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Abstract for some polynomials a and b, then there can be no solution, 

Studying the set of exact solutions of a system of 

polynomial equations largely depends on a sin-

gle iterative algorithm, known as Buchberger’s 

algorithm. Optimized versions of this algorithm 

are crucial for many computer algebra systems 

(e.g., Mathematica, Maple, Sage). We introduce a 

new approach to Buchberger’s algorithm that uses 

reinforcement learning agents to perform S-pair 

selection, a key step in the algorithm. We then 

study how the difficulty of the problem depends 

on the choices of domain and distribution of poly-

nomials, about which little is known. Finally, we 

train a policy model using proximal policy opti-

mization (PPO) to learn S-pair selection strategies 

for random systems of binomial equations. In 

certain domains, the trained model outperforms 

state-of-the-art selection heuristics in total num-

ber of polynomial additions performed, which 

provides a proof-of-concept that recent develop-

ments in machine learning have the potential to 

improve performance of algorithms in symbolic 

computation. 

1. Introduction 

Systems of multivariate polynomial equations, such as 

{

3 20 = f1(x, y) = x + y
(1)20 = f2(x, y) = x y − 1

appear in many scientific and engineering fields, as well 

as many subjects in mathematics. The most fundamental 

question about such a system of equations is whether there 

exists an exact solution. If one can express the constant 

polynomial h(x, y) = 1 as a combination 

h(x, y) = a(x, y)f1(x, y) + b(x, y)f2(x, y) (2) 
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because the right hand side vanishes at any solution of the 

system, but the left hand side is always 1. 

The converse also holds: the set of solutions with x and y in 

C is empty if and only if there exists a linear combination (2) 

for h = 1 (Hilbert, 1893). Thus the existence of solutions 

to (1) can be reduced to the larger problem of determining 

if a polynomial h lies in the ideal generated by these poly-

nomials, which is defined to be the set I = 〈f1, f2〉 of all 

polynomials of the form (2). 

The key to solving this problem is to find a Gröbner basis for 

the system. This is another set of polynomials {g1, . . . , gk}, 
potentially much larger than the original set, which gen-

erate the same ideal I = 〈f1, f2〉 = 〈g1, . . . , gk〉, but for 

which one can employ a version of the Euclidean algorithm 

(discussed below) to determine if h ∈ I . 

In fact, computing a Gröbner basis is the necessary first step 

in algorithms that answer a huge number of questions about 

the original system: eliminating variables, parametrizing 

solutions, studying geometric features of the solution set, 

etc. This has led to a wide array of scientific applications 

of Gröbner bases, wherever polynomial systems appear, in-

cluding: computer vision (Duff et al., 2019), cryptography 

(Faugère et al., 2010), biological networks and chemical 

reaction networks (Arkun, 2019), robotics (Abłamowicz, 

2010), statistics (Diaconis & Sturmfels, 1998; Sullivant, 

2018), string theory (Gray, 2011), signal and image pro-

cessing (Lin et al., 2004), integer programming (Conti & 

Traverso, 1991), coding theory (Sala et al., 2009), and 

splines (Cox et al., 2005). 

Buchberger’s algorithm (Buchberger, 1965; 2006) is the 

basic iterative algorithm used to find a Gröbner basis. As it 

can be costly in both time and space, this algorithm is the 

computational bottleneck in many applications of Gröbner 

bases. All direct algorithms for finding Gröbner bases (e.g., 

(Faug` ere, 2002; Roune & Stillman, 2012;ere, 1999; Faug` 

Eder & Faugère, 2017)) are variations of Buchberger’s al-

gorithm, and highly optimized versions of the algorithm 

are a key piece of computer algebra systems such as (Co-

CoA; Macaulay2; Magma; Maple; Mathematica; SageMath; 

Singular). 

There are several points in Buchberger’s algorithm which 
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depend on choices that do not affect the correctness of the 

algorithm, but can have a significant impact on performance. 

In this paper we focus on one such choice, called pair se-

lection. We show that the problem of pair selection fits 

naturally into the framework of reinforcement learning, and 

claim that the rapid advancement in applications of deep re-

inforcement learning over the past decade has the potential 

to significantly improve the performance of the algorithm. 

Our main contributions are the following: 

1. Initiating the empirical study of Buchberger’s algo-

rithm from the perspective of machine learning. 

2. Identifying a precise sub-domain of the problem, con-

sisting of systems of binomials, that is directly relevant 

to applications, captures many of the challenging fea-

tures of the problem, and can serve as a useful bench-

mark for future research. 

3. Training a simple neural network model for pair selec-

tion which outperforms state-of-the art selection strate-

gies by 20% to 40% in this domain, thereby demon-

strating significant potential for future work. 

1.1. Related Work 

Several authors have applied machine learning to perform 

algorithm selection (Huang et al., 2019) or parameter selec-

tion (Xu et al., 2019) in problems related to Gröbner bases. 

While we are not aware of any existing work applying ma-

chine learning to improve the performance of Buchberger’s 

algorithm, many authors have used machine learning to 

improve algorithm performance in other domains (Alvarez 

et al., 2017; Khalil et al., 2016). Recently, there has been 

progress using reinforcement learning to learn entirely new 

heuristics and strategies inside algorithms (Bengio et al., 

2018), which is closest to our approach. 

2. Gröbner Bases 

In this section we give a focused introduction to Gröbner 

basis concepts that will be needed for Section 3. For a more 

general introduction to Gröbner bases and their uses, see 

(Cox et al., 2015; Mora, 2005). 

Let R = K[x1, . . . , xn] be the set of polynomials in vari-

ables x1, . . . , xn with coefficients in some field K. Let 

F = {f1, . . . , fs} be a set of polynomials in R, and con-

sider I = 〈f1, . . . , fs〉 the ideal generated by F in R. 

The definition of a Gröbner basis depends on a choice of 

monomial order, a well-order relation > on the set of mono-
a a1 an amials {x = x · · ·x |a ∈ Z

n } such that x > xb im-1 n ≥0
a+cplies x > xb+c for any exponent vectors a, b, c. Given 

∑

aa polynomial f = λax , we define the leading term a
aLT(f) = λax

a, where the leading monomial LM(f) = x

Algorithm 1 Multivariate Division Algorithm 

1: Input: a polynomial h and a set of polynomials F =
{f1, . . . , fs}

2: Output: a remainder polynomial r = reduce(h, F )
3: r ← h
4: while LT(fi)|LT(r) for some i do 

5: choose i such that LT(fi)|LT(r)

r ← r − LT(r)
6: fiLT(fi)

7: end while 

is the largest monomial with respect to the ordering > that 

has λa =6 0. An important example is the grevlex order, 
awhere x > xb if the total degree of xa is greater than that 

bof x , or they have the same degree, but the last non-zero 

entry of a− b is negative. For example, in the grevlex order, 
3 2we have x1 > x2 > x3, x2 > x1x2, and x2 > x1x3. 

Given a choice of monomial order > and a set of poly-

nomials F = {f1, . . . , fs}, the multivariate division al-

gorithm takes any polynomial h and produces a remain-

der polynomial r, written r = reduce(h, F ), such that 

h − r ∈ 〈f1, . . . , fs〉 and LT(fi) does not divide LT(r)
for any i. In this case we say that h reduces to r. The divi-

sion algorithm is guaranteed to terminate, but the remainder 

can depend on the choice in line 5 of Algorithm 1. 

Definition 1. Given a monomial order, a Gröbner basis G
of a nonzero ideal I is a set of generators {g1, g2, . . . , gk}
of I such that any of the following equivalent conditions 

hold: 

(i) 

(ii) 

(iii) 

reduce(h,G) = 0 ⇐⇒ h ∈ I

reduce(h,G) is unique for all h ∈ R

〈LT(g1),LT(g2), . . . ,LT(gk)〉 = 〈LT(I)〉

where 〈LT(I)〉 = 〈LT(f) | f ∈ I〉 is the ideal generated by 

the leading terms of all polynomials in I . 

As mentioned in Section 1, a consequence of (i) is that given 

a Gr¨ 〉, the system of equations obner basis G for 〈f1, . . . , fs
f1 = 0, . . . , fs = 0 has no solution over C if and only if 

reduce(1, G) = 0, that is, if G contains a non-zero constant 

polynomial. 

2.1. Buchberger’s Algorithm 

Buchberger’s algorithm produces a Gröbner basis for the 

ideal I = 〈f1, . . . , fs〉 from the initial set {f1, . . . , fs} by 

repeatedly producing and reducing combinations of the basis 

elements. 

x x γDefinition 2. Let S(f, g) =
γ

f −
γ

g, where x =LT(f) LT(g)

lcm(LM(f),LM(g)) is the least common multiple of the 

leading monomials of f and g. This is the S-polynomial of 

f and g, where S stands for subtraction or syzygy. 
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Theorem 1 (Buchberger’s Criterion). Suppose the set of 

polynomials G = {g1, g2, . . . , gk} generates the ideal I . If 

reduce(S(gi, gj), G) = 0 for all pairs gi, gj then G is a 

Gröbner basis of I . 

Example 1. Fix > to be grevlex. For the generating set 

F = {f1, f2} in Equation (1), r = reduce(S(f1, f2), F ) =
y + x. By construction, the set G = {f1, f2, r} gen-

erates the same ideal as F and reduce(S(f1, f2), G) =
0, so we have eliminated this pair for the purposes of 

verifying the criterion at the expense of two new pairs. 

Luckily, in this example reduce(S(f1, r), G) = 0 and 

reduce(S(f2, r), G) = obner basis for0, so G is a Gr¨ 

〈f1, f2〉 with respect to the grevlex order. 

Generalizing this example, Theorem 1 naturally leads to 

Algorithm 2, which depends on several implementation 

choices: select in line 6, reduce in line 8, and update

in line 10. Algorithm 2 is guaranteed to terminate regardless 

of these choices, but all three impact computational perfor-

mance. Most improvements to Buchberger’s algorithm have 

come from improved heuristics in these steps. 

The simplest implementation of update is 

update(P,G, r) = P ∪ {(f, r) : f ∈ G},

but most implementations use special rules to eliminate 

some pairs a priori, so as to minimize the number of S-

polynomial reductions performed. In fact, much recent 

research on improving the performance of Buchberger’s 

algorithm (Faug` ere, 2017) has fo-ere, 2002; Eder & Faug` 

cused on mathematical methods to eliminate as many pairs 

as possible. We use the standard pair elimination rules of 

(Gebauer & Möller, 1988) in all results in this paper. 

The main choice in reduce occurs in line 5 of Algorithm 1. 

For our experiments, we always choose the smallest LT(fi)
which divides r. We also modify Algorithm 1 to fully tail 

reduce, which leaves no term of r divisible by any LT(fi). 

Algorithm 2 Buchberger’s Algorithm 

1: Input: a set of polynomials {f1, . . . , fs}
2: Output: a Gröbner basis G of I = 〈f1, . . . , fs〉
3: G← {f1, . . . , fs}
4: P ← {(fi, fj) : 1 ≤ i < j ≤ s}
5: while |P | > 0 do 

6: (fi, fj)← select(P )
7: P ← P \ {(fi, fj)}
8: r ← reduce(S(fi, fj), G)
9: if r =6 0 then 

10: P ← update(P,G, r)
11: G← G ∪ {r}
12: end if 

13: end while 

Our focus is the implementation of select. 

2.2. Selection Strategies 

The selection strategy, which chooses the pair (fi, fj) to pro-

cess next, is critically important for efficiency, as poor pair 

selection can add many unnecessary elements to the generat-

ing set before finding a Gröbner basis. While there is some 

research on selection (Faugère, 2002; Roune & Stillman, 

2012), most is in the context of signature Gröbner bases and 

Faugere’s F5 algorithm. Other than these, most strategies to 

date depend on relatively simple human-designed heuristics. 

We use several well-known examples as benchmarks: 

First: Among pairs with minimal j, select the one with 

minimal i. In other words, treat the pair set P as a queue. 

Degree: Select the pair with minimal total degree of 

lcm(LM(fi),LM(fj)). If needed, break ties with First. 

Normal: Select the pair with lcm(LM(fi),LM(fj)) min-

mal in the monomial order. If needed, break ties with First. 
aIn a degree order (x > xb if the total degree of xa is greater 

than that of xb), this is a refinement of Degree selection. 

Sugar: Select the pair with minimal sugar degree, which 

is the degree lcm(LM(fi),LM(fj)) would have had if all 

input polynomials were homogenized. If needed, break ties 

with Normal. Presented in (Giovini et al., 1991). 

Random: Select an element of the pair set uniformly at 

random. 

Most implementations use Normal or Sugar selection. 

2.3. Complexity 

We will characterize the input to Buchberger’s algorithm in 

terms of the number of variables (n), the maximal degree of 

a generator (d), and the number of generators (s). One mea-

sure of complexity is the maximum degree deg (GB(I))max

of an element in the unique reduced minimal Gröbner basis 

for I . 

When the coefficient field has characteristic 0, there is an 

upper bound deg (GB(I)) ≤ (2d)2
n+1

which is double max

exponential in the number of variables (Bayer & Mumford, 

1993). There do exist ideals which exhibit double expo-

nential behavior (Mayr & Meyer, 1982; Bayer & Stillman, 

1988; Koh, 1998): there is a sequence of ideals {Jn} where 

Jn is generated by quadratic homogeneous binomials in 

22n− 1 variables such that for any monomial order 

22
n−1−1 ≤ deg (GB(Jn))max

In the grevlex monomial order, the theoretical upper bounds 

on the complexity of Buchberger’s algorithm are much bet-

ter if the choice of generators is sufficiently generic. To 
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make this precise, for fixed n, d, s, the space of possible 

inputs, i.e., the space V of coefficients for each of the s
generators, is finite dimensional. There is a subset X ⊂ V
of measure zero1 such that for any point outside X , 

deg (GB(I)) ≤ (n+ 1)(d− 1) + 1max

This implies that the size of GB(I) is less than or equal to 

the number of monomials of degree less than or equal to 

(n+ 1)(d− 1) + 1, which grows like O(((n+ 1)d− 1)n). 

It is expected, but not known, that it is rare for the maximum 

degree of a Gröbner basis element in the grevlex monomial 

order to be double exponential in the number of variables. 

Also, as early as the 1980’s, it was realized that for many 

examples, the grevlex Gröbner basis was often much easier 

to compute than Gröbner bases for other monomial orders. 

For these reasons, the grevlex monomial order is a standard 

choice in Gr¨ We use grevlex obner basis computations. 

throughout this paper for all of our experiments. 

3. The Reinforcement Learning Problem 

We model Buchberger’s algorithm as a Markov Decision 

Process (MDP) in which an agent interacts with an environ-

ment to perform pair selection in line 6 of Algorithm 2. 

Each pass through the while loop in line 5 of Algorithm 2 

is a time step, in which the agent takes an action and receives 

a reward. At time step t, the agent’s state st = (Gt, Pt) con-

sists of the current generating set Gt and the current pair set 

Pt. The agent must select a pair from the current set, so the 

set of allowable actions is At = Pt. Once the agent selects 

an action at ∈ At, the environment updates by remov-

ing the pair from the pair set, reducing the corresponding 

S-polynomial, and updating the generator and pair set if 

necessary. 

After the environment updates, the agent receives a reward 

rt which is −1 times the number of polynomial additions 

performed in the reduction of pair at, including the subtrac-

tion that produced the S-polynomial. This is a proxy for 

computational cost that is implementation independent, and 

thus useful for benchmarking against other selection heuris-

tics. For simplicity, this proxy does not penalize monomial 

division tests or computing pair eliminations. 

Each trajectory τ = (s0, a0, r1, s1, . . . , rT ) is a sequence of 

steps in Buchberger’s algorithm, and ends when the pair set 

is empty and the algorithm has terminated with a Gröbner 

basis. The agent’s objective is to maximize the expected 
∑T

γt−1return E[ rt], where 0 ≤ γ ≤ 1 is a discountt=1

factor. With γ = 1, this is equivalent to minimizing the 

expected number of polynomial additions taken to produce 

a Gröbner basis. 

1Technically, X is a closed algebraic subset. With coefficients 
in R or C, this is measure zero in the usual sense. 

This problem poses several interesting challenges from a 

machine learning perspective: 

1. The size of the action set changes with each time step 

and can be very large. 

2. There is a high variance in difficulty of problems of 

the same size. 

3. The state changes shape with each time step, and the 

state space is unbounded in several dimensions: num-

ber of variables, degree and size of generators, number 

of generators, and size of coefficients. 

3.1. The Domain: Random Binomial Ideals 

Formulating Buchberger’s algorithm as a reinforcement 

learning problem forces one to consider the question of 

what is a random polynomial. This is a significant departure 

from the typical framing of the Gröbner basis problem. 

We have seen that Buchberger’s algorithm performs much 

better than its worst case on generic choices of input. On 

the other hand, many of the ideals that arise in practice are 

far from generic in this sense. As n, d, and s grow, Gröbner 

basis computations tend to blow up in several ways simulta-

neously: (i) the number of polynomials in the generating set 

grows, (ii) the number of terms in each polynomial grows, 

and (iii) the size of the coefficients grows (e.g., rational 

numbers with very large denominators). 

The standard way to handle (iii) in evaluating Gröbner basis 

algorithms is to work over the finite field Fp = Z/pZ for a 

large prime number p. The choice Z/32003Z is common, 

if seemingly arbitrary, and all of our experiments use this 

coefficient field. Finite field coefficients are already of use 

in many applications (Bettale et al., 2013). They also figure 

prominently in many state of the art Buchberger implemen-

tations with rational coefficients: the idea is to start with a 

generating set with integer coefficients, reduce mod p for 

several large primes, compute the Gröbner bases for each 

of the resulting systems over finite fields, then “lift” these 

Gröbner bases back to rational polynomials (Arnold, 2003). 

In order to address (ii), we restrict our training to systems 

of polynomials with at most two terms. These are known as 

binomials. We will also assume neither term is a constant. 

If the input to Buchberger’s algorithm is a set of binomials 

of this form, then all of the new generators added to the set 

will also have this form. This side-steps the thorny issue of 

how to represent a polynomial of arbitrary size to a neural 

network. 

Restricting our focus to binomial ideals has several other 

benefits: We will show that using binomials typically avoids 

the known “easy” case when the dimension of the ideal, 

which is defined to be the dimension of the set of solu-

tions of the corresponding system of equations, is zero. We 
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have also seen that some of the worst known examples with 

double exponential behavior are binomial systems. Finally, 

binomials capture the qualitative fact that many of the poly-

nomials appearing in applications are sparse. In fact, several 

applications of Buchberger’s algorithm, such as integer pro-

gramming, specifically call for binomial ideals (Cox et al., 

2005; Conti & Traverso, 1991). 

We also remark that a model trained on binomials might 

be useful in other domains as well. Just as most standard 

selection strategies only consider the leading monomials of 

each pair, one could use a model trained on binomials to 

select pairs based on their leading binomials. 

We performed experiments with two probability distribu-

tions on the set of binomials of degree ≤ d in s generators. 

The first, weighted, selects the degree of each monomial 

uniformly at random, then selects each uniformly at ran-

dom among monomials of the chosen degree. The second, 

uniform, selects both monomials uniformly at random 

from the set of monomials of degree ≤ d. The main dif-

ference between these two distributions is that weighted

tends to produce more binomials of low total degree. Both 

distributions assign non-zero coefficients uniformly at ran-

dom. 

For the remainder of the paper, we will use the format “n-d-

s (uniform/weighted)” to specify our distribution on s-tuples 

of binomials of degree ≤ d in n variables. 

3.2. Statistics 

We will briefly discuss the statistical properties of the prob-

lem in the domain of binomial ideals to highlight its features 

and challenges. 

Difficulty increases with n: (Table 1) This is consistent 

with the double exponential behavior in the worst-case anal-

ysis. 

Degree and Normal outperform First and Sugar: (Table 

1) This pattern is consistent across all distributions in the 

range tested (n = 3, d ≤ 30, s ≤ 20). The fact that Sugar 

under-performs in an average-case analysis might reflect 

the fact that it was chosen because it improves performance 

on known sequences of challenging benchmark ideals in 

(Giovini et al., 1991). 

Very high variance in difficulty: This is also illustrated in 

Table 1, especially as the number of variables increases. Fig-

ure 1 provides a more detailed view of a single distribution, 

demonstrating the large variance and long right tail that is 

typical of Gröbner basis calculations. This poses a particular 

challenge for the training of reinforcement learning models. 

Dependence on s is subtle: For n = 3, there is is a spike in 

difficulty at four generators, followed by a drop/leveling off, 

and a slow increase after that (Figures 2 and 3). The spike is 

Table 1. Number of polynomial additions for different selection 

strategies on the same samples of 10000 ideals. Distributions are 

n-5-10 weighted. Table entries show mean [stddev]. 

n FIRST DEGREE NORMAL SUGAR 

2 36.4 [7.24] 32.3 [5.71] 32.0 [5.49] 32.4 [6.15] 
3 52.8 [17.9] 42.2 [13.2] 42.4 [13.1] 44.2 [15.1] 
4 86.3 [40.9] 63.8 [28.5] 66.5 [29.8] 70.0 [32.9] 
5 151. [85.7] 109. [58.8] 117. [64.4] 120. [68.7] 
6 280. [174.] 198. [118.] 221. [132.] 223. [143.] 
7 527. [359.] 379. [240.] 435. [277.] 430. [296.] 
8 1030 [759.] 760. [510.] 887. [588.] 863. [639.] 

Figure 1. Histogram of polynomial additions in 5-5-10 weighted 

following Degree selection over 10000 samples. 

even more pronounced in n > 3 variables, where it occurs 

instead at n + 1 generators. The leveling off is consistent 

with the hypothesis that a low-degree generator, which is 

more likely for larger s, makes the problem easier, but this is 

eventually counteracted by the fact that increasing s always 

increases the minimum number of polynomial additions 

required. The fact that weighted is easier than uniform

across values of d and s also supports this hypothesis. 

Difficulty increases relatively slowly with d: The growth 

appears to be either linear or slightly sub-linear in d in the 

range tested (Figures 2 and 3). 

Zero dimensional ideals are rare: (Table 2) For n = 3, 

d = 20, the hardest distribution is s = 4, in which case 

.05% of the ideals were zero dimensional. This increased to 

21.2% using the weighted distribution and increasing to 

s = 10, which is still relatively rare. This also supports the 

hypothesis that the appearance of a generator of low degree 

makes the problem easier. 
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Figure 2. Average number of polynomial additions following De-

gree selection in n = 3 weighted. Each degree and generator point 

is the mean over 10000 samples for s ≤ 20 and 1000 samples for 

s > 20. 

Table 2. Dimension of the binomial ideals (i.e., the dimension of 

the solution set of the corresponding system of equations), in a 

sample of 10000 (n = 3, d = 20). 

WEIGHTED UNIFORM 

dim s = 10 s = 4 s = 10 s = 4

0 2121 178 58 5 
1 7657 6231 8146 2932 
2 223 3592 1797 7064 

4. Experimental Setup 

We train a neural network model to perform pair selection 

in Buchberger’s algorithm. 

4.1. Network Structure 

We represent a state St = (Gt, Pt) as a matrix whose rows 

are obtained by concatenating the exponent vector of each 

pair. For n variables and p pairs, this results in a matrix of 

size p× 4n. The environment is now partially observed, as 

the observation does not include the coefficients. 

Example 2. Let n = 3, and consider the state given by 
6 2 4 4 3G = {xy + 9y z , z + 13z, xy + 91xy2}, where the 

terms of each binomial are shown in grevlex order, and 

P = {(1, 2), (1, 3), (2, 3)}. Mapping each pair to a row 

yields 

 

1 6 0 0 2 4 0 0 4 0 0 1
 1 6 0 0 2 4 1 3 0 1 2 0
0 0 4 0 0 1 1 3 0 1 2 0

Our agent uses a policy network that maps each row to 

a single preference score using a series of dense layers. 

Figure 3. Average number of polynomial additions following De-

gree selection in n = 3 uniform. Each degree and generator point 

is the mean over 10000 samples for s ≤ 20 and 1000 samples for 

s > 20. 

We implement these layers as 1D convolutions with 1× 1
kernel in order to compute the preference score for all pairs 

simultaneously. The agent’s policy, which is a probability 

distribution on the current pair set, is the softmax of these 

preference scores. In preliminary experiments, network 

depth did not appear to significantly affect performance, so 

we settled on the following architecture: 

1D conv 1D conv 
relu linear softmax 

p× 4n // p× 128 // p× 1 // p× 1

Due to its simplicity, it would in principle be easy to deploy 

this model in a production implementation of Buchberger’s 

algorithm. The preference scores produced by the network 

could be used as sort keys for the pair set. Each pair would 

only need to be processed once, and we expect the rela-

tively small matrix multiplies in this model to add minimal 

overhead in a careful implementation. In fact, most of the 

improvement was already achieved by a model with only 

four hidden units (see supplement). 

However, given that real time performance of Buchberger’s 

algorithm is highly dependent on sophisticated implemen-

tation details, we exclusively focus on implementation in-

dependent metrics, and defer the testing of real time perfor-

mance improvements to future work. 

4.2. Value Functions 

A general challenge for policy gradient algorithms is the 

large variance in the estimate of expected rewards. This is 

exacerbated in our context by the large variance in difficulty 

of computing a Gröbner basis of different ideals from the 



Learning Selection Strategies in Buchberger’s Algorithm 

Table 3. Agent performance versus benchmark strategies in 3 variables and degree 20. Each line is a unique agent trained on the given 

distribution. Performance is mean[stddev] on 10000 new randomly sampled ideals from that distribution. Training times were 16 to 48 

hours each on a c5n.xlarge instance through Amazon Web Services. Smaller numbers are better. 

s DISTRIBUTION FIRST DEGREE NORMAL SUGAR RANDOM AGENT IMPROVEMENT 

10 WEIGHTED 187.[73.1] 136.[50.9] 136.[51.2] 161.[66.9] 178.[68.3] 85.6[27.3] 37% [46%] 
4 WEIGHTED 210.[101.] 160.[64.5] 160.[66.6] 185.[87.2] 203.[97.8] 101.[44.9] 37% [30%] 

10 UNIFORM 352.[117.] 197.[55.7] 198.[57.1] 264.[88.5] 318.[103.] 141.[42.8] 28% [23%] 
4 UNIFORM 317.[130.] 195.[70.0] 194.[70.0] 265.[107.] 303.[122.] 151.[56.4] 22% [19%] 

Figure 4. Mean performance during each epoch of training on the 

3-20-10 weighted distribution. Dashed lines indicate mean per-

formance of benchmark strategies on 10000 random ideals. Total 

training time was 16 hours on a c5n.xlarge instance through Ama-

zon Web Services. Smaller numbers are better. 

same distribution. We address this using Generalized Ad-

vantage Estimation (GAE) (Schulman et al., 2016), which 

uses a value function to produce a lower-variance estima-

tor of expected returns while limiting the bias introduced. 

Our value function V (G,P ) is the number of polynomial 

additions required to complete a full run of Buchberger’s 

algorithm starting with the state (G,P ), using the Degree 

strategy. This is computationally expensive but significantly 

improves performance. 

4.3. Training Algorithm 

Our agents are trained with proximal policy optimization 

(PPO) (Schulman et al., 2017) using a custom implemen-

tation inspired by (Achiam, 2018). In each epoch we first 

sample 100 episodes following the current policy. Next, 

GAE with λ = 0.97 and γ = 0.99 is used to compute ad-

vantages, which are normalized over the epoch. Finally, we 

perform at most 80 gradient updates on the clipped surrogate 

PPO objective with ǫ = 0.2 using Adam optimization with 

learning rate 0.0001. Early-stopping is performed when the 

sampled KL-divergence from the last policy exceeds 0.01. 

Figure 5. Estimated distribution of polynomial additions per ideal 

in the 3-20-10 weighted distribution for the fully trained agent from 

Figure 4, compared to benchmark strategies. Smaller numbers are 

better. (10000 samples, computed using kernel density estimation) 

4.4. Data Generation 

There are no fixed train or test sets. Instead, the training and 

testing data are generated online by a function that builds an 

ideal at random from the distribution. The large size of the 

distributions prevents any over-fitting to a particular subset 

of ideals. For example, even ignoring coefficients, the total 

number of ideals in 3-20-10 weighted is roughly 1055. The 

agent trained in Figure 4 saw 150000 ideals from this set 

generated at random during training. This agent was tested 

by running on a completely new generated set of 10000 

ideals to produce the results in Table 3. 

5. Experimental Results 

Table 3 shows the final performance of agents which have 

been trained on several distributions with n = 3, d = 20. 

All agents use 22% to 37% fewer polynomial additions on 

average than the best benchmark strategies, and reduce the 

standard deviation in the number of polynomial additions by 

19% to 46%. The improvement on uniform distributions, 

which tend to produce ideals of higher average difficulty, is 

not as large as the improvement on weighted distributions. 
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Figure 5 gives a more detailed view of the distribution of 

polynomial additions per ideal performed by the trained 

agent. Figure 4 shows the rapid convergence during training. 

5.1. Interpretation 

We have identified several components of the agents strategy: 

(a) the agent is mimicking Degree, (b) the agent prefers pairs 

whose S-polynomials are monomials, (c) the agent prefers 

pairs whose S-polynomials are low degree. 

On 10000 sample runs of Buchberger’s algorithm using a 

trained agent on 3-20-10 weighted, the average probability 

that the agent selected a pair which could be chosen by 

Degree was 43.5%. If there was a pair in the list whose 

S-polynomial was a monomial, the agent picked such a pair 

31.7% of the time. The probability that the agent selected 

a pair whose S-polynomial had minimal degree (among 

S-polynomials), was 48.3%. 

It is notable that (b) and (c) are not standard selection heuris-

tics. When we hard-coded the strategy of selecting a pair 

with minimal degree S-polynomial, which we call TrueDe-

gree, the average number of additions (3-20-10 weighted, 

10000 samples) was 120.3, a 12% improvement over the 

Degree strategy. On the other hand, for the strategy which 

follows Degree but will first select any S-polynomial which 

is monomial, the average number of additions was 134.2, a 

1.2% improvement over Degree. While neither hard-coded 

strategy achieves the 37% improvement of the agent over 

Degree, it is notable that these insights from the model led to 

understandable strategies that beat our benchmark strategies 

in this domain. 

5.2. Variants of the Model 

We found that the model performance decreased when we 

made any of the following modifications: only allowed the 

network to see the lead monomials of each pair; removed the 

value function; or substituted the value function with a naive 

“pairs left” value function which assigned V (G,P ) = |P |. 
See Table 4. However, all of these trained models still 

outperform the best benchmark strategy, which is Degree. 

Table 4. Performance of variants of the model. Entries show mean 

[stddev] of polynomial additions and performance drop relative 

to the original model on samples of 10000 ideals from 3-20-10 

weighted distribution. Original model is 85.6 [27.3]. 

AGENT ADDITIONS DROP 

PAIRSLEFT VALUE FUNCTION 95.2 [32.7] 11.2% 
NO VALUE FUNCTION 103.2 [35.9] 20.6% 

LEAD MONOMIAL ONLY 90.0[29.4] 5.4% 

Figure 6. Testing a single agent on 3-d-s weighted distribution as 

d and s vary. Agent is trained on 3-20-10 weighted, indicated with 

an “X.” Numbers are the ratio of mean polynomial additions by 

the agent to that of the best benchmark strategy, with numbers 

less than 1 indicating better performance by the agent. The agent 

was tested on 1000 random ideals in each distribution, and the 

strategies were tested on 10000 for s ≤ 20 and 1000 for s > 20. 

Table 5. Agent performance outside of training distribution. Per-

formance is mean[stddev] on a sample of 10000 random ideals. 

3-20-10 DISTRIBUTION 

TEST 
WEIGHTED UNIFORM 

TRAIN 

WEIGHTED 85.6[27.3] 140.[45.7] 
UNIFORM 89.3[29.0] 141.[42.8] 

3-20-4 DISTRIBUTION 

TEST 
WEIGHTED UNIFORM 

TRAIN 

WEIGHTED 101.[44.9] 158.[67.9] 
UNIFORM 107.[42.6] 151.[56.4] 

5.3. Generalization across Distributions 

A major question in machine learning is the ability of a 

model to generalize outside of its training distribution. Ta-

ble 5 shows reasonable generalization between uniform

and weighted distributions. 

Figure 6 shows that a model trained on 3-20-10 weighted 

has similar performance at nearby values of d and s, as com-

pared to the performance of the best benchmark strategy. 

Agents can also be trained on a mix of distributions by ran-

domly selecting a training distribution at each epoch. Choos-

ing uniformly from 5 ≤ d ≤ 30 and 4 ≤ s ≤ 20 yields 
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agents with 1-5% worse performance at 3-20-10 weighted 

and 1-10% better performance away from it, though perfor-

mance does eventually degrade as in Figure 6. 

5.4. Future directions 

It would be interesting to extend these results to more vari-

ables and non-binomial ideals. In the interest of establishing 

a simple proof-of-concept, we have left a thorough investi-

gation of these questions for future research, but we have 

done some preliminary experiments. 

In the direction of increasing n, we trained and tested our 

model (with the same hyperparameters) on binomial ideals 

in five variables. The agents use on average 48% fewer 

polynomial additions than the best benchmark strategy in 

the 5-10-10 weighted distribution, 28% fewer in 5-5-10 

weighted, and 11% fewer in the 5-5-10 uniform distribution. 

We could not increase the degree further or perform a full 

hyperparameter search due to computational constraints. 

In the non-binomial setting, we tested our agent on a toy 

model for sparse polynomials. We sampled generators 

for our random ideals by drawing a binomial from the 

weighted distribution, then adding k monomial terms 

drawn from the same distribution, where k is sampled from 

a Poisson distribution with parameter λ. 

The fully trained agent from Figure 4 had mixed results 

when tested on this non-binomial distribution. The dis-

tribution for the agent’s performance is bimodal, with it 

outperforming all benchmarks on many ideals but behaving 

essentially randomly on others, see Figure 7 and Figure 8. 

As a result, the agent significantly underperformed the best 

benchmark on average, see Table 6, but still had the best 

median performance for λ = 0.1, 0.2. TrueDegree, the strat-

egy derived from the model in Section 5.1, outperforms the 

best benchmark in mean by 19% to 33% for all λ. 

Table 6. Mean polynomial additions of several strategies tested on 

samples of 10000 non-binomial ideals. Agent was trained on the 

3-20-10 weighted binomial distribution. Benchmark refers to the 

Normal strategy, the best performing benchmark in this case. 

λ AGENT TRUEDEGREE BENCHMARK 

0.1 4.17E+3 625. 872. 
0.3 2.16E+4 3138. 4693. 
0.5 4.96E+4 8436. 1.14E+4 

Finally, the value function used for training with GAE, one 

of the main contributors to our performance improvement, 

effectively squares the complexity by doing a full rollout 

at every step. Therefore, a more efficient modeled value 

function is crucial for scaling these results both to higher 

numbers of variables and to non-binomials. 

Figure 7. Agent performance on non-binomial ideals. The logged 

performance ratio is the base-10 log of agent polynomial additions 

to best benchmark strategy on each of a sample of 10000 ideals. 

Values less than 0 indicate better performance by the agent. 

Figure 8. Estimated distribution of base-10 log of polynomial ad-

ditions per ideal with λ = 0.5, compared to benchmark strategies. 

(10000 samples, computed using kernel density estimation) 

6. Conclusion 

We have introduced the Buchberger environment, a challeng-

ing reinforcement learning problem with important ramifica-

tions for the performance of computer algebra software. We 

have identified binomial ideals as an interesting domain for 

this problem that is tractable, maintains many of the prob-

lem’s interesting features, and can serve as a benchmark for 

future research. 

Standard reinforcement learning algorithms with simple 

models can develop strategies that improve over state-of-

the-art in this domain. This illustrates a direction in which 

modern developments in machine learning can improve the 

performance of critical algorithms in symbolic computation. 
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