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Abstract—We present here the Arkansas AI-Campus solution method for the 2019 Kidney Tumor Segmentation Challenge 
(KiTS19). Our Arkansas AI-Campus team participated the KiTS19 Challenge for four months, from March to July of 2019. This 
paper provides a summary of our methods, training, testing and validation results for this grand challenge in biomedical imaging 
analysis. Our deep learning model is an ensemble of U-Net models developed after testing many model variations. Our model 
has consistent performance on the local test dataset and the final competition independent test dataset. The model achieved 
local test Dice scores of 0.949 for kidney and tumor segmentation, and 0.601 for tumor segmentation, and the final competition 
test earned Dice scores 0.9470 and 0.6099 respectively. The Arkansas AI-Campus team solution with a composite DICE score 
of 0.7784 has achieved a final ranking of top fifty worldwide, and top five among the United States teams in the KiTS19 
Competition. 
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1 INTRODUCTION

he 2019 Kidney Tumor Segmentation Challenge 
(KiTS19) provides a good platform for encouraging 

computational approach development for automatic kid-
ney tumor segmentation with patient computed tomogra-
phy (CT) scans. In this paper we provide our method to ad-
dress the challenge question. Our method is based on neu-
ral network models and trained by the dataset provided by 
the KiTS19 Challenge [1]. 
 
1.1 Medical Relevance and Significance  
A machine-learning algorithm for segmenting kidneys and 
kidney tumors would be valuable for the medical commu-
nity. Tumor characteristics, such as size and shape, are rou-
tinely used both for patient prognosis and surgical plan-
ning. 

One of the most important factors influencing patient 
survival in renal cell carcinoma is the TNM stage of the tu-
mor [5].  The TNM staging system is widely used in oncol-
ogy and is determined by the size and shape of the primary 
tumor, number of lymph nodes involved, and the presence 

or absence of distant metastasis [6].  A CT scan of the pri-
mary tumor provides enough information to ascertain the 
tumor portion of the cancer’s TNM stage [5]. A segmenta-
tion algorithm will help automate the determination of the 
cancer’s T-stage, providing valuable prognostic infor-
mation to the physician and patient. 

A segmentation algorithm would also help in surgical 
planning.  The most common treatment for solid renal 
masses is surgery [7]. Until recently, radical nephrectomy 
was the standard of care, but with more advanced imaging 
and surgical techniques, partial nephrectomy is now more 
feasible [7]. Partial nephrectomy is equally effective at 
achieving cancer remission, but with less morbidity than a 
radical nephrectomy [7]. However, not all patients are suit-
able for partial nephrectomy. A segmentation tool will as-
sist surgeons in determining who is a candidate for partial 
nephrectomy and who would be better treated with a rad-
ical nephrectomy.  Such a tool would allow the surgeon to 
see the tumor’s size and shape, and its relationship to 
nearby vital structures, such as the aorta, vena cava, collect-
ing system, etc.  These tumor aspects have been shown to 
influence the complication rate in partial nephrectomies 
[8]. 

2 MATERIALS AND METHODS 
In this section, we first describe the dataset used and then 
present our model for the biomedical imaging problem 
based on neural networks. 
 
2.1 Dataset  
The data were provided by the KiTS19 Challenge organiza-
tion [1]. The whole dataset consisted of 300 individual pa-
tient CT scans. 210 scans were made available to the com-
petition teams as a training set, and the remaining 90 scans 
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were retained for testing predictions; no segmentation in-
formation was provided for these. 

 
We used the 210 patient CT scans and corresponding 
ground truth provided by the KiTS19 Challenge organizers 
[1] for our training and validation. A validation group was 
set aside before training began by selecting 20% (N=42) of 
available patients at random. The same validation group 
was isolated and used for validation on all models that were 
tested. The remaining 168 patients were used as the train-
ing group for all models. We chose to hold out a validation 
set instead of using cross-validation, because using cross-
validation would force us to multiply the computational 
time by the number of folds we had, and an independent 
ensemble of neural networks would have to be trained for 
each fold.  We chose 20% to achieve a balance between 
having adequate training data and being able to predict 
our error. 
 
2.2 Methods 
We investigated several model architectures as possible so-
lutions to this challenge. Primarily, we looked at two high-
level configurations: Mask-RCNN [2] and U-Net [3]. We de-
cided on an ensemble of U-Net models as our final config-
uration after testing many variations. We discuss our expe-
rience with Mask-RCNN further in the Discussion section, 
as well as our rationale for ultimately choosing U-Net. 

Our final ensemble consists of two U-Net models work-
ing in tandem, followed by a post-processing ``cleanup'' 
phase to minimize prediction artifacts. All of our U-Nets 
share the same structural architecture shown in Figure 1.  
The input layer accepts images of dimension 512x512 pix-
els.  The network consists of four “downsampling” blocks, a 
feature representation block, four “upsampling” blocks, 
and one output convolutional layer.  Each block contains 
two identical 3x3 convolutional layers.  Each “downsam-
pling” block is followed by a 2x2 max pooling operation.  
Each “upsampling” block is preceeded by a 2x2 2-D convo-
lutional transpose layer with a stride of 2x2 and a concate-

nation with features from the corresponding downsam-
pling block (see Figure 1).  The final upsampling block con-
nects directly to the output layer, which is a 1x1 2-D CNN 
layer with 2 output channels  of shape 512x512 pixels.  All 
intermediate CNN layers utilize a ReLU activation.  The out-
put layer utilizes a sigmoid activation representing the 
probability that any pixel location should belong to the re-
gion of interest.  Feature dimension sizes for all blocks are 
shown in Figure 1.  Both models in our ensemble were 
trained on axial slices, differing in the number of epochs 
trained and the interpretation of the output masks from 
each. One model was tasked with predicting the kidney and 
tumor masks separately in its two output channels. We will 
refer to this as the ``K/T'' model. The other model was 
trained to predict the combined kidney+tumor mask on 
the first output channel, and the tumor portion on the sec-
ond output channel. We will refer to this as the ``KT/T'' 
model. The output from the two models was combined 
such that both models voted equally for the inclusion of 
any individual mask voxel, and voxels receiving a vote from 
either model were included in the result sent to the post-
processing stage. 

This ensemble is unique as the two models are slightly 
different from each other, viewing the problem in slightly 
different ways.  The KT/T model views the kidney and tumor 
as belonging together as a single unit, helping prevent er-
rors in which the tumor voxels are predicted in locations far 
removed from the kidney.  The K/T model is more flexible 
and not bound by this restriction, as it searches for the kid-
ney independent from the tumor. 

Finally, we post-processed the proposed mask by 1) fill-
ing gaps of width ≤ 2 in the tumor mask along each of the 
three axes, 2) computing and filling the convex hull of each 
connected region in the tumor mask, 3) removing any seg-
mentations that occupy only a single ‘slice’ along each of 
the three axes, 4) retaining only the largest five connected 
regions in the tumor mask, 5) computing the two largest 
connected regions that intersect with a kidney segmenta-
tion in the union of the tumor and kidney masks and using 
those two largest connected regions to filter all proposals, 
removing any proposed segmentation voxels outside these 
two regions. 

This post-processing stage removed spurious predic-
tions as well as filling in any missing interior regions in the 
tumor prediction. 

 
Pre-processing. We found that loading the NiFTi-format 

files for each patient created a bottleneck in the training 
process, so we pre-processed the images and saved the 
pre-processed versions in a format that could be read di-
rectly by the Numpy [4] package. For our axial models, we 
saved each axial ‘slice’ in an individual Numpy file. This al-
lowed us to load slices individually instead of loading an 
entire CT scan volume, further optimizing our loading 
times. For training with coronal and sagittal views, we saved 
the entire CT volume for each patient in a single Numpy 
file. We optimized training on these views such that all pos-
sible slices for a single patient were used preferentially be-
fore moving to a different patient, so that we could reduce 
the impact of the longer load times. 

 
Fig. 1. U-Net architecture. The U-Net operates by compressing the
input image into a low-level feature representation at the apex of the
U.  Following this, the model expands this low-level representation
into the predicted segmentations for the image.  
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Our pre-processing also included a window normaliza-
tion of the CT image data which imposed a threshold of the 
raw Hounsfield units to the range [-500, 500] and mapped 
the values to the numeric range [0, 1] according to the for-
mula: 
 

𝑣_𝑜𝑢𝑡 ൌ
minሺmaxሺ 𝑣_𝑖𝑛,െ500ሻ, 500ሻ

1000
൅ 0.5 

 
 
This step must also be performed prior to inference with 

all our models, so it is part of the input stage for the infer-
ence algorithm. 

For inference, our algorithm reads the NiFTi file directly; 
it is not necessary to cache the image in Numpy format at 
this stage. The window normalization step is required as a 
pre-processing step during inference. 
Training. Our training data consisted of 168 scans that in-
cluded a ground-truth segmentation. For each of our mod-
els, we proceeded as follows using the Keras[Keras] deep 
learning framework in Python with the Tensorflow[Tensor-
flow] back-end. 

Starting weights were seeded at random and trained for 
eight epochs each. We continued this process until we 
found an initial model that seemed to be converging at a 
reasonable rate. Many starts did not converge in any mean-
ingful way within the first eight epochs, and they were dis-
carded. In general, good starting weights could be found 
in about five attempts. 

All training for the axial models proceeded by dividing 
all available axial slices into two sets: ‘Positive’ slices con-
tained at least one segmented voxel of either tumor or kid-
ney, and ‘Negative’ slices contained no segmented voxels. 
We balanced our training set by randomly choosing 
enough slices from the positive and negative sets to create 
a 2:1 ratio of positive slices. 

Image slices were augmented in the following ways 
(each augmentation had a 50% chance of being applied to 
any slice): 

 
1. Randomly flipped vertically (this augmentation 

was disabled after ~135 epochs). 
2. Randomly flipped horizontally. 
3. Randomly shifted up to 15% in both the vertical 

and horizontal directions. 
4. Randomly zoomed in/out up to 15% and re-

cropped or padded with zeros to maintain image size (only 
used on epochs > 150 K/T and > 200 KT/T). 

 
Models were trained using  approximately 2000 slices 

per epoch. Training loss was a weighted cross-entropy loss 
where tumor segmentation errors were weighted ten times 
versus kidney segmentation errors. We also monitored a 
per-slice Dice metric to determine how training was pro-
ceeding. 

After training the models until the training metrics indi-
cated a performance plateau, we ranked the weights by 
training and validation Dice metric, and chose several top 

ranked checkpoints for further testing. For both axial mod-
els, we eventually trained in excess of 250 epochs, but the 
later checkpoints were not always best. Selected best 
weights were then used in an ensemble as described pre-
viously; we chose one checkpoint from the K/T and KT/T 
models for our final ensemble. 

We provide detailed instructions for training both our 
K/T model and the KT/T model in the README.md file con-
tained in our source repository on Github 
(https://github.com/jcausey-astate/ai_campus_kits19). The 
best K/T weights occurred at epoch 150 and the best KT/T 
weights occurred at epoch 205. 

 
Implementation details. We utilized both local and 

cloud-based Amazon Web Services (AWS) GPU instances 
to train our models. Our two local instances included a sin-
gle NVIDIA Tesla P-40 GPU and a single NVIDIA Tesla V-100 
GPU, respectively. We also utilized up to three concurrent 
AWS cloud instances using the Deep Learning AMI, with 
one NVIDIA Tesla P-100 on each instance. 

3 EVALUATION METRICS 

Each model was evaluated and ranked by its average 
Sørensen–Dice score [9, 10, 11] across all CT scans in the 
validation set.  The metric is defined by the following for-
mula:  

𝐷𝑆𝐶 ൌ
2𝑇𝑃

2𝑇𝑃 ൅ 𝐹𝑃 ൅ 𝐹𝑁
 

 
In this formula, TP is the number of correctly labeled 

voxels and FP is the number of voxels falsely labeled as be-
longing to the class, and FN is the number of voxels incor-
rectly labeled as belonging to the background.  The Søren-
sen–Dice score is computed on a per-class basis.  We 
ranked our models first by the Sørensen–Dice score on the 
union of the kidney and tumor classes and secondarily 
ranked them on the tumor class alone. 

4 RESULTS 

4.1 Performance of our model  
The table below shows the performance of our Arkansas 
AI-Campus models on our local validation group of 42 
scans. Shown is the performance for each of the individual 
models in the ensemble, as well as the ensemble itself. The 
performance of the individual models does not include the 
described post-processing steps. Please refer to Figure 2 
for exemplary prediction outputs from our ensemble 
model.  

At the time of judging of the KiTS19 challenge, the Ar-
kansas AI-Campus team solution placed 50th overall, and 
among the top five of teams from the United States. The 
evaluation of our model on the retained test set of 90 scans 
shows that our model has consistent performance, and it 
has achieved Dice scores 0.9470 for kidney and tumor seg-
mentation, and 0.6099 for tumor segmentation respec-
tively. The Arkansas AI-Campus model has a composite 
Dice score of 0.7784. 



4 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

 
 
Table 1. The performance of our models on our local val-

idation set of 42 CT scans. 
 
Model K+T Dice, Std. 

Dev. 
T Dice, Std. 
Dev. 

K/T axial  0.927, 0.096  0.512, 0.293 
KT/T axial 0.932, 0.072 0.517, 0.294 
Ensemble + 
post-pro-
cessing  

0.949, 0.053  0.601, 0.292 

 
 

4.2 Discussion of other models  
Mask-RCNN. We attempted to adapt Mask-RCNN [2] to the 
segmentation problem. This model was selected for its 
state-of-the-art ability to perform segmentation tasks. 
However, we encountered challenges in adapting this 

model to the problem of segmenting the kidney and the 
tumor. Much like the U-Net model, Mask-RCNN is a 2D 
model and was trained with individual slices of CT scans. 
However, Mask-RCNN assumes that every training image 
will contain at least one object of interest. Training errors 

occur if this is not the case. To work around this problem, 
we added a ‘dummy’' mask consisting of a single pixel 
placed in a random position on each slice that did not con-
tain kidney or tumor. The randomness was intended to pre-
vent the model from perfectly learning the dummy mask's 
position. 

After making these modifications, we were able to train 
Mask-RCNN models for the axial, coronal, and sagittal 
views. However, its performance was quickly outclassed by 
the U-Net, even in ensemble and with post-processing. We 
suspect this is because Mask-RCNN has a much higher 
model capacity (and complexity) and trained more slowly. 

 
 
 
 
 
 
 
 
Table 2. The performance of our Mask-RCNN based 

models on our local validation set of 42 CT scans. 
 

Model K+T Dice T Dice 
Mask-RCNN 
Axial + post-
processing 

0.340 0.098 

Mask-RCNN 
Coronal + post-
processing 

0.400 0.073 

Mask-RCNN 
Sagittal + post-
processing 

0.463 0.079 

Mask-RCNN 
Ensemble + 
post-processing 

0.724 0.166 

 
 
Multi-View U-Net. While planning the U-Net ensemble, we 
planned to train models for all three views: axial, sagittal, 
and coronal. However, the coronal and sagittal models did 
not reach the same level of performance as the axial model, 
and ensembles containing these models underperformed 
ensembles with axial models only. We suspect that the rea-
son was that these models were using the original images 
and not the interpolated dataset that allowed a common 
spacing in the Z-axis direction. This led to a much higher 
variance in the model's experience of anatomical structures 
for the non-axial views, reflected in the inability to reach 
adequate performance. 

 
4.3 Further Work of Segmentation Algorithms  
The development of automatic medical imaging segmen-
tation algorithms, such as the work of the KiTS19 challenge, 
will contribute to the methods for imaging analysis. Also, 
the segmentation algorithms will be of clinical importance. 
Renal cell carcinomas are aggressive cancers, and further 
work for kidney tumor segmentation algorithms should be 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. For both (a) and (b), the image on the left is a single slice 
from one patient's CT scan.  The upper right image shows the out-
lines of the kidney and tumor as identified by radiologists, while the 
lower right image shows the same outline as identified by our en-
semble model. 
 

(a) 

(b) 
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able to provide a tumor stage for the cancer as well as in-
formation about the tumor's size and location. Most kidney 
cancers are treated with surgery. Segmentation algorithms 
will assist surgeons in deciding whether or not a patient is 
a candidate for partial nephrectomy by helping decide if a 
sufficient margin of healthy tissue can be left behind to 
minimize risk of cancer recurrence. 

5 SUMMARY 
The goal of the KiTS19 Challenge was to take standard hu-
man abdominal computed tomography (CT) images and 
build models that would scan the digital computed tomog-
raphy (CT) scans and autonomously identify the kidneys 
and any solid tumors within the kidneys.  The completion 
teams were initially given 210 scans to use as a training set 
from patients with kidney tumors identified by a team of 
radiologists at the University of Minnesota Medical Center.  
Using the training set, each team constructed models to 
identify tumors and were graded by how well their models 
performed on a separate testing set of 90 scans.  The teams 
were scored by how closely the tumor and kidney tissue 
identified by their models matched tumor tissue identified 
by the experienced radiologists. After investigating several 
options, the Arkansas AI-Campus team developed an en-
semble neural network algorithm that performed compar-
atively well and resulted in a composite Dice score of 
0.7784 and 50th place globally.  A limitation of the model is 
that it was developed iteratively during the competition, 
possibly leading to overfitting pressure from evaluation 
feedback.  Additional validation on novel data would be re-
quired before deploying the model in a clinical setting. 
 

DATA AVAILIBITY 
The LIDC/IDRI data (https://luna16.grand-chal-
lenge.org/data/), LUNA16 data (https://wiki.cancerimag-
ingarchive.net/display/Public/LIDC-IDRI) and DSB2017 
Competition data (https://www.kaggle.com/c/data-sci-
ence-bowl-2017/data) are publicly available through their 
individual websites and were previously used for biomedi-
cal imaging studies and computational approach develop-
ment and testing by different research groups in the re-
search field. The NLST data is NCI-controlled data; different 
research groups get their permission from NCI to use the 
NLST data for their study. Please refer to the NCI website 
for the information (https://biome-
try.nci.nih.gov/cdas/publications/?study=nlst). 

CODE AVAILIBITY  
The code is available through Github 
(https://github.com/jcausey-astate/ai_campus_kits19), and 
some intermediate files we processed and generated with 
this study could be made available to an investigator upon 
request for academic, research, and noncommercial use. 
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