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An Ensemble of U-Net Models for Kidney
Tumor Segmentation with CT images
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Abstract—We present here the Arkansas Al-Campus solution method for the 2019 Kidney Tumor Segmentation Challenge
(KiTS19). Our Arkansas Al-Campus team participated the KiTS19 Challenge for four months, from March to July of 2019. This
paper provides a summary of our methods, training, testing and validation results for this grand challenge in biomedical imaging
analysis. Our deep learning model is an ensemble of U-Net models developed after testing many model variations. Our model
has consistent performance on the local test dataset and the final competition independent test dataset. The model achieved
local test Dice scores of 0.949 for kidney and tumor segmentation, and 0.601 for tumor segmentation, and the final competition
test earned Dice scores 0.9470 and 0.6099 respectively. The Arkansas Al-Campus team solution with a composite DICE score
of 0.7784 has achieved a final ranking of top fifty worldwide, and top five among the United States teams in the KiTS19

Competition.

Index Terms—Kidney tumor segmentation, CT images, U-Net model, Biomedical imaging

1 INTRODUCTION

he 2019 Kidney Tumor Segmentation Challenge

(KiTS19) provides a good platform for encouraging
computational approach development for automatic kid-
ney tumor segmentation with patient computed tomogra-
phy (CT) scans. In this paper we provide our method to ad-
dress the challenge question. Our method is based on neu-
ral network models and trained by the dataset provided by
the KiTS19 Challenge [1].

1.1 Medical Relevance and Significance

A machine-learning algorithm for segmenting kidneys and
kidney tumors would be valuable for the medical commu-
nity. Tumor characteristics, such as size and shape, are rou-
tinely used both for patient prognosis and surgical plan-
ning.

One of the most important factors influencing patient
survival in renal cell carcinoma is the TNM stage of the tu-
mor [5]. The TNM staging system is widely used in oncol-
ogy and is determined by the size and shape of the primary
tumor, number of lymph nodes involved, and the presence
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or absence of distant metastasis [6]. A CT scan of the pri-
mary tumor provides enough information to ascertain the
tumor portion of the cancer’s TNM stage [5]. A segmenta-
tion algorithm will help automate the determination of the
cancer's T-stage, providing valuable prognostic infor-
mation to the physician and patient.

A segmentation algorithm would also help in surgical
planning. The most common treatment for solid renal
masses is surgery [7]. Until recently, radical nephrectomy
was the standard of care, but with more advanced imaging
and surgical techniques, partial nephrectomy is now more
feasible [7]. Partial nephrectomy is equally effective at
achieving cancer remission, but with less morbidity than a
radical nephrectomy [7]. However, not all patients are suit-
able for partial nephrectomy. A segmentation tool will as-
sist surgeons in determining who is a candidate for partial
nephrectomy and who would be better treated with a rad-
ical nephrectomy. Such a tool would allow the surgeon to
see the tumor’s size and shape, and its relationship to
nearby vital structures, such as the aorta, vena cava, collect-
ing system, etc. These tumor aspects have been shown to
influence the complication rate in partial nephrectomies
[8].

2 MATERIALS AND METHODS

In this section, we first describe the dataset used and then
present our model for the biomedical imaging problem
based on neural networks.

2.1 Dataset

The data were provided by the KiTS19 Challenge organiza-
tion [1]. The whole dataset consisted of 300 individual pa-
tient CT scans. 210 scans were made available to the com-
petition teams as a training set, and the remaining 90 scans
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Fig. 1. U-Net architecture. The U-Net operates by compressing the
input image into a low-level feature representation at the apex of the
U. Following this, the model expands this low-level representation
into the predicted segmentations for the image.

were retained for testing predictions; no segmentation in-
formation was provided for these.

We used the 210 patient CT scans and corresponding
ground truth provided by the KiTS19 Challenge organizers
[1] for our training and validation. A validation group was
set aside before training began by selecting 20% (N=42) of
available patients at random. The same validation group
was isolated and used for validation on all models that were
tested. The remaining 168 patients were used as the train-
ing group for all models. We chose to hold out a validation
set instead of using cross-validation, because using cross-
validation would force us to multiply the computational
time by the number of folds we had, and an independent
ensemble of neural networks would have to be trained for
each fold. We chose 20% to achieve a balance between
having adequate training data and being able to predict
our error.

2.2 Methods

We investigated several model architectures as possible so-
lutions to this challenge. Primarily, we looked at two high-
level configurations: Mask-RCNN [2] and U-Net [3]. We de-
cided on an ensemble of U-Net models as our final config-
uration after testing many variations. We discuss our expe-
rience with Mask-RCNN further in the Discussion section,
as well as our rationale for ultimately choosing U-Net.

Our final ensemble consists of two U-Net models work-
ing in tandem, followed by a post-processing “cleanup”
phase to minimize prediction artifacts. All of our U-Nets
share the same structural architecture shown in Figure 1.
The input layer accepts images of dimension 512x512 pix-
els. The network consists of four "downsampling” blocks, a
feature representation block, four “upsampling” blocks,
and one output convolutional layer. Each block contains
two identical 3x3 convolutional layers. Each “downsam-
pling” block is followed by a 2x2 max pooling operation.
Each "upsampling” block is preceeded by a 2x2 2-D convo-
lutional transpose layer with a stride of 2x2 and a concate-
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nation with features from the corresponding downsam-
pling block (see Figure 1). The final upsampling block con-
nects directly to the output layer, which is a 1x1 2-D CNN
layer with 2 output channels of shape 512x512 pixels. All
intermediate CNN layers utilize a ReLU activation. The out-
put layer utilizes a sigmoid activation representing the
probability that any pixel location should belong to the re-
gion of interest. Feature dimension sizes for all blocks are
shown in Figure 1. Both models in our ensemble were
trained on axial slices, differing in the number of epochs
trained and the interpretation of the output masks from
each. One model was tasked with predicting the kidney and
tumor masks separately in its two output channels. We will
refer to this as the “K/T" model. The other model was
trained to predict the combined kidney+tumor mask on
the first output channel, and the tumor portion on the sec-
ond output channel. We will refer to this as the “KT/T"
model. The output from the two models was combined
such that both models voted equally for the inclusion of
any individual mask voxel, and voxels receiving a vote from
either model were included in the result sent to the post-
processing stage.

This ensemble is unique as the two models are slightly
different from each other, viewing the problem in slightly
different ways. The KT/T model views the kidney and tumor
as belonging together as a single unit, helping prevent er-
rors in which the tumor voxels are predicted in locations far
removed from the kidney. The K/T model is more flexible
and not bound by this restriction, as it searches for the kid-
ney independent from the tumor.

Finally, we post-processed the proposed mask by 1) fill-
ing gaps of width < 2 in the tumor mask along each of the
three axes, 2) computing and filling the convex hull of each
connected region in the tumor mask, 3) removing any seg-
mentations that occupy only a single ‘slice’ along each of
the three axes, 4) retaining only the largest five connected
regions in the tumor mask, 5) computing the two largest
connected regions that intersect with a kidney segmenta-
tion in the union of the tumor and kidney masks and using
those two largest connected regions to filter all proposals,
removing any proposed segmentation voxels outside these
two regions.

This post-processing stage removed spurious predic-
tions as well as filling in any missing interior regions in the
tumor prediction.

Pre-processing. We found that loading the NiFTi-format
files for each patient created a bottleneck in the training
process, so we pre-processed the images and saved the
pre-processed versions in a format that could be read di-
rectly by the Numpy [4] package. For our axial models, we
saved each axial ‘slice’ in an individual Numpy file. This al-
lowed us to load slices individually instead of loading an
entire CT scan volume, further optimizing our loading
times. For training with coronal and sagittal views, we saved
the entire CT volume for each patient in a single Numpy
file. We optimized training on these views such that all pos-
sible slices for a single patient were used preferentially be-
fore moving to a different patient, so that we could reduce
the impact of the longer load times.
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Our pre-processing also included a window normaliza-
tion of the CT image data which imposed a threshold of the
raw Hounsfield units to the range [-500, 500] and mapped
the values to the numeric range [0, 1] according to the for-
mula:

min(max( v_in, —500), 500
(max(v_in, ~500),500)

1000 =

v_out =

This step must also be performed prior to inference with
all our models, so it is part of the input stage for the infer-
ence algorithm.

For inference, our algorithm reads the NiFTi file directly;

it is not necessary to cache the image in Numpy format at
this stage. The window normalization step is required as a
pre-processing step during inference.
Training. Our training data consisted of 168 scans that in-
cluded a ground-truth segmentation. For each of our mod-
els, we proceeded as follows using the Keras[Keras] deep
learning framework in Python with the Tensorflow[Tensor-
flow] back-end.

Starting weights were seeded at random and trained for
eight epochs each. We continued this process until we
found an initial model that seemed to be converging at a
reasonable rate. Many starts did not converge in any mean-
ingful way within the first eight epochs, and they were dis-
carded. In general, good starting weights could be found
in about five attempts.

All training for the axial models proceeded by dividing
all available axial slices into two sets: ‘Positive’ slices con-
tained at least one segmented voxel of either tumor or kid-
ney, and ‘Negative’ slices contained no segmented voxels.
We balanced our training set by randomly choosing
enough slices from the positive and negative sets to create
a 2:1 ratio of positive slices.

Image slices were augmented in the following ways
(each augmentation had a 50% chance of being applied to
any slice):

1. Randomly flipped vertically (this augmentation
was disabled after ~135 epochs).

2. Randomly flipped horizontally.

3. Randomly shifted up to 15% in both the vertical
and horizontal directions.

4.  Randomly zoomed in/out up to 15% and re-
cropped or padded with zeros to maintain image size (only
used on epochs > 150 K/T and > 200 KT/T).

Models were trained using approximately 2000 slices
per epoch. Training loss was a weighted cross-entropy loss
where tumor segmentation errors were weighted ten times
versus kidney segmentation errors. We also monitored a
per-slice Dice metric to determine how training was pro-
ceeding.

After training the models until the training metrics indi-
cated a performance plateau, we ranked the weights by
training and validation Dice metric, and chose several top

ranked checkpoints for further testing. For both axial mod-
els, we eventually trained in excess of 250 epochs, but the
later checkpoints were not always best. Selected best
weights were then used in an ensemble as described pre-
viously; we chose one checkpoint from the K/T and KT/T
models for our final ensemble.

We provide detailed instructions for training both our
K/T model and the KT/T model in the README.md file con-
tained in  our source repository on  Github
(https://github.com/jcausey-astate/ai_campus_kits19). The
best K/T weights occurred at epoch 150 and the best KT/T
weights occurred at epoch 205.

Implementation details. We utilized both local and
cloud-based Amazon Web Services (AWS) GPU instances
to train our models. Our two local instances included a sin-
gle NVIDIA Tesla P-40 GPU and a single NVIDIA Tesla V-100
GPU, respectively. We also utilized up to three concurrent
AWS cloud instances using the Deep Learning AMI, with
one NVIDIA Tesla P-100 on each instance.

3 EVALUATION METRICS

Each model was evaluated and ranked by its average
Sgrensen-Dice score [9, 10, 11] across all CT scans in the
validation set. The metric is defined by the following for-

mula:
2TP
2TP + FP + FN

DSC =

In this formula, TP is the number of correctly labeled
voxels and FP is the number of voxels falsely labeled as be-
longing to the class, and FN is the number of voxels incor-
rectly labeled as belonging to the background. The Sgren-
sen-Dice score is computed on a per-class basis. We
ranked our models first by the Sgrensen-Dice score on the
union of the kidney and tumor classes and secondarily
ranked them on the tumor class alone.

4 RESULTS

4.1 Performance of our model

The table below shows the performance of our Arkansas
Al-Campus models on our local validation group of 42
scans. Shown is the performance for each of the individual
models in the ensemble, as well as the ensemble itself. The
performance of the individual models does not include the
described post-processing steps. Please refer to Figure 2
for exemplary prediction outputs from our ensemble
model.

At the time of judging of the KiTS19 challenge, the Ar-
kansas Al-Campus team solution placed 50th overall, and
among the top five of teams from the United States. The
evaluation of our model on the retained test set of 90 scans
shows that our model has consistent performance, and it
has achieved Dice scores 0.9470 for kidney and tumor seg-
mentation, and 0.6099 for tumor segmentation respec-
tively. The Arkansas Al-Campus model has a composite
Dice score of 0.7784.



Table 1. The performance of our models on our local val-
idation set of 42 CT scans.

Model K+T Dice, Std. T Dice, Std.
Dev. Dev.

K/T axial 0.927, 0.096 0.512,0.293

KT/T axial 0.932, 0.072 0.517,0.294

Ensemble + 0.949, 0.053 0.601, 0.292

post-pro-

cessing

4.2 Discussion of other models

Mask-RCNN. We attempted to adapt Mask-RCNN [2] to the
segmentation problem. This model was selected for its
state-of-the-art ability to perform segmentation tasks.
However, we encountered challenges in adapting this

(b)

Fig. 2. For both (a) and (b), the image on the left is a single slice
from one patient's CT scan. The upper right image shows the out-
lines of the kidney and tumor as identified by radiologists, while the
lower right image shows the same outline as identified by our en-
semble model.

model to the problem of segmenting the kidney and the
tumor. Much like the U-Net model, Mask-RCNN is a 2D
model and was trained with individual slices of CT scans.
However, Mask-RCNN assumes that every training image
will contain at least one object of interest. Training errors
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occur if this is not the case. To work around this problem,
we added a ‘dummy” mask consisting of a single pixel
placed in a random position on each slice that did not con-
tain kidney or tumor. The randomness was intended to pre-
vent the model from perfectly learning the dummy mask's
position.

After making these modifications, we were able to train
Mask-RCNN models for the axial, coronal, and sagittal
views. However, its performance was quickly outclassed by
the U-Net, even in ensemble and with post-processing. We
suspect this is because Mask-RCNN has a much higher
model capacity (and complexity) and trained more slowly.

Table 2. The performance of our Mask-RCNN based
models on our local validation set of 42 CT scans.

Model
Mask-RCNN
Axial + post-
processing
Mask-RCNN
Coronal + post-
processing
Mask-RCNN
Sagittal + post-
processing
Mask-RCNN
Ensemble +
post-processing

K+T Dice
0.340

T Dice
0.098

0.400 0.073

0.463 0.079

0.724 0.166

Multi-View U-Net. While planning the U-Net ensemble, we
planned to train models for all three views: axial, sagittal,
and coronal. However, the coronal and sagittal models did
not reach the same level of performance as the axial model,
and ensembles containing these models underperformed
ensembles with axial models only. We suspect that the rea-
son was that these models were using the original images
and not the interpolated dataset that allowed a common
spacing in the Z-axis direction. This led to a much higher
variance in the model's experience of anatomical structures
for the non-axial views, reflected in the inability to reach
adequate performance.

4.3 Further Work of Segmentation Algorithms

The development of automatic medical imaging segmen-
tation algorithms, such as the work of the KiTS19 challenge,
will contribute to the methods for imaging analysis. Also,
the segmentation algorithms will be of clinical importance.
Renal cell carcinomas are aggressive cancers, and further
work for kidney tumor segmentation algorithms should be
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able to provide a tumor stage for the cancer as well as in-
formation about the tumor's size and location. Most kidney
cancers are treated with surgery. Segmentation algorithms
will assist surgeons in deciding whether or not a patient is
a candidate for partial nephrectomy by helping decide if a
sufficient margin of healthy tissue can be left behind to
minimize risk of cancer recurrence.

5 SUMMARY

The goal of the KiTS19 Challenge was to take standard hu-
man abdominal computed tomography (CT) images and
build models that would scan the digital computed tomog-
raphy (CT) scans and autonomously identify the kidneys
and any solid tumors within the kidneys. The completion
teams were initially given 210 scans to use as a training set
from patients with kidney tumors identified by a team of
radiologists at the University of Minnesota Medical Center.
Using the training set, each team constructed models to
identify tumors and were graded by how well their models
performed on a separate testing set of 90 scans. The teams
were scored by how closely the tumor and kidney tissue
identified by their models matched tumor tissue identified
by the experienced radiologists. After investigating several
options, the Arkansas Al-Campus team developed an en-
semble neural network algorithm that performed compar-
atively well and resulted in a composite Dice score of
0.7784 and 50' place globally. A limitation of the model is
that it was developed iteratively during the competition,
possibly leading to overfitting pressure from evaluation
feedback. Additional validation on novel data would be re-
quired before deploying the model in a clinical setting.

DATA AVAILIBITY

The LIDC/IDRI data (https://lunal6.grand-chal-
lenge.org/data/), LUNA16 data (https://wiki.cancerimag-
ingarchive.net/display/Public/LIDC-IDRI) and DSB2017
Competition data (https://www.kaggle.com/c/data-sci-
ence-bowl-2017/data) are publicly available through their
individual websites and were previously used for biomedi-
cal imaging studies and computational approach develop-
ment and testing by different research groups in the re-
search field. The NLST data is NCl-controlled data; different
research groups get their permission from NCI to use the
NLST data for their study. Please refer to the NCI website
for the information (https://biome-
try.nci.nih.gov/cdas/publications/?study=nlst).

CODE AVAILIBITY

The code is available through Github
(https://github.com/jcausey-astate/ai_campus_kits19), and
some intermediate files we processed and generated with
this study could be made available to an investigator upon
request for academic, research, and noncommercial use.
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