan Sayre et al. eds., 
7th ed. 2015), or any other introductory control theory textbook. 

12 Technically, this phenomenon is related to the number of parameters in the 
mathematical model of the system.  The fewer parameters there are, the easier it is to 
predict.  For a thermostat, the system can be modeled with three parameters.  A 
modern convolutional neural network model has, literally, millions of parameters. 
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a human torso, and often appear wrapped around people.  They are made 
of cloth, which reflects light in a certain way.  They have a typical shape, 
and are not rigid.  Apples, on the other hand, are small, round, and often 
found on trees.  The problem with object recognition and classification on 
a robot system is that to be as reliable as a human, to make the same kind 
of mistakes, and to be predictable, we would have to encode all of this 
prior knowledge about the world.  This is simply impossible, partly 
because there is so much of it, partly because it is inconsistent (apples are 
small, but an apple-shaped hot air balloon is still an apple, sort of, but also 
simultaneously not an apple), and partly because it is tricky for us to even 
articulate the background knowledge when asked. 

The problem is to reliably classify objects based only on low-level 
syntactic information about the world.  Is that cluster of 216 pixels with 
red values in the range 234 to 245, green values in the range 32 to 234, 
and blue values in the range 126 to 201 an apple?  Is it a shirt?  Is it 
something that we have never seen before?  The algorithms that robots 
use to recognize and classify objects make decisions based on these 
numbers, and perhaps other numbers too.  However, these decisions are 
poor things, compared to the rich, nuanced way that humans carry out 
the same task.  This distinction lies at the heart of the predictability 
problem.  People and machines are using different sensors and radically 
different reasoning processes; no wonder the failures are hard to predict. 

A. We Want Control, But the Best We Can Do is Approximate 

The more control that roboticists attempt to assert over robots in 
particular circumstances, the less useful those robots become outside of 
those contexts.  In other words, control comes at the expense of 
generalizability.  What makes autonomous systems appealing is their 
ability to function under a wide range of circumstances, sensing their 
environment then acting based on that input.  The actual control that 
developers have over systems comes down to creating and implementing 
guidelines and examples of desired behavior—"If you see something like 
Example A, then do Action B."  For example, whenever a robot 
approaches a person, roboticists can program the robot to slow down or 
swerve aside. 

Fundamentally, a developer’s ability to control and predict the 
behavior of autonomous systems comes down to how thoroughly we have 
presented said system with examples of desired behavior, and how well 
we have matched our human, semantic notions of behavior with the 
corresponding capabilities of the autonomous system.  As humans, we are 
fairly good at predicting what "expected" behavior is for other humans.  
For example, if you are waiting to turn onto a busy street and a driver 
slows down and flashes her lights at you, you would likely realize that this 
driver is going to allow you to turn into the street without hitting you.  But 
even the most experienced developers can struggle with understanding 
how sensors, software, and learning combine to produce "sense" and 
"act" behavior in autonomous systems. 

To compensate, developers perform educated "guessing" and as 
much testing as possible to create systems that approximate the desired 
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behavior.  For example, if the "human in the red shirt" detector uses a 
machine learning algorithm and initially classifies lots of red apples as 
shirts, the developer might present the system with lots of pictures of red 
apples and tag them as "not human" until the system learns the difference 
between the two.  How many examples—and how much variation should 
be included in them (different lighting conditions, types of apples and 
shirts, different-sized people, backgrounds, sizes, orientation of the 
object in the image, etc. will dictate how good the system is at 
differentiating between the two.  In the end, the designer can only 
provide so many examples.  The better the examples, the better the 
autonomous system can approximate the desired behavior.  But the 
resulting knowledge is still only an approximation. It will only be valid for 
inputs that are like (for a very complicated definition of "like") the images 
used to train the system.  This approximation is about as close to “control” 
over a system as designers can get. 

B. The Problem with Lack of Control and Unpredictability in Fault-Base 
Regimes 

Complex automated systems pose unique problems to fault-based 
regimes because developers do not “control” robots quite the same way 
that car manufacturers “control” how airbags deploy, wheels and other 
parts work together, and steering wheels and brakes operate in their 
autos.13   Whereas there often is a relatively traceable and predictable line 
between design and harm for many potentially harmful non-automated 
products like band saws (protective covers) and electrical kitchen 
appliances (short cords), existing software packages for object 
recognition and control systems are not as well understood and have far 
fewer default safety mechanisms built in.14  This lack of safeguards for the 

 

13 See generally Soule v. Gen. Motors Corp., 882 P.2d 298, 308 (Cal. 1994); In 
re Toyota Motor Corp., 2013 WL 5763178, at *33 (C.D. Cal. Oct. 13, 2013); Potter v. 
Chi. Pneumatic Tool Co., 694 A.2d 1319, 1333 (Conn. 1997).  

14 Of course, this is not always true.  This notion is complicated by the fact that 
the test for determining what constitutes a design defect is one of the most contested in 
all of tort law.    See Vladeck, supra note 5, at 150 (citing Richard A. Epstein, Products 
Liability: The Search for the Middle Ground, 56 N.C. L. REV. 643, 647-49 (1978) 
(describing judicial confusion in assessing design defects); W. Page Keeton, Product 
Liability—Design Hazards and the Meaning of Defect, 10 CUMB. L. REV. 293, 298 n.23 
(1979) (“The search for the universally acceptable definition of defect has been the 
most elusive one in the products liability field.”); Joseph W. Little, The Place of 
Consumer Expectations in Product Strict Liability Actions for Defectively Designed 
Products, 61 TENN. L. REV. 1189, 1190 (1994) (“The difficult and politically contentious 
cases are those that involve allegations of defective design.”); Marshall S. Shapo, In 
Search of the Law of Products Liability: The ALI Restatement Project, 48 VAND. L. REV. 
631, 638 (1995) (“[A] crucial aspect of products liability law—perhaps the core concept, 
if any one idea may be described that way—lies in the definition of defect.”); Marshall 
S. Shapo, Products at the Millennium: Traversing a Transverse Section, 53 S.C. L. REV. 
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technologies used in automated systems can be at least partially attributed 
to the general unpredictability of the system across broad contexts.  How 
do you design protections for harms that are difficult to predict? 

For example, many robots have a bump sensor that automatically 
stops the robot if it hits something.  But this safeguard is less effective if 
the robot weights 300lbs and is moving at a good clip.  "Visual" bump 
sensors (i.e., lasers) are more effective at detecting objects from a 
distance and slowing down in time.  But laser bump systems have trouble 
with glass and thin items like table legs.  Camera-based sensors might be 
able to find table legs but fail with people wearing plaid pants.  The list 
goes on.  There are so many different possible real-world variables, 
combined with sensor and control limitations that would cause the system 
to act in unpredictable ways, that all developers can really do is 
approximate and hope for the best.  In this way, the act of determining 
the behavior of an automated system is more like coaching rather exerting 
direct control over its action. 

Given this uncertainty, how should the law go about determining 
what constitutes unreasonably risky behavior with respect to the 
development and implementation of unpredictable robots?  When a 
developer is not exactly sure how a robot will react, is any meaningful 
automation too risky?  Or since there is little traditional control, is it 
unfair to attribute any culpability to the creation of unpredictable 
technologies? 

The law could answer the question of when it is appropriate to hold 
developers and procurers responsible for harm in several different ways.  
It has developed, among other options, three different possible 
approaches as to when liability for harm should be shifted: when parties 
intend harm, when parties act negligently and are at fault for the harm 
that they cause, or when the parties should be held liable for all of the 
harm they cause regardless of whether they intended the harm or the 
foreseeability of the risks, commonly known as a “strict liability” 
approach.15 

 

1031, 1033 (2002) (“However divided analysts of products law may be about 
definitions, most would agree that the heart of the matter in products liability is the 
concept of defect.”); “The quest for understanding design defectiveness perennially 
vexes courts and accomplished products liability lawyers attempting to unravel design 
defect problems; delights law clerks, young associates, and law students, furnishing 
them with an occasion to display their erudition; and provides fertile grist for law 
professors aspiring for the renown that accompanies discovery of the key to any riddle 
wrapped in a mystery inside an enigma.”  David G. Owen, Design Defects, 73 MO. L. 

REV. 291, 291-93 (2008). 
15 See generally RESTATEMENT (THIRD) OF TORTS: PHYSICAL & EMOTIONAL HARM §1―3 

(2010) (defining intentional harm, negligent harm, and strict liability.) See also 
RESTATEMENT (THIRD) OF TORTS: PROD. LIAB. § 2 (1998) (defining when a product is 
defective, including an intentional, negligent, and strict liability standard, and 
clarifying that strict liability holds a manufacturer liable even when all reasonable care 
was taken to prevent defectiveness.). 
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We do not yet wish to engage in the policy discussion over the 
preferable approach to shifting liability for harm caused by automated 
systems.  Negligence and strict liability regimes both have likely costs and 
benefits that have yet to be fully realized in the contexts of robots.  What 
we would like to do in this paper is suggest tools, frames, and a structured 
language for industry, courts, and law and policymakers in attributing 
culpability based on what developers and procurers have real, meaningful 
control over: discovering and conveying to everyone else in the process 
the knowns and the “known unknowns” of automated systems.  Only the 
“unknown unknowns” are truly unforeseeable for those developing and 
procuring robots.  In the next part, we offer up a theory of fault based on 
the failure to discover and communicate what we do not know about the 
behavior of automated systems. 

II. FAULT AS FAILURE TO EDUCATE 

In order to guard against unpredictability in automated systems, 
developers focus on rigorous testing under a variety of conditions.  
Testing is a well-understood concept in the software engineering 
community and is considered to be a vital part of the development 
process.16  Most software takes some form of input data, transforms these 
data using some algorithm, and then outputs the result.  For example, a 
robot might get input data from a digital camera (an image), apply a face-
detection algorithm to it, and output the location of faces in the image.  
Testing involves taking known pairs of inputs and outputs and verifying 
that the software correctly performs the transformation.  In the face-
detection example, test data would consist of a set of images, with the 
locations of faces in them annotated.  Often the tests are written before 
the software to be tested, a process known as test-driven development. 

Testing can happen at a very low-level (face detector) or at a 
higher, more semantic level (identify when an unknown person enters 
the door after hours).  Tests often build on each other, by first testing the 
low-level components, then combining the low-level tests into more 
system-level, complex behavior. 

Testing robot software formally in this way yields three positive 
results: (1) it allows developers to say that, for the (hopefully 
representative) input data, that our software does the right thing; (2) it 
gives a characterization of the environments over which developers have 
tested and in which we have confidence that the system will behave as 
expected; and (3) it gives concrete evidence of due diligence in ensuring 
that the software operates as expected.  If the testing data is sufficiently 
representative of the actual environments in which the robot will operate, 

 

16 See generally ROGER S. PRESSMAN, SOFTWARE ENGINEERING: A PRACTITIONER'S 

APPROACH 449 (Palgrave Macmillan, 7th ed., 2010). See also Cindy M. Grimm, William 
D. Smart & Woodrow Hartzog, An Education Model of Reasonable and Good-Faith 
Efforts for Autonomous Systems, PROC.2018 AAAI/ACM CONF. ON AI, ETHICS, & SOC’Y 117 
(Dec. 2018). 
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developers can claim that they have reasonably anticipated (and 
successfully dealt with) all foreseeable risks. 

Testing and education accomplish two critical things for the design 
of automated technologies: (1) it gives developers the ability to make 
predictions about behavior, and (2) it gives developers the ability to know 
where these predictions are accurate (what we call the “limits” or 
“boundaries” of an automated technology).  If a robot operates in 
environments that are well-represented by the testing data, then it 
should act predictably and thus give developers a reasonably accurate 
picture of foreseeable risks.  However, if end users are clearly and 
reasonably warned against using a robot in an "off label" way in untested 
environments, fault for harm now more justifiably rests with the end-user 
or procurer instead of the developer, since they are using the robot in a 
way that it was not intended to be used (assuming the warning was 
sufficient to enable the user to reasonably avoid harm). 

Explicit tests and mutual education of the parties could provide 
courts and lawmakers a specific and articulable kind of blameworthy 
conduct in the creation and use of an automated system.  Focusing on 
education and testing as the locus of fault could also provide a more 
refined breakdown of who (end-user, procurer, or developer) is 
responsible for what tests (low-level component or higher, system-level 
tests).  We now more formally break down testing failures into four 
categories: Syntactic, Semantic, Testing, and Warning. 

A. Syntactic Failure 

The most basic failure mode in a robot system is a failure to 
correctly identify properties of the world or objects in it.  We call these 
failures syntactic failures, and they often occur because of the mismatch 
between the precision and inherent measurement errors of artificial 
sensors and the robustness of human senses.  Sensors fail in ways that are 
often hard for humans to comprehend, without a deep technical 
understanding of the physical processes going on in the sensor.  
Developers also, in general, do not have sensors that directly sense the 
things they want robots to identify in the world.  This means that 
developers have to have a sense of what kinds of sensors are capable and 
available, and then estimate the things procurers desire to sense based on 
these measurements.  Consider a robot trying to find red balls.  First, we 
must define what we mean by "red."  Most humans with normal vision 
have an intuitive understanding of "red": that it comes in many shades, 
that pink is a sort of red, and that blue is not red.  However, for a robot, 
we must define a closed set of pixel values, in the red, green, and blue 
channels that most digital cameras use, that delineate the idea of "red."  
A color that is just outside of this set is not red in the same way that blue 
is not red, at least to the robot.  If we get the boundary of the set wrong, 
the resulting system will detect red objects as not red, or vice versa. 

To make matters worse, sensors generally do not measure what we 
want them to measure.  Pixels in an image generated by a camera are not 
really measuring the color of the object in the image.  They are measuring 
the amount of light in ranges of wavelengths (corresponding to red, 
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green, and blue) that is bouncing off the object and into the camera lens.  
A red ball illuminated with a white light might look the same as a white 
ball illuminated by a red light to the robot.  However, only one of the balls 
is intrinsically red.  In the end, we generally do not have sensors for the 
things we want to measure.  We must measure the things that we can 
(number of photons17 of a particular set of wavelengths hitting a piece of 
silicon), and then estimate the things that we are actually interested in 
(whether or not there is a red object in the camera image) from these 
measurements, and understanding of physics, and a set of assumptions.  
These assumptions are often left implicit, and this lack of explicit 
information is one of the shortcomings that we are trying to address with 
this paper. 

In a more realistic example, consider face detection software, now 
commonly available on smartphones and digital cameras.  This software 
does not actually detect faces.  Instead, it detects groups of pixel values 
that are correlated with there being a face in the image.  Most of a time, 
these collections of pixel values are actually generated by a face, and the 
software works as expected.  However, sometimes they are not.  Many 
face detectors will trigger with sketched outlines of faces drawn on a 
whiteboard.  Most will identify a face on a poster as being a face, although 
it is really only the representation of a face.  Although it may seem like we 
are splitting hairs here, if a robot is programmed to patrol an art museum 
at night, and to photograph anyone it encounters, it may spend a lot of 
time taking images of long-dead Dutch merchants and their wives.  Ceci 
n'est pas une visage. 

Since robots decide what to do on the basis of sensor readings, 
these syntactic errors can easily cause a robot system to fail.  If asked to 
identify all people in red shirts, the robot might instead end up finding all 
people in white shirts standing under a red light, or people-shaped objects 
draped in red cloth, and not a person in a red shirt standing under a blue 
light. 

While developers might not be able to eliminate these problems, 
they can certainly lessen them with well-defined sets of tests which, in 
computer science, would be called unit tests.  These are small-scale tests 
used to verify the functionality of a small part of a computer program.  For 
example, the face detector or the red shirt detector.  To conduct these 
tests, developers could gather a representative set of sensor data, label it 
(annotating the location of the faces, to the areas we consider to be 
"red"), and then verifying that the software behaves as expected on these 
input data.  This allows developers to say that, for environments that are 
similar to the ones in which we collected the testing data, an automated 
system will work as advertised.  As we discussed above, this allows 
developers and procurers to both show a good-faith effort to ensure that 

 

17 In reality, we cannot even measure these photons directly.  What we end up 
measuring is the electrical charge generated when these photons strike and interact 
with the camera's imaging surface.  We can estimate the number of photons from an 
understanding of physics and the amount of charge that is generated. 
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the system works properly and to explicitly define the environments in 
which the robot should be used. 

B. Semantic Failure 

Above syntactic failures are what we will call semantic failures.  
These are failures to accurately translate human intent into software.  
These failures will generally be the result of taking loose, often colloquial 
human terms, loaded with nuance, bias, and a wealth of background 
knowledge about how the world works, and trying to translate them into 
concrete numbers and logic that can be used in the software.  Consider the 
example of a building security robot, tasked with patrolling a warehouse, 
approaching and questioning anyone it sees after business hours.  While 
patrolling is a clear instruction for a human security guard, there are a lot 
of implicit assumptions built into it.  For example, if the robot sees a 
person through the window, walking down the street outside, it should 
probably not leave the building.  Once it questions a person and 
determines that they are allowed to be in the building, it should probably 
not question them a second time if they meet again.  When the robot 
approaches a person, how close should it come to them before it stops?  
Humans will naturally pick a socially and culturally appropriate distance, 
but we must pin this determination down to a specific number in software.  
The default social distance for robots in the United States might not be 
appropriate in, for example, Japan, leading to a different interaction 
between the robot and the human. 

It is inevitable that semantic failures will happen when we try to 
translate human terms into robot control software, however much we try 
to minimize them.  However, as with syntactic errors, we can address 
them with testing protocols.  In this case the tests will need to involve 
higher-fidelity simulations or replay of previously recorded data from a 
similar robot platform.  The tests, which are similar to integration tests in 
software engineering, will take these data, run them through the control 
software on the robot, and record the success or failure of the system. 

As with syntactic tests, described above, our intent is not to 
eliminate semantic failure by testing all possible inputs to the robot's 
control software (which would be impossible).  Rather, it is to show a 
good-faith effort on the part of the developers to ensure that semantic 
errors do not show up as the result of exposing the robot to a 
representative set of inputs. 

As a concrete example of this, consider again the warehouse 
patrolling robot.  Putting aside for now serious concerns about the 
deployment of automated systems in law enforcement generally, suppose 
that we have such a system shadowing a human security guard.  The robot 
follows the guard around, recording sensor data as it goes.  When the 
human guard sees a suspicious person, they hit a button on the robot, 
telling it that this is someone that should be approached, and then walk 
over to confront the intruder.  Doing this for a few nights will result in a 
database of labeled sensor information that we can test our robot software 
against.  Running these data through our algorithms, we can verify that 
the robot successfully identifies intruders and does not approach non-
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intruders, using the human guard's actions as the gold standard for what 
is "correct" behavior.  For well-understood environments, we can 
imagine a high-fidelity simulation taking the place of job-shadowing a real 
human. This would also allow help properly temper optimism regarding 
the feasibility of automated systems in more unpredictable environments.  

C. Testing Failure 

A testing failure occurs when a necessary syntactic or semantic 
test is simply missing from the test set.  This can occur both at the 
syntactic level when a specific condition is not tested for (a red shirt under 
a red light), or at the semantic level when sets of conditions do not 
adequately capture the human intent.  This can happen because of 
missing groups of conditions or, more subtly, because the set of semantic 
tests do not take into account the differences between how humans 
perceive and label objects, and how robots do. 

In the security guard example above, suppose all of the test data 
were captured on moonless Friday nights when only a small number of 
people were around.  As humans, we can easily generalize this situation 
to a full moon on a Monday night, however a robot may not be able to.  A 
full moon changes the colors of the images, confusing the people detector 
(syntactic test failure).  Multiple people in the same space may confuse 
the person detector, making it difficult for the robot to detect individuals.  
Even if it succeeds in identifying all of the individuals, it may not know 
that it needs to approach each person individually and make sure it 
identifies all of them (semantic test failure).  Or, the robot was also trained 
on groups of people, but only under moonless conditions—it fails under 
full moonlight conditions with multiple people (semantic test sensor 
failure). 

A complete test set of all possible conditions is generally infeasible 
to enumerate, let alone produce.  Usually, the test set is determined by 
balancing the cost of including that test (or risk of not including it) with 
the likelihood of that condition occurring. 

D. Warning Failure 

If there is any obligation to educate others with respect to 
automated systems that is already entrenched in the law, it is the 
obligation of manufacturers to accurately and clearly inform users about 
the limits of their automated technologies.  In products liability law, this 
is known as a warnings failure.18  A cognate area has to do with deceptive 

 

18 See RESTATEMENT (THIRD) OF TORTS: PROD. LIAB. § 2 (1998) (“A product is 
defective when, at the time of sale or distribution…is defective because of inadequate 
instructions or warnings. A product . . . (c) is defective because of inadequate 
instructions or warnings when the foreseeable risks of harm posed by the product could 
have been reduced or avoided by the provision of reasonable instructions or warnings 
by the seller or other distributor, or a predecessor in the commercial chain of 
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advertising, which in the United States is prohibited by, among other 
things, Section 5 of the Federal Trade Commission Act, which prohibits 
unfair and deceptive trade practices.19 

A great example of where warnings are needed most is with 
automated cars.  There are countless stories of people who (mistakenly) 
believed that the old-fashioned cruise control would correctly control the 
speed of their car even on a crowded road.  Now we have cars that do 
actually adjust the speed if there is a car in front– misleading people into 
thinking that the car "knows" when to slow down and speed up.  In 
reality, the car is simply using a time-of-flight sensor that senses how far 
away the object in front is and adjusts the speed accordingly.  If this sensor 
fails (the object is too tall, it has a long, thin object sticking out the back, 
has glass on the back…) the automated speed control will fail.  
Unfortunately, the average human has no knowledge of how this sensor 
works and is unlikely to recognize when the sensor has failed and they 
should take control of the car's speed. 

Right now, consumers have unrealistic expectations regarding 
what automated systems like driverless cars are capable of.20  The U.S. 
National Highway and Traffic Safety Administration (NHSTA) recently 
adopted a new classification system developed by the Society of 
Automotive Engineers that includes six levels of autonomy.21  Jonathan 
Ramsey described the levels as follows: 

Level 0 is intermittent warning systems like blind-spot detection; Level 
1 encompasses features that can monitor the environment and alter 
steering or acceleration and braking, like parking assist, which only 
controls steering, or adaptive cruise control (ACC) that only adjusts 
speed; Level 2 includes systems that simultaneously steer and change 
speed, like ACC with lane-centering, and traffic jam assist that 
maintains space in traffic and navigates shallow bends.  Under all of 
these level definitions, the driver is still charged with monitoring the 
environment. At Level 3, an “Automated Driving System” can take 
over all driving functions and total monitoring of the environment—the 
caveat being that the driver is expected to be ready to take over if the 
vehicle strays off-course, or finds itself in a situation it can’t handle.  
According to the SAE paper, at Level 3 “an ADS is capable of continuing 
to perform the dynamic driving task for at least several seconds after 
providing the [driver] with a request to intervene.” So, while the 
vehicle should be able to fully monitor its environment, the driver 
must also be ready to take over in an emergency.22 

 

distribution, and the omission of the instructions or warnings renders the product not 
reasonably safe.”). 

19 15 U.S.C. § 45.  
20 Jonathan Ramsey, The Way We Talk About Autonomy Is a Lie, and That's 

Dangerous, THE DRIVE (Mar. 8, 2017), http://www.thedrive.com/tech/7324/the-way-
we-talk-about-autonomy-is-a-lie-and-thats-dangerous. 

21 SAE INT’L, TAXONOMY AND DEFINITIONS FOR TERMS RELATED TO DRIVING AUTOMATION 

SYSTEMS FOR ON-ROAD MOTOR VEHICLES (2018), 
https://www.sae.org/standards/content/j3016_201806/. 

22 Ramsey, supra note 20. 
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Here is where the problem lies.  It turns out that people are 
incredibly bad at taking over in emergency situations.  While there are a 
few reasons for why we are not good at taking over for self-driving cars, 
mainly, we just are not expecting it.  When a car partially “takes over,” 
people have a tendency to relax because they do not anticipate the need 
to stay alert.  Some have called this the “handoff” problem.23  Ramsey 
wrote, 

A self-driving car operating in autonomous mode can create in drivers 
a false sense of security and a susceptibility to distraction, making an 
emergency disengagement more dangerous because the point at which 
the driver needs to retake control of the vehicle is also a point at which 
he is poorly equipped to do so. The specification says, in effect, “Your 
car will drive for you, but you need to watch it while it does, just in 
case.” Studies have shown humans aren’t good at continuous 
monitoring without personal involvement, and even Ford engineers 
tasked with monitoring the brand's self-driving cars from behind the 
wheel doze off at such a high rate that the company recently 
announced it would skip Level 3 [partial] autonomy altogether.24 

Bryant Walker Smith has observed that automation levels are often 
presented to the user as promises by the automaker, i.e., “‘[w]e are 
promising that our system will do this under these conditions.’”25  Smith 
said it will be necessary for automakers to clearly communicate those 
capabilities and those limitations to the user, “‘not just once, not just in 
an owner’s manual, but in real time, as the systems are operating.’”26 

We agree.  Smith’s comments highlight what we would refer to as a 
warning failure on the part of the producers.  The obligation to 
meaningfully warn or train end-users is consistent with existing tort 
doctrine.  Consider the cases where airplane manufacturers allegedly 
failed to provide adequate training to pilots in the safe use of their 
aircraft.27  Put simply, procurers must adequately warn end-users about 
the limits of the automated system and how to reasonably avoid harm 
while using it.  If such a warning is not possible, as might be the case with 
the “handoff” problem, then procurers must design the technology to be 
safe regardless of end-user behavior or go back to the drawing board to 
avoid being at fault. 

 

23 See AM. ASS’N FOR JUST., DRIVEN TO SAFETY: ROBOT CARS AND THE FUTURE OF 

LIABILITY (Feb. 2017), 
http://www.justice.org/sites/default/files/Driven%20to%20Safety%202017%20Online.pd
f.  

24 Ramsey, supra note 20. 
25 Id. 
26 Id. 
27 See, e.g., Glorvigen v. Cirrus Design Corp., 796 N.W.2d 541 (Minn. Ct. App. 

2011) (considering but ultimately rejecting failure-to-train claim); Driver v. Burlington 
Aviation, Inc., 430 S.E.2d 476 (N.C. Ct. App. 1993); Berkebile v. Brantly Helicopter 
Corp., 311 A.2d 140, 142 (Pa. Super. Ct. 1973), aff'd, 337 A.2d 893 (Pa. 1975).  See 
also Vladeck, supra note 5, at 150 (2014). 
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III. POSSIBLE UTILITY 

We think that articulating fault in terms of testing and educational 
failures has at least three possible utilities.  It can help make systems more 
predictable, it can help better set the expectations of the parties, and it 
can help courts, lawmakers, and industry (through private ordering), 
allocate financial responsibility for harms caused by robots. 

A. More Predictable Systems 

Once educated, parties who are working together to create and 
implement autonomous systems are then faced with the choice of 
continued testing and revision, or limited implementation according to 
predictability.  Identifying failure to educate as blameworthy conduct will 
prioritize information exchange by the parties.  By providing the 
incentive to educate others to eliminate uncertainty and ambiguity, 
parties will no longer be able to plausibly deny knowledge of a system’s 
relative unpredictability.  Instead, they must own that unpredictability 
by accommodating it with further testing, designing safeguards, or 
providing adequate warning. 

The framework we are proposing in this paper can also provide a 
useful set of guidelines for addressing the educational gulf.  Specifically, 
we look at the following educational responsibilities: 

1) Developers must communicate potential syntactic failure to 
Procurers; 

2) Procurers must be semantically clear to Developers when 
creating system specifications; 

3) Developers must communicate potential semantic failure to 
Procurers; 

4) Procurers must clearly communicate acceptable use-cases to 
End-users and warn them of dangers they can reasonably avoid.  Let us 
expand upon this a little: 

1) Developers are fundamentally the entities who best understand 
the limitations and capabilities of the sensors and control systems they are 
creating.  Due diligence on their part constitutes communicating how 
nouns and verbs (concepts like “person” and “detect”) are translated into 
sensor readings, thresholds, and controls.  Developers must explain (as 
best as possible) the level of available accuracy and predictability.  An 
example would be a developer explaining to a procurer, "you asked us to 
find people in red shirts, but we do not have a ‘person in a red shirt 
detector,’ we can simply find red-colored, people-shaped blobs—and it 
will fail if there is a blue light or an apple in range of the sensor." 

2) Procurers must clearly communicate their requirements in the 
language of the available sensors and as a set of clearly defined scenarios.  
More specifically, they must identify expected conditions the sensor must 
operate under (moonlight, inside versus outside), or situations that might 
affect the robot's decision-making (lots of people versus solitary), and 
expected behavior (do not care about people outside the window).  Recall 
the example of detecting red shirts from earlier in the paper.  A shirt 
might appear red if it is, in fact, red.  It might also appear red if it is 
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actually white and is seen under a red light.  By making explicit the criteria 
for red (a specific set of sensor values that will map to the human concept 
of "red") and the set of environments under which this has been tested 
(white light, red light, blue light, etc.), we can place effective bounds on 
how much we can trust the classification of the sensor. 

3) In return, Developers must clearly communicate to Procurers 
how their semantic requirements are mapped to algorithms and sensor 
thresholds (person outside the window involves first detecting the 
person, then determining that the person is located past the wall of the 
building—potential failures or unpredictable behavior may arise if the 
robot's localization relative to the map of the building is incorrect). 

4) Finally, the Procurers must be able to communicate where and 
how their system is "safe" to use to a naïve End-user.  For example, a 
Procurer might warn an End-user, “This robot cannot operate effectively 
outdoors” or “This automated car is not safe to use off-road.”  If warnings 
about the limits of a system cannot be clearly communicated and 
reasonably followed for safe use, then it may be better not to deploy the 
autonomous system at all or to design safeguards to prevent untested or 
unpredictable uses.  For example, if an automated car cannot function 
predictably and safely in inclement weather, or if the “handoff” cannot 
be done in a reliably safe way, then Procurers might be at fault if they 
publicly deploy the car under those conditions.  In all cases, Developers 
and Procurers must actually do the required tests, or demonstrate that the 
potential harm caused by that test failing is not substantial enough to 
warrant the cost of implementing that test. 

By more clearly communicating capabilities and requirements in 
terms of those capabilities, we potentially increase the predictability of 
the autonomous system—or at the very least, determine when we should 
not use it.  The design of the vehicles must then be adjusted to 
accommodate the many different known ways in which a machine might 
malfunction and crash, including scenarios where some other external 
factor causes sensors to be applied in unintended ways.  In this way, 
conceptualizing fault in terms of testing and education is harmonious with 
the requirement that automobiles generally be “crashworthy,” meaning 
a “manufacturer has a duty to design and manufacture its product so as 
reasonably to reduce the foreseeable harm that may occur in an accident 
brought about by causes other than a product defect.”28 

 

28 RESTATEMENT (THIRD) OF TORTS: PROD. LIAB. § 16 (1998) cmt. A; DAVID G. OWEN, 

PRODUCTS LIABILITY LAW § 17.3, 1079 (1st ed. 2005);  “It is well settled that the 
manufacturer of a defective product may be held liable for a portion of a plaintiff's 
injuries in cases where the product itself played no role in causing the plaintiff's initial 
accident. This now-familiar concept is known as the ‘crashworthiness' or ‘second 
collision' doctrine of product liability. Under this doctrine, the manufacturer may be 
held liable for a plaintiff's ‘enhanced' or aggravated injuries-those injuries over and 
above the injuries the plaintiff would have sustained as a result of the initial accident 
absent the product defect.”  
Barry Levenstam & Daryl J. Lapp, Plaintiff's Burden of Proving Enhanced Injury in 
Crashworthiness Cases: A Clash Worthy of Analysis, 38 DEPAUL L. REV. 55 (1988). 
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B. More Accurate Expectations 

One of the biggest problems with automated systems has to do with 
unrealistic expectations about what robots can actually do.  This is 
partially fueled by science fiction and particularly fueled by our simple 
burning desire to automate certain burdensome tasks.  It is common to 
dream of napping on the commute to and from work.  The rush to 
innovate often encourages unjustified optimism and cut corners.  By 
finding fault for failure to test and educate, a legal regime could 
incentivize the parties to communicate to each other the cold, hard truth 
about the limits of an automated system. 

A healthy dose of reality might dampen people’s spirits regarding 
technological progress, but it will have a few real benefits.  First, if the 
system were implemented correctly, it would result in better technical 
literacies and make the development process more efficient by reducing 
miscommunication.  Additionally, it will help improve End-users’ mental 
models because Procurers will be tasked with making sure the limitations 
of a system are either clearly communicated and that it is reasonably easy 
for people to safely use the product.  If effective communication and 
warning to the end-users is not feasible, then the product must simply be 
made safer.  

C. A Way to Decide Who Pays 

David Vladeck has accurately summed up one of the key problems 
in assigning liability for harms caused by autonomous systems like 
driverless cars.  He noted that manufacturers are typically assigned 
liability for injury, though it could be assigned to “the operator, owner, 
the manufacturer, the programmers, the designers, or all of them…” 
Alternatively, the law could require driver-less cars to insure themselves 
as a “legal ‘person.’”29 

Vladeck argues that holding the manufacturer liable makes sense 
for most technologies because “the manufacturer sets the price for the 
vehicle, and so the manufacturer can build in an ‘insurance premium’ into 
the vehicle's sale price to offset expected liability costs.”30  However, he 
also notes that one problem with limiting liability for harms only to the 
manufacturer of automated systems like driverless cars is that “with 
driver-less cars, it may be that the most technologically complex parts—
the automated driving systems, the radar and laser sensors that guide 
them, and the computers that make the decisions—are prone to 
undetectable failure.  But those components may not be made by the 
manufacturer.”31 

The problem of assigning liability based upon fault is real and 
difficult because of the complexity of automated systems.  Even when 
multiple parties are held liable, unless every party is pre-determined to 

 

29 Vladeck, supra note 5, at 147–48. 
30 Id. 
31 Id. 
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be equally liable, the parties might contest their relative degree of fault.  
Conceptualizing fault in terms of failure to test and educate might help in 
some contexts to more accurately resolve these disputes by pointing to 
specific and demonstrable failures—missing or inadequate tests and 
communication—that could have prevented the harm.  This would help 
disperse liability among the parties engaged in the development of 
automated systems and provide incentives for each party in the chain to 
make their products safe and fully circumscribe the contexts in which an 
autonomous system is demonstrably predictable.  

CONCLUSION 

We offer this education-based theory of fault as a provocation—a 
suggestion that there might be another structured way to conceptualize 
obligations and culpability in the creation and use of autonomous 
systems.  But the theory must be developed much more if it is to be useful.  
More research is required to determine which kinds of tests are the most 
significant, what constitutes “failure” in terms of testing and education, 
and how the testing can be effectively carried out in practice.  The last of 
these points is particularly relevant to real robots operating in the real 
world, since most testing, in the software engineering sense, is done 
automatically inside of a computer.  How can we effectively test control 
algorithms that operate on sensor data without actively gathering those 
data at the time of testing?  If we pre-record them, how can we be sure 
that they are representative of the operating conditions where the robot 
will be?  Must we physically travel to each location where the robot might 
be used, and collect data there?  If we can simulate these environments, 
how can we validate the results from the simulator, and ensure that they 
carry across to the real world?  Without good answers to these questions, 
we are really just kicking the can down the road. 

Externally, more work is required to speculate how such a theory 
might be legally implemented and how this framework interacts with 
existing theories on fault and liability.  For example, conceptualizing fault 
as failure to test and educate could be useful in comparative fault regimes 
(sometimes called comparative “responsibility” regimes), where courts 
and juries are asked to assess the relative fault (or responsibility) of the 
parties.32  More research is also necessary to determine how this 
framework might usefully interact with traditional concepts in products 

 

32 See RESTATEMENT (THIRD) OF TORTS: APPORTIONMENT LIAB. § 8 (2000) (“Factors 
for assigning percentages of responsibility to each person whose legal responsibility has 
been established include (a) the nature of the person's risk-creating conduct, including 
any awareness or indifference with respect to the risks created by the conduct and any 
intent with respect to the harm created by the conduct; and (b) the strength of the 
causal connection between the person's risk-creating conduct and the harm.”);  See 
generally Gregory C. Sisk, Comparative Fault and Common Sense, 30 GONZ. L. REV. 29, 
30–31 (1995) (“The adoption of tort reform constituted the next logical step in a 
principled progression . . . toward the principle of comparative fault among all who 
contributed to an injury.”). 
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liability law such as “crashworthiness” and “reasonable alternative 
design.”33 

This research began as a quest to demystify the creation and 
operation of automated technologies and create a structured approach to 
assessing the true points of meaningful control in building and using 
robots.  As these systems become more common in public spaces, we need 
to develop a language that will allow the various stakeholders to 
communicate about the predictability of the system and a way to think 
about where the boundaries of this predictability lie.  By starting with 
what the parties can control, which is testing, ordering, and warning, 
then compelling an information exchange to further refine the design of 
technologies and make automated systems more generally predictable, 
courts, lawmakers, and industry experts might be better empowered to 
articulate where and why things went wrong and who should be held 
responsible.  Automated systems may be a quagmire for traditional fault-
based systems because of their unpredictability.  But like so much in life, 
the best way to remedy a paucity of knowledge is usually a good 
education. 

 

33 See RESTATEMENT (THIRD) OF TORTS: PROD. LIAB. § 16 (1998); Toliver v. Gen. 
Motors Corp., 482 So. 2d 213, 218 (Miss. 1985) (“To prove his case [crashworthiness 
based on defective design], the plaintiff may introduce evidence of industry standards, 
to show deviation therefrom, or an alternate design, to show the feasibility thereof.”); 
Huddell v. Levin, 537 F.2d 726, 737-38 (3d Cir. 1976) (applying New Jersey law); 
Crispin v. Volkswagenwerk AG, 591 A.2d 966, 976-78 (N.J. Super. Ct. App. Div. 1991), 
cert. denied, 599 A.2d 162 (1991) (given the tendency of the VW seat to yield upon 
impact, VW had a duty to warn about the necessity to wear seat belts to protect 
occupants from injury in the case of collision.  Crispin is a crashworthiness case in 
which the failure-to-warn issue was presented as relevant to increased harm).  Contra, 
e.g., Rahmig v. Mosley Mach. Co., 412 N.W.2d 56, 81-82 (Neb. 1987) (plaintiff does 
not have to prove alternative safer design); Couch v. Mine Safety Appliances Co., 728 
P.2d 585 (Wash. 1986). 


