Learning Selection Strategies in Buchberger’s Algorithm

Dylan Peifer ! Michael Stillman' Daniel Halpern-Leistner !

Abstract

Studying the set of exact solutions of a system of
polynomial equations largely depends on a sin-
gle iterative algorithm, known as Buchberger’s
algorithm. Optimized versions of this algorithm
are crucial for many computer algebra systems
(e.g., Mathematica, Maple, Sage). We introduce a
new approach to Buchberger’s algorithm that uses
reinforcement learning agents to perform S-pair
selection, a key step in the algorithm. We then
study how the difficulty of the problem depends
on the choices of domain and distribution of poly-
nomials, about which little is known. Finally, we
train a policy model using proximal policy opti-
mization (PPO) to learn S-pair selection strategies
for random systems of binomial equations. In
certain domains, the trained model outperforms
state-of-the-art selection heuristics in total num-
ber of polynomial additions performed, which
provides a proof-of-concept that recent develop-
ments in machine learning have the potential to
improve performance of algorithms in symbolic
computation.

1. Introduction

Systems of multivariate polynomial equations, such as

{ 0= fi(z,y) =2+
0= folz,y) =a?y—1

appear in many scientific and engineering fields, as well
as many subjects in mathematics. The most fundamental
question about such a system of equations is whether there
exists an exact solution. If one can express the constant
polynomial h(z,y) = 1 as a combination

)

h(l’,y) :a(:c,y)fl(x,y)+b(w7y)f2(x,y) (2)

'"Department of Mathematics, Cornell University, Ithaca,
NY, USA. Correspondence to: Daniel Halpern-Leistner
<daniel.hl@cornell.edu>.

Proceedings of the 37" International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

for some polynomials a and b, then there can be no solution,
because the right hand side vanishes at any solution of the
system, but the left hand side is always 1.

The converse also holds: the set of solutions with and y in
C is empty if and only if there exists a linear combination (2)
for h = 1 (Hilbert, 1893). Thus the existence of solutions
to (1) can be reduced to the larger problem of determining
if a polynomial h lies in the ideal generated by these poly-
nomials, which is defined to be the set I = (fi, fo) of all
polynomials of the form (2).

The key to solving this problem is to find a Grobner basis for
the system. This is another set of polynomials {g1, ..., gx},
potentially much larger than the original set, which gen-
erate the same ideal I = (f1, f2) = (g1,...,gx), but for
which one can employ a version of the Euclidean algorithm
(discussed below) to determine if h € 1.

In fact, computing a Grobner basis is the necessary first step
in algorithms that answer a huge number of questions about
the original system: eliminating variables, parametrizing
solutions, studying geometric features of the solution set,
etc. This has led to a wide array of scientific applications
of Grobner bases, wherever polynomial systems appear, in-
cluding: computer vision (Duff et al., 2019), cryptography
(Faugere et al., 2010), biological networks and chemical
reaction networks (Arkun, 2019), robotics (Abtamowicz,
2010), statistics (Diaconis & Sturmfels, 1998; Sullivant,
2018), string theory (Gray, 2011), signal and image pro-
cessing (Lin et al., 2004), integer programming (Conti &
Traverso, 1991), coding theory (Sala et al., 2009), and
splines (Cox et al., 2005).

Buchberger’s algorithm (Buchberger, 1965; 2006) is the
basic iterative algorithm used to find a Grobner basis. As it
can be costly in both time and space, this algorithm is the
computational bottleneck in many applications of Grobner
bases. All direct algorithms for finding Grébner bases (e.g.,
(Faugere, 1999; Faugere, 2002; Roune & Stillman, 2012;
Eder & Faugere, 2017)) are variations of Buchberger’s al-
gorithm, and highly optimized versions of the algorithm
are a key piece of computer algebra systems such as (Co-
CoA; Macaulay2; Magma; Maple; Mathematica; SageMath;
Singular).

There are several points in Buchberger’s algorithm which

Learning Selection Strategies in Buchberger’s Algorithm

depend on choices that do not affect the correctness of the
algorithm, but can have a significant impact on performance.
In this paper we focus on one such choice, called pair se-
lection. We show that the problem of pair selection fits
naturally into the framework of reinforcement learning, and
claim that the rapid advancement in applications of deep re-
inforcement learning over the past decade has the potential
to significantly improve the performance of the algorithm.

Our main contributions are the following:

1. Initiating the empirical study of Buchberger’s algo-
rithm from the perspective of machine learning.

2. Identifying a precise sub-domain of the problem, con-
sisting of systems of binomials, that is directly relevant
to applications, captures many of the challenging fea-
tures of the problem, and can serve as a useful bench-
mark for future research.

3. Training a simple neural network model for pair selec-
tion which outperforms state-of-the art selection strate-
gies by 20% to 40% in this domain, thereby demon-
strating significant potential for future work.

1.1. Related Work

Several authors have applied machine learning to perform
algorithm selection (Huang et al., 2019) or parameter selec-
tion (Xu et al., 2019) in problems related to Grobner bases.
While we are not aware of any existing work applying ma-
chine learning to improve the performance of Buchberger’s
algorithm, many authors have used machine learning to
improve algorithm performance in other domains (Alvarez
et al., 2017; Khalil et al., 2016). Recently, there has been
progress using reinforcement learning to learn entirely new
heuristics and strategies inside algorithms (Bengio et al.,
2018), which is closest to our approach.

2. Grobner Bases

In this section we give a focused introduction to Grobner
basis concepts that will be needed for Section 3. For a more
general introduction to Grobner bases and their uses, see
(Cox et al., 2015; Mora, 2005).

Let R = K|[z1,...,x,] be the set of polynomials in vari-
ables x1,...,x, with coefficients in some field K. Let
F = {fi1,..., fs} be a set of polynomials in R, and con-
sider I = (fy,..., fs) the ideal generated by F'in R.

The definition of a Grobner basis depends on a choice of
monomial order, a well-order relation > on the set of mono-
mials {z% = z{* --- 28" |a € Z2,} such that 2° > 2" im-
plies z91¢ > xb*+¢ for any exponent vectors a, b, c. Given
a polynomial f =)" A,z% we define the leading term
LT(f) = A\ax®, where the leading monomial LM(f) = z°

Algorithm 1 Multivariate Division Algorithm

1: Input: a polynomial % and a set of polynomials ' =
{fi,.. [}
Output: a remainder polynomial » = reduce(h, F')
r<h
while LT(f;)| LT (r) for some ¢ do

choose i such that LT(f;)| LT(r)

LT (r)

T o fi

end while

A A S

is the largest monomial with respect to the ordering > that
has A\, # 0. An important example is the greviex order,
where ¢ > z if the total degree of ¢ is greater than that
of 2°, or they have the same degree, but the last non-zero
entry of a — b is negative. For example, in the grevlex order,
we have 1 > 29 > w3, x% > x129, and x% > xr1x3.

Given a choice of monomial order > and a set of poly-
nomials ' = {f1,..., fs}, the multivariate division al-
gorithm takes any polynomial i and produces a remain-
der polynomial r, written » = reduce(h, F), such that
h—r € (fi,...,fs) and LT(f;) does not divide LT(r)
for any :. In this case we say that h reduces to r. The divi-
sion algorithm is guaranteed to terminate, but the remainder
can depend on the choice in line 5 of Algorithm 1.

Definition 1. Given a monomial order, a Grobner basis G
of a nonzero ideal 1 is a set of generators {g1, 92, ..., gk}
of I such that any of the following equivalent conditions
hold:

(i) reduce(h,G)=0 < hel
h,G

(
(ii) reduce(h, @) is unique for all h € R
(iii) (LT(g1),LT(g2), ..., LT(gx)) = (LT(1))

where (LT (1)) = (LT(f) | f € I) is the ideal generated by
the leading terms of all polynomials in I.

As mentioned in Section 1, a consequence of (%) is that given
a Grobner basis G for (fy,. .., fs), the system of equations
fi=0,.... fs = 0 has no solution over C if and only if
reduce(1, G) = 0, that is, if G contains a non-zero constant
polynomial.

2.1. Buchberger’s Algorithm

Buchberger’s algorithm produces a Grobner basis for the
ideal I = (f1,..., fs) from the initial set { f1,..., fs} by
repeatedly producing and reducing combinations of the basis
elements.

Definition 2. Ler S(f,g) = #Zf)f — #zmg, where ©7 =
lem(LM(f),LM(g)) is the least common multiple of the

leading monomials of f and g. This is the S-polynomial of
f and g, where S stands for subtraction or syzygy.

Learning Selection Strategies in Buchberger’s Algorithm

Theorem 1 (Buchberger’s Criterion). Suppose the set of
polynomials G = {g1, gz, ..., gr} generates the ideal I. If
reduce(S(gi,95), G) = 0 for all pairs g;, g; then G is a
Grobner basis of 1.

Example 1. Fix > to be grevilex. For the generating set
F = {fi1, fo} in Equation (1), r = reduce(S(f1, f2), F) =
y3 + x. By construction, the set G = {f1, fo,r} gen-
erates the same ideal as F and reduce(S(f1, f2),G) =
0, so we have eliminated this pair for the purposes of
verifying the criterion at the expense of two new pairs.
Luckily, in this example reduce(S(fi,r),G) = 0 and
reduce(S(f2,7),G) = 0, so G is a Grébner basis for
(f1, f2) with respect to the grevlex order.

Generalizing this example, Theorem 1 naturally leads to
Algorithm 2, which depends on several implementation
choices: select inline 6, reduce inline 8, and update
in line 10. Algorithm 2 is guaranteed to terminate regardless
of these choices, but all three impact computational perfor-
mance. Most improvements to Buchberger’s algorithm have
come from improved heuristics in these steps.

The simplest implementation of update is
update(P,G,r) = PU{(f,r): [€ G},

but most implementations use special rules to eliminate
some pairs a priori, so as to minimize the number of S-
polynomial reductions performed. In fact, much recent
research on improving the performance of Buchberger’s
algorithm (Faugere, 2002; Eder & Faugere, 2017) has fo-
cused on mathematical methods to eliminate as many pairs
as possible. We use the standard pair elimination rules of
(Gebauer & Mdller, 1988) in all results in this paper.

The main choice in reduce occurs in line 5 of Algorithm 1.
For our experiments, we always choose the smallest LT (f;)
which divides r. We also modify Algorithm 1 to fully fail
reduce, which leaves no term of r divisible by any LT(f;).

Algorithm 2 Buchberger’s Algorithm

Input: a set of polynomials { f1,..., fs}
Output: a Grobner basis G of I = (f1,..., fs)
G<—{f17"'7f8}
Pe{(fif)il<i<j<s)
while |P| > 0 do
(fi, [j) < select(P)
PP 1))
r < reduce(S(fi, f;),G)
if r # 0 then
P + update(P,G,r)
G+ GU{r}
end if
: end while

_ =
e A R A AR AN R

—_ =
we

Our focus is the implementation of select.

2.2. Selection Strategies

The selection strategy, which chooses the pair (f;, f;) to pro-
cess next, is critically important for efficiency, as poor pair
selection can add many unnecessary elements to the generat-
ing set before finding a Grobner basis. While there is some
research on selection (Faugere, 2002; Roune & Stillman,
2012), most is in the context of signature Grobner bases and
Faugere’s F5 algorithm. Other than these, most strategies to
date depend on relatively simple human-designed heuristics.
We use several well-known examples as benchmarks:

First: Among pairs with minimal j, select the one with
minimal ¢. In other words, treat the pair set P as a queue.

Degree: Select the pair with minimal total degree of
lem(LM(f;), LM(f;)). If needed, break ties with First.

Normal: Select the pair with lem(LM(f;), LM(f;)) min-
mal in the monomial order. If needed, break ties with First.
In a degree order (z® > x if the total degree of ¢ is greater
than that of x?), this is a refinement of Degree selection.

Sugar: Select the pair with minimal sugar degree, which
is the degree lem(LM(f;), LM(f;)) would have had if all
input polynomials were homogenized. If needed, break ties
with Normal. Presented in (Giovini et al., 1991).

Random: Select an element of the pair set uniformly at
random.

Most implementations use Normal or Sugar selection.

2.3. Complexity

We will characterize the input to Buchberger’s algorithm in
terms of the number of variables (n), the maximal degree of
a generator (d), and the number of generators (s). One mea-
sure of complexity is the maximum degree deg,,,...(GB(I))
of an element in the unique reduced minimal Grobner basis
for I.

When the coefficient field has characteristic 0, there is an
upper bound deg,,,. (GB(I)) < (2d)2""" which is double
exponential in the number of variables (Bayer & Mumford,
1993). There do exist ideals which exhibit double expo-
nential behavior (Mayr & Meyer, 1982; Bayer & Stillman,
1988; Koh, 1998): there is a sequence of ideals {.J,, } where
J, 1s generated by quadratic homogeneous binomials in
22n — 1 variables such that for any monomial order

22" 71 < deg, o (GB(J,))

In the grevlex monomial order, the theoretical upper bounds
on the complexity of Buchberger’s algorithm are much bet-
ter if the choice of generators is sufficiently generic. To

Learning Selection Strategies in Buchberger’s Algorithm

make this precise, for fixed n, d, s, the space of possible
inputs, i.e., the space V' of coefficients for each of the s
generators, is finite dimensional. There is a subset X C V
of measure zero' such that for any point outside X,

degnax(GB(I)) < (n+1)(d—1)+1

This implies that the size of GB(I) is less than or equal to
the number of monomials of degree less than or equal to
(n+1)(d — 1) + 1, which grows like O(((n + 1)d — 1)™).

It is expected, but not known, that it is rare for the maximum
degree of a Grobner basis element in the grevlex monomial
order to be double exponential in the number of variables.
Also, as early as the 1980’s, it was realized that for many
examples, the grevlex Grobner basis was often much easier
to compute than Grobner bases for other monomial orders.
For these reasons, the grevlex monomial order is a standard
choice in Grobner basis computations. We use grevlex
throughout this paper for all of our experiments.

3. The Reinforcement Learning Problem

We model Buchberger’s algorithm as a Markov Decision
Process (MDP) in which an agent interacts with an environ-
ment to perform pair selection in line 6 of Algorithm 2.

Each pass through the while loop in line 5 of Algorithm 2
is a time step, in which the agent takes an action and receives
areward. At time step ¢, the agent’s state s, = (G, P;) con-
sists of the current generating set G; and the current pair set
P,. The agent must select a pair from the current set, so the
set of allowable actions is A; = P;. Once the agent selects
an action a; € A, the environment updates by remov-
ing the pair from the pair set, reducing the corresponding
S-polynomial, and updating the generator and pair set if
necessary.

After the environment updates, the agent receives a reward
r¢ which is —1 times the number of polynomial additions
performed in the reduction of pair a;, including the subtrac-
tion that produced the S-polynomial. This is a proxy for
computational cost that is implementation independent, and
thus useful for benchmarking against other selection heuris-
tics. For simplicity, this proxy does not penalize monomial
division tests or computing pair eliminations.

Each trajectory 7 = (8¢, ap, 71, S1, - . . , 1) is a sequence of
steps in Buchberger’s algorithm, and ends when the pair set
is empty and the algorithm has terminated with a Grobner
basis. The a%gent’s objective is to maximize the expected
return E[>°,_, vt~ 1r], where 0 < v < 1 is a discount
factor. With v = 1, this is equivalent to minimizing the
expected number of polynomial additions taken to produce
a Grobner basis.

!Technically, X is a closed algebraic subset. With coefficients
in R or C, this is measure zero in the usual sense.

This problem poses several interesting challenges from a
machine learning perspective:

1. The size of the action set changes with each time step
and can be very large.

2. There is a high variance in difficulty of problems of
the same size.

3. The state changes shape with each time step, and the
state space is unbounded in several dimensions: num-
ber of variables, degree and size of generators, number
of generators, and size of coefficients.

3.1. The Domain: Random Binomial Ideals

Formulating Buchberger’s algorithm as a reinforcement
learning problem forces one to consider the question of
what is a random polynomial. This is a significant departure
from the typical framing of the Grobner basis problem.

We have seen that Buchberger’s algorithm performs much
better than its worst case on generic choices of input. On
the other hand, many of the ideals that arise in practice are
far from generic in this sense. As n, d, and s grow, Grobner
basis computations tend to blow up in several ways simulta-
neously: (i) the number of polynomials in the generating set
grows, (ii) the number of terms in each polynomial grows,
and (iii) the size of the coefficients grows (e.g., rational
numbers with very large denominators).

The standard way to handle (iii) in evaluating Grobner basis
algorithms is to work over the finite field F,, = Z/pZ for a
large prime number p. The choice Z/32003Z is common,
if seemingly arbitrary, and all of our experiments use this
coefficient field. Finite field coefficients are already of use
in many applications (Bettale et al., 2013). They also figure
prominently in many state of the art Buchberger implemen-
tations with rational coefficients: the idea is to start with a
generating set with integer coefficients, reduce mod p for
several large primes, compute the Grobner bases for each
of the resulting systems over finite fields, then “lift” these
Grobner bases back to rational polynomials (Arnold, 2003).

In order to address (ii), we restrict our training to systems
of polynomials with at most two terms. These are known as
binomials. We will also assume neither term is a constant.
If the input to Buchberger’s algorithm is a set of binomials
of this form, then all of the new generators added to the set
will also have this form. This side-steps the thorny issue of
how to represent a polynomial of arbitrary size to a neural
network.

Restricting our focus to binomial ideals has several other
benefits: We will show that using binomials typically avoids
the known “easy” case when the dimension of the ideal,
which is defined to be the dimension of the set of solu-
tions of the corresponding system of equations, is zero. We

Learning Selection Strategies in Buchberger’s Algorithm

have also seen that some of the worst known examples with
double exponential behavior are binomial systems. Finally,
binomials capture the qualitative fact that many of the poly-
nomials appearing in applications are sparse. In fact, several
applications of Buchberger’s algorithm, such as integer pro-
gramming, specifically call for binomial ideals (Cox et al.,
2005; Conti & Traverso, 1991).

We also remark that a model trained on binomials might
be useful in other domains as well. Just as most standard
selection strategies only consider the leading monomials of
each pair, one could use a model trained on binomials to
select pairs based on their leading binomials.

We performed experiments with two probability distribu-
tions on the set of binomials of degree < d in s generators.
The first, weighted, selects the degree of each monomial
uniformly at random, then selects each uniformly at ran-
dom among monomials of the chosen degree. The second,
uniform, selects both monomials uniformly at random
from the set of monomials of degree < d. The main dif-
ference between these two distributions is that weighted
tends to produce more binomials of low total degree. Both
distributions assign non-zero coefficients uniformly at ran-
dom.

For the remainder of the paper, we will use the format “n-d-
s (uniform/weighted)” to specify our distribution on s-tuples
of binomials of degree < d in n variables.

3.2. Statistics

We will briefly discuss the statistical properties of the prob-
lem in the domain of binomial ideals to highlight its features
and challenges.

Difficulty increases with n: (Table 1) This is consistent
with the double exponential behavior in the worst-case anal-
ysis.

Degree and Normal outperform First and Sugar: (Table
1) This pattern is consistent across all distributions in the
range tested (n = 3, d < 30, s < 20). The fact that Sugar
under-performs in an average-case analysis might reflect
the fact that it was chosen because it improves performance
on known sequences of challenging benchmark ideals in
(Giovini et al., 1991).

Very high variance in difficulty: This is also illustrated in
Table 1, especially as the number of variables increases. Fig-
ure 1 provides a more detailed view of a single distribution,
demonstrating the large variance and long right tail that is
typical of Grobner basis calculations. This poses a particular
challenge for the training of reinforcement learning models.

Dependence on s is subtle: For n = 3, there is is a spike in
difficulty at four generators, followed by a drop/leveling off,
and a slow increase after that (Figures 2 and 3). The spike is

Table 1. Number of polynomial additions for different selection
strategies on the same samples of 10000 ideals. Distributions are
n-5-10 weighted. Table entries show mean [stddev].

n ‘ FIRST DEGREE NORMAL SUGAR
2| 36.4[7.24] 32.3[5.71] 32.0[5.49] 32.41[6.15]
3| 52.8[17.9] 42.2[13.2] 42.4[13.1] 44.2[15.1]
4| 86.3[40.9] 63.8[28.5] 66.5[29.8] 70.0[32.9]
S| 151.[85.7] 109.[58.8] 117.[64.4] 120.[68.7]
6 | 280.[174.] 198.[118.] 221.[132.] 223.[143.]
7| 527.[359.] 379.[240.] 435.[277.] 430.[296.]
8| 1030[759.] 760.[510.] 887.[588.] 863.[639.]
700
600
500
E
3 400
o
300
200
100
0
0 100 200 300 400 500

polyomial additions

Figure 1. Histogram of polynomial additions in 5-5-10 weighted
following Degree selection over 10000 samples.

even more pronounced in n > 3 variables, where it occurs
instead at n 4 1 generators. The leveling off is consistent
with the hypothesis that a low-degree generator, which is
more likely for larger s, makes the problem easier, but this is
eventually counteracted by the fact that increasing s always
increases the minimum number of polynomial additions
required. The fact that weighted is easier than uniform
across values of d and s also supports this hypothesis.

Difficulty increases relatively slowly with d: The growth
appears to be either linear or slightly sub-linear in d in the
range tested (Figures 2 and 3).

Zero dimensional ideals are rare: (Table 2) For n = 3,
d = 20, the hardest distribution is s = 4, in which case
.05% of the ideals were zero dimensional. This increased to
21.2% using the weighted distribution and increasing to
s = 10, which is still relatively rare. This also supports the
hypothesis that the appearance of a generator of low degree
makes the problem easier.

Learning Selection Strategies in Buchberger’s Algorithm

400
degree
350 S 30
300 %
...... 20

250

polynomial additions
N
o
o

2 7 12 17 22 27 32 37 42 47
generators

Figure 2. Average number of polynomial additions following De-
gree selection in n = 3 weighted. Each degree and generator point
is the mean over 10000 samples for s < 20 and 1000 samples for
s > 20.

Table 2. Dimension of the binomial ideals (i.e., the dimension of
the solution set of the corresponding system of equations), in a
sample of 10000 (n = 3, d = 20).

WEIGHTED UNIFORM

dim | s=10 s=4 s=10 s=4
0| 2121 178 58 5

1| 7657 6231 8146 2932

2 223 3592 1797 7064

4. Experimental Setup

We train a neural network model to perform pair selection
in Buchberger’s algorithm.

4.1. Network Structure

We represent a state S; = (G4, P;) as a matrix whose rows
are obtained by concatenating the exponent vector of each
pair. For n variables and p pairs, this results in a matrix of
size p x 4n. The environment is now partially observed, as
the observation does not include the coefficients.

Example 2. Let n = 3, and consider the state given by
G = {xy® + 9?24, 2* + 132, 29 + 91wy?}, where the
terms of each binomial are shown in grevlex order, and
P ={(1,2),(1,3),(2,3)}. Mapping each pair to a row
yields

O~ =
S O O
= O O
o OO
[aoll (VRN V)
—
— = O
w w o
S O =
—_ = O
NN O
S O =

Our agent uses a policy network that maps each row to
a single preference score using a series of dense layers.

400
’_/
350 =
» 300
c
2 o
5 250
o .
© —— -
F 200 . — ~-~-1 degree
€ " 30
o
3 150 25
S 20
o
100 15
50 10
5
0

2 7 12 17 22 271 32 37 42 47
generators

Figure 3. Average number of polynomial additions following De-
gree selection in n = 3 uniform. Each degree and generator point
is the mean over 10000 samples for s < 20 and 1000 samples for
s > 20.

We implement these layers as 1D convolutions with 1 x 1
kernel in order to compute the preference score for all pairs
simultaneously. The agent’s policy, which is a probability
distribution on the current pair set, is the softmax of these
preference scores. In preliminary experiments, network
depth did not appear to significantly affect performance, so
we settled on the following architecture:

1D conv 1D conv
relu linear softmax

(o anf—{p < 128} —{p x }—{p x 1]

Due to its simplicity, it would in principle be easy to deploy
this model in a production implementation of Buchberger’s
algorithm. The preference scores produced by the network
could be used as sort keys for the pair set. Each pair would
only need to be processed once, and we expect the rela-
tively small matrix multiplies in this model to add minimal
overhead in a careful implementation. In fact, most of the
improvement was already achieved by a model with only
four hidden units (see supplement).

However, given that real time performance of Buchberger’s
algorithm is highly dependent on sophisticated implemen-
tation details, we exclusively focus on implementation in-
dependent metrics, and defer the testing of real time perfor-
mance improvements to future work.

4.2. Value Functions

A general challenge for policy gradient algorithms is the
large variance in the estimate of expected rewards. This is
exacerbated in our context by the large variance in difficulty
of computing a Grobner basis of different ideals from the

Learning Selection Strategies in Buchberger’s Algorithm

Table 3. Agent performance versus benchmark strategies in 3 variables and degree 20. Each line is a unique agent trained on the given
distribution. Performance is mean[stddev] on 10000 new randomly sampled ideals from that distribution. Training times were 16 to 48
hours each on a c5n.xlarge instance through Amazon Web Services. Smaller numbers are better.

S DISTRIBUTION ‘ FIRST DEGREE NORMAL SUGAR RANDOM ‘ AGENT IMPROVEMENT
10 WEIGHTED 187.[73.1] 136.[50.9] 136.[51.2] 161.[66.9] 178.[68.3] | 85.6[27.3] 37% [46%]
4 WEIGHTED | 210.[101.] 160.[64.5] 160.[66.6] 185.[87.2] 203.[97.8] | 101.[44.9] 37% [30%]
10 UNIFORM 352.[117.] 197.[55.7] 198.[57.1] 264.[88.5] 318.[103.] | 141.[42.8] 28% [23%]
4 UNIFORM 317.[130.] 195.[70.0] 194.[70.0] 265.[107.] 303.[122.] | 151.[56.4] 22% [19%]

200

0.016 Agent

175 0.014 ~ = — — Degree/Normal
2 S qoo0ao Sugar
2 190 > 0.012 - Random
e S22 N L P First
.T; 125 § 0.010
§ 100 %0.008
> ©
g 75 8 0.006
S 5o IGRRSREGE Random &
o e 0.004

o5 T T Degree/Normal 0.002 .

Agent ’ i 890,
0 0.000 - S
0 200 400 600 800 1000 1200 1400 0 100 200 300 400 500

epoch (100 episodes per epoch)

Figure 4. Mean performance during each epoch of training on the
3-20-10 weighted distribution. Dashed lines indicate mean per-
formance of benchmark strategies on 10000 random ideals. Total
training time was 16 hours on a c5n.xlarge instance through Ama-
zon Web Services. Smaller numbers are better.

same distribution. We address this using Generalized Ad-
vantage Estimation (GAE) (Schulman et al., 2016), which
uses a value function to produce a lower-variance estima-
tor of expected returns while limiting the bias introduced.
Our value function V(G, P) is the number of polynomial
additions required to complete a full run of Buchberger’s
algorithm starting with the state (G, P), using the Degree
strategy. This is computationally expensive but significantly
improves performance.

4.3. Training Algorithm

Our agents are trained with proximal policy optimization
(PPO) (Schulman et al., 2017) using a custom implemen-
tation inspired by (Achiam, 2018). In each epoch we first
sample 100 episodes following the current policy. Next,
GAE with A = 0.97 and v = 0.99 is used to compute ad-
vantages, which are normalized over the epoch. Finally, we
perform at most 80 gradient updates on the clipped surrogate
PPO objective with € = 0.2 using Adam optimization with
learning rate 0.0001. Early-stopping is performed when the
sampled KL-divergence from the last policy exceeds 0.01.

polynomial additions

Figure 5. Estimated distribution of polynomial additions per ideal
in the 3-20-10 weighted distribution for the fully trained agent from
Figure 4, compared to benchmark strategies. Smaller numbers are
better. (10000 samples, computed using kernel density estimation)

4.4. Data Generation

There are no fixed train or test sets. Instead, the training and
testing data are generated online by a function that builds an
ideal at random from the distribution. The large size of the
distributions prevents any over-fitting to a particular subset
of ideals. For example, even ignoring coefficients, the total
number of ideals in 3-20-10 weighted is roughly 10°°. The
agent trained in Figure 4 saw 150000 ideals from this set
generated at random during training. This agent was tested
by running on a completely new generated set of 10000
ideals to produce the results in Table 3.

5. Experimental Results

Table 3 shows the final performance of agents which have
been trained on several distributions with n = 3, d = 20.
All agents use 22% to 37% fewer polynomial additions on
average than the best benchmark strategies, and reduce the
standard deviation in the number of polynomial additions by
19% to 46%. The improvement on uni form distributions,
which tend to produce ideals of higher average difficulty, is
not as large as the improvement on we i ght ed distributions.

Learning Selection Strategies in Buchberger’s Algorithm

Figure 5 gives a more detailed view of the distribution of
polynomial additions per ideal performed by the trained
agent. Figure 4 shows the rapid convergence during training.

5.1. Interpretation

We have identified several components of the agents strategy:
(a) the agent is mimicking Degree, (b) the agent prefers pairs
whose S-polynomials are monomials, (c) the agent prefers
pairs whose S-polynomials are low degree.

On 10000 sample runs of Buchberger’s algorithm using a
trained agent on 3-20-10 weighted, the average probability
that the agent selected a pair which could be chosen by
Degree was 43.5%. If there was a pair in the list whose
S-polynomial was a monomial, the agent picked such a pair
31.7% of the time. The probability that the agent selected
a pair whose S-polynomial had minimal degree (among
S-polynomials), was 48.3%.

It is notable that (b) and (c¢) are not standard selection heuris-
tics. When we hard-coded the strategy of selecting a pair
with minimal degree S-polynomial, which we call TrueDe-
gree, the average number of additions (3-20-10 weighted,
10000 samples) was 120.3, a 12% improvement over the
Degree strategy. On the other hand, for the strategy which
follows Degree but will first select any S-polynomial which
is monomial, the average number of additions was 134.2, a
1.2% improvement over Degree. While neither hard-coded
strategy achieves the 37% improvement of the agent over
Degree, it is notable that these insights from the model led to
understandable strategies that beat our benchmark strategies
in this domain.

5.2. Variants of the Model

We found that the model performance decreased when we
made any of the following modifications: only allowed the
network to see the lead monomials of each pair; removed the
value function; or substituted the value function with a naive
“pairs left” value function which assigned V (G, P) = |P|.
See Table 4. However, all of these trained models still
outperform the best benchmark strategy, which is Degree.

Table 4. Performance of variants of the model. Entries show mean
[stddev] of polynomial additions and performance drop relative
to the original model on samples of 10000 ideals from 3-20-10
weighted distribution. Original model is 85.6 [27.3].

AGENT \ ADDITIONS DROP

PAIRSLEFT VALUE FUNCTION | 95.2 [32.7] 11.2%
NO VALUE FUNCTION | 103.2[35.9] 20.6%

LEAD MONOMIAL ONLY \ 90.0[29.4] 5.4%

2.0
s B
056 064 079 095 106 118
. 18
N
§ 059 068 084 099 108 114 6
»
s -14
& 063 073 091 100 107 110
2 < -12
-3
o 070 08 093 103 105 105 -1.0
© -0.8
088 099 102 102 102 1.02
o~ -0.6
! -
2 6 10 14 18 22 26 30 34 38 42 46 50

generators

Figure 6. Testing a single agent on 3-d-s weighted distribution as
d and s vary. Agent is trained on 3-20-10 weighted, indicated with
an “X.” Numbers are the ratio of mean polynomial additions by
the agent to that of the best benchmark strategy, with numbers
less than 1 indicating better performance by the agent. The agent
was tested on 1000 random ideals in each distribution, and the
strategies were tested on 10000 for s < 20 and 1000 for s > 20.

Table 5. Agent performance outside of training distribution. Per-
formance is mean[stddev] on a sample of 10000 random ideals.

3-20-10 DISTRIBUTION

TEST WEIGHTED UNIFORM
TRAIN

WEIGHTED | 85.6[27.3] 140.[45.7]
UNIFORM | 89.3[29.0] 141.[42.8]

3-20-4 DISTRIBUTION

TEST WEIGHTED UNIFORM
TRAIN

WEIGHTED | 101.[44.9] 158.[67.9]
UNIFORM | 107.[42.6] 151.[56.4]

5.3. Generalization across Distributions

A major question in machine learning is the ability of a
model to generalize outside of its training distribution. Ta-
ble 5 shows reasonable generalization between uniform
and weighted distributions.

Figure 6 shows that a model trained on 3-20-10 weighted
has similar performance at nearby values of d and s, as com-
pared to the performance of the best benchmark strategy.
Agents can also be trained on a mix of distributions by ran-
domly selecting a training distribution at each epoch. Choos-
ing uniformly from 5 < d < 30 and 4 < s < 20 yields

Learning Selection Strategies in Buchberger’s Algorithm

agents with 1-5% worse performance at 3-20-10 weighted
and 1-10% better performance away from it, though perfor-
mance does eventually degrade as in Figure 6.

5.4. Future directions

It would be interesting to extend these results to more vari-
ables and non-binomial ideals. In the interest of establishing
a simple proof-of-concept, we have left a thorough investi-
gation of these questions for future research, but we have
done some preliminary experiments.

In the direction of increasing n, we trained and tested our
model (with the same hyperparameters) on binomial ideals
in five variables. The agents use on average 48% fewer
polynomial additions than the best benchmark strategy in
the 5-10-10 weighted distribution, 28% fewer in 5-5-10
weighted, and 11% fewer in the 5-5-10 uniform distribution.
We could not increase the degree further or perform a full
hyperparameter search due to computational constraints.

In the non-binomial setting, we tested our agent on a toy
model for sparse polynomials. We sampled generators
for our random ideals by drawing a binomial from the
weighted distribution, then adding £ monomial terms
drawn from the same distribution, where k is sampled from
a Poisson distribution with parameter .

The fully trained agent from Figure 4 had mixed results
when tested on this non-binomial distribution. The dis-
tribution for the agent’s performance is bimodal, with it
outperforming all benchmarks on many ideals but behaving
essentially randomly on others, see Figure 7 and Figure 8.
As aresult, the agent significantly underperformed the best
benchmark on average, see Table 6, but still had the best
median performance for A = 0.1, 0.2. TrueDegree, the strat-
egy derived from the model in Section 5.1, outperforms the
best benchmark in mean by 19% to 33% for all \.

Table 6. Mean polynomial additions of several strategies tested on
samples of 10000 non-binomial ideals. Agent was trained on the
3-20-10 weighted binomial distribution. Benchmark refers to the
Normal strategy, the best performing benchmark in this case.

A | AGENT TRUEDEGREE BENCHMARK
0.1 | 4.17E+3 625. 872.
0.3 | 2.16E+4 3138. 4693.
0.5 | 4.96E+4 8436. 1.14E+4

Finally, the value function used for training with GAE, one
of the main contributors to our performance improvement,
effectively squares the complexity by doing a full rollout
at every step. Therefore, a more efficient modeled value
function is crucial for scaling these results both to higher
numbers of variables and to non-binomials.

probability density
o o = = =~ o=
[~ o N (4 ~
o [4)] o (&} o [4)]

o
)
o

-3 -2 -1 0 1 2 3
logged performance ratio

Figure 7. Agent performance on non-binomial ideals. The logged
performance ratio is the base-10 log of agent polynomial additions
to best benchmark strategy on each of a sample of 10000 ideals.
Values less than 0 indicate better performance by the agent.

0.7
n ———— Agent
06 rv e Normal
¥ — — — — TrueDegree
205 L I eadlb oo Random
g v
© 04
=
B3
Q
[
202
0.1
0.0 -

1 2 3 4 5 6 7
logged mean polynomial additions

Figure 8. Estimated distribution of base-10 log of polynomial ad-
ditions per ideal with A = 0.5, compared to benchmark strategies.
(10000 samples, computed using kernel density estimation)

6. Conclusion

We have introduced the Buchberger environment, a challeng-
ing reinforcement learning problem with important ramifica-
tions for the performance of computer algebra software. We
have identified binomial ideals as an interesting domain for
this problem that is tractable, maintains many of the prob-
lem’s interesting features, and can serve as a benchmark for
future research.

Standard reinforcement learning algorithms with simple
models can develop strategies that improve over state-of-
the-art in this domain. This illustrates a direction in which
modern developments in machine learning can improve the
performance of critical algorithms in symbolic computation.

Learning Selection Strategies in Buchberger’s Algorithm

Acknowledgements

We thank the anonymous reviewers for their helpful feed-
back and corrections, and David Eisenbud for useful dis-
cussions. Dylan Peifer and Michael Stillman were partially
supported by NSF Grant No. DMS-1502294, and Daniel
Halpern-Leistner was partially supported by NSF Grant
No. DMS-1762669.

References

Abtamowicz, R. Some applications of Grobner bases in
robotics and engineering. In Bayro-Corrochano, E. and
Scheuermann, G. (eds.), Geometric Algebra Comput-
ing: in Engineering and Computer Science, pp. 495-517.
Springer London, London, 2010.

Achiam, J. Spinning Up in Deep Reinforcement Learning.
2018. URL https://spinningup.openai .com.

Alvarez, A. M., Louveaux, Q., and Wehenkel, L. A ma-
chine learning-based approximation of strong branching.
INFORMS Journal on Computing, 29(1):185-195, 2017.

Arkun, Y. Detection of biological switches using the method
of Grobner bases. BMC Bioinformatic, 20, 2019.

Arnold, E. A. Modular algorithms for computing Grobner
bases. J. Symbolic Comput., 35(4):403-419, 2003.

Bayer, D. and Mumford, D. What can be computed in
algebraic geometry? In Computational algebraic geome-
try and commutative algebra (Cortona, 1991), Sympos.
Math., XXXIV, pp. 1-48. Cambridge Univ. Press, Cam-
bridge, 1993.

Bayer, D. and Stillman, M. On the complexity of computing
syzygies. J. Symbolic Comput., 6(2-3):135-147, 1988.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: a methodological tour
d’horizon. CoRR, abs/1811.06128, 2018.

Bettale, L., Faugere, J.-C., and Perret, L. Cryptanalysis of
HFE, Multi-HFE and Variants for Odd and Even Charac-
teristic. Designs, Codes and Cryptography, 69(1):1 — 52,
2013.

Buchberger, B. Ein Algorithmus zum Auffinden der Basise-
lemente des Restklassenringes nach einem nulldimension-
alen Polynomideal. PhD thesis, University of Innsbruck,
1965.

Buchberger, B. An algorithm for finding the basis elements
of the residue class ring of a zero dimensional polyno-
mial ideal. J. Symbolic Comput., 41(3-4):475-511, 2006.
Translated from the 1965 German original by Michael P.
Abramson.

CoCoA. A system for doing computations in commutative
algebra, Abbott, J., Bigatti, A. M., and Robbiano, L.,
2019. URL http://cocoa.dima.unige.it.

Conti, P. and Traverso, C. Buchberger algorithm and integer
programming. In International Symposium on Applied
Algebra, Algebraic Algorithms, and Error-Correcting
Codes, pp. 130—139. Springer, 1991.

Cox, D. A., Little, J., and O’Shea, D. Using algebraic
geometry. Graduate Texts in Mathematics. Springer, New
York, second edition, 2005.

Cox, D. A., Little, J., and O’Shea, D. Ideals, varieties,
and algorithms. Undergraduate Texts in Mathematics.
Springer, Cham, fourth edition, 2015.

Diaconis, P. and Sturmfels, B. Algebraic algorithms for
sampling from conditional distributions. Ann. Statist., 26
(1):363-397, 1998.

Duff, T., Kohn, K., Leykin, A., and Pajdla, T. PLMP - point-
line minimal problems in complete multi-view visibility.
CoRR, abs/1903.10008, 2019.

Eder, C. and Faugere, J.-C. A survey on signature-based
algorithms for computing Grobner bases. J. Symbolic
Comput., 80(3):719-784, 2017.

Faugere, J.-C. A new efficient algorithm for computing
Grobner bases (Fy). J. Pure Appl. Algebra, 139(1-3):
61-88, 1999.

Faugere, J.-C. A new efficient algorithm for computing
Grobner bases without reduction to zero (F5). In Pro-
ceedings of the 2002 International Symposium on Sym-
bolic and Algebraic Computation, pp. 75-83. ACM, New
York, 2002.

Faugere, J.-C., Safey El Din, M., and Spaenlehauer, P.-J.
Computing loci of rank defects of linear matrices using
Grobner bases and applications to cryptology. In Proceed-
ings of the 2010 International Symposium on Symbolic
and Algebraic Computation, pp. 257-264. ACM, New
York, 2010.

Gebauer, R. and Moller, H. M. On an installation of Buch-
berger’s algorithm. J. Symbolic Comput., 6(2-3):275-286,
1988.

Giovini, A., Mora, T., Niesi, G., Robbiano, L., and Traverso,
C. “One sugar cube, please” or selection strategies in the
Buchberger algorithm. In Proceedings of the 1991 Inter-
national Symposium on Symbolic and Algebraic Compu-
tation, pp. 49-54. ACM, New York, 1991.

Gray, J. A simple introduction to Grobner basis methods in
string phenomenology. Adv. High Energy Phys., 2011:12,
2011.

Learning Selection Strategies in Buchberger’s Algorithm

Hilbert, D. Uber die vollen Invariantensysteme. Math. Ann.,
42(3):313-373, 1893.

Huang, Z., England, M., Wilson, D. J., Bridge, J., Daven-
port, J. H., and Paulson, L. C. Using machine learning to
improve cylindrical algebraic decomposition. Mathemat-
ics in Computer Science, 13(4):461-488, 2019.

Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., and Dilk-
ina, B. Learning to branch in mixed integer programming.
In Proceedings of the Thirtieth AAAI Conference on Arti-
ficial Intelligence, pp. 724-731. AAAI Press, 2016.

Koh, J. Ideals generated by quadrics exhibiting double
exponential degrees. J. Algebra, 200(1):225-245, 1998.

Lin, Z., Xu, L., and Wu, Q. Applications of Grobner bases
to signal and image processing: a survey. Linear Algebra
Appl., 391:169-202, 2004.

Macaulay2. A software system for research in algebraic
geometry, Grayson, D. and Stillman, M., 2019. URL
http://www.math.uiuc.edu/Macaulay?2/.

Magma. Algebra system, Bosma, W., Cannon, J. and Play-
oust, C., 2019. URL http://magma.maths.usyd.
edu.au.

Maple. Maplesoft, 2019. URL https://maplesoft.
com.

Mathematica. Wolfram, S., 2019. URL https://www.
wolfram.com/mathematica.

Mayr, E. W. and Meyer, A. R. The complexity of the word
problems for commutative semigroups and polynomial
ideals. Adv. in Math., 46(3):305-329, 1982.

Mora, T. Solving polynomial equation systems. II, vol-
ume 99 of Encyclopedia of Mathematics and its Applica-
tions. Cambridge University Press, Cambridge, 2005.

Roune, B. H. and Stillman, M. Practical Grobner basis
computation. In Proceedings of the 2012 International
Symposium on Symbolic and Algebraic Computation, pp.
203-210. ACM, New York, 2012.

SageMath. The Sage Mathematics Software System, 2019.
URL https://www.sagemath.org.

Sala, M., Mora, T., Perret, L., Sakata, S., and Traverso,
C. (eds.). Grobner bases, coding, and cryptography.
Springer-Verlag, Berlin, 2009.

Schulman, J., Moritz, P., Levine, S., Jordan, M. 1., and
Abbeel, P. High-dimensional continuous control using
generalized advantage estimation. In Proceeding of the

4th International Conference on Learning Representa-
tions (ICLR 2016), 2016.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017.

Singular. A computer algebra system for polynomial
computations, Decker, W., Greuel, G.M., Pfister, G.,
and Schonemann, H., 2019. URL http://www.
singular.uni-kl.de.

Sullivant, S. Algebraic statistics. Graduate Studies in Math-
ematics. American Mathematical Society, Providence, RI,
2018.

Xu, W.,, Hu, L., Tsakiris, M. C., and Kneip, L. Online
stability improvement of Grobner basis solvers using deep
learning. 2019 International Conference on 3D Vision
(3DV), pp. 544-552, 2019.

