


tractors, we develop an identification-discrimination compo-

nent in the box classification step of CRAC. Specifically, the

identifier learns offline a distance measurement and utilizes

reliable fine-grained target template to select the proposal

most similar to target. The discriminator, drawing inspiration

from success in discriminative regression tracking [8], [9],

learns online a discrete-sampling-based classification model

using background and temporal appearance information to

suppress similar objects in the proposals. By collaboration

of identifier and discriminator, CRAC effectively inhibits

distractors in box classification step.

Furthermore, to enhance representation of proposals, we

introduce a pyramid RoIAlign (PRoIAlign) module, draw-

ing inspiration from [10], for proposal feature extraction.

PRoIAlign is capable of exploiting both local and global cues

of proposals, and hence allows CRAC to deal with target

deformation and rotation.

We integrate CRAC in the Siamese tracking framework

to develop a new tracking algorithm named CRACT (CRAC

Tracker). CRACT first extracts a few coarse proposals via a

Siamese-style network and then refines each proposal using

CRAC. Then the proposal with the highest classification

score is selected to be target. In thorough experiments

on multiple benchmarks, our CRACT achieves new state-

of-the-art results and significantly outperforms its Siamese

baselines, while running in real-time.

In summary, we make the following contributions.

1) A new cascaded regression-align-classification (CRAC)

module is developed for proposal refinement to improve

the accuracy and robustness in tracking.

2) A novel identification-discrimination component is intro-

duced to leverage offline and online learning of target and

background information for handling distractors.

3) A pyramid RoIAlign strategy is designed to exploit both

local and global cues of proposals for further improving

robustness of CRAC.

4) A new tracker named CRACT is developed based on the

CRAC module, and achieves new state of-the-art results

on numerous benchmarks.

II. RELATED WORK

Siamese Tracking. Treating tracking as searching for a

region most similar to the initial target template, Siamese

network has attracted great attention in tracking. The ap-

proach of [11] utilizes a Siamese network to learn a match-

ing function from videos, and then uses it to search for

the target object. Despite promising result, this approach

runs slowly due to heavy computation. The work of [2]

proposes a fully convolutional Siamese network (SiamFC)

which efficiently computes the similarity scores of candidate

regions. Owing to balanced accuracy and speed, SiamFC

has been improved in many follow-ups [12], [13], [4], [5].

Among them, the work of [4] introduces the SiamRPN by

combining Siamese network and region proposal network [3]

for tracking, achieving more accurate results with faster

speed. To improve SiamRPN in dealing with distractors, the

work of [14] leverages more negative training samples for

learning a distractor-aware classifier.

Cascade Structure in Tracking. Cascade architecture has

been a popular framework for vision tasks (e.g, visual

recognition [15] and object detection [16], [17]), and our

CRACT also shares this idea for tracking. The approach

of [6] presents a two-stage framework in which the proposals

generated in the first stage are further identified and refined

to choose the best one as the tracking result. The algorithm

in [7] suggests a multi-stage framework that cascades multi-

ple RPNs to improve performance of Siamese tracking. The

work of [18] introduces cascade architecture in one-stage

framework to alleviate misalignment problem in tracking.

Our Approach. In this paper, we regard tracking as a

proposal selection task. Our approach is related to but

different from SiamRPN [4] which treats tracking as one-shot

proposal selection and may suffer from large scale changes

and distractors. In contrast, we propose a novel CRAC

refinement module to improve proposal selection and achieve

better performance. Our method is also relevant to [6],

[7] by sharing similar idea of refining proposals. However,

unlike in [6], [7] that separately performs regression and

classification for refinement, our method takes a cascade

structure for refinement. Different from [18] using one-stage

architecture for tracking, our trackers is formulated as a two-

stage framework.

III. THE PROPOSED APPROACH

We formulate tracking as selecting the best proposal and

introduce a novel simple yet effective cascaded regression-

align-classification (CRAC) module to refine proposals for

such purpose. As shown in Figure 2, our method contains

proposal extraction and proposal refinement. In specific, we

first use a Siamese region proposal network to filter out

most low confident regions and keep only a few initial

proposals. Then, each proposal is fed to CRAC module for

refinement. During tracking, we rank all refined proposals

using the initial and refined classification results, and the

proposal with highest score is selected to be the final target.

To maintain strong discriminative ability of our tracker, the

discriminator in box classification of CRAC is online updated

using intermediate results.

A. Proposal Extraction

The goal of proposal extraction is to filter out most

negative candidates and retain a few initial proposals similar

to target object. This procedure is crucial as one of the

proposals from this stage determines the final tracking result.

Therefore, it is required to be robust enough to include

targets of interest into proposals and to avoid contamination

from background. In addition, high efficiency is desired

in the proposal extraction. Taking the above reasons into

consideration, we leverage Siamese region proposal network,

as in [4], [5], [6], [7], for proposal extraction.

The architecture of Siamese RPN contains two branches

for target template z and search region x, respectively. As

illustrated in Figure 2, using ResNet [19] as backbone, we









TABLE II

COMPARISON WITH STATE-OF-THE-ART TRACKERS ON UAV123 [33].

Tracker
ECOhc

[9]

ECO

[9]

SiamRPN

[4]

RT-MDNet

[34]

DaSiam

RPN [14]

ARCF

[35]

SiamRPN

++ [5]

ATOM

[8]

DiMP-50

[29]

SiamBAN

[30]

SiamAttn

[32]

CRACT

(ours)

Where CVPR’17 CVPR’17 CVPR’18 ECCV’18 ECCV’18 CVPR’19 CVPR’19 CVPR’19 ICCV’19 CVPR’20 CVPR’20 -

PRE 0.725 0.741 0.748 0.772 0.796 0.670 0.807 0.856 0.858 0.833 0.845 0.860

SUC 0.506 0.525 0.527 0.528 0.586 0.470 0.613 0.642 0.653 0.631 0.650 0.664

TABLE III

COMPARISON WITH STATE-OF-THE-ART TRACKERS ON NFS [36].

Tracker
HCF

[37]

HDT

[38]

MDNet

[25]

SiamFC

[2]

ECOhc

[9]

ECO

[9]

BACF

[39]

UPDT

[40]

ATOM

[8]

DiMP-50

[29]

SiamBAN

[30]

CRACT

(ours)

Where ICCV’15 CVPR’16 CVPR’16 ECCVW’16 CVPR’17 CVPR’17 ICCV’17 ECCV’18 CVPR’19 ICCV’19 CVPR’20 -

SUC 0.295 0.403 0.429 0.401 0.459 0.466 0.341 0.542 0.590 0.619 0.594 0.625

TABLE IV

COMPARISON WITH OTHER TRACKERS ON VOT-2018 [41].

Tracker
SiamFC

[2]

ECO

[9]

SA-Siam

[28]

SiamRPN

[4]

UPDT

[40]

DaSiam

RPN [14]

SiamRPN

++ [5]

ATOM

[8]

DiMP-50

[29]

SiamBAN

[30]

Retina-

MAML [31]

CRACT

(ours)

Where ECCVW’16 CVPR’17 CVPR’18 CVPR’18 ECCV’18 ECCV’18 CVPR’19 CVPR’19 ICCV’19 CVPR’20 CVPR’20 -

Acc. 0.500 0.480 0.543 0.588 0.536 0.590 0.600 0.590 0.597 0.597 0.604 0.611

Rob. 0.590 0.280 0.224 0.276 0.184 0.280 0.234 0.204 0.153 0.178 0.159 0.175

EAO 0.188 0.276 0.325 0.384 0.376 0.383 0.414 0.401 0.440 0.452 0.452 0.455

are set to 50 and 200, respectively. The learning rate of the

offline training part is 10−2 with a decay of 10−4. It is trained

end-to-end with SGD by 50 epochs. We apply LaSOT [44],

TrackingNet [45], GOT-10k [46] and COCO [47] for offline

training, excluding the one under testing. The online training

and update of the discriminator utilizes the strategy in [8].

Our tracker runs at 28 frames per second (fps). The imple-

mentation will be available at https://hengfan2010.

github.io/publications.html.

A. State-of-the-art Comparison

OTB-2015 [26]. OTB-2015 is a popular tracking benchmark

with 100 videos. We compare CRACT with 15 trackers. The

comparison is demonstrated in Table I with precision (PRE)

and success (SUC) scores using one-pass evaluation (OPE).

CRACT achieves the best results with 0.936 PRE score and

0.726 SUC score, outperforming the second best by 1.0%

and 1.4%, respectively. Compared with SiamRPN++ with

0.915 PRE score and 0.696 SUC score, we achieve 2.1% and

3.0% gains owing to RAC. Besides, compared to proposal

refinement method SPM-18, which can serve as our baseline,

with 0.912 PRE score and 0.701 SUC score, CRACT with

cascaded refinement shows 2.4% and 2.5% improvements,

evidencing effectiveness in boosting tracking robustness.

UAV123 [33]. UAV123 focuses on aerial object tracking and

contains 123 videos. We compare CRACT to 11 trackers

and the results are displayed in Table II. CRACT obtains the

best 0.860 PRE score and 0.664 SUC score, outperforming

the second best DiMP-50 with 0.858 PRE score and 0.653

SUC score. In comparison to SiamRPN++ with 0.613 SUC

score, we achieve 5.1% absolute gain, which clearly shows

the advantage of our proposal refinement.

TABLE V

COMPARISON WITH OTHER TRACKERS ON TRACKINGNET [45].

Tracker Where PRE

Score

NPRE Score SUC

Score

C-RPN [7] CVPR’19 0.619 0.746 0.669

SiamRPN++ [5] CVPR’19 0.694 0.799 0.733

SPM [6] CVPR’19 0.661 0.778 0.712

ATOM [8] CVPR’19 0.648 0.771 0.703

DiMP-50 [29] ICCV’19 n/a 0.801 0.740

Retina-MAML [31] CVPR’20 n/a 0.786 0.698

SiamAttn [32] CVPR’20 n/a 0.817 0.752

CRACT (ours) - 0.724 0.824 0.754

NfS [36]. NfS consists of 100 sequences for evaluation on

high frame rate videos. We evaluate our approach on 30 fps

version. Table III demonstrates our result and comparison

to 11 trackers. Our CRACT achieves the best result with

0.625 SUC score, which outperforms the second best DiMP-

50 with 0.619 SUC score by 0.6%.

VOT-2018 [41]. VOT-2018 contains 60 videos for track-

ing. We compare CRACT with 11 trackers and Table IV

demonstrates the comparison results. Our tracker achieves

the best of 0.455 on EAO. Compared to SiamRPN++ which

also regards tracking as proposal selection, CRACT obtains a

performance gain of 4.1% in term of EAO, which shows the

effectiveness of our hierarchical RAC in refining proposals

for better selection. Compared to the recent DiMP-50 with

0.440 EAO score, our method achieves 1.5% improvement.

TrackingNet [45]. TrackingNet offers 511 videos for evalu-

ation. Table V shows comparison results of CRACT with 7

state-of-the-art trackers. Our method achieves the best results

of 0.724, 0.824 and 0.754 on PRE, NPRE and SUC scores,

outperforming recent trackers SiamAttn and DiMP-50.





less, it has a risk of model contamination caused by update.

By collaboration of identifier and discriminator, they can

complement each other for better robust proposal selection.

We verify the effects of individual and joint use of identifier

and discriminator. Table VIII shows the comparison. Using

identifier only and discriminator only achieves SUC scores

of 0.715 and 0.712 on OTB-215. with joint consideration

of them, the performance is significantly boosted to 0.726.

Likewise, the best result of 0.625 SUC score is obtained

when combining identifier and discriminator.

Pyramid RoIAlign. Different from current tracker [6] using

RoIAlign [24] for proposal extraction, we present a simple

yet effective PRoIAlign to exploit global and local cues.

Table IX shows the results with RoIAlign and our PRoIAlign.

We observe that PRoIAlign improves the SUC scores from

0.719 to 0.716 on OTB-2015 and from 0.615 to 0.625

on NfS, respectively, showing the advantage of exploring

various cues in performance improvement.

V. CONCLUSION

In this paper, we propose a novel tracker dubbed CRACT

for accurate and robust tracking. CRACT first extracts a

few coarse proposals and then refines each proposal using

the proposed cascaded regression-align-classification mod-

ule. During inference, the best proposal determined by both

coarse and refined classification scores is selected to be the

final target. Experiments on seven benchmarks demonstrate

its superior performance.
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