
Learning Selection Strategies in Buchberger’s Algorithm

Dylan Peifer 1 Michael Stillman 1 Daniel Halpern-Leistner 1

Abstract for some polynomials a and b, then there can be no solution,

Studying the set of exact solutions of a system of

polynomial equations largely depends on a sin-

gle iterative algorithm, known as Buchberger’s

algorithm. Optimized versions of this algorithm

are crucial for many computer algebra systems

(e.g., Mathematica, Maple, Sage). We introduce a

new approach to Buchberger’s algorithm that uses

reinforcement learning agents to perform S-pair

selection, a key step in the algorithm. We then

study how the difficulty of the problem depends

on the choices of domain and distribution of poly-

nomials, about which little is known. Finally, we

train a policy model using proximal policy opti-

mization (PPO) to learn S-pair selection strategies

for random systems of binomial equations. In

certain domains, the trained model outperforms

state-of-the-art selection heuristics in total num-

ber of polynomial additions performed, which

provides a proof-of-concept that recent develop-

ments in machine learning have the potential to

improve performance of algorithms in symbolic

computation.

1. Introduction

Systems of multivariate polynomial equations, such as

{

3 20 = f1(x, y) = x + y
(1)20 = f2(x, y) = x y − 1

appear in many scientific and engineering fields, as well

as many subjects in mathematics. The most fundamental

question about such a system of equations is whether there

exists an exact solution. If one can express the constant

polynomial h(x, y) = 1 as a combination

h(x, y) = a(x, y)f1(x, y) + b(x, y)f2(x, y) (2)

1Department of Mathematics, Cornell University, Ithaca,
NY, USA. Correspondence to: Daniel Halpern-Leistner
<daniel.hl@cornell.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

because the right hand side vanishes at any solution of the

system, but the left hand side is always 1.

The converse also holds: the set of solutions with x and y in

C is empty if and only if there exists a linear combination (2)

for h = 1 (Hilbert, 1893). Thus the existence of solutions

to (1) can be reduced to the larger problem of determining

if a polynomial h lies in the ideal generated by these poly-

nomials, which is defined to be the set I = 〈f1, f2〉 of all

polynomials of the form (2).

The key to solving this problem is to find a Gröbner basis for

the system. This is another set of polynomials {g1, . . . , gk},
potentially much larger than the original set, which gen-

erate the same ideal I = 〈f1, f2〉 = 〈g1, . . . , gk〉, but for

which one can employ a version of the Euclidean algorithm

(discussed below) to determine if h ∈ I .

In fact, computing a Gröbner basis is the necessary first step

in algorithms that answer a huge number of questions about

the original system: eliminating variables, parametrizing

solutions, studying geometric features of the solution set,

etc. This has led to a wide array of scientific applications

of Gröbner bases, wherever polynomial systems appear, in-

cluding: computer vision (Duff et al., 2019), cryptography

(Faugère et al., 2010), biological networks and chemical

reaction networks (Arkun, 2019), robotics (Abłamowicz,

2010), statistics (Diaconis & Sturmfels, 1998; Sullivant,

2018), string theory (Gray, 2011), signal and image pro-

cessing (Lin et al., 2004), integer programming (Conti &

Traverso, 1991), coding theory (Sala et al., 2009), and

splines (Cox et al., 2005).

Buchberger’s algorithm (Buchberger, 1965; 2006) is the

basic iterative algorithm used to find a Gröbner basis. As it

can be costly in both time and space, this algorithm is the

computational bottleneck in many applications of Gröbner

bases. All direct algorithms for finding Gröbner bases (e.g.,

(Faug` ere, 2002; Roune & Stillman, 2012;ere, 1999; Faug`

Eder & Faugère, 2017)) are variations of Buchberger’s al-

gorithm, and highly optimized versions of the algorithm

are a key piece of computer algebra systems such as (Co-

CoA; Macaulay2; Magma; Maple; Mathematica; SageMath;

Singular).

There are several points in Buchberger’s algorithm which

Learning Selection Strategies in Buchberger’s Algorithm

depend on choices that do not affect the correctness of the

algorithm, but can have a significant impact on performance.

In this paper we focus on one such choice, called pair se-

lection. We show that the problem of pair selection fits

naturally into the framework of reinforcement learning, and

claim that the rapid advancement in applications of deep re-

inforcement learning over the past decade has the potential

to significantly improve the performance of the algorithm.

Our main contributions are the following:

1. Initiating the empirical study of Buchberger’s algo-

rithm from the perspective of machine learning.

2. Identifying a precise sub-domain of the problem, con-

sisting of systems of binomials, that is directly relevant

to applications, captures many of the challenging fea-

tures of the problem, and can serve as a useful bench-

mark for future research.

3. Training a simple neural network model for pair selec-

tion which outperforms state-of-the art selection strate-

gies by 20% to 40% in this domain, thereby demon-

strating significant potential for future work.

1.1. Related Work

Several authors have applied machine learning to perform

algorithm selection (Huang et al., 2019) or parameter selec-

tion (Xu et al., 2019) in problems related to Gröbner bases.

While we are not aware of any existing work applying ma-

chine learning to improve the performance of Buchberger’s

algorithm, many authors have used machine learning to

improve algorithm performance in other domains (Alvarez

et al., 2017; Khalil et al., 2016). Recently, there has been

progress using reinforcement learning to learn entirely new

heuristics and strategies inside algorithms (Bengio et al.,

2018), which is closest to our approach.

2. Gröbner Bases

In this section we give a focused introduction to Gröbner

basis concepts that will be needed for Section 3. For a more

general introduction to Gröbner bases and their uses, see

(Cox et al., 2015; Mora, 2005).

Let R = K[x1, . . . , xn] be the set of polynomials in vari-

ables x1, . . . , xn with coefficients in some field K. Let

F = {f1, . . . , fs} be a set of polynomials in R, and con-

sider I = 〈f1, . . . , fs〉 the ideal generated by F in R.

The definition of a Gröbner basis depends on a choice of

monomial order, a well-order relation > on the set of mono-
a a1 an amials {x = x · · ·x |a ∈ Z

n } such that x > xb im-1 n ≥0
a+cplies x > xb+c for any exponent vectors a, b, c. Given

∑

aa polynomial f = λax , we define the leading term a
aLT(f) = λax

a, where the leading monomial LM(f) = x

Algorithm 1 Multivariate Division Algorithm

1: Input: a polynomial h and a set of polynomials F =
{f1, . . . , fs}

2: Output: a remainder polynomial r = reduce(h, F)
3: r ← h
4: while LT(fi)|LT(r) for some i do

5: choose i such that LT(fi)|LT(r)

r ← r − LT(r)
6: fiLT(fi)

7: end while

is the largest monomial with respect to the ordering > that

has λa =6 0. An important example is the grevlex order,
awhere x > xb if the total degree of xa is greater than that

bof x , or they have the same degree, but the last non-zero

entry of a− b is negative. For example, in the grevlex order,
3 2we have x1 > x2 > x3, x2 > x1x2, and x2 > x1x3.

Given a choice of monomial order > and a set of poly-

nomials F = {f1, . . . , fs}, the multivariate division al-

gorithm takes any polynomial h and produces a remain-

der polynomial r, written r = reduce(h, F), such that

h − r ∈ 〈f1, . . . , fs〉 and LT(fi) does not divide LT(r)
for any i. In this case we say that h reduces to r. The divi-

sion algorithm is guaranteed to terminate, but the remainder

can depend on the choice in line 5 of Algorithm 1.

Definition 1. Given a monomial order, a Gröbner basis G
of a nonzero ideal I is a set of generators {g1, g2, . . . , gk}
of I such that any of the following equivalent conditions

hold:

(i)

(ii)

(iii)

reduce(h,G) = 0 ⇐⇒ h ∈ I

reduce(h,G) is unique for all h ∈ R

〈LT(g1),LT(g2), . . . ,LT(gk)〉 = 〈LT(I)〉

where 〈LT(I)〉 = 〈LT(f) | f ∈ I〉 is the ideal generated by

the leading terms of all polynomials in I .

As mentioned in Section 1, a consequence of (i) is that given

a Gr¨ 〉, the system of equations obner basis G for 〈f1, . . . , fs
f1 = 0, . . . , fs = 0 has no solution over C if and only if

reduce(1, G) = 0, that is, if G contains a non-zero constant

polynomial.

2.1. Buchberger’s Algorithm

Buchberger’s algorithm produces a Gröbner basis for the

ideal I = 〈f1, . . . , fs〉 from the initial set {f1, . . . , fs} by

repeatedly producing and reducing combinations of the basis

elements.

x x γDefinition 2. Let S(f, g) =
γ

f −
γ

g, where x =LT(f) LT(g)

lcm(LM(f),LM(g)) is the least common multiple of the

leading monomials of f and g. This is the S-polynomial of

f and g, where S stands for subtraction or syzygy.

3

Learning Selection Strategies in Buchberger’s Algorithm

Theorem 1 (Buchberger’s Criterion). Suppose the set of

polynomials G = {g1, g2, . . . , gk} generates the ideal I . If

reduce(S(gi, gj), G) = 0 for all pairs gi, gj then G is a

Gröbner basis of I .

Example 1. Fix > to be grevlex. For the generating set

F = {f1, f2} in Equation (1), r = reduce(S(f1, f2), F) =
y + x. By construction, the set G = {f1, f2, r} gen-

erates the same ideal as F and reduce(S(f1, f2), G) =
0, so we have eliminated this pair for the purposes of

verifying the criterion at the expense of two new pairs.

Luckily, in this example reduce(S(f1, r), G) = 0 and

reduce(S(f2, r), G) = obner basis for0, so G is a Gr¨

〈f1, f2〉 with respect to the grevlex order.

Generalizing this example, Theorem 1 naturally leads to

Algorithm 2, which depends on several implementation

choices: select in line 6, reduce in line 8, and update

in line 10. Algorithm 2 is guaranteed to terminate regardless

of these choices, but all three impact computational perfor-

mance. Most improvements to Buchberger’s algorithm have

come from improved heuristics in these steps.

The simplest implementation of update is

update(P,G, r) = P ∪ {(f, r) : f ∈ G},

but most implementations use special rules to eliminate

some pairs a priori, so as to minimize the number of S-

polynomial reductions performed. In fact, much recent

research on improving the performance of Buchberger’s

algorithm (Faug` ere, 2017) has fo-ere, 2002; Eder & Faug`

cused on mathematical methods to eliminate as many pairs

as possible. We use the standard pair elimination rules of

(Gebauer & Möller, 1988) in all results in this paper.

The main choice in reduce occurs in line 5 of Algorithm 1.

For our experiments, we always choose the smallest LT(fi)
which divides r. We also modify Algorithm 1 to fully tail

reduce, which leaves no term of r divisible by any LT(fi).

Algorithm 2 Buchberger’s Algorithm

1: Input: a set of polynomials {f1, . . . , fs}
2: Output: a Gröbner basis G of I = 〈f1, . . . , fs〉
3: G← {f1, . . . , fs}
4: P ← {(fi, fj) : 1 ≤ i < j ≤ s}
5: while |P | > 0 do

6: (fi, fj)← select(P)
7: P ← P \ {(fi, fj)}
8: r ← reduce(S(fi, fj), G)
9: if r =6 0 then

10: P ← update(P,G, r)
11: G← G ∪ {r}
12: end if

13: end while

Our focus is the implementation of select.

2.2. Selection Strategies

The selection strategy, which chooses the pair (fi, fj) to pro-

cess next, is critically important for efficiency, as poor pair

selection can add many unnecessary elements to the generat-

ing set before finding a Gröbner basis. While there is some

research on selection (Faugère, 2002; Roune & Stillman,

2012), most is in the context of signature Gröbner bases and

Faugere’s F5 algorithm. Other than these, most strategies to

date depend on relatively simple human-designed heuristics.

We use several well-known examples as benchmarks:

First: Among pairs with minimal j, select the one with

minimal i. In other words, treat the pair set P as a queue.

Degree: Select the pair with minimal total degree of

lcm(LM(fi),LM(fj)). If needed, break ties with First.

Normal: Select the pair with lcm(LM(fi),LM(fj)) min-

mal in the monomial order. If needed, break ties with First.
aIn a degree order (x > xb if the total degree of xa is greater

than that of xb), this is a refinement of Degree selection.

Sugar: Select the pair with minimal sugar degree, which

is the degree lcm(LM(fi),LM(fj)) would have had if all

input polynomials were homogenized. If needed, break ties

with Normal. Presented in (Giovini et al., 1991).

Random: Select an element of the pair set uniformly at

random.

Most implementations use Normal or Sugar selection.

2.3. Complexity

We will characterize the input to Buchberger’s algorithm in

terms of the number of variables (n), the maximal degree of

a generator (d), and the number of generators (s). One mea-

sure of complexity is the maximum degree deg (GB(I))max

of an element in the unique reduced minimal Gröbner basis

for I .

When the coefficient field has characteristic 0, there is an

upper bound deg (GB(I)) ≤ (2d)2
n+1

which is double max

exponential in the number of variables (Bayer & Mumford,

1993). There do exist ideals which exhibit double expo-

nential behavior (Mayr & Meyer, 1982; Bayer & Stillman,

1988; Koh, 1998): there is a sequence of ideals {Jn} where

Jn is generated by quadratic homogeneous binomials in

22n− 1 variables such that for any monomial order

22
n−1−1 ≤ deg (GB(Jn))max

In the grevlex monomial order, the theoretical upper bounds

on the complexity of Buchberger’s algorithm are much bet-

ter if the choice of generators is sufficiently generic. To

Learning Selection Strategies in Buchberger’s Algorithm

make this precise, for fixed n, d, s, the space of possible

inputs, i.e., the space V of coefficients for each of the s
generators, is finite dimensional. There is a subset X ⊂ V
of measure zero1 such that for any point outside X ,

deg (GB(I)) ≤ (n+ 1)(d− 1) + 1max

This implies that the size of GB(I) is less than or equal to

the number of monomials of degree less than or equal to

(n+ 1)(d− 1) + 1, which grows like O(((n+ 1)d− 1)n).

It is expected, but not known, that it is rare for the maximum

degree of a Gröbner basis element in the grevlex monomial

order to be double exponential in the number of variables.

Also, as early as the 1980’s, it was realized that for many

examples, the grevlex Gröbner basis was often much easier

to compute than Gröbner bases for other monomial orders.

For these reasons, the grevlex monomial order is a standard

choice in Gr¨ We use grevlex obner basis computations.

throughout this paper for all of our experiments.

3. The Reinforcement Learning Problem

We model Buchberger’s algorithm as a Markov Decision

Process (MDP) in which an agent interacts with an environ-

ment to perform pair selection in line 6 of Algorithm 2.

Each pass through the while loop in line 5 of Algorithm 2

is a time step, in which the agent takes an action and receives

a reward. At time step t, the agent’s state st = (Gt, Pt) con-

sists of the current generating set Gt and the current pair set

Pt. The agent must select a pair from the current set, so the

set of allowable actions is At = Pt. Once the agent selects

an action at ∈ At, the environment updates by remov-

ing the pair from the pair set, reducing the corresponding

S-polynomial, and updating the generator and pair set if

necessary.

After the environment updates, the agent receives a reward

rt which is −1 times the number of polynomial additions

performed in the reduction of pair at, including the subtrac-

tion that produced the S-polynomial. This is a proxy for

computational cost that is implementation independent, and

thus useful for benchmarking against other selection heuris-

tics. For simplicity, this proxy does not penalize monomial

division tests or computing pair eliminations.

Each trajectory τ = (s0, a0, r1, s1, . . . , rT) is a sequence of

steps in Buchberger’s algorithm, and ends when the pair set

is empty and the algorithm has terminated with a Gröbner

basis. The agent’s objective is to maximize the expected
∑T

γt−1return E[rt], where 0 ≤ γ ≤ 1 is a discountt=1

factor. With γ = 1, this is equivalent to minimizing the

expected number of polynomial additions taken to produce

a Gröbner basis.

1Technically, X is a closed algebraic subset. With coefficients
in R or C, this is measure zero in the usual sense.

This problem poses several interesting challenges from a

machine learning perspective:

1. The size of the action set changes with each time step

and can be very large.

2. There is a high variance in difficulty of problems of

the same size.

3. The state changes shape with each time step, and the

state space is unbounded in several dimensions: num-

ber of variables, degree and size of generators, number

of generators, and size of coefficients.

3.1. The Domain: Random Binomial Ideals

Formulating Buchberger’s algorithm as a reinforcement

learning problem forces one to consider the question of

what is a random polynomial. This is a significant departure

from the typical framing of the Gröbner basis problem.

We have seen that Buchberger’s algorithm performs much

better than its worst case on generic choices of input. On

the other hand, many of the ideals that arise in practice are

far from generic in this sense. As n, d, and s grow, Gröbner

basis computations tend to blow up in several ways simulta-

neously: (i) the number of polynomials in the generating set

grows, (ii) the number of terms in each polynomial grows,

and (iii) the size of the coefficients grows (e.g., rational

numbers with very large denominators).

The standard way to handle (iii) in evaluating Gröbner basis

algorithms is to work over the finite field Fp = Z/pZ for a

large prime number p. The choice Z/32003Z is common,

if seemingly arbitrary, and all of our experiments use this

coefficient field. Finite field coefficients are already of use

in many applications (Bettale et al., 2013). They also figure

prominently in many state of the art Buchberger implemen-

tations with rational coefficients: the idea is to start with a

generating set with integer coefficients, reduce mod p for

several large primes, compute the Gröbner bases for each

of the resulting systems over finite fields, then “lift” these

Gröbner bases back to rational polynomials (Arnold, 2003).

In order to address (ii), we restrict our training to systems

of polynomials with at most two terms. These are known as

binomials. We will also assume neither term is a constant.

If the input to Buchberger’s algorithm is a set of binomials

of this form, then all of the new generators added to the set

will also have this form. This side-steps the thorny issue of

how to represent a polynomial of arbitrary size to a neural

network.

Restricting our focus to binomial ideals has several other

benefits: We will show that using binomials typically avoids

the known “easy” case when the dimension of the ideal,

which is defined to be the dimension of the set of solu-

tions of the corresponding system of equations, is zero. We

Learning Selection Strategies in Buchberger’s Algorithm

have also seen that some of the worst known examples with

double exponential behavior are binomial systems. Finally,

binomials capture the qualitative fact that many of the poly-

nomials appearing in applications are sparse. In fact, several

applications of Buchberger’s algorithm, such as integer pro-

gramming, specifically call for binomial ideals (Cox et al.,

2005; Conti & Traverso, 1991).

We also remark that a model trained on binomials might

be useful in other domains as well. Just as most standard

selection strategies only consider the leading monomials of

each pair, one could use a model trained on binomials to

select pairs based on their leading binomials.

We performed experiments with two probability distribu-

tions on the set of binomials of degree ≤ d in s generators.

The first, weighted, selects the degree of each monomial

uniformly at random, then selects each uniformly at ran-

dom among monomials of the chosen degree. The second,

uniform, selects both monomials uniformly at random

from the set of monomials of degree ≤ d. The main dif-

ference between these two distributions is that weighted

tends to produce more binomials of low total degree. Both

distributions assign non-zero coefficients uniformly at ran-

dom.

For the remainder of the paper, we will use the format “n-d-

s (uniform/weighted)” to specify our distribution on s-tuples

of binomials of degree ≤ d in n variables.

3.2. Statistics

We will briefly discuss the statistical properties of the prob-

lem in the domain of binomial ideals to highlight its features

and challenges.

Difficulty increases with n: (Table 1) This is consistent

with the double exponential behavior in the worst-case anal-

ysis.

Degree and Normal outperform First and Sugar: (Table

1) This pattern is consistent across all distributions in the

range tested (n = 3, d ≤ 30, s ≤ 20). The fact that Sugar

under-performs in an average-case analysis might reflect

the fact that it was chosen because it improves performance

on known sequences of challenging benchmark ideals in

(Giovini et al., 1991).

Very high variance in difficulty: This is also illustrated in

Table 1, especially as the number of variables increases. Fig-

ure 1 provides a more detailed view of a single distribution,

demonstrating the large variance and long right tail that is

typical of Gröbner basis calculations. This poses a particular

challenge for the training of reinforcement learning models.

Dependence on s is subtle: For n = 3, there is is a spike in

difficulty at four generators, followed by a drop/leveling off,

and a slow increase after that (Figures 2 and 3). The spike is

Table 1. Number of polynomial additions for different selection

strategies on the same samples of 10000 ideals. Distributions are

n-5-10 weighted. Table entries show mean [stddev].

n FIRST DEGREE NORMAL SUGAR

2 36.4 [7.24] 32.3 [5.71] 32.0 [5.49] 32.4 [6.15]
3 52.8 [17.9] 42.2 [13.2] 42.4 [13.1] 44.2 [15.1]
4 86.3 [40.9] 63.8 [28.5] 66.5 [29.8] 70.0 [32.9]
5 151. [85.7] 109. [58.8] 117. [64.4] 120. [68.7]
6 280. [174.] 198. [118.] 221. [132.] 223. [143.]
7 527. [359.] 379. [240.] 435. [277.] 430. [296.]
8 1030 [759.] 760. [510.] 887. [588.] 863. [639.]

Figure 1. Histogram of polynomial additions in 5-5-10 weighted

following Degree selection over 10000 samples.

even more pronounced in n > 3 variables, where it occurs

instead at n + 1 generators. The leveling off is consistent

with the hypothesis that a low-degree generator, which is

more likely for larger s, makes the problem easier, but this is

eventually counteracted by the fact that increasing s always

increases the minimum number of polynomial additions

required. The fact that weighted is easier than uniform

across values of d and s also supports this hypothesis.

Difficulty increases relatively slowly with d: The growth

appears to be either linear or slightly sub-linear in d in the

range tested (Figures 2 and 3).

Zero dimensional ideals are rare: (Table 2) For n = 3,

d = 20, the hardest distribution is s = 4, in which case

.05% of the ideals were zero dimensional. This increased to

21.2% using the weighted distribution and increasing to

s = 10, which is still relatively rare. This also supports the

hypothesis that the appearance of a generator of low degree

makes the problem easier.

Learning Selection Strategies in Buchberger’s Algorithm

Figure 2. Average number of polynomial additions following De-

gree selection in n = 3 weighted. Each degree and generator point

is the mean over 10000 samples for s ≤ 20 and 1000 samples for

s > 20.

Table 2. Dimension of the binomial ideals (i.e., the dimension of

the solution set of the corresponding system of equations), in a

sample of 10000 (n = 3, d = 20).

WEIGHTED UNIFORM

dim s = 10 s = 4 s = 10 s = 4

0 2121 178 58 5
1 7657 6231 8146 2932
2 223 3592 1797 7064

4. Experimental Setup

We train a neural network model to perform pair selection

in Buchberger’s algorithm.

4.1. Network Structure

We represent a state St = (Gt, Pt) as a matrix whose rows

are obtained by concatenating the exponent vector of each

pair. For n variables and p pairs, this results in a matrix of

size p× 4n. The environment is now partially observed, as

the observation does not include the coefficients.

Example 2. Let n = 3, and consider the state given by
6 2 4 4 3G = {xy + 9y z , z + 13z, xy + 91xy2}, where the

terms of each binomial are shown in grevlex order, and

P = {(1, 2), (1, 3), (2, 3)}. Mapping each pair to a row

yields

 

1 6 0 0 2 4 0 0 4 0 0 1
 1 6 0 0 2 4 1 3 0 1 2 0
0 0 4 0 0 1 1 3 0 1 2 0

Our agent uses a policy network that maps each row to

a single preference score using a series of dense layers.

Figure 3. Average number of polynomial additions following De-

gree selection in n = 3 uniform. Each degree and generator point

is the mean over 10000 samples for s ≤ 20 and 1000 samples for

s > 20.

We implement these layers as 1D convolutions with 1× 1
kernel in order to compute the preference score for all pairs

simultaneously. The agent’s policy, which is a probability

distribution on the current pair set, is the softmax of these

preference scores. In preliminary experiments, network

depth did not appear to significantly affect performance, so

we settled on the following architecture:

1D conv 1D conv
relu linear softmax

p× 4n // p× 128 // p× 1 // p× 1

Due to its simplicity, it would in principle be easy to deploy

this model in a production implementation of Buchberger’s

algorithm. The preference scores produced by the network

could be used as sort keys for the pair set. Each pair would

only need to be processed once, and we expect the rela-

tively small matrix multiplies in this model to add minimal

overhead in a careful implementation. In fact, most of the

improvement was already achieved by a model with only

four hidden units (see supplement).

However, given that real time performance of Buchberger’s

algorithm is highly dependent on sophisticated implemen-

tation details, we exclusively focus on implementation in-

dependent metrics, and defer the testing of real time perfor-

mance improvements to future work.

4.2. Value Functions

A general challenge for policy gradient algorithms is the

large variance in the estimate of expected rewards. This is

exacerbated in our context by the large variance in difficulty

of computing a Gröbner basis of different ideals from the

Learning Selection Strategies in Buchberger’s Algorithm

Table 3. Agent performance versus benchmark strategies in 3 variables and degree 20. Each line is a unique agent trained on the given

distribution. Performance is mean[stddev] on 10000 new randomly sampled ideals from that distribution. Training times were 16 to 48

hours each on a c5n.xlarge instance through Amazon Web Services. Smaller numbers are better.

s DISTRIBUTION FIRST DEGREE NORMAL SUGAR RANDOM AGENT IMPROVEMENT

10 WEIGHTED 187.[73.1] 136.[50.9] 136.[51.2] 161.[66.9] 178.[68.3] 85.6[27.3] 37% [46%]
4 WEIGHTED 210.[101.] 160.[64.5] 160.[66.6] 185.[87.2] 203.[97.8] 101.[44.9] 37% [30%]

10 UNIFORM 352.[117.] 197.[55.7] 198.[57.1] 264.[88.5] 318.[103.] 141.[42.8] 28% [23%]
4 UNIFORM 317.[130.] 195.[70.0] 194.[70.0] 265.[107.] 303.[122.] 151.[56.4] 22% [19%]

Figure 4. Mean performance during each epoch of training on the

3-20-10 weighted distribution. Dashed lines indicate mean per-

formance of benchmark strategies on 10000 random ideals. Total

training time was 16 hours on a c5n.xlarge instance through Ama-

zon Web Services. Smaller numbers are better.

same distribution. We address this using Generalized Ad-

vantage Estimation (GAE) (Schulman et al., 2016), which

uses a value function to produce a lower-variance estima-

tor of expected returns while limiting the bias introduced.

Our value function V (G,P) is the number of polynomial

additions required to complete a full run of Buchberger’s

algorithm starting with the state (G,P), using the Degree

strategy. This is computationally expensive but significantly

improves performance.

4.3. Training Algorithm

Our agents are trained with proximal policy optimization

(PPO) (Schulman et al., 2017) using a custom implemen-

tation inspired by (Achiam, 2018). In each epoch we first

sample 100 episodes following the current policy. Next,

GAE with λ = 0.97 and γ = 0.99 is used to compute ad-

vantages, which are normalized over the epoch. Finally, we

perform at most 80 gradient updates on the clipped surrogate

PPO objective with ǫ = 0.2 using Adam optimization with

learning rate 0.0001. Early-stopping is performed when the

sampled KL-divergence from the last policy exceeds 0.01.

Figure 5. Estimated distribution of polynomial additions per ideal

in the 3-20-10 weighted distribution for the fully trained agent from

Figure 4, compared to benchmark strategies. Smaller numbers are

better. (10000 samples, computed using kernel density estimation)

4.4. Data Generation

There are no fixed train or test sets. Instead, the training and

testing data are generated online by a function that builds an

ideal at random from the distribution. The large size of the

distributions prevents any over-fitting to a particular subset

of ideals. For example, even ignoring coefficients, the total

number of ideals in 3-20-10 weighted is roughly 1055. The

agent trained in Figure 4 saw 150000 ideals from this set

generated at random during training. This agent was tested

by running on a completely new generated set of 10000

ideals to produce the results in Table 3.

5. Experimental Results

Table 3 shows the final performance of agents which have

been trained on several distributions with n = 3, d = 20.

All agents use 22% to 37% fewer polynomial additions on

average than the best benchmark strategies, and reduce the

standard deviation in the number of polynomial additions by

19% to 46%. The improvement on uniform distributions,

which tend to produce ideals of higher average difficulty, is

not as large as the improvement on weighted distributions.

Learning Selection Strategies in Buchberger’s Algorithm

Figure 5 gives a more detailed view of the distribution of

polynomial additions per ideal performed by the trained

agent. Figure 4 shows the rapid convergence during training.

5.1. Interpretation

We have identified several components of the agents strategy:

(a) the agent is mimicking Degree, (b) the agent prefers pairs

whose S-polynomials are monomials, (c) the agent prefers

pairs whose S-polynomials are low degree.

On 10000 sample runs of Buchberger’s algorithm using a

trained agent on 3-20-10 weighted, the average probability

that the agent selected a pair which could be chosen by

Degree was 43.5%. If there was a pair in the list whose

S-polynomial was a monomial, the agent picked such a pair

31.7% of the time. The probability that the agent selected

a pair whose S-polynomial had minimal degree (among

S-polynomials), was 48.3%.

It is notable that (b) and (c) are not standard selection heuris-

tics. When we hard-coded the strategy of selecting a pair

with minimal degree S-polynomial, which we call TrueDe-

gree, the average number of additions (3-20-10 weighted,

10000 samples) was 120.3, a 12% improvement over the

Degree strategy. On the other hand, for the strategy which

follows Degree but will first select any S-polynomial which

is monomial, the average number of additions was 134.2, a

1.2% improvement over Degree. While neither hard-coded

strategy achieves the 37% improvement of the agent over

Degree, it is notable that these insights from the model led to

understandable strategies that beat our benchmark strategies

in this domain.

5.2. Variants of the Model

We found that the model performance decreased when we

made any of the following modifications: only allowed the

network to see the lead monomials of each pair; removed the

value function; or substituted the value function with a naive

“pairs left” value function which assigned V (G,P) = |P |.
See Table 4. However, all of these trained models still

outperform the best benchmark strategy, which is Degree.

Table 4. Performance of variants of the model. Entries show mean

[stddev] of polynomial additions and performance drop relative

to the original model on samples of 10000 ideals from 3-20-10

weighted distribution. Original model is 85.6 [27.3].

AGENT ADDITIONS DROP

PAIRSLEFT VALUE FUNCTION 95.2 [32.7] 11.2%
NO VALUE FUNCTION 103.2 [35.9] 20.6%

LEAD MONOMIAL ONLY 90.0[29.4] 5.4%

Figure 6. Testing a single agent on 3-d-s weighted distribution as

d and s vary. Agent is trained on 3-20-10 weighted, indicated with

an “X.” Numbers are the ratio of mean polynomial additions by

the agent to that of the best benchmark strategy, with numbers

less than 1 indicating better performance by the agent. The agent

was tested on 1000 random ideals in each distribution, and the

strategies were tested on 10000 for s ≤ 20 and 1000 for s > 20.

Table 5. Agent performance outside of training distribution. Per-

formance is mean[stddev] on a sample of 10000 random ideals.

3-20-10 DISTRIBUTION

TEST
WEIGHTED UNIFORM

TRAIN

WEIGHTED 85.6[27.3] 140.[45.7]
UNIFORM 89.3[29.0] 141.[42.8]

3-20-4 DISTRIBUTION

TEST
WEIGHTED UNIFORM

TRAIN

WEIGHTED 101.[44.9] 158.[67.9]
UNIFORM 107.[42.6] 151.[56.4]

5.3. Generalization across Distributions

A major question in machine learning is the ability of a

model to generalize outside of its training distribution. Ta-

ble 5 shows reasonable generalization between uniform

and weighted distributions.

Figure 6 shows that a model trained on 3-20-10 weighted

has similar performance at nearby values of d and s, as com-

pared to the performance of the best benchmark strategy.

Agents can also be trained on a mix of distributions by ran-

domly selecting a training distribution at each epoch. Choos-

ing uniformly from 5 ≤ d ≤ 30 and 4 ≤ s ≤ 20 yields

Learning Selection Strategies in Buchberger’s Algorithm

agents with 1-5% worse performance at 3-20-10 weighted

and 1-10% better performance away from it, though perfor-

mance does eventually degrade as in Figure 6.

5.4. Future directions

It would be interesting to extend these results to more vari-

ables and non-binomial ideals. In the interest of establishing

a simple proof-of-concept, we have left a thorough investi-

gation of these questions for future research, but we have

done some preliminary experiments.

In the direction of increasing n, we trained and tested our

model (with the same hyperparameters) on binomial ideals

in five variables. The agents use on average 48% fewer

polynomial additions than the best benchmark strategy in

the 5-10-10 weighted distribution, 28% fewer in 5-5-10

weighted, and 11% fewer in the 5-5-10 uniform distribution.

We could not increase the degree further or perform a full

hyperparameter search due to computational constraints.

In the non-binomial setting, we tested our agent on a toy

model for sparse polynomials. We sampled generators

for our random ideals by drawing a binomial from the

weighted distribution, then adding k monomial terms

drawn from the same distribution, where k is sampled from

a Poisson distribution with parameter λ.

The fully trained agent from Figure 4 had mixed results

when tested on this non-binomial distribution. The dis-

tribution for the agent’s performance is bimodal, with it

outperforming all benchmarks on many ideals but behaving

essentially randomly on others, see Figure 7 and Figure 8.

As a result, the agent significantly underperformed the best

benchmark on average, see Table 6, but still had the best

median performance for λ = 0.1, 0.2. TrueDegree, the strat-

egy derived from the model in Section 5.1, outperforms the

best benchmark in mean by 19% to 33% for all λ.

Table 6. Mean polynomial additions of several strategies tested on

samples of 10000 non-binomial ideals. Agent was trained on the

3-20-10 weighted binomial distribution. Benchmark refers to the

Normal strategy, the best performing benchmark in this case.

λ AGENT TRUEDEGREE BENCHMARK

0.1 4.17E+3 625. 872.
0.3 2.16E+4 3138. 4693.
0.5 4.96E+4 8436. 1.14E+4

Finally, the value function used for training with GAE, one

of the main contributors to our performance improvement,

effectively squares the complexity by doing a full rollout

at every step. Therefore, a more efficient modeled value

function is crucial for scaling these results both to higher

numbers of variables and to non-binomials.

Figure 7. Agent performance on non-binomial ideals. The logged

performance ratio is the base-10 log of agent polynomial additions

to best benchmark strategy on each of a sample of 10000 ideals.

Values less than 0 indicate better performance by the agent.

Figure 8. Estimated distribution of base-10 log of polynomial ad-

ditions per ideal with λ = 0.5, compared to benchmark strategies.

(10000 samples, computed using kernel density estimation)

6. Conclusion

We have introduced the Buchberger environment, a challeng-

ing reinforcement learning problem with important ramifica-

tions for the performance of computer algebra software. We

have identified binomial ideals as an interesting domain for

this problem that is tractable, maintains many of the prob-

lem’s interesting features, and can serve as a benchmark for

future research.

Standard reinforcement learning algorithms with simple

models can develop strategies that improve over state-of-

the-art in this domain. This illustrates a direction in which

modern developments in machine learning can improve the

performance of critical algorithms in symbolic computation.

Learning Selection Strategies in Buchberger’s Algorithm

Acknowledgements

We thank the anonymous reviewers for their helpful feed-

back and corrections, and David Eisenbud for useful dis-

cussions. Dylan Peifer and Michael Stillman were partially

supported by NSF Grant No. DMS-1502294, and Daniel

Halpern-Leistner was partially supported by NSF Grant

No. DMS-1762669.

References

Abłamowicz, R. Some applications of Gröbner bases in

robotics and engineering. In Bayro-Corrochano, E. and

Scheuermann, G. (eds.), Geometric Algebra Comput-

ing: in Engineering and Computer Science, pp. 495–517.

Springer London, London, 2010.

Achiam, J. Spinning Up in Deep Reinforcement Learning.

2018. URL https://spinningup.openai.com.

Alvarez, A. M., Louveaux, Q., and Wehenkel, L. A ma-

chine learning-based approximation of strong branching.

INFORMS Journal on Computing, 29(1):185–195, 2017.

Arkun, Y. Detection of biological switches using the method

of Gröbner bases. BMC Bioinformatic, 20, 2019.

Arnold, E. A. Modular algorithms for computing Gröbner

bases. J. Symbolic Comput., 35(4):403–419, 2003.

Bayer, D. and Mumford, D. What can be computed in

algebraic geometry? In Computational algebraic geome-

try and commutative algebra (Cortona, 1991), Sympos.

Math., XXXIV, pp. 1–48. Cambridge Univ. Press, Cam-

bridge, 1993.

Bayer, D. and Stillman, M. On the complexity of computing

syzygies. J. Symbolic Comput., 6(2-3):135–147, 1988.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning

for combinatorial optimization: a methodological tour

d’horizon. CoRR, abs/1811.06128, 2018.

Bettale, L., Faugère, J.-C., and Perret, L. Cryptanalysis of

HFE, Multi-HFE and Variants for Odd and Even Charac-

teristic. Designs, Codes and Cryptography, 69(1):1 – 52,

2013.

Buchberger, B. Ein Algorithmus zum Auffinden der Basise-

lemente des Restklassenringes nach einem nulldimension-

alen Polynomideal. PhD thesis, University of Innsbruck,

1965.

Buchberger, B. An algorithm for finding the basis elements

of the residue class ring of a zero dimensional polyno-

mial ideal. J. Symbolic Comput., 41(3-4):475–511, 2006.

Translated from the 1965 German original by Michael P.

Abramson.

CoCoA. A system for doing computations in commutative

algebra, Abbott, J., Bigatti, A. M., and Robbiano, L.,

2019. URL http://cocoa.dima.unige.it.

Conti, P. and Traverso, C. Buchberger algorithm and integer

programming. In International Symposium on Applied

Algebra, Algebraic Algorithms, and Error-Correcting

Codes, pp. 130–139. Springer, 1991.

Cox, D. A., Little, J., and O’Shea, D. Using algebraic

geometry. Graduate Texts in Mathematics. Springer, New

York, second edition, 2005.

Cox, D. A., Little, J., and O’Shea, D. Ideals, varieties,

and algorithms. Undergraduate Texts in Mathematics.

Springer, Cham, fourth edition, 2015.

Diaconis, P. and Sturmfels, B. Algebraic algorithms for

sampling from conditional distributions. Ann. Statist., 26

(1):363–397, 1998.

Duff, T., Kohn, K., Leykin, A., and Pajdla, T. PLMP - point-

line minimal problems in complete multi-view visibility.

CoRR, abs/1903.10008, 2019.

Eder, C. and Faugère, J.-C. A survey on signature-based

algorithms for computing Gröbner bases. J. Symbolic

Comput., 80(3):719–784, 2017.

Faug` A new efficient algorithm for computing ere, J.-C.

Gr¨ J. Pure Appl. Algebra, 139(1-3):obner bases (F4).
61–88, 1999.

Faug` A new efficient algorithm for computing ere, J.-C.

Gr¨ In Pro-obner bases without reduction to zero (F5).
ceedings of the 2002 International Symposium on Sym-

bolic and Algebraic Computation, pp. 75–83. ACM, New

York, 2002.

Faugère, J.-C., Safey El Din, M., and Spaenlehauer, P.-J.

Computing loci of rank defects of linear matrices using

Gröbner bases and applications to cryptology. In Proceed-

ings of the 2010 International Symposium on Symbolic

and Algebraic Computation, pp. 257–264. ACM, New

York, 2010.

Gebauer, R. and Möller, H. M. On an installation of Buch-

berger’s algorithm. J. Symbolic Comput., 6(2-3):275–286,

1988.

Giovini, A., Mora, T., Niesi, G., Robbiano, L., and Traverso,

C. “One sugar cube, please” or selection strategies in the

Buchberger algorithm. In Proceedings of the 1991 Inter-

national Symposium on Symbolic and Algebraic Compu-

tation, pp. 49–54. ACM, New York, 1991.

Gray, J. A simple introduction to Gröbner basis methods in

string phenomenology. Adv. High Energy Phys., 2011:12,

2011.

Learning Selection Strategies in Buchberger’s Algorithm

¨

42(3):313–373, 1893.

Hilbert, D. Uber die vollen Invariantensysteme. Math. Ann.,

Huang, Z., England, M., Wilson, D. J., Bridge, J., Daven-

port, J. H., and Paulson, L. C. Using machine learning to

improve cylindrical algebraic decomposition. Mathemat-

ics in Computer Science, 13(4):461–488, 2019.

Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., and Dilk-

ina, B. Learning to branch in mixed integer programming.

In Proceedings of the Thirtieth AAAI Conference on Arti-

ficial Intelligence, pp. 724–731. AAAI Press, 2016.

Koh, J. Ideals generated by quadrics exhibiting double

exponential degrees. J. Algebra, 200(1):225–245, 1998.

Lin, Z., Xu, L., and Wu, Q. Applications of Gröbner bases

to signal and image processing: a survey. Linear Algebra

Appl., 391:169–202, 2004.

Macaulay2. A software system for research in algebraic

geometry, Grayson, D. and Stillman, M., 2019. URL

http://www.math.uiuc.edu/Macaulay2/.

Magma. Algebra system, Bosma, W., Cannon, J. and Play-

oust, C., 2019. URL http://magma.maths.usyd.

edu.au.

Maple. Maplesoft, 2019. URL https://maplesoft.

com.

Mathematica. Wolfram, S., 2019. URL https://www.

wolfram.com/mathematica.

Mayr, E. W. and Meyer, A. R. The complexity of the word

problems for commutative semigroups and polynomial

ideals. Adv. in Math., 46(3):305–329, 1982.

Mora, T. Solving polynomial equation systems. II, vol-

ume 99 of Encyclopedia of Mathematics and its Applica-

tions. Cambridge University Press, Cambridge, 2005.

Roune, B. H. and Stillman, M. Practical Gröbner basis

computation. In Proceedings of the 2012 International

Symposium on Symbolic and Algebraic Computation, pp.

203–210. ACM, New York, 2012.

SageMath. The Sage Mathematics Software System, 2019.

URL https://www.sagemath.org.

Sala, M., Mora, T., Perret, L., Sakata, S., and Traverso,

C. (eds.). Gröbner bases, coding, and cryptography.

Springer-Verlag, Berlin, 2009.

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and

Abbeel, P. High-dimensional continuous control using

generalized advantage estimation. In Proceeding of the

4th International Conference on Learning Representa-

tions (ICLR 2016), 2016.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and

Klimov, O. Proximal policy optimization algorithms.

CoRR, abs/1707.06347, 2017.

Singular. A computer algebra system for polynomial

computations, Decker, W., Greuel, G.M., Pfister, G.,

and Schonemann,¨ H., 2019. URL http://www.

singular.uni-kl.de.

Sullivant, S. Algebraic statistics. Graduate Studies in Math-

ematics. American Mathematical Society, Providence, RI,

2018.

Xu, W., Hu, L., Tsakiris, M. C., and Kneip, L. Online

stability improvement of Gröbner basis solvers using deep

learning. 2019 International Conference on 3D Vision

(3DV), pp. 544–552, 2019.

