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Abstract— High quality object proposals are crucial in visual
tracking algorithms that utilize region proposal network (RPN).
Refinement of these proposals, typically by box regression
and classification in parallel, has been popularly adopted to
boost tracking performance. However, it still meets problems
when dealing with complex and dynamic background. Thus
motivated, in this paper we introduce an improved proposal
refinement module, Cascaded Regression-Align-Classification
(CRAC), which yields new state-of-the-art performances on
many benchmarks.

First, having observed that the offsets from box regression
can serve as guidance for proposal feature refinement, we
design CRAC as a cascade of box regression, feature alignment
and box classification. The key is to bridge box regression
and classification via an alignment step, which leads to more
accurate features for proposal classification with improved
robustness. To address the variation in object appearance,
we introduce an identification-discrimination component for
box classification, which leverages offline reliable fine-grained
template and online rich background information to distinguish
the target from background. Moreover, we present pyramid
RoIAlign that benefits CRAC by exploiting both the local and
global cues of proposals. During inference, tracking proceeds
by ranking all refined proposals and selecting the best one.
In experiments on seven benchmarks including OTB-2015,
UAV123, NfS, VOT-2018, TrackingNet, GOT-10k and LaSOT,
our CRACT exhibits very promising results in comparison with
state-of-the-art competitors and runs in real-time at 28 fps.

I. INTRODUCTION

As one of the important problems in computer vision,
visual tracking has many applications including self-driving,
UAV navigation, efc. Despite considerable progress made
in recent years, robust tracking remains challenging due to
many factors such as occlusion, distractor and so on [1].

In this paper we focus on model-free single object track-
ing. Specifically, given the target in initial frame, a tracker
aims at locating it in all subsequent frames by determining
its position and scale. Inspired by the Siamese tracking
algorithm [2] and the region proposal network (RPN) [3],
SiamRPN [4], [5] formulates tracking as an one-shot in-
ference problem and has attracted great attention owing to
its excellent performance in both accuracy and speed. It
simultaneously predicts classification results and regression
offsets for a set of pre-defined anchors to generate proposals.
Encouraged by the success of SiamRPN, improvement has
been proposed (e.g., [6], [7]) with an additional refinement
process, which further regresses and classifies in parallel
each proposal (see Figure 1(a)). Particularly, regression is
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Fig. 1. Different proposal refinement structures: separated box regression
and classification in parallel (e.g., [6], [7]) in image (a) and our cascaded
regression-align-classification (CRAC) in image (b). Best viewed in pdf.

used to adjust the locations and sizes of proposals for better
accuracy, and classification to distinguish the target object
from background in proposals for better robustness.

Despite improvements achieved, trackers with the above
proposal refinement still fail in presence of complex back-
ground because of degenerated classification, caused by two
problems: (1) In classification task, the features of proposals
are directly extracted based on their locations. The inac-
curacy in these locations (e.g., due to large scale changes)
may contaminate the proposal features (e.g., due to irrelevant
background information) and consequently degrades classifi-
cation results. (2) Background information, which may vary
over time and plays a crucial role in distinguishing target
from similar objects, is ignored in classification and may
hence cause drift to distractors in background.

Contribution. Motivated by aforementioned observations, in
this paper we design a new proposal refinement module to
improve the robustness of visual tracking.

First, we introduce a novel simple yet effective cascade
of regression-align-classification (CRAC) for proposal re-
finement, which is different than the parallel regression and
classification utilized in existing approaches (Figure 1 (a)).
This design is motivated by the fact that the offsets from box
regression can serve as guidance to sample more accurate
proposal features. CRAC consists of three sequential steps,
i.e., box regression, feature alignment and box classification,
as shown in Figure 1 (b). Specifically, box regression aims
at further adjusting scales of proposals for better accuracy;
feature alignment leverages offsets from box regression to
better align proposals for improving feature quality; and
box classification produces refined classification scores for
aligned proposals. The key design in CRAC is to connect box
regression and classification via an alignment step, instead
of separating these two tasks. Such design enables more
accurate features of aligned proposals, improving robustness
of classification in refinement.

Then, to improve the robustness against background dis-



tractors, we develop an identification-discrimination compo-
nent in the box classification step of CRAC. Specifically, the
identifier learns offline a distance measurement and utilizes
reliable fine-grained target template to select the proposal
most similar to target. The discriminator, drawing inspiration
from success in discriminative regression tracking [8], [9],
learns online a discrete-sampling-based classification model
using background and temporal appearance information to
suppress similar objects in the proposals. By collaboration
of identifier and discriminator, CRAC effectively inhibits
distractors in box classification step.

Furthermore, to enhance representation of proposals, we
introduce a pyramid RolAlign (PRolAlign) module, draw-
ing inspiration from [10], for proposal feature extraction.
PRolIAlign is capable of exploiting both local and global cues
of proposals, and hence allows CRAC to deal with target
deformation and rotation.

We integrate CRAC in the Siamese tracking framework
to develop a new tracking algorithm named CRACT (CRAC
Tracker). CRACT first extracts a few coarse proposals via a
Siamese-style network and then refines each proposal using
CRAC. Then the proposal with the highest classification
score is selected to be target. In thorough experiments
on multiple benchmarks, our CRACT achieves new state-
of-the-art results and significantly outperforms its Siamese
baselines, while running in real-time.

In summary, we make the following contributions.

1) A new cascaded regression-align-classification (CRAC)
module is developed for proposal refinement to improve
the accuracy and robustness in tracking.

2) A novel identification-discrimination component is intro-
duced to leverage offline and online learning of target and
background information for handling distractors.

3) A pyramid RolAlign strategy is designed to exploit both
local and global cues of proposals for further improving
robustness of CRAC.

4) A new tracker named CRACT is developed based on the
CRAC module, and achieves new state of-the-art results
on numerous benchmarks.

II. RELATED WORK

Siamese Tracking. Treating tracking as searching for a
region most similar to the initial target template, Siamese
network has attracted great attention in tracking. The ap-
proach of [11] utilizes a Siamese network to learn a match-
ing function from videos, and then uses it to search for
the target object. Despite promising result, this approach
runs slowly due to heavy computation. The work of [2]
proposes a fully convolutional Siamese network (SiamFC)
which efficiently computes the similarity scores of candidate
regions. Owing to balanced accuracy and speed, SiamFC
has been improved in many follow-ups [12], [13], [4], [5].
Among them, the work of [4] introduces the SiamRPN by
combining Siamese network and region proposal network [3]
for tracking, achieving more accurate results with faster
speed. To improve SiamRPN in dealing with distractors, the

work of [14] leverages more negative training samples for
learning a distractor-aware classifier.

Cascade Structure in Tracking. Cascade architecture has
been a popular framework for vision tasks (e.g, visual
recognition [15] and object detection [16], [17]), and our
CRACT also shares this idea for tracking. The approach
of [6] presents a two-stage framework in which the proposals
generated in the first stage are further identified and refined
to choose the best one as the tracking result. The algorithm
in [7] suggests a multi-stage framework that cascades multi-
ple RPNs to improve performance of Siamese tracking. The
work of [18] introduces cascade architecture in one-stage
framework to alleviate misalignment problem in tracking.

Our Approach. In this paper, we regard tracking as a
proposal selection task. Our approach is related to but
different from SiamRPN [4] which treats tracking as one-shot
proposal selection and may suffer from large scale changes
and distractors. In contrast, we propose a novel CRAC
refinement module to improve proposal selection and achieve
better performance. Our method is also relevant to [6],
[7] by sharing similar idea of refining proposals. However,
unlike in [6], [7] that separately performs regression and
classification for refinement, our method takes a cascade
structure for refinement. Different from [18] using one-stage
architecture for tracking, our trackers is formulated as a two-
stage framework.

III. THE PROPOSED APPROACH

We formulate tracking as selecting the best proposal and
introduce a novel simple yet effective cascaded regression-
align-classification (CRAC) module to refine proposals for
such purpose. As shown in Figure 2, our method contains
proposal extraction and proposal refinement. In specific, we
first use a Siamese region proposal network to filter out
most low confident regions and keep only a few initial
proposals. Then, each proposal is fed to CRAC module for
refinement. During tracking, we rank all refined proposals
using the initial and refined classification results, and the
proposal with highest score is selected to be the final target.
To maintain strong discriminative ability of our tracker, the
discriminator in box classification of CRAC is online updated
using intermediate results.

A. Proposal Extraction

The goal of proposal extraction is to filter out most
negative candidates and retain a few initial proposals similar
to target object. This procedure is crucial as one of the
proposals from this stage determines the final tracking result.
Therefore, it is required to be robust enough to include
targets of interest into proposals and to avoid contamination
from background. In addition, high efficiency is desired
in the proposal extraction. Taking the above reasons into
consideration, we leverage Siamese region proposal network,
as in [4], [5], [6], [7], for proposal extraction.

The architecture of Siamese RPN contains two branches
for target template z and search region x, respectively. As
illustrated in Figure 2, using ResNet [19] as backbone, we
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lustration of CRACT which first extracts a few coarse proposals (described in section III-A) and then refines each proposal with our cascaded

RAC module (described in section III-B). The best proposal is selected based on coarse and refined classification scores to be result. Best viewed in pdf.

first extract the features ¢4(z) and ¢4(x) after block 4 for
z and x. Notice that, the feature extraction backbones for
z and x share the same parameters. Then, ¢4(z) and ¢4(x)
are fed to RPN, which simultaneously performs classification
and regression for predefined anchors on search region. With
the classification scores and regression offsets of anchors,
we generate [N proposals using Non-maximum Suppression
(NMS). We represent N proposals as {p;}2,, and clas-
sification result of p; is denoted as c;. The loss frpy to
train Siamese RPN comprises two parts including a cross
entropy loss for classification and a smooth L; loss [20] for
regression. We refer readers to [4], [20] for more details.

B. CRAC for Proposal Refinement

Because the proposals may contain distractors and/or not
be good enough to handle large object scale variations, we
develop a cascaded regression-align-classification (CRAC)
module that refines each coarse proposal by cascading
three steps, i.e., box regression, feature alignment and box
classification, for better selection. Figure 3 illustrates the
architecture of CRAC.

1) Box Regression: Since only one-step regression of
coarse proposals may not be sufficient to handle object
scale changes, we employ an additional box regression in
CRAC to further adjust locations and sizes of proposals. In
specific, as shown in Figure 3, we first use pyramid RolAlign
(PRolAligh) module (Section III-C) to extract the feature
of each proposal. In order to improve regression accuracy,
we employ features from multiple layers. Particularly, we
concatenate the features ¢4(x) and ¢3(x) after blocks 4
and 3 and use a conv layer to obtain fused feature maps
¢34(x) (Figure 2). Afterwards, the feature f; of proposal p;
is obtained through PRolAlign as follows,

fi = PRolAlign(¢34(x), ps) (D

As a high-level task, we aim at learning a generic box
regression model. Similar to the Siamese tracking [2], [4], we
incorporate the target in the first frame as prior information.
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target feature as follows,
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Fig. 3. Tllustration of CRAC module. Best viewed in pdf.

2)

where ¢34(z) is fused feature maps for target (Figure 2) and
b1 denotes initial object box. Then, the box regression offset
r; of p; is obtained via

ri = R(fi, finit)

where the box regression model R first concatenates f; and
finit, and then applies a conv layer and three consecutive fc
layers to output a 4-dimension vector r; = (r&,r¥ r¥ rl).
The loss /¢ to train the box regression model is smooth L;
loss [20].

2) Feature Alignment: Proposal classification is impor-
tant, as it greatly affects final proposal selection. Existing
refinement method (e.g., [6]) directly extracts proposal fea-
tures for classification. However, if the locations of proposals
are inaccurate, their classification results may be degraded.
Thanks to cascade structure of CRAC, we can alleviate
this issue by aligning each proposal using offsets from box
regression step. By doing so, more accurate proposal features
can be used for classification.

In particular, with regression offsets r; from Eq. (3), we

3)



T Ty

Box classification |-‘—)cls. score
A

feature f;

Target h,_v-- B
Template

| Box classification |

Search Region

D proposal

refined proposal

cls. score

P

aligned feature f;

]

Fig. 4. Comparison of proposal features with and without alignment. We
observe that the aligned features are more accurate. Best viewed in pdf.

adjust location and size of p; as follows,

~ x ~ Y
Ty =@ wiry Y = Yi + ety

“4)

@ = wiexp(rl')  hi = hiexp(r!)

where x;, y;, w;, h; and Z;, ¥;, w;, iLi represent the original
and adjusted center coordinates of proposal p; and its width
and height, respectively. With z;, g;, w;, iLz we can obtain
the refined proposal p; for p;, and extract more accurate
feature using p; via

fi = PROIAlign((;S34 (X)dﬁz) (5)

where f; represents the aligned feature for p;. In comparison
with f;, the aligned ﬂ is more accurate (see Figure 4), which
leads to better classification result. In addition, more accurate
features can also benefit the training of box classification.

3) Box Classification: Since the proposals contain various
distractors, a more discriminative classification module is
desired in CRAC. Existing methods (e.g., [6], [7]) learn
an additional matching sub-network to further classify the
proposals for better selection. Owing to more balanced
training samples, the classification model in refinement is
more discriminative than that for proposal extraction. Despite
this, these approaches still fail in presence of hard distractors
due to ignorance of background information, which is crucial
for distinguishing target from similar objects.

In this work, a joint identification-discrimination mod-
ule is introduced in the box classification step of CRAC.
Specifically, the identifier matches offline each proposal
with reliable target template to find the most similar one.
Different from the identifier, the discriminator learns online
a classification model by exploiting background appearance
information to suppress similar objects in proposals. By
collaboration of these two components, our method enjoys
both reliability of target template to select most similar
proposal and the strong discriminative ability to suppress the
difficult distractors, leading to robust classification.

Identification. The identifier aims to compute the similarities
between proposals and target template. To this end, we
leverage a relation network [21] to learn offline a distance
measurement between the template and a proposal owing to
simplicity and efficiency, similar to [6]. Since the identifier is
learned to be generic, no update is required. As an advantage,
the identifier will not be contaminated by background, and

thus can resist accumulated errors in discrimination part
caused by model update. We compute the identification score
v; for refined proposal p; as follows,

Ui = Z(fi, finit) 6)

where the identification model Z first concatenates ﬁ and
finit, and then uses a conv layer and three fc layers to obtain
a 2-dimension vector ;, as shown in Figure 3. The loss fjqe
to train the identification is cross entropy loss.

Discrimination. Different from the identifier, the discrimina-
tor focuses on suppressing similar distractors by exploiting
background appearance information. For this purpose, we
develop an online discrete-sampling-based classifier D with
a light network architecture of one conv and two fc layers, as
illustrated in Figure 3. We compute the discrimination score
7; for p; as follows,

7 =D(fi;w) (7)

where w denotes the parameters of the discrimination net-
work.

To train discriminator, drawing inspiration from the suc-
cess of discriminative regression tracking [8], [9], [22], [23],
we use the Lo loss to learn w as follows,

M
lais = Y ID(Xj3w) = Yj|* + Al w? (8)
j=1

where X; represents the feature of a training sample, Y is
a discrete (binary) label, and ) is a regularization parameter.
Notice that, unlike identifier trained on image pairs, we
generate a set of discrete samples for training discriminator.
We utilize the conjugate gradient method in [8] to optimize
discrimination network owing to its efficiency. We refer
readers to [8] for more details.

It is worth noting that, despite being relevant to discrimina-
tive regression tracking [8], [9], [22], [23], our discriminator
is different in several aspects: (1) instead of performing
classification on a large search region, our method only
classifies a few discrete candidate proposals, which is more
efficient; (2) the labels of training samples in our method
are discrete (binary), which avoids boundary effects by using
soft Gaussian labels as in [8], [9], [22], [23]; and (3) because
the training samples are discrete, we can easily implement
the hard negative mining by focusing more on similar object
regions in background.

With Eq. (6) and Eq. (7), we compute the box classification
score §; for refined proposal p; via

Si=a-Uf+(1-a) 7 ©)

where « is a trade-off parameter and ﬂ;r denotes the positive
classification score in 7;.

C. Pyramid RolAlign

Existing refinement approaches like [6] adopt RolAlign
[24] to extract proposal features. Specifically, the features
of proposals are usually pooled to a fixed size (e.g., 6x6).
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Algorithm 1: Tracking with CRACT

Input: Image sequences {I}7_;, initial target box b; and
trained model CRACT;

Output: Tracking result {b: }7—,;

1 Crop target template z in Iy using b1;

2 Extract feature embeddings ¢s4(z) and finit for z;

3fort=21t T do

4 Crop the search region x in Iy using b:—1;

5 Extract feature embedding ¢s4(x) for x;

6

7

8

9

Extract proposals {p;}/_; < RPN(¢34(z), ¢3a(x));
Extract features {f;}i_, for proposals;

Box regression to obtain {r;}}; using Eq. (3);
Feature alignment to obtain { fl}fil using Eq. (5);

10 Box classification to obtain {3;}1_, using Eq. (9);

11 Select the best proposal to determine the target box b,
using Eq. (10) ;

12 Collect training samples based on b; and update the

discriminator when necessary;

Despite simplicity, such features may be constrained to local
target information and therefore sensitive to rotation and
deformation. To alleviate this problem, we introduce a pyra-
mid RolAlign (PRolAlign) module, which utilizes multiple
RolAlign operations to extract proposal features at different
pooling sizes. For example, for size 1x1, the proposal
features contain global target information. To leverage both
local and global cues, pooled features with different sizes are
concatenated for fusion to derive more robust local-global
proposal features. Figure 5 illustrates the architecture of our
PRolAlign module. In our implementation, the PRolAlign
module is designed to have three levels, i.e., 6x6, 3x3 and
1x1, for proposal feature extraction.

D. Training and Tracking

Training. The training of CRACT comprises two parts:
(1) offline training of Siamese RPN, box regression and
identifier, and (2) online training of discriminator in box
classification. The first part is trained using image pairs, and
the total training loss £ = frpn + freg + fide. Similar to [4],
[6], the ratios of anchors are set to [0.33,0.5,1, 2, 3] in RPN.
The intersection over union (IoU) thresholds to determine
anchors as positive (greater than threshold) or negative (less
than threshold) are 0.6 and 0.3. We generate up to 64 samples

TABLE I
COMPARISON WITH STATE-OF-THE-ARTS ON OTB-2015 [26]. THE BEST
THREE RESULTS HIGHLIGHTED IN RED, GREEN AND BLUE,
RESPECTIVELY, THROUGHOUT THE REST OF THE PAPER.

Tracker Where PRE Score ~ SUC Score
MDNet [25] CVPR’16 0.909 0.678
SiamFC [2] ECCVW’16 0.771 0.582
ECO [9] CVPR’17 0.910 0.691
PTAV [27] ICCV’17 0.849 0.635
SA-Siam [28] CVPR’18 0.865 0.657
DaSiamRPN [14] ECCV’18 0.880 0.658
SiamRPN++ [5] CVPR’19 0.915 0.696
C-RPN [7] CVPR’19 0.885 0.663
SPM-18 [6] CVPR’19 0912 0.701
SiamDW [12] CVPR’19 0.900 0.670
ATOM [8] CVPR’19 0.864 0.655
DiMP-50 [29] ICCV’19 0.900 0.688
SiamBAN [30] CVPR’20 0.910 0.696
Retina-MAML [31] CVPR’20 n/a 0.712
SiamAttn [32] CVPR’20 0.926 0.712
CRACT (Ours) - 0.936 0.726

from one image pair for RPN training. We choose at most 16
and 32 proposals for box regression and identifier training,
respectively. The IoU thresholds to determine the proposals
at positive (greater than threshold) or negative (less than
threshold) are both 0.5. The second part is online trained
during tracking. In particular, we draw 200 positive and
1000 negative samples in the first frame for initial training.
The optimization strategy for training and update follows [8]
except training samples are discrete.

Tracking by Proposal Selection. We formulate tracking as
selecting the best proposal. For each sequence, we extract
feature embeddings for target and initialize discriminator.
When a new frame arrives, we crop a search region and
perform RPN to generate proposals {p;}~ ,, which are
refined by CRAC to obtain {p;}¥;. We rank {p;}}¥, using
coarse and refined classification scores and the target box
b is determined by the proposal with the highest score as
follows,

b= arg;nax(ﬁ S+ (1 -=5)-é&) (10)

pi

where ¢; = ¢; and 5; denote respectively coarse and refined
scores of p;, and [ is a trade-off parameter. With tracking
target box b, we collect n positive and n~ negative samples
every K frames to update the discriminator. We leverage
short-long update strategy in [25]. Notice that, we only
update the two fc layers in the discrimination network.
To improve robustness, we use hard negative mining by
increasing the number of similar distractors in negative
samples. Algorithm | summarizes the tracking with CRACT.

IV. EXPERIMENTS

Implementation. We implement CRACT in python using
PyTorch [42] on a single GTX 1080 GPU with 8GB memory.
We utilize ResNet-18 [19] as backbone and borrow its
parameters trained on ImageNet [43]. The number N of
proposals during tracking is empirically set to 10. The trade-
off parameters o and 3 are 0.4 and 0.8, respectively. The
update interval K for the discriminator is 10. n™ and n~



TABLE 11
COMPARISON WITH STATE-OF-THE-ART TRACKERS ON UAV 123 [33].

Track ECOhc ECO SiamRPN RT-MDNet DaSiam ARCF  SiamRPN  ATOM  DiMP-50  SiamBAN SiamAttn = CRACT
racker [9] [9] [4] [34] RPN [14] [35] ++ [5] (8] [29] [30] [32] (ours)
Where  CVPR'I7 CVPR'I7 CVPR'I8 ECCV’ I8 ECCV'I8 CVPR'I9 CVPR'19 CVPR'I9 ICCV'19 CVPR20 CVPR20

PRE  0.725 0.741 0.748 0.772 0.796 0.670 0.807 0.856 0.858 0.833 0.845 0.860
SUC  0.506 0.525 0.527 0.528 0.586 0.470 0.613 0.642 0.653 0.631 0.650 0.664
TABLE III
COMPARISON WITH STATE-OF-THE-ART TRACKERS ON NFS [36].
Tracker HCF HDT MDNet  SiamFC ECOhc ECO BACF UPDT ATOM  DiMP-50  SiamBAN  CRACT
[37] [38] [25] [2] 9] [39] [40] [8] [29] [30] (ours)
Where ICCV'15 CVPR'I6 CVPR'16 ECCVW'I6 CVPR'I7 _ CVPR'I7 ICCV' 17 ECCV'I8 CVPR'IO ICCV'I0 CVPR20 -
SUC  0.295 0.403 0.429 0.401 0.459 0.466 0.341 0.542 0.590 0.619 0.594 0.625
TABLE IV
COMPARISON WITH OTHER TRACKERS ON VOT-2018 [41].

Track SiamFC ECO SA-Siam  SiamRPN  UPDT DaSiam  SiamRPN ATOM  DiMP-50  SiamBAN Retina-  CRACT
racker 2] [9] [28] [4] [40] RPN [14]  ++ [5] (8] [29] (30] MAML [31]  (ours)
Where ECCVW'16 CVPR'I7 CVPR'I8 CVPR'I8 ECCV' I8 ECCV'I8 CVPR'I9 CVPR'1I9 ICCV'19 CVPR20 CVPR20 -

Acc. 0.500 0.480 0.543 0.588 0.536 0.590 0.600 0.590 0.597 0.597 0.604 0.611

Rob. 0.590 0.280 0.224 0.276 0.184 0.280 0.234 0.204 0.153 0.178 0.159 0.175

EAO 0.188 0.276 0.325 0.384 0.376 0.383 0.414 0.401 0.440 0.452 0.452 0.455
TABLE V

are set to 50 and 200, respectively. The learning rate of the
offline training part is 102 with a decay of 10~*. It is trained
end-to-end with SGD by 50 epochs. We apply LaSOT [44],
TrackingNet [45], GOT-10k [46] and COCO [47] for offline
training, excluding the one under testing. The online training
and update of the discriminator utilizes the strategy in [8].
Our tracker runs at 28 frames per second (fps). The imple-
mentation will be available at https://hengfan2010.
github.io/publications.html.

A. State-of-the-art Comparison

OTB-2015 [26]. OTB-2015 is a popular tracking benchmark
with 100 videos. We compare CRACT with 15 trackers. The
comparison is demonstrated in Table I with precision (PRE)
and success (SUC) scores using one-pass evaluation (OPE).
CRACT achieves the best results with 0.936 PRE score and
0.726 SUC score, outperforming the second best by 1.0%
and 1.4%, respectively. Compared with SiamRPN++ with
0.915 PRE score and 0.696 SUC score, we achieve 2.1% and
3.0% gains owing to RAC. Besides, compared to proposal
refinement method SPM-18, which can serve as our baseline,
with 0.912 PRE score and 0.701 SUC score, CRACT with
cascaded refinement shows 2.4% and 2.5% improvements,
evidencing effectiveness in boosting tracking robustness.

UAV123 [33]. UAV 123 focuses on aerial object tracking and
contains 123 videos. We compare CRACT to 11 trackers
and the results are displayed in Table II. CRACT obtains the
best 0.860 PRE score and 0.664 SUC score, outperforming
the second best DiMP-50 with 0.858 PRE score and 0.653
SUC score. In comparison to SiamRPN++ with 0.613 SUC
score, we achieve 5.1% absolute gain, which clearly shows
the advantage of our proposal refinement.

COMPARISON WITH OTHER TRACKERS ON TRACKINGNET [45].

Tracker Where PRE NPRE Score N

Score Score

C-RPN [7] CVPR’I9 0.619 0.746 0.669
SiamRPN++ [5]  CVPR’19 0.694 0.799 0.733
SPM [6] CVPR’19 0.661 0.778 0.712

ATOM [8] CVPR’19 0.648 0.771 0.703
DiMP-50 [29] ICCV’19 n/a 0.801 0.740
Retina-MAML [31]  CVPR’20 n/a 0.786 0.698
SiamAttn [32] CVPR’20 n/a 0.817 0.752
CRACT (ours) - 0.724 0.824 0.754

NfS [36]. NfS consists of 100 sequences for evaluation on
high frame rate videos. We evaluate our approach on 30 fps
version. Table III demonstrates our result and comparison
to 11 trackers. Our CRACT achieves the best result with
0.625 SUC score, which outperforms the second best DiMP-
50 with 0.619 SUC score by 0.6%.

VOT-2018 [41]. VOT-2018 contains 60 videos for track-
ing. We compare CRACT with 11 trackers and Table IV
demonstrates the comparison results. Our tracker achieves
the best of 0.455 on EAO. Compared to SiamRPN++ which
also regards tracking as proposal selection, CRACT obtains a
performance gain of 4.1% in term of EAO, which shows the
effectiveness of our hierarchical RAC in refining proposals
for better selection. Compared to the recent DiMP-50 with
0.440 EAO score, our method achieves 1.5% improvement.

TrackingNet [45]. TrackingNet offers 511 videos for evalu-
ation. Table V shows comparison results of CRACT with 7
state-of-the-art trackers. Our method achieves the best results
of 0.724, 0.824 and 0.754 on PRE, NPRE and SUC scores,
outperforming recent trackers SiamAttn and DiMP-50.



TABLE VI
COMPARISON RESULTS ON GOT-10K [46].

Tracker MDNet SiamFC SPM ATOM  DiMP-50 CRACT
[25] [2] (6] [8] [29] (ours)
Where CVPR’16  ECCVW’16 CVPR’19 CVPR’19 ICCV’19 -
AO 0.299 0.348 0.513 0.556 0.611 0.620
SRo.50 0.303 0.353 0.593 0.634 0.717 0.728
SRo.75 0.099 0.098 0.359 0.402 0.492 0.496

Norm. Precision plots of OPE on LaSOT Testing Set Success plots of OPE on LaSOT Testing Set
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Fig. 6. Comparison with state-of-the-arts on LaSOT [44].

LaSOT [44]. LaSOT is a recent long-term tracking bench-
mark. We evaluate CRACT under protocol II. Figure 6 shows
our results and comparison with 9 state-of-the-arts. CRACT
achieves the second best results with 0.628 normalized PRE
score and 0.549 SUC score, slightly lower than the 0.642
normalized PRE score and 0.560 SUC score by DiMP-50.
Compared with ATOM and SiamRPN++ with 0.499 and
0.495 SUC scores, CRACT shows clear performance gains
of 5.0% and 5.4%.

GOT-10k [46]. GOT-10k offers 180 challenging videos for
short-term tracking evaluation. We compare CRACT to 5
trackers as displayed in Table VI. CRACT performs the
best with 0.620 AO score, outperforming the second best
DiMP-50 with 0.611 AO score. Besides, CRACT obtains a
significant performance gain of 10.7% compared to SPM.

Figure 7 demonstrates qualitative tracking results on chal-
lenging videos. As shown in Figure 7, our CRACT is able
of robustly locate the target object in all sequences.

B. Ablation Study

Cascade structure. This paper introduces a novel proposal
refinement module with cascade structure. We verify its
effectiveness by designing a refinement module with par-
allel structure by removing feature alignment. Table VII
shows results of parallel and cascade refinement. We observe
that CRACT with parallel refinement achieves SUC scores
of 0.713 and 0.609 on OTB-2015 and NfS. By utilizing
cascaded proposal refinement, the results are significantly
improved to 0.726 (1.3% gain) and 0.625 (1.6% gain), which
clearly evidences the advantage of cascade architecture.

Identification-discrimination. We propose a joint module
of discrimination and discrimination in CRAC for proposal
classification. In fact, either the identifier or discriminator
can be used individually for proposal classification. However,

] [ W ]
DiMP-50 ATOM SiamRPN++ SPM-18
I N D

ECO MDNet CRACT Groundtruth

Fig. 7. Qualitative tracking results of CRACT and comparison with six
tracking algorithms on four challenging sequences in OTB-2015 (from top to
bottom: Clifbar, Diving, Motorrolling and Liquor). Our method can robustly
locate the target object in different challenges.

TABLE VII
COMPARISON OF SIMULTANEOUS AND HIERARCHICAL REFINEMENT.

Parallel Cascaded
refinement  refinement
SUC on OTB-2015 0.713 0.726
SUC on NfS  0.609 0.625
Speed 31 fps 28 fps
TABLE VIII

COMPARISON (IN SUC) BETWEEN INDIVIDUAL AND JOINT USE OF
IDENTIFIER AND DISCRIMINATOR.

Identifier only  Discriminator only  Joint

OTB-2015 0.715 0.712 0.726
NfS 0.606 0.614 0.625
Speed 43 fps 36 fps 28 fps

TABLE IX
COMPARISON BETWEEN ROIALIGN AND PYRAMID ROIALIGN.

RolAlign = PRolAlign
SUC on OTB-2015 0.719 0.726
SUC on NfS 0.615 0.625
Speed 32 fps 28 fps

each has advantages and disadvantages. The identifier can
easily recognize the target from non-semantic distractors
using powerful distance measurement. In addition, it avoids
the contamination by background owing to no update. Nev-
ertheless, it cannot leverage appearance information. The
discriminator works well in suppressing semantic distractors
through online learning background information. Nonethe-



less, it has a risk of model contamination caused by update.
By collaboration of identifier and discriminator, they can
complement each other for better robust proposal selection.
We verify the effects of individual and joint use of identifier
and discriminator. Table VIII shows the comparison. Using
identifier only and discriminator only achieves SUC scores
of 0.715 and 0.712 on OTB-215. with joint consideration
of them, the performance is significantly boosted to 0.726.
Likewise, the best result of 0.625 SUC score is obtained
when combining identifier and discriminator.

Pyramid RolAlign. Different from current tracker [6] using
RolAlign [24] for proposal extraction, we present a simple
yet effective PRolAlign to exploit global and local cues.
Table IX shows the results with RolAlign and our PRolAlign.
We observe that PRolAlign improves the SUC scores from
0.719 to 0.716 on OTB-2015 and from 0.615 to 0.625
on NfS, respectively, showing the advantage of exploring
various cues in performance improvement.

V. CONCLUSION

In this paper, we propose a novel tracker dubbed CRACT
for accurate and robust tracking. CRACT first extracts a
few coarse proposals and then refines each proposal using
the proposed cascaded regression-align-classification mod-
ule. During inference, the best proposal determined by both
coarse and refined classification scores is selected to be the
final target. Experiments on seven benchmarks demonstrate
its superior performance.
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