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We propose a way to formalize the relationship between descriptive analysis and
structural estimation. A researcher reports an estimate ¢ of a structural quantity of
interest ¢ that is exactly or asymptotically unbiased under some base model. The re-
searcher also reports descriptive statistics y that estimate features y of the distribution
of the data that are related to ¢ under the base model. A reader entertains a less restric-
tive model that is local to the base model, under which the estimate ¢ may be biased.
We study the reduction in worst-case bias from a restriction that requires the reader’s
model to respect the relationship between ¢ and vy specified by the base model. Our
main result shows that the proportional reduction in worst-case bias depends only on a
quantity we call the informativeness of y for ¢. Informativeness can be easily estimated
even for complex models. We recommend that researchers report estimated informa-
tiveness alongside their descriptive analyses, and we illustrate with applications to three
recent papers.

KEYWORDS: Local misspecification, transparency.

1. INTRODUCTION

EMPIRICAL RESEARCHERS often present descriptive statistics alongside structural esti-
mates that answer policy or counterfactual questions of interest. One leading case is
where the structural model is estimated on data from a randomized experiment, and
the descriptive statistics are treatment-control differences (e.g., Attanasio, Meghir, and
Santiago (2012a), Duflo, Hanna, and Ryan (2012), Alatas, Banerjee, Hanna, Olken, Pur-
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namasari, and Wai-Poi (2016)). Another is where the structural model is estimated on ob-
servational data, and the descriptive statistics are regression coefficients or correlations
that capture important relationships (e.g., Gentzkow (2007a), Einav, Finkelstein, Ryan,
Schrimpf, and Cullen (2013), Gentzkow, Shapiro, and Sinkinson (2014), Morten (2019)).
Researchers often provide a heuristic argument that links the descriptive statistics to key
structural estimates, sometimes framing this as an informal analysis of identification.!

Such descriptive analysis has the potential to make structural estimates more inter-
pretable. Structural models are often criticized for lacking transparency, with large num-
bers of assumptions and a high level of complexity making it difficult for readers to eval-
uate how the results might change under plausible forms of misspecification (Heckman
(2010), Angrist and Pischke (2010)). If a particular result were mainly driven by some in-
tuitive descriptive features of the data, a reader could focus on evaluating the assumptions
that link those features to the result.

In this paper, we propose a way to make this logic precise. A researcher is interested in
a scalar quantity of interest ¢ (say, the effect of a counterfactual policy). The researcher
specifies a base model that relates the value of ¢ to the distribution F of some data (say,
the joint distribution of the data in a randomized experiment). The researcher reports an
estimate ¢ of ¢ that is unbiased (either exactly or asymptotically) under the base model.
A reader of the research may not accept all of the assumptions of the base model, and
may therefore be concerned that ¢ is biased.

The researcher also reports a vector y of descriptive statistics (say, sample mean out-
comes in different arms of the experiment). These statistics uncontroversially estimate
some features y = y(F) of the distribution F (say, population mean outcomes in differ-
ent arms). Because the base model specifies the relationship between ¢ and F, it also
implicitly specifies the relationship between ¢ and vy, which may or may not be correct.

Suppose the researcher is able to convince the reader of the relationship between ¢ and
v specified by the base model (say, by arguing that the counterfactual policy is similar to
one of the arms of the experiment). Should this lessen the reader’s concern about bias in
¢, even if the reader does not accept the base model in its entirety?

We answer this question focusing on the worst-case bias when the alternative model
contemplated by the reader is local to the base model in an appropriate sense. To outline
our approach, it will be useful to define the base model as a correspondence F°(-), where
FO(c) is the set of distributions F consistent with a given value of ¢ under the model. The
identified set for ¢ given some F under the base model is found by taking the preimage of
F under F°(-). We assume that c is point-identified under the base model, so that for any
F consistent with the base model, the identified set given F is a singleton.

The reader contemplates a model that is less restrictive than the base model. We de-
scribe the reader’s model by a correspondence FV(-), where F"(c) 2 F'(c) is the set
of distributions F consistent with a given value of ¢ under the reader’s model. Because
FN(c) 2 F'(c) for all ¢, the identified set for ¢ given some F is larger under the reader’s
model than under the base model, and may not be a singleton. Moreover, ¢ may be biased
under the reader’s model. Let b" denote the largest possible absolute bias in ¢ that can
arise under FV(-), where this bound may be infinite.

To formalize the idea that the reader’s model is local to the base model, we suppose
that each F € FV (¢) lies in a neighborhood NV (F) of an F consistent with the base model,

ISee, for example, Fetter and Lockwood (2018, pp. 2200-2201), Spenkuch, Montagnes, and Magleby (2018,
pp. 1992-1993), and the examples discussed in Andrews, Gentzkow, and Shapiro (2017, 2020b).
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so that
FNey= | (FeNwE)). (1)

FeFY(c)

We take the neighborhood N (F) to contain distributions F within a given statistical dis-
tance of F.

To formalize the possibility that the researcher convinces the reader of the relationship
between ¢ and vy prescribed by the base model, we consider restricting attention to the
elements F € N(F) such that y(F) = y(F). This results in the restricted correspondence
FRN()

FNey= | {FeNWE) :y(F)=yF)}. (2)

FeFO(c)

If 7°(-) implies that only certain values of vy are consistent with a given value of ¢, then
FRN(.) preserves that implication whereas FV(-) may not. For this reason, FV(c) 2
FRN(¢) 2 FOc) for all ¢, that is, the correspondence FRN(-) is less restrictive than the
base model, but more restrictive than the reader’s model. Let b®N denote the largest pos-
sible absolute bias in ¢ that can arise under FRN(.). Because FRN(.) is more restrictive
than FN(.), we know that bRN < pV.

We focus on characterizing the ratio b®~/b", which lies between zero and 1. Section 2
shows how to derive the correspondences FV(-), FRN(.), and F°(-), and the worst-case
biases b" and bRV, from explicitly parameterized economic models. Section 3 provides an
exact characterization of b*N/b" in a lincar model with normal errors. Section 4 provides
an approximate characterization of b*~/b" in more general nonlinear models, obtained
via a local asymptotic analysis. Sections 3 and 4 show that, under given conditions, the
ratio bRN/bN (or its asymptotic analogue) is equal to +/1 — A, where A is a scalar which
we call the informativeness of the descriptive statistics ¥ for the structural estimate ¢.
Informativeness is the R from a regression of the structural estimate on the descriptive
statistics when both are drawn from their joint (asymptotic) distribution. Intuitively, when
informativeness is high, ¥ captures most of the information in the data that determines ¢.
We propose informativeness as a way to formalize the colloquial notion of the extent to
which y “drives” ¢.

Informativeness can be estimated at low cost even for computationally challenging
models. Section 5 shows that a consistent estimator of A can be obtained from manip-
ulation of the estimated influence functions of ¢ and . In the large range of settings in
which estimated influence functions are available from the calculations used to obtain ¢
and ¥, the additional computation required to estimate A is trivial. We recommend that
researchers report an estimate of informativeness whenever they present descriptive evi-
dence as support for structural estimates.

Section 6 implements our proposal for three recent papers in economics, each of which
reports or discusses descriptive statistics alongside structural estimates. In the first appli-
cation, to Attanasio, Meghir, and Santiago (2012a), the quantity c of interest is the effect
of a counterfactual redesign of the PROGRESA cash transfer program, and the descrip-
tive statistics y are sample treatment-control differences for different groups of children.
In the second application, to Gentzkow (2007a), the quantity c of interest is the effect
of removing the online edition of the Washington Post on readership of the print edition,
and the descriptive statistics y are linear regression coefficients. In the third application,
to Hendren (2013a), the quantity ¢ of interest is a parameter governing the existence of
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insurance markets, and the descriptive statistics ¥ summarize the joint distribution of self-
reported beliefs about the likelihood of loss events and the realizations of these events.
In each case, we report an estimate of A for various definitions of 9, and we discuss the
implications for the interpretation of ¢. These applications illustrate how estimates of A
can be presented and discussed in applied research.

Important limitations of our analysis include the use of asymptotic approximations to
describe the behavior of estimators, and the use of a purely statistical notion of distance
to define sets of alternative models. Ideally, one would like to use exact finite-sample
properties to characterize the bias of estimators, and economic knowledge to define sets
of alternative models. We are not aware of convenient procedures that achieve this ideal
in the generality that we consider. We therefore propose the use of informativeness as
a practical option to improve the precision of discussions of the connection between de-
scriptive statistics and structural estimates in applied research.

Our results are related to Andrews, Gentzkow, and Shapiro (2017). In that paper, we
proposed a measure A of the sensitivity of a parameter estimate ¢ to a vector of statistics
v, focusing on the case where ¥ are estimation moments that fully determine the estima-
tor ¢ (and so A = 1).? In Appendix A of the Supplemental Material (Andrews, Gentzkow,
and Shapiro (2020a)), we generalize our main result to accommodate the setting of An-
drews, Gentzkow, and Shapiro (2017) and so provide a unified treatment of sensitivity
and informativeness.

In a related paper, Mukhin (2018) derived informativeness and sensitivity from a
statistical-geometric perspective, and noted strong connections to semiparameteric ef-
ficiency theory. Mukhin also showed how to derive sensitivity and informativeness mea-
sures based on alternative metrics for the distance between distributions, and discussed
the use of these measures for local counterfactual analysis.

Our work is also closely related to the large literature on local misspecification (e.g.,
Newey (1985), Conley, Hansen, and Rossi (2012), Andrews, Gentzkow, and Shapiro
(2017)). Much of this literature focuses on testing and confidence set construction
(e.g., Berkowitz, Caner, and Fang (2008), Guggenberger (2012), Armstrong and Kolesar
(2019)) or robust estimation (e.g., Rieder (1994), Kitamura, Otsu, and Evdokimov (2013),
Bonhomme and Weidner (2020)). Rieder (1994) studied the choice of target parameters
and proposed optimal robust testing and estimation procedures under forms of local mis-
specification including the one that we consider here. Bonhomme and Weidner (2020)
derived minimax robust estimators and accompanying confidence intervals for economic
parameters of interest under a form of local misspecification closely related to the one
we study. Armstrong and Kolesar (2019) considered a class of ways in which the model
may be locally misspecified that nests the one we consider, derived minimax optimal con-
fidence sets, and showed that there is limited scope to improve on their procedures by
“estimating” the degree of misspecification, motivating a sensitivity analysis. In contrast
to this literature, we focus on characterizing the relationship between a set of descriptive
statistics and a given structural estimator, with the goal of allowing readers of applied re-
search to sharpen their opinions about the reliability of the researcher’s conclusions, thus
improving transparency in the sense of Andrews, Gentzkow, and Shapiro (2020b).

Our use of statistical distance to characterize the degree of misspecification relates to
a number of recent papers. Our results cover the Cressie and Read (1984) family, which

2The present paper draws on the analysis of “sensitivity to descriptive statistics” in Gentzkow and Shapiro
(2015).
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nests widely studied measures including the Kullback-Leibler divergence, Hellinger di-
vergence, and many others, up to a monotone transformation. Kullback-Leibler diver-
gence has been used to measure the degree of misspecification by, for example, Hansen
and Sargent (2001, 2005, 2016), Hansen, Sargent, Tarmuhambetova, and Williams (2006),
and Bonhomme and Weidner (2020). Hellinger divergence has been used by, for example,
Kitamura, Otsu, and Evdokimov (2013).

Finally, our work relates to discussions about the appropriate role of descriptive statis-
tics in structural econometric analysis (e.g., Pakes (2014)).% It is common in applied re-
search to describe the data features that “primarily identify” structural parameters or
“drive” estimates of those parameters.* As Keane (2010) and others have noted, such
statements are not directly related to the formal notion of identification in econometrics
(see also Andrews, Gentzkow, and Shapiro (2020b)). Their intended meaning is therefore
up for grabs. If researchers are prepared to reinterpret these as statements about infor-
mativeness, then our approach provides a way to sharpen and quantify these statements
at low cost to researchers.

2. SETUP AND KEY DEFINITIONS

The Introduction describes our approach in terms of correspondences between the
quantity of interest ¢ and the distribution F of the data. In this section, we first show
how to derive these correspondences from explicitly parameterized economic models,
and then use these correspondences to define the worst-case biases that we characterize
in our analysis. Section 4 defines analogous objects in a local asymptotic framework.

Suppose that, under the base model considered by the researcher, both the distribution
of the data F and the quantity of interest ¢ are determined by a structural parameter
n € H. Formally, under the base model, we have that F = F(n) and ¢ = c(n) so the
correspondence FV(-) is given by

Fley={F(m):meH,c(n) =c}.

Because the structural parameter n determines the distribution F, it also determines y =
y(m) =y(Em)).

Suppose further that, under the reader’s model, the distribution of the data F is de-
termined by 1 and by a misspecification parameter { € Z (say, indexing economic forces
omitted from the researcher’s model) that is normalized to zero under the base model.
Formally, under the reader’s model we have that F = F(n, {), with F(n,0) = F(n) for
all n € H, and correspondingly that y = y(n, {) = v(F(n, {)), with y(n,0) = y(n) for
all n € H. We focus on settings where forms of misspecification indexed by ¢ are rich, in
the sense that the range of F(7, {) under { € Z does not depend on 7. For simplicity,
we continue to write the quantity of interest as a function of n alone, ¢ = ¢(n). Forms
of misspecification that change the mapping from 7 to ¢ but yield the same set of (c, F)
pairs are equivalent to those we study.’

3See also Dridi, Guay, and Renault (2007) and Nakamura and Steinsson (2018) for discussion of the appro-
priate choice of moments to match when fitting macroeconomic models.

4 Andrews, Gentzkow, and Shapiro (2017, footnotes 2 and 3) provide examples.

SSpecifically, consider a setup where the distribution of the data is F = F(n, {) as above, while the quantity
of interest is ¢ = ¢(7, {). Our assumptions imply that the set {(c(n), F(n, {)):n € H, { € Z} is a Cartesian
product, equal to {c(n) :ne H} x {F(n,{):mneH,{ € Z}. Solong as {(¢(n, (), F(n,{)):meH,{eZ}is
likewise a Cartesian product (implying that ¢ remains unidentified absent further restrictions), and {¢(n, {) :
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We formalize the idea that the reader’s model is local to the base model as follows. Let
r(n, {) = 0 denote some Cressie and Read (1984) divergence between the distribution
F(m) and the distribution F(n, {), so that r(n, 0) = 0 for all n € H. For any distribution
F = F(n) consistent with the base model, we define the neighborhood N (F) to consist of
all distributions F(7, ) such that the divergence r(n, {) is less than some scalar bound
m>0:

NFE)={F(n,):meH,F(m)=F,{e€Z,r(n,{) < n}.

We then define the reader’s model FV(-) as in (1).° The neighborhood A/ (F) is increasing
in u. Hence, larger values of u imply a greater relaxation of assumptions as we move from
the base model F°(-) to the reader’s model FV(-). We suppress the dependence of N/ (F)
and FV(c) on u for brevity.

The base model specifies a relationship between ¢ and vy in the sense that if the quan-
tity of interest takes value c, then the feature y must take a value y(n) for some n € H
such that ¢ = ¢(7n). The reader’s model FV(-) need not respect the base model’s speci-
fication of the relationship between ¢ and vy. By contrast, the model FRN(.), defined in
(2), respects the base model’s specification of the relationship between ¢ and vy in the
sense that, for any F € FRN(¢), there is some n € H such that ¢ = c¢(n), y(F) = y(n),
and F € N'(F(n)).” Hence, a given (c, ) pair is compatible with FRN(.) if and only if it
is compatible with F°(-).

The researcher chooses an estimator ¢ that is unbiased under the base model in the
sense that Ez[¢ — ¢] = 0 for any F € F°(c), where E¢[-] denotes the expectation when the
data are distributed according to F. The estimator ¢ may be biased under the reader’s
model FV(-), and indeed, if we take u to infinity, the parameter c is completely unidenti-
fied under FV(-). The largest absolute bias in ¢ that is possible under FV(-) is

by =sup sup |Ep[¢—c]|.

¢ FeFN(c)

Considering FRN(-) rather than 7V (-) can reduce the worst-case bias in ¢. The largest
absolute bias in ¢ that is possible under FRN(.) is

brn=sup sup |Eg[¢—c]|.

¢ FeFRN(c)

The proportional reduction in worst-case bias from limiting attention to F®N(-) is mea-
sured by the ratio brn/by, which is the primary focus of our analysis.

3. INFORMATIVENESS IN A LINEAR NORMAL SETTING

To build intuition for our approach, we next specialize to a linear normal setting and
provide an exact characterization of the ratio b*N/b". We illustrate with a stylized ex-
ample, and conclude the section with some further discussion of our approach and its
limitations.

neH,{eZ})={c(n):n e H} (implying that the change from ¢ = c¢(n) to ¢ = ¢(n, {) does not change the set
of possible ¢’s), the correspondences F(-) that we consider are the same whether constructed from the setup
with ¢ = ¢(n) or that with ¢ = ¢(n, ).

Specifically, FN(¢) = {(F(m,{):me H,c(n) =c,{ € Z,r(n, {) < pu}.

7To see that this is the case, note that FRN(¢) = {F(n,{) :m e H,c(n) =c¢,{ € Z,r(m, {) <u, y(F(n, ) =
y(m}
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3.1. Characterization of Worst-Case Bias
Now suppose that H = R?, Z = R¥, and that under F(n, {), the data Y € R* follow

Y~NXn+{,0) 3)

for X and (2 known, non-random matrices with full column rank.

The quantity of interest is some linear function c¢(n) = L'n of the parameters, with
L € R”*! aknown, non-random vector. The researcher chooses a linear estimator ¢ = C'Y
for C a vector. The researcher ensures that ¢ is unbiased for ¢ under F°(-) by choosing
C' = L'M for some matrix M with M X =1,,.

The researcher computes the vector ¥ = I"Y of descriptive statistics, with ' € R¥*#~ a
known, non-random matrix. The vector ¥ is trivially unbiased for y(n, {) =TI"(Xn + ).

Absent any restriction on ¢, the quantity of interest ¢ is entirely unidentified. Intuitively,
without any restriction on ¢, the mean of the data Y is entirely unrestricted for any fixed
1, making it impossible to learn ¢ = L'n. The reader’s model % (-) limits the size of {.
In particular, given (3), the assumption that r(-, -) is in the Cressie-Read family implies
that r(mn, {) is a strictly increasing transformation of ||{| -1, for |V || 4 = vV’ AV . Thus,
for this section, we define A/ () based on the restriction |||l < u.b

Under the base model F°(.),

¢ L'n (o 3,\_[(C0C car
()= (50)-2) o= (2 5)=(rae ar)
We assume that o > 0 and that 3, has full rank.

DEFINITION: The informativeness of y for ¢ is

3,35,

2
c

A [0, 1].

Informativeness is the R* from the population regression of ¢ on ¥ under their joint
distribution. Informativeness determines the ratio of worst-case biases brn/by.
PROPOSITION 1: The set of possible biases under F" (-) is
{EF[é —c]: Fe -FN(C)} = [_/J’o-c’ /-Lo-c]

for any ¢, while the set of possible biases under FRN(-) is
(Erle = c1: F e FN)) = | —po/T= 4, po/T-4]

forany c. Hence, by = po., bxn = po~/1— A, and

8That is, we let

NEF)={F(n,{):meH,F(n)=F,{€Z, | {lg <u}.
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All proofs are collected at the end of the paper.

Importantly, the value of A, and hence the proportional reduction in worst-case bias
from restricting from F¥(-) to F®N(.), does not depend on w. In addition to character-
izing the worst-case biases bry and by, Proposition 1 characterizes the set of possible
biases under FV(-) and FRN(.), showing in particular that any absolute bias smaller than
the worst case is achievable. Imposing additional restrictions on ¢, beyond those captured
by FN(-) or FRN(.), could further reduce the worst-case bias.

3.2. Example

To fix ideas, suppose that a researcher observes i.i.d. data from a randomized evaluation
of a conditional cash transfer program. The program gives each household a payment of
size s if their children attend school regularly. Households are uniformly randomized
among subsidy levels s € {0, 1, 2}. We can think of those receiving s = 0 as the control
group.

The data consist of the average school attendance Y, of children assigned subsidy s €
{0, 1, 2}. The quantity of interest c is the expected attendance at a counterfactual subsidy
level s* > 2. Under the base model, the mean of Y, is given by

N1+ M2 4)

for s € {0, 1, 2, s*}. Average attendance Y, is independent and homoscedastic across arms
of the experiment, with standard deviation w.’

Under the base model F°(-), ¢ can be estimated by linear extrapolation of average
attendance from two or more of the observed subsidy levels s € {0, 1, 2} to subsidy level s*.
We continue to assume that the researcher chooses a linear estimator ¢ that is unbiased
for ¢ under F°(.).1°

Under the reader’s model FV(-), the estimator ¢ may be biased. Intuitively, if ¢ # 0,
then the mean of Y; may be nonlinear in s, so that linear extrapolation to s* may produce
a biased estimate of c. The restriction to FRN(-) can lessen the scope for bias. The eco-
nomic content of the restriction depends on the choice of I', which in turn determines the
descriptive statistic ¥ = I"Y and the informativeness A.

As a concrete example, suppose that a reader entertains that the effect of incentivizing
school attendance may be discontinuous at zero, with the mean of Y, for s € {0, 1, 2, 5*}
given by

Mo+ 1{s > 0} + 572 )
To cast this example into the notation of Section 3.1, take

10 0
xX=\01 1], 0= 'L, L=(s*>.
1 2

OFor example, if we take M = (X’X)~' X", then ¢ is the ordinary least squares extrapolation to s*, and is
also the maximum likelihood estimator of ¢ under F°(.).
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for 1 a composite of n and ¢ with 7; # 0.1 The model F¥(-) allows that the mean of
Y, may follow (5), as long as 7, is sufficiently small.!* The bound b" thus reflects a worst
case over scenarios that include (5).

Whether the set FRN(-) allows that the mean of Y, may follow (5) depends on the
choice of T. If I’ = (e, 32) for e, the basis vector corresponding to subsidy s, so that
Y= (Yl Yz), then under FRN(.) the mean of Y is linear in s for s > 0, which is consistent
with (5). If instead I' = (ey e1), so that = (Y, Y}), then under F*¥(-) the mean of Y
is linear in s for s # 2, which is not consistent with (5). The bound b®™ thus reflects a worst
case over scenarios that may or may not include (5), depending on the choice of I'.

The informativeness A measures the extent to which the restriction to FRN(.) lessens
the scope for bias, brn/by = +/1 — A. Again imagine a reader who entertains that the
mean of Y, may follow (5). Learning that A is close to 1 for ¥ = (Y; Y;) might be re-
assuring to this reader because the restriction from FV(-) to FRN(.) greatly lessens the
scope for bias in ¢ while still allowing for (5). Learning that A is close to 1 for y = (Yy Y1)
might not be as reassuring, because in this case the restriction from FV(-) to FRN(.) rules
out (5).

3.3. Discussion
3.3.1. Relationship to Analysis of Identification

Our analysis is distinct from an analysis of identification. We focus on the behavior of
a particular estimator ¢ under misspecification, taking as given that c is identified under
the base model. This is distinct from asking whether the identification of ¢ is parametric
or nonparametric, and from asking how the identified set changes under misspecification.
To see the latter point, consider a case where 7 is an unbiased estimator of ¢ under F°(-),
but differs from ¢.'* An analysis of identification would conclude that c is point-identified
under FRN(.), whereas our analysis would conclude that the estimator ¢ may be biased
under FRN(.).

We can connect our analysis to an analysis of identification if we consider identifi-
cation from the distribution of ¢ alone. In particular, Proposition 1 implies that the
identified set for ¢ based on the distribution of ¢ is [¢ — o, ¢ + wo.] under FV(-)
and [¢ — po.v/1—A, ¢ + po./1 — A] under FRN(-). Under this interpretation, the ra-
tio brn/by measures how much the identified set shrinks when we restrict from FV(-) to
]:'RN(_).

3.3.2. Interpretation and Limitations

We pause here to discuss some other aspects and limitations of our approach.

HUSpecifically, choose 1 so that

Xi=(+Xn

o {t 00
X=[11 1].
112

In particular, to ensure that a given 7 is consistent with [|{]|o-1 < u, it suffices that |9;| < ou.
BFor instance, ¥ might be an estimator based on matching a statistically non-sufficient set of moments,
while ¢ might be the maximum likelihood estimator.

for
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First, our analysis focuses on bounding the absolute bias of the estimator ¢. Since the
variance of ¢ is unaffected by misspecification, there is a one-to-one relationship between
absolute bias and MSE. So, for fixed u, A governs the extent to which restricting from
FN() to FRN(.) reduces the maximal MSE for ¢. Unlike for absolute bias, however, the
ratio of worst-case MSEs under FV () and FRN(-) depends in general on p.

Second, the correspondence FRN(.) requires that the relationship between ¢ and y
specified by the base model be correct local to each point in the base model. This is more
restrictive than requiring that the pair (c, y) be globally consistent with the base model,
which yields the correspondence FSN(-) with

FN(c) = (J-"N(C) n ( U {(FrvaH= v(F*)})> (6)

FxeFY(c)

for all c. If any (c, y) pair is possible under F°(-), then FON(.) is equivalent to FV(.),
but FRN(.) need not be. More generally, 7V (c) 2 FN(¢) 2 F®N(¢) 2 F (c), and the
ratio of worst-case bias under F6N(-) to worst-case bias under 7" (-) is bounded below by
V1I—A.

Third, we see the use of statistical distance to define the neighborhoods N (F) as a key
potential limitation of our analysis. While defining neighborhoods in this way provides a
practical default for many situations, it also means that the informativeness A depends
on the sampling process that generates the data. To illustrate, suppose we are interested
in estimating the average treatment effect ¢ of some policy, that ¢ is a treatment-control
difference from an RCT, and that ¥ is the control group mean from the same RCT. If the
control group is much larger than the treatment group, variability in ¢ will primarily be
driven by the treatment group mean, and the informativeness of y for ¢ will be low. If, on
the other hand, the control group is much smaller than the treatment group, variability
in ¢ will primarily be driven by the control group mean, and the informativeness of y
for ¢ will be high. Thus, the informativeness of the control group mean for the average
treatment effect estimate in this setting depends on features of the experimental design,
and not solely on economic objects such as the distribution of potential outcomes.

4. INFORMATIVENESS UNDER LOCAL MISSPECIFICATION

This section translates our results on finite-sample bias in the linear normal model to
results on asymptotic bias in nonlinear models with local misspecification. We first in-
troduce our asymptotic setting and state regularity conditions. We then prove our main
result under local misspecification, develop intuition for the local misspecification neigh-
borhoods we consider, and discuss a version of our analysis based on probability limits.

We assume that a researcher observes an i.i.d. sample D; € D for i = 1,...,n. The
researcher considers a base model which implies that D; ~ F(n), for n € H a poten-
tially infinite-dimensional parameter. The implied joint distribution for the sample is
X', F(n). The parameter of interest remains c(7). The researcher computes (i) a scalar
estimate ¢ of ¢ and (ii) a p, x 1 vector of descriptive statistics .

As in Section 2, to allow the possibility of misspecification, we suppose that under the
reader’s model D; ~ F(n, {) for some (n,{) € H x Z, where F(n,0) = F(n) for all
1 € H. The joint distribution for the sample under the reader’s model is X_, F(n, {).
Defining the correspondences FV(-) and F®N(-) as in Section 2, we are interested in the
ratio of worst-case biases bRN/bV .
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While Section 3 exactly characterizes b"N/bY in the linear normal model, we are not
aware of similarly tractable expressions in general nonlinear settings. In this section, we
therefore instead approximate b®N/b" by characterizing the first-order asymptotic bias of
the estimator ¢ under sequences of data generating processes in which (7, {) approaches
a base value (7, 0) € H x Z at a root-n rate.

Formally, define ‘H and Z as sets of values such that for any 4 € H and z € Z, we have
Mo+ th € H and ¢z € Z for t € R sufficiently close to zero."* For F,, . (t,,t.) = F(no +
t,h, t,z), we consider behavior under sequences of data generating processes

n 1 1 o0
S(h,z) = F,| —,— .
(h2) =X (ﬁ ﬁ)L

The statement that (), {) approaches (7, 0) at a root-n rate should not be taken liter-
ally to imply that the data generating process depends on the sample size, but is instead
a device to approximate the finite-sample behavior of estimators in situations where the
influence of misspecification is on the same order as sampling uncertainty.'> Section 4.4
instead considers fixed misspecification and develops results based on probability limits.

Throughout our analysis, we state assumptions in terms of the base distribution F, =
F(my). If these assumptions hold for all n, € H, then our local asymptotic approximations
are valid local to any point in the base model, though many of the asymptotic quantities
we consider will depend on the value of 7. Section 5 discusses consistent estimators of
these quantities that do not require a priori knowledge of ;.

4.1. Regularity Conditions

We next discuss a set of regularity conditions used in our asymptotic results. Our first
assumption requires that ¢ and y behave, asymptotically, like sample averages.

ASSUMPTION 1: Under S(0,0),

vn

for functions ¢.(D;) and ¢, (D;), where Eg[¢.(D;)]1=0, Eg[¢,(D;)] =0. For

2=<af zm>=< Ep,[$c(D))’] EFO[¢C<D1->¢7<D,->/]>
3y 3) " \Er[0,(D)(D)]  Er|[¢y(D)d,(D)])’

1 n n
V(@ = e(no), ¥ — y(m)) = —(Z b (D)), quy(D,-)) +0,(1), (7
i=1 i=1

3is finite, o > 0, and %, is positive-definite.

The functions ¢.(D;) and ¢,(D;) are called the influence functions for the estimators
¢ and 7, respectively. Asymptotic linearity of the form in (7) holds for a wide range of
estimators (see, e.g., Ichimura and Newey (2015)), though it can fail for James—Stein,

YFor ng + th ¢ H or tz ¢ Z, we may define distributions arbitrarily.

5The order % perturbation to the base-model parameter n is a common asymptotic tool to analyze the
local behavior of estimators (see, e.g., Chapters 7-9 of van der Vaart (1998)). Setting the degree of misspecifi-
cation proportional to Jl; is likewise a common technique for modeling local misspecification (see, e.g., Newey
(1985), Andrews, Gentzkow, and Shapiro (2017), and Armstrong and Kolesar (2019)).
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LASSO, and other shrinkage estimators (e.g., Hansen (2016)). Asymptotic linearity im-
mediately implies that ¢ and ¥ are jointly asymptotically normal under S(0, 0).

We next strengthen asymptotic normality of (¢, ¥) to hold local to 1, under the base
model. We impose the following.

ASSUMPTION 2: Let y(m) denote the probability limit of y under X',_, F(n), and assume
that for all h € H, y(no + th) exists for t sufficiently close to zero. For any h € H, c,(h) =
c(no+ -=h), and y,(h) = y(no + -h), under S(h, 0) we have

cu(h) —c(no) c*(h)
vn (mh) - 7(%)) - (y'(h)) ’

¢ c(n) ¢*(h)
v (& - v(m)) N ((y*(h)) ’ 2) :

The first part of Assumption 2 requires that ¢,(#) and vy,(h) be asymptotically well-
behaved, in the sense that, with appropriate recentering and scaling, they converge to
limits that can be written as functions of 4. Under this assumption, we can interpret c* (%)
as the local parameter of interest, playing the same role in our local asymptotic analysis
as the parameter ¢ does in the normal model.

The second part of Assumption 2 requires that (¢,y) be a regular estimator of
(c(m), y(n)) at ny under the base model (see, e.g., Newey (1994)), and is again satisfied
under mild primitive conditions in a wide range of settings. In particular, this assumption
implies that ¢ is asymptotically unbiased for our local parameter of interest ¢*(4) under
S(h,0).

We next assume the distributions F(m, {) have densities f(d; n, {) with respect to a
common dominating measure v. For (#, t.) € R?, if we consider the perturbed distribu-
tions F, (1, t,) with densities f;, ,(d; t;, t,), then the information matrix for (¢, t,) treat-
ing (h, z) as known, I, ,(#, t,), is

and moreover,

(%fh,z(Di; th’ tz)>2 ﬁ%hfh,z(Di; th, tz) %fh,z(Di; [h, tz)
EF (toot2) 4 fh,z(Di;zhatz) fh,z(Di;&th,tz) fh,z(Di;thatz)
hozhoz afh,z(Di; thy t;) th,z(Di; thy 1) <th,z(Di; Iy, fz)>2
fh,z(Di; t/z’ [z) fh,z(Di; tln tz) fh,z(Di; t/ntz)

We consider the two-dimensional submodels obtained by fixing (4, z), {F, .(t,t,) :
(th, t,) € R?}, and impose a sufficient condition for these models to be differentiable in
quadratic mean at zero.

ASSUMPTION 3: Forall h € H, z € Z, there exists an open neighborhood of zero such that
for (1, t,) in this neighborhood, (i) / f1..(d; t, t,) is continuously differentiable with respect
to (ty, t,) forall d € D and (ii) 1, .(t;, t,) is finite and continuous in (t,, ).

Assumption 3 imposes standard conditions used in deriving asymptotic results, and
holds in a wide variety of settings; see Chapter 7.2 of van der Vaart (1998) for further
discussion.
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Finally, we require that the forms of misspecification we consider be sufficiently rich.
To state this assumption, let us define s, (d) = % log(f4..(d;0,0)), s,(d) = (7% log(fy..(d;
0, 0)) as the score functions corresponding to /4 and z, respectively.

ASSUMPTION 4: The set of score functions s,(-) includes all those consistent with Assump-
tion 3, in the sense that, for any s(-) with Er,[s(D;)] =0 and Er,[s(D;)*] < oo, there exists
z € Zwith Eg[(s(D;) — s.(D;))*1 =0.

Assumption 4 requires that the set of score functions s,(D;) implied by z € Z include all
those consistent with Assumption 3.'° Intuitively, this means that the set of nesting model
distributions holding 7 fixed at 1y, {F(n, {) : { € Z}, looks (locally) like the set of all
distributions, and so is the local analogue of the richness condition discussed in Section 2.
If this assumption fails, the local asymptotic bias bounds we derive below continue to
hold, but need not be sharp.

Under Assumption 4, the nesting model allows forms of misspecification against which
all specification tests that control size have trivial local asymptotic power.!” This high-
lights an important aspect of our local analysis. A possible justification for bounding the
degree of misspecification (see, e.g., Huber and Ronchetti (2009, p. 294), as quoted in
Bonhomme and Weidner (2020)) is that specification tests eventually detect unbounded
misspecification with arbitrarily high probability, so, conditional on non-rejection, it is
reasonable to focus on bounded, and in particular local, misspecification. By contrast,
we allow some forms of misspecification that are statistically undetectable absent knowl-
edge of the true parameters. Hence, restrictions on the magnitude of misspecification in
our setting should be understood as a priori restrictions on the set of models considered,
rather than a posteriori restrictions based on which models survive specification tests.

4.2. Main Result Under Local Misspecification

We can now derive the analogue of Proposition 1 in our local asymptotic framework.
As a first step, we note that under our assumptions, /n(¢ — ¢(n), ¥ — y(1o)) is asymptot-
ically normal with variance 3. Moreover, we obtain a simple expression for its asymptotic
mean.

LEMMA 1: If Assumptions 1-3 hold, then under S(h, z) forany (h,z) € H x Z,
¢ —c(mo) ¢(S(h, 2))
Vn (if - v(m)) —alN (<?(S(h, 2))> ’ 2) ’

(5(5(]1, Z))) _ (EFO[(,bc(Di)(Sh(Di) + Sz(Di))]>
¥(S(h, 2)) Er[¢(Di)(sn(D) +5.(D)])

Moreover, ¢*(h) = Eg ¢ (D;)s,(D;)], and y*(h) = Eg,[$,(D;)s,(D;)].

where

6That the score function s,(D;) has mean zero and finite variance under Assumption 3 follows from
Lemma 7.6 and Theorem 7.2 in van der Vaart (1998).

7In particular, for / € H, Assumption 4 implies that there exists z € Z such that Er, [(s;(D;) —s.(D;))*]1=0.
Arguments along the same lines as, for example, Chen and Santos (2018) then imply that S(%, 0) and S(0, 2)
are asymptotically indistinguishable, and thus that no specification test which controls the rejection probability
under S(#, 0) has nontrivial power against S(0, z).
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Recall that c*(k) is the parameter of interest in our local asymptotic analysis. We can
thus interpret ¢(S(h, z)) — ¢*(h) = Er [¢.(D;)s.(D;)] as the first-order asymptotic bias of
¢ under S(h, z), analogous to Er[¢ — c] under the normal model.

As in the normal model, we restrict the degree of misspecification. We first consider the
case of correct specification. Let

S'(c)={S(h,0):heH, c'(h)=c}

denote the set of sequences in the base model such that the local parameter of interest
takes value ¢*. Limiting attention to sequences S € S°(¢*) imposes correct specification,
and is analogous to limiting attention to F°(c).

To relax the assumption of correct specification, next suppose we bound the degree of
local misspecification by u > 0. For S € §°(-) = .. §°(¢*), let us define the neighborhood

N(S)={S(h,2): h e H,S(h,0) =S, z € Z, E [s.(D,*]’ < u).

For reasons elaborated in Section 4.3 below, N'(S) is a sequence-space analogue of the
neighborhood N (F) defined in Section 2. Taking a union over N'(S) for § € S°(c*) yields

M) = | Sen ),

Ses0(c*)

which we can interpret as the sequence-space analogue of 7V (c).
Finally, let us define a restricted set of sequences as

SN = | {SeN®) 7S =75}

Ses0(c*)

Limiting attention to sequences S € S*N(¢*) is analogous to limiting attention to the set
FRN(¢).

Let by and by, denote the worst-case first-order asymptotic bias under S¥(-) and
SRN(.), respectively:

by =sup sup |c(S)—c*, (8)
c* SeSN(c*)
byn=sup sup [C(S)—c"]. 9)

¢ SeSRN(c*)
Our main result under local misspecification is analogous to Proposition 1 under the nor-

mal model.

PROPOSITION 2: Under Assumptions 1-4, the set of first-order asymptotic biases for ¢ un-
der Se SN() is

[eS) —c:SeSV(c")} =[~no., nol,

for any ¢* such that SN (¢*) is nonempty, while the set of first-order asymptotic biases under
SeSRN() s

{E(S) —c:Se SRN(C‘)} = I:—,LLO'C\/l —A, /.LO'C\/l — A] ,
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for any ¢* such that SRN(c*) is nonempty. Hence,

4.3. Scaling of Perturbations
Under regularity conditions, the bound Ep, [s.(D;)*] < u in the definition of A/ (S) can
be interpreted as a bound on the asymptotic Cressie-Read divergence of F,,,Z(\%, %m)
from Fh,z(ﬁ, 0).
Specifically, we consider divergences of the form

M)]
fh,z(Di; tln 0)

for ¢ (-) a twice continuously differentiable function with /(1) =0 and ¢"(1) = 2. A lead-
ing class of such divergences is the Cressie and Read (1984) family, which takes

Tz (tns 1) = EF, 1,00 |:¢< (10)

2 A
=——(x"=1).
VO =san Y
Many well-known measures for the difference between distributions, including Kullback—
Leibler divergence and Hellinger distance, can be expressed as monotone transformations
of Cressie and Read (1984) divergences for appropriate A.
Appendix B of the Supplemental Material shows that under regularity conditions,

lim 7 - 7y, . (14, t.) = Ep, [ 5:(D;)*]. (11)

Hence, Cressie and Read (1984) divergences yield the same asymptotic ranking over val-
ues of z, and therefore over sequences S(#4, z), as that implied by Ej, [s.(D:)*]."® Ap-
pendix C of the Supplemental Material shows that bounds on Ep,[s.(D;)*] also corre-
spond to bounds on the asymptotic power of tests to distinguish elements of A'(S) from S.

4.4. Non-Local Misspecification

To clarify the role of local misspecification in our results, it is helpful to consider the
analogue of A under non-local misspecification. Suppose now that the reader believes the
data follow X'_, F(n, {), where (7, {) do not change with the sample size. Let us denote
the probability limits of ¢ and ¥ under F by ¢(F) and y(F), respectively. We assume for
ease of exposition that these probability limits exist.

To simplify the analysis, let us further fix a value 7, of the base model parameter, so
the true value of the parameter of interest is ¢(7). Suppose that for a divergence r of the
form considered in Section 4.3, r(7, {) = Er¢0[¢(f(Di; m, {)/f(D:; 1, 0))], the reader
believes that the degree of misspecification is bounded in the sense that (7, {) < u.
Given this bound, the probability limit of |¢ — ¢(n,)| is no larger than

bx(p) =sup{|é(F(no, O)) — c(no)| : L € Z, 7(mo, &) < ),

18In equation (11), we scale by 7 to obtain a nontrivial limit, as the divergence between F), ,(—+,0) and

n’

Fh,z(\%, \%) tends to zero as n — oo.



2246 I. ANDREWS, M. GENTZKOW, AND J. M. SHAPIRO

where we now make the dependence on u explicit. This is a non-local analogue of the
bias bound b}, fixing 1 = n,. We can likewise bound the probability limit of |¢ — c(n)|
under an analogue of FRN(.),

I;RN(IU‘) — Sup{|E(F(TIO> g)) - C(”’IO)| : g S Z7 7(770> g) S M7 '}’(F(”f](), g)) - Y(FO) - 0}'

This is a non-local analogue of bias bound b}, again fixing n = 7,.
Providegl that by (w) and brn(u) are both finite and non-zero, we can define a non-local
analogue A(u) of informativeness A by

V1= By = )

by(p)

Appendix D of the Supplemental Material shows that, under regularity conditions, an
analogue of A(w) based on finite collections of ¢ values converges to A as w — 0. This

provides a sense in which A approximates A(w) when the degree of non-local misspecifi-
cation is small.

5. IMPLEMENTATION

In a wide range of applications, convenient estimates 3 of 3 are available from stan-
dard asymptotic results (e.g., Newey and McFadden (1994)) or via a bootstrap (e.g., Hall
(1992)). Given such an estimate, one can construct a plug-in estimate

A= (12)

Provided S is consistent under S(0, 0), consistency of ﬁ and A under the sequences we
study follows immediately under our maintained assumptions that o> > 0 and 3., has full
rank.

ASSUMPTION 5: 3 % 3 under S(0, 0).

PROPOSITION 3: Under Assumptions 3 and S, ZA L Sand A5 A under S (h, z) for any
heH,zeZ.

Mukhin (2018) provided alternative sufficient conditions for consistent estimation of
informativeness, and also derived results applicable to GMM models with non-local mis-
specification.

5.1. Implementation With Minimum Distance Estimators

We have so far imposed only high-level assumptions (specifically Assumptions 1 and 5)

on ¢, ¥, and 3. While these high-level assumptions hold in a wide range of settings, mini-
mum distance estimation is an important special case that encompasses a large number of
applications. To facilitate application of our results, in this section we discuss estimation
of 3 in cases where c¢(n) can be written as a function of a finite-dimensional vector of
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parameters that are estimated by GMM or another minimum distance approach (Newey
and McFadden (1994)), and 7 is likewise estimated via minimum distance.

Formally, suppose that we can decompose n = (6, w) where 0 is finite-dimensional and
c(m) depends on 7 only through 6, so we can write it as c(6). We assume that c(6) is
continuously differentiable in 6.

The researcher forms an estimate ¢ = c(é), where 0 solves

min g(6)' Wg(0) (13)

for §(0) a k,-dimensional vector of moments and W a k, x k,-dimensional weighting
matrix. The researcher likewise computes ¥ by solving

min#i(y) Umi(y), (14)
Y

for m(vy) a k,,-dimensional vector of moments and Ua k.. x k,-dimensional weighting
matrix.

Provided W and U converge in probability to limits W and U, while \/ng(6(n,)) and
/nm(y(my)) are jointly asymptotically normal under S(0, 0),

2(6(ny)) ) N (0 (Egg Egm)>
v <ﬁ1(7(n0)) e ’ ng 2m) )’
existing results (see, e.g., Theorem 3.2 in Newey and McFadden (1994)) imply that under
$(0, 0) and standard regularity conditions,

¢ — c(6(n0)) (A 0\ (Ze So)\(Ae 0
ﬁ( %~ Y(m) >_"’N(O’2)’ 2‘(02 Aym) (E:Z so U0 A

Here A, = —C(G'WG)'G'W and A,,, = —(M'UM)'M'U are the sensitivities of ¢
with respect to g(6(7)) and of ¥ with respect to m(y(no)) as defined in Andrews,
Gentzkow, and Shapiro (2017), and C = Zc(6(no)).

We can consistently estimate C by C= ﬁigc(é). If g(0) and mi(7y) are continuously dif-
ferentiable, then under regularity conditions (see Theorem 4.3 in Newey and McFadden
(1994)), we can likewise consistently estimate G by G = = $(6) and M by M = ().

Hence, given consistent estimators 3, 3, and 3,,,, we can estimate 3 by

EA — Acg AO %gg ggm Acg AO
0 Aym Emg Z"mm 0 Aym
for /icg =-C(GWGEG) '\G'W and /iym =—MUM)"'M'U.

9If (6) and 1 (7y) are not continuously differentiable, as sometimes occurs for simulation-based estimators,
we can estimate G and M in other ways. For example, we can estimate the jth column of G by the finite
difference (§(60+e;e,) —8(6—eje,))/2¢, for e; the jth standard basis vector, where &, — 0 and £,4/N — 00 as
n — o0. See Section 7.3 of Newey and McFadden (1994) for details on this approach and sufficient conditions
for its validity.
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What remains is to construct estimators (Zgg, Egm, Emm). When 6 and v are GMM or
ML estimators, we can write

. 1 . 1
§O0)="3 D0, ) =23 $uDiy),
i=1 i=1

for (¢,(D;; 0), ¢,,(D;; v)) the moment functions for GMM or the score functions for
ML. We can then estimate 3 by

¢ 1¢ b(D)? (D) <D,->/>
3= ¢ Py , 15
Z<¢7<D>¢ (D)) ¢,(D)$,(D;) (15)

for

be(D;) = Ay po(Ds; 0) = —C(GWG) " GWo(Dy; 6)
and

¢y (D) = Ay (Di; 7) = —(M'UM) " MU, (Ds; ).

In the GMM case, ¢,(D;; é) and ¢,,(D;; ¥) are available immediately from the com-
putation of the final objective of the solver for (13) and (14), respectively. In the case of
MLE, the score is likewise often computed as part of the numerical gradient for the like-
lihood. The elements of /icg and /iw, are likewise commonly precomputed. The weights
W and U are directly involved in the calculation of the objectives in (13) and (14), respec-
tively. When g(0) and ru(vy) are differentiable, G and M are used in standard formulas for
asymptotic inference on 6 and v, and the gradient C is used in delta-method calculations
for asymptotic inference on ¢.?

In this sense, in many applications, estimation of 3 will involve only manipulation of
vectors and matrices already computed as part of estimation of, and inference on, the
parameters 6, vy, and c.

RECIPE—GMM/MLE With Differentiable Moments: .
1. Estimate 6 and ¥ following (13) and (14), respectively, and compute ¢ = ¢(6).

2. Collect {qbg(D,, 5)}” and {¢,,(D;; ¥)}, from the calculation of the objective
functions in (13) and (14) respectively.

3. Collect the numerical gradients G= §(0), M= —m('y), and C = —C(H) from
the calculation of asymptotlc standard errors for 6, 9, and .

4. Compute A% = —C(GWG)'GW and Aym = —(MUM)'M'U U using the
weights W and U from the ob]ectlve functions in (13) and (14), respectively.

5. Compute d) (D)) = Cg¢g(D,, 0) and q’> (D) = qubm(D,, y) for each i.

6. Compute 3 as in (15).

7. Compute Aasin (12).

2Note that in cases where the function ¢(68) depends on features of the data beyond 6, for example on the
distribution of covariates, our formulation implicitly treats those features as fixed at their sample values for
the purposes of estimating A. Appendix E of the Supplemental Material discusses how to account for such
additional dependence on the data, and presents corresponding calculations for some of our applications.
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6. APPLICATIONS

In this section, we present and interpret estimates of A for three structural articles in
economics, each of which estimates the parameters 7 of a base model via maximum like-
lihood. In each case, we estimate the informativeness of each vector ¥ for the estimator ¢
following the recipe in Section 5.1. Because in each case model estimation is via maximum
likelihood and ¥ can be represented as GMM, the recipe applies directly.

6.1. The Effects of PROGRESA

Attanasio, Meghir, and Santiago (2012a) used survey data from Mexico to study the ef-
fect of PROGRESA, a randomized social experiment involving a conditional cash transfer
aimed in part at increasing persistence in school. The paper uses the estimated base model
to predict the effect of a counterfactual intervention in which total school enrollment is
increased via a budget-neutral reallocation of program funds.

The estimate of interest ¢ is the partial-equilibrium effect of the counterfactual re-
budgeting on the school enrollment of eligible children, accumulated across age groups
(Attanasio, Meghir, and Santiago (2012a), sum of ordinates for the line labeled “fixed
wages” in Figure 2, minus sum of ordinates for the line labeled “fixed wages™ in the left-
hand panel of Figure 1).

Attanasio, Meghir, and Santiago (2012a) discussed the “exogenous variability in [their]
data that drives [their] results” as follows:

The comparison between treatment and control villages and between eligible and ineligible house-
holds within these villages can only identify the effect of the existence of the grant. However, the amount
of the grant varies by the grade of the child. The fact that children of different ages attend the same grade
offers a source of variation of the amount that can be used to identify the effect of the size of the grant.
Given the demographic variables included in our model and given our treatment for initial conditions,
this variation can be taken as exogenous. Moreover, the way that the grant amount changes with grade
varies in a non-linear way, which also helps identify the effect.

Thus, the effect of the grant is identified by comparing across treatment and control villages, by
comparing across eligible and ineligible households (having controlled for being “non-poor”), and by
comparing across different ages within and between grades. (p. 53)

Motivated by this discussion, we define three vectors ¥ of descriptive statistics, which
correspond to sample treatment-control differences from the experimental data. The
first vector (“impact on eligibles”) consists of the age-grade-specific treatment-control
differences for eligible children (interacting elements of Attanasio, Meghir, and Santi-
ago (2012a, Table 2), single-age rows of the column labeled “Impact on Poor 97,” with
the child’s grade). The second vector (“impact on ineligibles™) consists of the age-grade-
specific treatment-control differences for ineligible children (interacting elements of At-
tanasio, Meghir, and Santiago (2012a, Table 2), single-age rows of the column labeled
“Impact on non-eligible,” with the child’s grade). The third vector consists of both of
these groups of statistics.

Table I reports the estimated informativeness of each vector of descriptive statistics.
The estimated informativeness for the combined vector is 0.28. This is largely accounted
for by the age-grade-specific treatment-control differences for eligible children.

Restricting from FV(-) to FRN(.) reduces the worst-case bias by an estimated factor
of 1 — 4/1—0.28 ~ 0.15 in the sense of Proposition 2. Further reduction in the worst-
case bias would require including in ¥ descriptive statistics that are orthogonal to the
treatment-control differences we consider, thus imposing that FRN(-) respects the rela-
tionship specified by the base model F°(-) between ¢ and the features of the distribution
of the data estimated by these orthogonal statistics.
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TABLE I

ESTIMATED INFORMATIVENESS OF DESCRIPTIVE STATISTICS FOR THE EFFECT OF A COUNTERFACTUAL
REBUDGETING OF PROGRESA (ATTANASIO, MEGHIR, AND SANTIAGO (2012A))*

Descriptive Statistics ¥ Estimated Informativeness A
All 0.283
Impact on eligibles 0.227
Impact on ineligibles 0.056

aThe table shows the estimated informativeness A of three vectors 9 of descriptive statistics for the estimated partial-equilibrium
effect ¢ of the counterfactual rebudgeting on the school enrollment of eligible children, accumulated across age groups (Attanasio,
Meghir, and Santiago (2012a), sum of ordinates for the line labeled “fixed wages” in Figure 2, minus sum of ordinates for the line
labeled “fixed wages” in the left-hand panel of Figure 1). Vector y “impact on eligibles” consists of the age-grade-specific treatment-
control differences for eligible children (interacting elements of Attanasio, Meghir, and Santiago (2012a, Table 2), single-age rows of

~

the column labeled “Impact on Poor 97,” with the child’s grade). Vector 4 “impact on ineligibles” consists of the age-grade-specific
treatment-control differences for ineligible children (interacting elements of Attanasio, Meghir, and Santiago (2012a, Table 2), single-
age rows of the column labeled “Impact on non-eligible,” with the child’s grade). Vector ¥ “all” consists of both of these groups of
statistics. Estimated informativeness A is calculated according to the recipe in Section 5.1 using the replication code and data posted
by Attanasio, Meghir, and Santiago (2012b).

To illustrate the distinction between informativeness and identification highlighted in
Section 3.3.1, now let ¢ be the partial-equilibrium effect of the actual program on the
school enrollment of eligible children, accumulated across age groups. The parameter ¢
is nonparametrically identified, and can be nonparametrically estimated by comparing the
school enrollment of eligible children in treatment and control villages (as in Attanasio,
Meghir, and Santiago (2012a, Table 2), column labeled “Impact on Poor 97”). The param-
eter ¢ can also be estimated parametrically using the researcher’s estimated model (as in
Attanasio, Meghir, and Santiago (2012a), sum of ordinates for the line labeled “fixed
wages” in the left-hand panel of Figure 1). The descriptive statistics ¥ have an informa-
tiveness of 1 for a natural nonparametric estimator, and an estimated informativeness of
0.31 for the parametric estimator, indicating that assumptions beyond those required for
nonparametric identification are necessary to guarantee that the parametric estimator is
unbiased in the sense of Proposition 2.

6.2. Newspaper Demand

Gentzkow (2007a) used survey data from a cross-section of individuals to estimate de-
mand for print and online newspapers in Washington DC. A central goal of Gentzkow’s
(2007a) paper is to estimate the extent to which online editions of papers crowd out read-
ership of the associated print editions, which in turn depends on a key parameter govern-
ing the extent of print-online substitutability.

The estimate of interest ¢ is the change in readership of the Washington Post print
edition that would occur if the Post online edition were removed from the choice set
(Gentzkow (2007a, Table 10), row labeled “Change in Post readership”).

Gentzkow (2007a) discussed two features of the data that can help to distinguish cor-
related tastes from true substitutability: (i) a set of instruments—such as a measure of
Internet access at work—that plausibly shift the utility of online papers but do not oth-
erwise affect the utility of print papers; and (ii) a coarse form of panel data—separate
measures of consumption in the last day and last five weekdays—that make it possible
to relate changes in consumption of the print edition to changes in consumption of the
online edition over time for the same individual (p. 730).
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Motivated by Gentzkow’s (2007a) discussion, we define three vectors ¥ of descriptive
statistics. The first vector (“IV coefficient”) is the coefficient from a 2SLS regression of
last-five-weekday print readership on last-five-weekday online readership, instrumenting
for the latter with the set of instruments (Gentzkow (2007a, Table 4, Column 2, first row)).
The second vector (“panel coefficient”) is the coefficient from an OLS regression of last-
one-day print readership on last-one-day online readership, controlling for the full set of
interactions between indicators for print readership and indicators for online readership
in the last five weekdays. Each of these regressions includes the standard set of demo-
graphic controls from Gentzkow (2007a, Table 5). The third vector ¥ consists of both the
IV coefficient and the panel coefficient. Thus, the first two vectors have dimension 1, and
the third has dimension 2.

Table II reports the estimated informativeness of each vector of descriptive statistics.
The estimated informativeness of the combined vector is 0.51. This is accounted for al-
most entirely by the panel coefficient, which alone has an estimated informativeness of
0.50. The IV coefficient, by contrast, has an estimated informativeness of only 0.01.

Gentzkow’s (2007a) discussion of identification highlights both the exclusion restric-
tions underlying the IV coefficient and the panel variation underlying the panel coeffi-
cient as potential sources of identification, and if anything places more emphasis on the
former. Based on Gentzkow’s (2007a) discussion, and the large literature showing that
exclusion restrictions can be used to establish nonparametric identification in closely re-
lated models Matzkin (2007), it is tempting to conclude that accepting the relationship
specified by the base model between the counterfactual ¢ and the population value of the
IV coefficient would greatly limit the scope for bias in Gentzkow’s (2007a) estimator ¢.

Our findings suggest otherwise. When ¥ consists only of the IV coefficient, restricting
from FN(-) to FRN(.) reduces the worst-case bias in ¢ by an estimated factor of only
1 —4/1—-0.01 <0.01 in the sense of Proposition 2. By contrast, when ¥ consists only of
the panel coefficient, restricting from FV(-) to FRN(-) reduces the worst-case bias in ¢ by
an estimated factor of 1 — +/1 — 0.50 &2 (0.29. Intuitively, a reader interested in evaluating
the scope for bias in ¢ may wish to focus more attention on the assumptions of the base
model that relate ¢ to the population value of the panel coefficient (e.g., restrictions on the
time structure of preference shocks), than on assumptions that relate ¢ to the population
value of the IV coefficient (e.g., exclusion restrictions).

TABLE II

ESTIMATED INFORMATIVENESS OF DESCRIPTIVE STATISTICS FOR THE EFFECT OF ELIMINATING THE Post
ONLINE EDITION GENTZKOW (2007A)*

Descriptive statistics ¥ Estimated informativeness A
All 0.514
IV coefficient 0.009
Panel coefficient 0.503

aThe table shows the estimated informativeness A of three vectors 4 of descriptive statistics for the estimated effect ¢ on the
readership of the Post print edition if the Post online edition were removed from the choice set (Gentzkow (2007a, Table 10, row
labeled “Change in Post readership”)). Vector y “IV coefficient” is the coefficient from a 2SLS regression of last-five-weekday print
readership on last-five-weekday online readership, instrumenting for the latter with the set of excluded variables such as Internet access
at work (Gentzkow (2007a, Table 4, Column 2, first row)). Vector ¥ “panel coefficient” is the coefficient from an OLS regression of
last-one-day print readership on last-one-day online readership, controlling for the full set of interactions between indicators for print
readership and for online readership in the last five weekdays. Each of these regressions includes the standard set of demographic
controls from Gentzkow (2007a, Table 5). Vector ¥ “all” consists of both the IV coefficient and the panel coefficient. Estimated

informativeness A is calculated according to the recipe in Section 5.1 using the replication code and data posted by Gentzkow (2007b).
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6.3. Long-Term Care Insurance

Hendren (2013a) used data on insurance eligibility and self-reported beliefs about the
likelihood of different types of “loss” events (e.g., becoming disabled) to recover the dis-
tribution of underlying beliefs and rationalize why some groups are routinely denied in-
surance coverage. We focus here on Hendren’s (2013a) model of the market for long-term
care (LTC) insurance.

The estimate of interest ¢ is the minimum pooled price ratio among rejectees (Hendren
(2013a, Table V, row labeled “Reject,” column labeled “LTC”)). The minimum pooled
price ratio determines the range of preferences for which insurance markets cannot exist
(Hendren (2013a, Corollary 2 to Theorem 1)). This ratio is a key output of the analysis,
as it provides an economic rationale for the insurance denials that are the paper’s focus.

Hendren (2013a) explained that the parameters that determine the minimum pooled
price ratio are identified from the relationship between elicited beliefs and the eventual
realization of loss events such as long-term care (pp. 1751-1752).

Motivated by Hendren’s (2013a) discussion, we define four vectors y of descriptive
statistics. The first vector (“fractions in focal-point groups”) consists of the fraction of re-
spondents who report exactly 0, the fraction who report exactly 0.5, and the fraction who
report exactly 1. The second vector (“fractions in non-focal-point groups”) consists of the
fractions of respondents whose reports are in each of the intervals (0.1, 0.2], (0.2, 0.3],
(0.3,0.4], (0.4,0.5), (0.5, 0.6], (0.6,0.7], (0.7, 0.8], (0.8, 0.9], and (0.9, 1). The third vec-
tor (“fraction in each group needing LTC”) consists of the fraction of respondents giving
each of the preceding reports who eventually need long-term care. The fourth vector ¥
consists of all three of the other vectors.

Hendren’s (2013a) discussion suggests that the third vector will be especially informa-
tive for the minimum pooled price ratio.

Table III reports the estimated informativeness of each vector of descriptive statistics.
The estimated informativeness of the combined vector is 0.70. The estimated informa-
tiveness is 0.01 with respect to the fractions in focal-point groups, 0.02 with respect to
the fractions in non-focal-point groups, and 0.68 with respect to the fraction in each
group needing LTC. When ¥ consists only of the fraction in each group needing LTC,
restricting from FV(-) to FRN(.) reduces the worst-case bias in ¢ by an estimated factor
of 1 —+/1—0.68 2 0.43. This finding seems consistent with the author’s discussion.

TABLE III
ESTIMATED INFORMATIVENESS OF DESCRIPTIVE STATISTICS FOR THE MINIMUM POOLED PRICE RATIO
(HENDREN (2013A))*
Descriptive statistics Estimated informativeness A
All 0.700
Fractions in focal-point groups 0.005
Fractions in non-focal-point groups 0.018
Fraction in each group needing LTC 0.676

aThe table shows the estimated informativeness A of four vectors 4 of descriptive statistics for the “minimum pooled price ratio”
¢ (Hendren (2013a, Table V, row labeled “Reject,” column labeled “LTC”)). Vector ¥ “fractions in focal-point groups” consists of
the fraction of respondents who report exactly 0, the fraction who report exactly 0.5, and the fraction who report exactly 1. Vector
¥ “fractions in non-focal-point groups” consists of the fractions of respondents whose reports are in each of the intervals (0.1, 0.2],
(0.2,0.3], (0.3,0.4], (0.4,0.5), (0.5,0.6], (0.6,0.7], (0.7,0.8], (0.8,0.9], and (0.9, 1). Vector ¥ “fraction in each group needing LTC”
consists of the fractions of respondents giving each of the preceding reports who eventually need long-term care. Vector y “all”
consists of all three of the other vectors. Estimated informativeness A is calculated according to the recipe in Section 5.1 using the
replication code and data posted by Hendren (2013b), supplemented with additional calculations provided by the author.
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7. CONCLUSIONS

Descriptive analysis has become an important complement to structural estimation. It
is common for a researcher to report descriptive statistics y that estimate features y of
the distribution of the data that are in turn related to the quantity ¢ of interest under
the researcher’s model. A reader who accepts the relationship between the features vy
and the structural quantity c specified by the researcher’s model, and who believes that
the statistics ¥ play an important role in “driving” the structural estimate ¢, may then be
more confident in the researcher’s conclusions.

We propose one way to formalize this logic. We define a measure A of the informative-
ness of descriptive statistics y for a structural estimate ¢. Informativeness captures the
share of variation in ¢ that is explained by ¥y under their joint asymptotic distribution. We
show that, under some conditions, informativeness also governs the reduction in worst-
case bias from accepting the relationship between vy and ¢ specified by the researcher’s
model. In this sense, descriptive analysis based on statistics with high informativeness can
indeed increase confidence in structural estimates.

Informativeness can be computed at negligible cost even for complex models, and we
provide a convenient recipe for computing it. We show in the context of our applications
that reporting informativeness can sharpen the interpretation of structural estimates in
important economic settings. We recommend that researchers report estimated informa-
tiveness alongside their descriptive analyses.

PROOFS

PROOF OF PROPOSITION 1: First, consider F € FV(c). By the definition of 7V (-), there
exist n € R?, ¢ € R¥ such that F = F(n,{) and ¢ = ¢(n). Note, moreover, that since
c¢(n) = L'n while Ep[¢] = L'n+ C'{, Er[¢ — c] = C'{. Thus, our task reduces to showing
that

{C,g s Rk’ ”gllﬂ—l = lu‘} =[—po, l*‘('o-c]-

Note, however, that C'{ = C’()%Q‘%g , so by the Cauchy-Schwarz inequality, |C'{| <
o\l llo-1. Hence, to prove the result, we need only show that any bias ¢ with |¢| < po.
can be achieved. To this end, pick such a |¢| < po,. Consider { = fQC and note that
C¢{=cand || g1 = f( < w, as desired.

Next, consider F € F®¥(c¢). By the definition of FRN(.), there exist n € R?, { € R* such
that F=F(n, (), c=c(n),and I"(Xn + {) =I"X . Thus, our task reduces to showing
that

(CC: LR el =, TE =0} = [—po/T= 4, po/T-4].

Let us first show tha~t for any ¢ with ||{|lp-1 < p and "¢ =0, C'{ satisfies these bounds.
To this end, define C = C — T A’ for A = 3.3 !, and note that for any ¢ with I"{ =0,

Yy’
C'¢ = C'¢. Note, next, that |C'Z| < vV C'2C|| || -1 by the Cauchy-Schwarz inequality, and
that

é,gé = 0-62 - chz;,;zyc == O-CZ(I - A)’

from which the result follows. We next want to show that for any ¢ with |¢| < po.v/1 — A,
there exists ¢ with ||{]|o-1 < p and I"{ = 0 such that C’'{ = c. This result is trivial if A =1,
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so let us suppose that A < 1, and pick some ¢ with |¢| < po.+/1 — A. Define { = Uz(f_A)_QCN’
and note that I'¢ =0 and C'¢ = C'¢ = ¢, while

=2

2
”g”_()—l - O'Cz(]_ —A)’

which is bounded above by u?. Q.E.D.
PROOF OF LEMMA 1: By Lemma 7.6 of van der Vaart (1998), Assumption 3 implies

that \/f,.(D;; t,, t,) is differentiable in quadratic mean in the sense that for all (4, z) €
Hx Z,

1 2
f(\/fh,z(Di; th’ tz) - \/ﬁz,z(Di; 0’ O) - z(thsh(d) + ZLzsz(d))\/ fh.z(Di; O’ 0)) dV(d)

=o(|(t, )|)

as (t,,t,) — 0. Hence, Theorem 7.2 of van der Vaart (1998) implies that under S(0, 0),
defining F* = X_, F,

In t,
dF} <—, — " )
\WVn «/ﬁ> _ 1 1 (1, t
dF; =7n ;(thsh(Di) + 1.5.(D;)) — 3 (tz) 1,,.(0,0) <tz) +o0,(1)

log

and that Ep[s,(D;)] = Ep,[s.(D;)] = 0. Since Er,[s,(D;)*] and Ep,[s.(D;)*] are finite, As-
sumption 1, the central limit theorem, and Slutsky’s lemma imply that under S(0, 0), for
g8(Di; h, z) = 5,(D;) + 5.(D)),

/

1 1

dF! (——
“\Vn ﬁ> 1 1 N
iF ﬁZ@(D» ﬁZqSy(Dl)

log
1 2
_EEFO [g(D,-; h, z) ]
—>d N O 5 E* s
0
for
Er[8(Di; b, 2)°] Er[8(Dis h, 2)b(D)]  Er[g(Di; h, 2)d, (D)) ]
3= | Ex[8(Dis h, 2)do(D))] Ep[ (D] Ep,[b.(D) b, (D)]
Er|8(Dis h,2)dy(D))|  Eg [y (Di)p(D))] Er|¢,(Di) (D))

By Le Cam’s first lemma (see Example 6.5 of van der Vaart (1998)), the convergence of
log(dF ,’,"z(%, ﬁ) /dF}y) to a normal with mean equal to —1 of its variance implies that the

sequences X _, Fp and X_ F} . ) are mutually contiguous. Le Cam’s third lemma

(L 1
NaNT
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(see Example 6.7 of van der Vaart (1998)) then implies that under S(#4, z),

1 1 '
dF" (——
“A\Vn «/ﬁ> € y L v
log dF7 ﬁZMD» ﬁZm(D»

1Er[8(Di; h, 2)*]
—uN | | E[o.(DhgDsh, 2] |, 3|
Er, [¢>7(Di)g(Di; h, Z)]

Together with contiguity, Assumption 1 implies that

Ve = e(n. 7 = yom)) = 7=(30 D). 3, D) = 0,1,
under S(4, z), from which the result is immediate for
(?(S(h, Z))) _ (EFU[¢C(Di)g(Di; h, Z)]) _ (EFO[d)c(Di)(Sh(Di) + Sz(Di))]) '
¥(S(h, 2)) EFn[d)y(Di)g(Di; h, Z)] Ex, [d)y(Di)(Sh(Di) + Sz(Di))]
Finally, note that Assumption 2 implies c*(h) = ¢(S(h,0)) and y*(h) = ¥(S(h, 0)).

Consequently, by the results above, we have ¢*(h) = Eg[¢b.(D;)sy(D;)], and y*(h) =
Er,[é,(Di)sy(D:)]. Q.E.D.

PROOF OF PROPOSITION 2: Let us first consider the case with S € SV (¢*), with SV (¢*)
nonempty. By the definition of S¥(¢*) and Lemma 1, for any S € S¥(c*) there exist
(h,z) e H x Zwith S =S8(h, z) and ¢*(h) = ¢*. For this (&, z), we can write

c(§) —c"=Ep, [¢c(Di)(5h(Di) + Sz(Di))] — Ep, [¢c(Di)5h(Di)] = E, [¢c(Di)5z(Di)]-
Writing ¢, = Ef,[¢.(D;)s.(D;)] for brevity, our task thus reduces to showing
{Ez VAS Za EFD [Sz(Di)z] = lu‘z} = [_MO-C7 :u‘(Tc]

Note, however, that by the Cauchy—Schwarz inequality,

2.1 < \/Er[6(D, 2] Er,[5.(D)?] < po.
Hence, for any z € Z with Er[s.(D;)*] < u?, ¢, necessarily satisfies the bounds. Going
the other direction, for any ¢ with |¢| < no, if we take s*(D;) = a%qbc(Di), we have

Er,[s*(D;)¢.(D;)] = ¢, while Er, [s*(D;)*] = ¢*/o? < u*. By Assumption 4, however, there
exists z € Z with Ef [(s*(D;) — 5.(D;))*1 =0, so ¢, = ¢ and Ef,[s.(D;)*] < u?, as desired.

For the case with § € S®N(¢*), note that by the definition of S®N(¢*) and Lemma 1, for
any S € S®N(¢*) there exist (4, z) € H x Z with S = S(h, z), ¢*(h) = ¢*, and

EFU[d)y(Di)(sh(Di) + Sz(Di))] — Ep, [Cf’y(Di)Sh (Di)] = Ef, [‘f’y(Di)Sz(Di)] =0.

Thus, writing y, = Er [¢,(D;)s.(D;)] for brevity, our task reduces to showing that

{¢.12€ 2,9 =0,Eg[s.(D)’] = W’} = [~pov1 - A, pov1-Al



2256 1. ANDREWS, M. GENTZKOW, AND J. M. SHAPIRO
Let A= 2;7127C. For J)C(Di) =¢.(D;) — A'¢,(D;), note that if y, =0, then

Ep[¢.(D))s.(D)] = Eg [ (Di)s.(Dy)].

The Cauchy-Schwarz inequality then implies that

|En[$(D)s.(D)]| < Er [6e(D)?]y En[5.(D,)]
= o2 = A%, A\ [Ey [s.D)]
Hence, we see that for z such that Eg,[s.(D;)*] < u?,
¢, € [~po/1—Ap, po/1- Al
which are the bounds stated in the proposition.

To complete the proof, it remains to show that these bounds are tight, so that for any
(¢, w) with

cel—po1—A pov1—A]
there exists z € Z with ¢, = ¢, ¥, =0, and Ef,[s.(D;)*] < u*. This result is trivial if A =1,
so let us suppose that A < 1 and pick some ¢ with |¢| < po.+/1 — A. Now define

* ) — 7 . —C
(D8 = dD) 5
Note that Eg[¢,(D;)s*(D;; ¢)] =0, while
Vs (D = En [d. (DY —C — ¢z
EF0[¢(?(D1)S (Dl, C)] EF()[d)C(Dl) ]0_3(1 _ A) C.
Moreover,
=2
* Y S —
EFO[S (DHC) ] 0'3(1 —A)

However, by the definition of ¢, we know that |¢| < uo.v/1 — A, so Eg [s*(D;; €)*] < u?.
By Assumption 4, however, there exists z € Z with

Eg[(s.(D) = (D3 ©)’] =0,
and thus z yields ¢, = ¢, ¥, = 0, and Ef,[s,(D;)*] < u* as desired. Q.E.D.

PROOF OF PROPOSITION 3: As shown in the proof of Lemma 1, under Assumption 3,
the log likelihood ratio log(dF,’jyz(%, ﬁ) JdF" (L, ﬁ)) converges under S(0,0) to a

hz\"Jn
normal distribution with mean equal to —3 times its variance. Le Cam’s first lemma
thus implies that the distribution of the data under S(4, z) is mutually contiguous with
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that under S(0, 0). Hence, to establish convergence in probability under S(#, z), it suf-

fices to establish convergence in probability under $(0, 0). Consistency of A under S(0, 0)
is implied by Assumption 5, the continuous mapping theorem (see, e.g., Theorem 2.3
of van der Vaart (1998)), and the maintained assumptions that ¢ > 0 and %, has full
rank. Q.E.D.
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