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We present fully general relativistic simulations of the quasi-circular inspiral and merger of
charged, non-spinning, binary black holes with charge-to-mass ratio λ ≤ 0.3. We discuss the key fea-
tures that enabled long term and stable evolutions of these binaries. We also present a formalism for
computing the angular momentum carried away by electromagnetic waves, and the electromagnetic
contribution to black-hole horizon properties. We implement our formalism and present the results
for the first time in numerical-relativity simulations. In addition, we compare our full non-linear
solutions with existing approximate models for the inspiral and ringdown phases. We show that
Newtonian models based on the quadrupole approximation have errors of 20%–100% in key gauge-
invariant quantities. On the other hand, for the systems considered, we find that estimates of the
remnant black hole spin based on the motion of test particles in Kerr-Newman spacetimes agree with
our non-linear calculations to within a few percent. Finally, we discuss the prospects for detecting
black hole charge by future gravitational-wave detectors using either the inspiral-merger-ringdown
signal or the ringdown signal alone.

I. INTRODUCTION

In previous work [1, 2], we initiated a systematic pro-
gram to study the interactions between charged black
holes in full non-linear Einstein-Maxwell theory. These
explorations are relevant for gravitational-wave astron-
omy, exotic astrophysics, and fundamental physics (such
as modified gravity and beyond-standard-model physics).
We first review these applications in Sec. IA. We sum-
marize the main goals and results of this work in Sec. I B,
and outline the structure of the manuscript and conven-
tions adopted in Sec. I C. Readers that are mainly inter-
ested in our new results can skip Sec. IA.

A. Motivation for non-linear simulations in

Einstein-Maxwell theory

Over the past few years there has been a growing in-
terest in modified theories of gravity to perform strong-
field tests of general relativity. The data collected by
the Event Horizon Telescope [3] allowed for new tests
of gravity around supermassive black holes, and the ob-
servation of gravitational waves by the LIGO-Virgo col-
laboration [4] enabled the first constraints on deviations
from Einstein’s theory in the highly dynamical strong-
field regime (see, e.g. [5–8]). In turn, this latter achieve-
ment was made possible by advancements in the field of
numerical relativity that has been able to produce the
accurate gravitational-wave models that are needed to
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detect these signals and perform the associated param-
eter estimations. Therefore, it should come to no sur-
prise that the scarcity of simulations of compact binary
mergers in modified theories of gravity [9] severely lim-
its out our ability to use gravitational-wave observations
to place stronger constraints. The reason for this short-
age is that many models of modified gravity are “sick”
(e.g., lack of well-posedness, ghosts, etc., see [10] for a
discussion), thereby making these computations partic-
ularly challenging or impossible. Hence, with the ex-
ception of a few cases [11–13], progress in this direction
is usually made by means of order-reduced approaches,
and not solutions of the full theory (see, e.g. [14–18]).
In contrast to modified gravity, Einstein-Maxwell theory
admits a well-posed initial-value problem, while sharing
other non-trivial properties with modified gravity (e.g,
emission of dipole radiation1). Moreover, some modified
gravity theories reduce effectively to Einstein-Maxwell in
specific limits (e.g. [19]). Therefore, the inspiral and
merger of charged black holes constitutes, in a sense,
the middle ground between traditional general relativ-
ity and modified theories of gravity. Despite these facts,
the non-linear dynamics of charged binary black holes is
uncharted territory, with [20–24] being the main works
on the subject.

Studying charged black holes in Einstein-Maxwell the-
ory not only provides a way to capture some features
of specific modified theories in a controlled environment,
but also simulations of such systems have direct astro-
physical and fundamental physics applications. First,
while black holes are expected to be electrically neu-
tral [25–29], there is no definitive observational sup-

1 We note that this is not gravitational dipole radiation.
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port for this expectation. Therefore, this assumption
must be tested. Gravitational-wave observations offer
a model-independent way to test this assumption. Sec-
ond, “charge” is an umbrella term that applies to differ-
ent models in exotic astrophysics and beyond-standard-
model physics, including dark matter with hidden charge
and interacting with dark electromagnetism (e.g. [30–36]
or dark matter with fractional charge [37–46]), as well as
modified theories of gravity with additional vector fields
sourced by a “gravitational” charge [19]. Furthermore,
through a duality transformation, “charge” can also be
interpreted as magnetic charge. Recently, black holes
with magnetic charge in astrophysics have received some
attention (e.g. [47–51]), with focus on primordial black
holes in [47, 48]. Gravitational waves can be used to di-
rectly test whether black holes have any kind of charge.
This was the goal of our previous paper on the sub-
ject [2], where we found that charge-to-mass ratios of
up to λ = 0.32 are compatible with GW150914 [52], as-
suming that the role of black hole spins can be neglected.
Upper bounds on black hole charge can be translated to
constraints on the properties of the dark matter particles
in the aforementioned models or on the parameters of
modified gravity theories [2].
Numerical-relativity simulations of charged black holes

can be used to produce gravitational-wave templates
that include charge (for example, by hybridizing analyt-
ical waveforms with numerical ones, as done in [53–58]).
Since the detection of gravitational waves by the LIGO-
Virgo interferometers relies heavily on matched-filtering
techniques [59–61], extended gravitational-wave template
banks that encode additional physics are necessary for
the parameter estimation [55, 62–65]. A phenomenologi-
cal model based on numerical relativity with charge can
also be used in Bayesian analyses to directly constrain
this parameter in LIGO-Virgo signals.
Finally, charge provides a way for a black hole to reach

extremality (along with the spin). Thus, non-linear stud-
ies of charged binary black holes offer new pathways to
investigate cosmic censorship in conditions where it has
never been probed before. For instance, it would be
of interest to tackle the question: “can black holes be
overcharged?”, going beyond previous perturbative ap-
proaches [66, 67].

B. Goals of this work

In this paper, we continue our explorations of the non-
linear interaction of charged black holes by approaching
the problem of inspirals and mergers on two different
thrusts. On one side, we present necessary ingredients
for performing long-term and stable numerical relativ-
ity simulations of the quasi-circular inspiral of charged

2 We are using geometrized units. See Sec. I C

binary black holes. In particular, we discuss how Kreiss-
Oliger dissipation [68] helps (or impedes) these evolu-
tions. We also describe the formalism that we adopt
for our evolutions detailing some features that have not
been included in previous works (e.g., the computation of
the angular momentum carried away by electromagnetic
waves with the Newman-Penrose formalism, and the con-
tribution of electromagnetic fields to the quasi-local spin
of a black hole). Using the gravitational waveforms gen-
erated by our simulations, we explore black hole charge
detectability by future ground- and space-based gravi-
tational wave detectors. The second thrust of this work
consists of analyzing existing approximate models for the
inspiral of charged black hole binaries and their remnant
black holes, and comparing them with our non-linear so-
lutions.

In [2], we presented the first simulations of the quasi-
circular inspiral and merger of charged black holes in
full general relativity with valid initial data. Here, we
present more details about these computations. We fo-
cus on systems with mass ratio q = 29/36, as inferred
for GW150914 [52, 69], and restrict the charge-to-mass
ratio λ of the individual black holes to values |λ| ≤ 0.3.
The mass ratio is close to unity, so we expect that the
conclusions presented in this work will hold for equal-
mass binaries. We consider three systems: (1) binary
black holes with same charge-to-mass ratio in magnitude
and sign, (2) binary black holes with charge-to-mass ra-
tio equal in magnitude but oppositely charged, and (3)
binary black holes in which only the primary is charged.
In this first exploration, we do not study cases where the
black holes have different (non-zero) charge-to-mass ratio
λ.

For the comparison of our solutions with existing
approximations for the inspiral phase, we consider a
model that is based on Newtonian physics coupled with
the quadrupole formula to incorporate radiation reac-
tion. We will refer to this model with the letters “QA”
(quadrupole approximation). Given its simplicity, this
model has been routinely used to study the merger of
charged black holes (e.g. [36, 44, 47–49, 70, 71]). Prior
work on head-on collisions of charged black hole reported
good agreement in some quantities between these approx-
imate calculations and full non-linear simulations [20, 21].
Therefore, a goal of this work is to determine the errors of
the Newtonian approximation when applied to the quasi-
circular inspiral of charged black holes. A key result of
our study is that Newtonian models can be successfully
applied to obtain order-of-magnitude estimates of observ-
ables or to build intuition, but they cannot be used for
precision studies of these mergers.

A second focus of this paper is on the properties of
the post-merger black hole and its quasi-normal modes.
This is especially relevant for LISA, which will detect
the ringdown signal arising from the merger of super-
massive black holes with high signal-to-noise ratio [72].
The quasi-normal modes can be used to test general rel-
ativity [73], as their characteristic frequencies depend on
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the spin, mass, and charge of the remnant black hole in
a known way. Here, we consider the method described
in [74] to estimate the remnant black hole spin using con-
servation arguments, and we compare it with our non-
linear solutions. As we discuss later, we find that the
quasi-normal-mode properties do not change much across
the simulations considered here. This is due to the value
of the final spin and to the relatively weak dependence
of the quasi-normal-modes on the charge for the values
of λ we consider.

C. Structure of the paper and conventions

The structure of the remainder of the paper is the fol-
lowing. In Sec. II, we describe the formalism that we
adopt to perform simulations of the quasi-circular inspi-
ral and merger of charged black holes. In particular,
we discuss how to obtain stable quasi-circular inspirals,
and highlight some new features of the approach. Next
(Sec. III), we outline the simplest (Newtonian) model
for the quasi-circular inspiral of non-spinning, charged
binary black holes. Sec. IV describes what we can say
about the remnant black hole using results of relativistic
calculations and perturbation theory. In Sec. V, we follow
the black holes through their coalescence: first (Sec. VA)
we study the inspiral and compare the non-linear solution
with the Newtonian model, then (Sec. VB) we discuss re-
sults from the full simulations, and finally (Sec. VC) we
report on the properties of the remnant black hole. Con-
clusions and future directions are collected in Sec. VI.

We adopt geometrized units with G = c = 1, with G
being Newton’s constant and c the speed of light in vac-
uum. We also adopt Gaussian units for the electromag-
netic sector. Similarly, we denote the different simula-
tions adding a superscript and a subscript when we report
physical quantities. For example, e++, e

+
−, and e

+
0 indicate

the eccentricity measured in the evolutions where black
holes have charges with the same signs, with opposite
signs, and only one charged black hole, respectively.3 In
geometrized units, quantities have units of length. Here
we report all the results in units of the Arnowitt-Deser-
Misner (ADM) mass of the system M [75]. We use the
letters a, b, c, d for spacetime indices, and i, j, k for spatial
ones. For everything else, we follow the same conventions
as in [76].

3 For figures reporting different charge-to-mass ratios, we use a
consistent style: red dashed lines with circles are for systems
with both black holes charged with the same sign, blue dotted
lines with squares are for oppositely charged ones, and green dash
dotted lines with triangles are for evolutions in which only one
black hole is charged.

II. METHODS AND FORMALISM

In this section, we describe the methods we adopt for
solving the full non-linear Einstein-Maxwell equations
(Sec. II A). We discuss our approach to building quasi-
circular initial data (Sec. II B) and how to achieve long-
term, stable evolutions (Sec. II C). We also describe the
formalism and implementation of two new features that
have not appeared in previous simulations: the contri-
bution of the electromagnetic fields to black-hole horizon
properties (Sec. IID), and the angular momentum car-
ried away by electromagnetic waves (Sec. II E).

A. Equations and numerical setup

In this paper, we study systems described by the
source-free Einstein-Maxwell equations [77] (electrovac-
uum4)

Rab −
1

2
gabR = 8πTEM

ab , (1a)

∇aF
ab = 0 , (1b)

∇a
⋆F ab = 0 , (1c)

where Rab is the Ricci tensor associated with the metric
gab, R = Ra

a, Fab = 2A[a,b] is the Maxwell field-strength
tensor, with Aa the electromagnetic four-vector poten-
tial, and ⋆Fab is its Hodge dual, defined by

⋆F ab =
1

2
ǫabcd Fcd , (2)

with ǫabcd being the Levi-Civita tensor. The electromag-
netic stress-energy tensor is given by

4πTEM
ab = FacFbdg

cd − 1

4
gabFcdF

cd . (3)

We solve the coupled Einstein-Maxwell equations in a
3+1 decomposition of the spacetime (for more details, see
Sec. II A in [1], or textbooks on the subject, e.g. [79–81])
and use the Einstein Toolkit [82–84] for the numerical
integration.

The initial data are generated by
TwoChargedPunctures, which solves the Hamil-
tonian constraint equation using a Bowen-York
approach [85, 86]. We developed and tested
TwoChargedPunctures in [1], starting from the widely
used TwoPunctures code [87]. TwoChargedPunctures

takes as input the locations, charges, bare masses,
angular, and linear momenta of each of the two black

4 In all our discussion, we assume that the black holes are in vac-
uum (see [78] for a discussion on the role of the environment).
We also ignore Schwinger pair-production and any other quan-
tum effects.
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holes, and it can build arbitrary configurations. We
start our simulations at a coordinate distance of 12.1M ,
with the two black holes having fixed charge-to-mass
ratio λ and mass-ratio 29/36. In this first study, we only
explore systems with the two black holes having the
same λ (up to the sign), or with only one charged black
hole. In Sec. II B, we discuss how to choose the initial
data parameters to achieve quasi-circular inspirals.

The evolution of the spacetime is performed with
the Lean code [88], which implements the Baumgarte-
Shapiro-Shibata-Nakamura (BSSN) formulation of Ein-
stein’s equations [89, 90]. Lean evolves the conformal
factor χconf = γ−1/6, with γ determinant of the 3-
metric. We adopt as spacetime gauges the 1 + log
and the Γ − driver conditions [91, 92]. The electro-
magnetic fields are evolved with the massless version of
the ProcaEvolve [23] code. The code evolves the elec-
tric field Ei, the scalar and vector potentials φ and Ai,
along with an auxiliary variable Z that is used to control
the Maxwell constraints. The precise equations solved
by ProcaEvolve are presented in the Appendix of [23].
These codes are publicly available as part of the Canuda
suite [93, 94] and have been extensively tested and used
throughout the years. We use sixth-order accurate finite
differences for the spatial derivative, and we integrate in
time with a fourth-order Runge-Kutta method.

Apparent horizons are located using
AHFinderDirect [95, 96], and their physical properties
are measured with QuasiLocalMeasuresEM, a version
of QuasiLocalMeasures [97] updated to implement
the isolated horizon formalism in full Einstein-Maxwell
theory (see Sec. II C in [1]). This extension is neces-
sary when considering black holes in the presence of
electromagnetic fields, as we discuss in Sec. IID.

We extract waves via the Newman-Penrose formalism
as implemented in NPScalars Proca (see, Sec. II E) and
recover the gravitational-wave strain with a time integra-
tion using the fixed frequency integration method [98].
We consider a finite extraction radius of 110.69M . Re-
sults are approximately invariant if we consider different
extraction radii or if we extrapolate the waves to infinity
with the method described in [65].

We work with Cartesian grids with Berger-Oliger adap-
tive mesh refinement as provided by Carpet [99]. We use
two sets of nine nested refinement levels that are centered
on and track the centroid of the black hole apparent hori-
zons. The resolution of our simulations is M/65, where
M is the total ADM mass, with additional resolutions
to perform convergence study (which we reported in [2]).
The outer boundary is at 1033M and we performed se-
lected simulations to verify that the location does not
affect the evolution. Some more details on evolution and
grid parameters used in our simulations are reported in
Appendix B.

B. Controlling the eccentricity

In this work, we focus on quasi-circular inspirals.
When considering charged black holes, the effect of the
electromagnetic fields must be taken into account to
achieve a low-eccentricity coalescence. Here, we describe
a simple method to incorporate the effect of charge. This
approach successfully yields quasi-circular inspirals for
the values of λ explored in this study.

First, it is useful to summarize how quasi-circular in-
spirals are obtained in the case without charge. The sim-
plest way is to start from Newtonian physics. Consider
two point particles with mass m1, m2, and assume that
they are in a circular Keplerian orbit. The orbital angular
velocity Ω of each particle is (restoring the gravitational
constant G)

Ω =

√
G(m1 +m2)

d3
, (4)

wheremi is the mass of the i-th component, and d the or-
bital separation. If we denote the mass-ratio q = m1/m2,
the linear velocity of two particles becomes

v1 =
Ωd

1 + q
and v2 = q

Ωd

1 + q
. (5)

In numerical integrations, black holes are assumed to be-
have like these point masses, so pi = mivi is the ini-
tial linear momentum assigned to the i-th black hole.
Evolutions initialized with such Newtonian values have
significant residual eccentricity [100], hence high-order
post-Newtonian (PN) expansions are used to compute
more accurately the linear momenta necessary for quasi-
circularity. When going beyond the Newtonian approxi-
mation, radial contribution to the velocities appear.

Now, let us endow the point particles with charges
q1 = λ1m1, and q2 = λ2m2 (with λ being the charge-
to-mass ratio). In Newtonian physics, both electromag-
netism and gravity are central forces, so, from the point
of view of the dynamics, this system is indistinguish-
able from one with uncharged bodies but gravitational

constant G̃ = (1 − λ1λ2)G. For this reason, one can

incorporate the effect of charge by rescaling G to G̃.
We can use this fact to achieve low-eccentricity inspi-
rals for charged black holes. First, we compute the lin-
ear momenta needed for a quasi-circular coalescence of
the black holes without charges using the highest order
post-Newtonian expansion available (in our simulations
we used 2.5PN). Then, we rescale these momenta by√
1− λ1λ2 to introduce the effect of electromagnetism.

This simple method is effective at keeping eccentricity
under control for the values of charge-to-mass ratio ex-
plored here, as we show next.

Following [100], we estimate the residual eccentricity
by fitting the time derivative of the coordinate separation
of the two black holes ḋ with a function of the form

ḋ(t) = A0 +A1t+B sin (ωt+ ϕ) . (6)
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In Fig. 1, we show the coordinate separation d and its
derivative ḋ for the most extreme simulations that we are
considering here. The scale of the amplitude of the oscil-
lations in the bottom panel already provides an idea of
the (small) amount of residual eccentricity. The very be-
ginning of the time series is noisy due to the relaxation of
the initial data, so we exclude that part of the simulation.
We perform the fit with the Levenberg-Marquardt algo-
rithm [101, 102] for non-linear least-square fitting as im-
plemented in MINPACK. As in [100], we find that fits are
not perfect, so the eccentricities reported should be con-
sidered as estimates. In general, we find that the first or-
bit is the one with the most eccentricity. Fitting the first
three orbits we find e++ ≈ 0.01, e+− ≈ 0.02, and e+0 ≈ 0.01.
The eccentricity is significantly reduced if we consider
the next three orbits after the first: e++ ≈ 2× 10−3,

e+− ≈ 4× 10−3, and e+0 ≈ 1× 10−3.
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FIG. 1. First few orbits for the simulations with charge-to-
mass ratio of λ = 0.3. Top panel: (coordinate) separation
d of the centroid of the two black holes as a function of the
(coordinate) time. Bottom panel: time derivative of d, this
quantity can be used to estimate the residual eccentricity with
Eq. (6). The initial spike is due to the initial data relaxation,
and is not included in our analyses. Note that these quantities
are not gauge-invariant.

These values of eccentricity found are remarkably small
considering the simplicity of the method employed. Sim-
ulations with higher charge-to-mass ratio, especially in
the case of opposite charges, may have a significant resid-
ual eccentricity. There are at least three ways to improve
our method and further remove the eccentricity.
First, one can adapt iterative eccentricity-reduction

schemes, such as those described in [100, 103, 104] for
uncharged black holes, to systems with charge. Alterna-
tively, one can use post-Newtonian methods that include
directly electromagnetic fields to estimate the linear mo-
menta. The two methods are not mutually exclusive,
and for simulations with extreme charge both may be re-
quired to produce quasi-circular inspirals. Finally, one
can always start the evolution from a larger initial sep-

aration and let gravitational and electromagnetic waves
circularize the orbit.

C. Achieving long-term stable evolutions

Performing long-term, stable evolutions of black holes
in vacuum in 3+1 dimensions used to be the greatest
challenge in numerical relativity. Through substantial
developments over the past two decades, solving the Ein-
stein equations in vacuum is considered a solved prob-
lem, and there is considerable knowledge on the topic.
However, simulations of black holes with electromagnetic
fields are still in their infancy. It is not yet clear how
much of the technology developed for vacuum spacetimes
carries over to electrovacuum spacetimes. Being able to
perform long-term and stable evolutions of charged black
holes is therefore not granted. Indeed, the simulations
presented in this work are among the longest and most
sophisticated to date, and presented some challenges. We
found that adding artificial dissipation to all evolved vari-
ables in a specific way is critical for successful simula-
tions. We found that standard recipes for artificial dissi-
pation that work in the case of vacuum binary black hole
spacetimes lead to blowups in the case of electrovacuum
binary black holes.

Artificial dissipation stabilizes evolutions by remov-
ing high-frequency unstable modes. This approach has
proven necessary to achieve long-term simulations in
many cases (see, e.g. [105–111]). The most common fla-
vor of artificial dissipation adopted in numerical relativ-
ity is known as Kreiss-Oliger dissipation [68]. This tech-
nique consists of introducing artificial diffusion by adding
a term to the evolution equation of a variable U as follows
(schematically)

∂tU = · · ·+ (−1)
(p+3)/2 ǫ

2p+1
∆xp∂p+1

x U , (7)

where · · · indicate the right-hand-side of the evolution
equation of U , p is the order of the Kreiss-Oliger dissi-
pation, ∆x is the grid spacing and the numerical fac-
tor ǫ∆xp/2p+1 is the diffusivity, which represents the
strength of the dissipation. Note that although we only
add a spatial derivative in the x direction in Eq. (7), the
actual operator has also corresponding y and z deriva-
tives. For simplicity of the presentation we do not write
these extra terms here. In the infinite resolution limit,
this new term vanishes and the equations are the ones
we started with. However, at finite resolution, it is im-
portant to ensure that the modification does not affect
the convergence order of the solution. Thus, p is typi-
cally chosen to be greater than the convergence order of
the evolution operator. Moreover, p has to be odd, so
that this modification is an even-order parabolic opera-
tor (since p+1 is even). In Appendix A, we present some
details on conditions that must be satisfied for numerical
stability.

As in previous works, our simulations quickly crash
(in the first 100M) if we do not add artificial diffusion.
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Since our evolutions are sixth-order accurate, we add a
seventh-order (p = 7) dissipation to all evolved variables
(i.e., including the spacetime and electromagnetic fields
and the gauge variables). The strength of the dissipa-
tion is determined by the coefficient ǫ (see, Appendix A
for details). We explored three prescriptions for setting ǫ
on different refinement levels: (1) constant ǫ, (2) propor-
tional to the local Courant factor ∆t/∆x, and (3) “con-
tinuous” ǫ (described below). The rationale behind (1) is
to have a form that respects the local Courant stability
condition independently of ∆x as long as the Courant
factor is the same everywhere. It also has increased ef-
fective dissipation in regions with coarser resolution. Nu-
merical stability requirements often require that different
refinement levels be evolved with different Courant fac-
tors, so prescription (2) amends (1) by modifying ǫ when
the Courant factor is changed to ensure that Courant
stability conditions are met (see Appendix A). While
(1) and (2) are commonly used in numerical relativity,
(3) is introduced in this paper and consists of setting

ǫi = ǫn(∆xi/∆xn)
−p

, where i = 1, 2, . . . , n is the index
indicating the refinement level (larger i indicating finer
level), with n the maximum number of refinement levels,
and ∆xi the grid spacing of refinement level i. The above
prescription can also be written as ǫi = ǫ0/(2

i−n)
p
, since

refinement level grid spacings differ by factors of 2, i.e.,
∆xi−1 = 2∆xi. Thus, the diffusivity entering Eq. (7) for

each level becomes ǫn(∆xi/∆xn)
−p

∆xpi /2
p+1 = ǫn∆x

p
n/

2p+1. In other words, this new prescription guarantees
that the effective diffusivity is the same everywhere on
the grid, ensuring that the same parabolic diffusion op-
erator is added to the set of equations on each refinement
level. Moreover, the artificial diffusion again goes to 0 at
order p, and thus does not affect the expected order of
convergence of the finite difference scheme. We call this
continuous, because prescriptions (1) and (2) have jumps
in the effective diffusivity across refinement levels that
introduce discontinuities in the equations. Hence, the
parabolic operator added to the equations depends on
the refinement level, which results in effectively solving a
different system of partial differential equations on differ-
ent refinement levels. This difference vanishes in the limit
of infinite resolution. To our knowledge our approach (3)
for setting the Kreiss-Oliger diffusivity on adaptive-mesh-
refinement grids has not been discussed before. We found
that this is a crucial ingredient for long-term and stable
numerical evolutions of charged black holes.

To demonstrate the performance of each of the three
prescriptions for setting ǫ, we consider a high-resolution
simulation of a single charged, non-spinning black hole
with mass M = 1 and charge Q = 0.5M . In Fig. 2,
we show the L2 norm of the violation of the Hamilto-
nian constraint (excluding the domain interior to the ap-
parent horizon) for each dissipation prescription. More
details about our numerical setup are provided in Ap-
pendix B. The figure is representative of how our binary
charged black hole simulations evolve, and demonstrates

that there is unstable growth in some variables.5 We ver-
ified that this instability is numerical and not physical,
since its onset depends on the resolution of the simula-
tion: the higher the resolution, the earlier the instability
takes place. This behavior was not reported in previ-
ous studies without charge, suggesting that the instabil-
ity first arises in the electromagnetic sector, and then
feeds the gravitational one. Indeed, we observe the nu-
merical instability starts first in electromagnetic quanti-
ties, such as the Gauss constraint. We also found that
the unstable growth of the constraint first occurs near
the outer boundary, suggesting that the approximate
outgoing-wave boundary conditions may be the trigger
of the instability. Finally, we noticed that a fourth-order
accurate finite-difference evolution (with fifth order dis-
sipation) and constant ǫ does not lead to the same nu-
merical explosions at the same resolution and within the
simulation times we considered. What is important to
note regarding the goals of this paper is that prescription
(3) allows us to perform long evolutions with constraints
converging to zero when the resolution is increased when
adopting sixth-order accurate finite differences. Study-
ing the interplay between dissipation, convergence order
of the numerical scheme, and boundary conditions is left
for future works.

0 500 1,000 1,500 2,000 2,500
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ǫ = constant

ǫ ∝ ∆t/∆x
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FIG. 2. Evolution of the L2 norm of the Hamiltonian con-
straint (outside the horizon) for the three different Kreiss-
Oliger dissipation prescriptions. The “continuous” dissipa-
tion prescription introduced in this work is the only one that
allows long-term and stable simulations with seventh-order
Kreiss-Oliger dissipation and sixth-order accurate finite dif-
ferences.

For completeness, in Appendix C, we report two for-
mulations that we experimented with to further improve

5 The jumps in the constraints at the beginning of the simulations
are due to an initial pulse in the gauge variables propagating
outwards from the center of the simulation. Every time this
pulse crosses a refinement boundary, it is turned into constraint-
violating modes through refinement level interpolations. This
behavior in the constraints is well-known [112].
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magnetic fields in flat spacetime and provides physical
arguments to build intuition on what the different scalars
represent.
In asymptotically flat spacetimes, the Newman-

Penrose scalars have a known fall-off behavior at large
spatial distances (the so-called “peeling theorem” [122])

Φ0 ∼ 1

r3
, Φ1 ∼ 1

r2
, Φ2 ∼ 1

r
, (9)

where the ∼ indicates the asymptotic behavior as r →
∞. We will use these properties to find which terms are
important for computations at infinity and which are not.
By use of Eqs. (8), we can express the electromagnetic

field tensor as

Fab = 2
[
Φ1(k[alb] +m[am

∗
b]) + Φ2l[amb] +Φ0m

∗
[akb]

]

+ complex conjugate , (10)

where “complex conjugate” refers to the term in square
brackets, and square brackets next to indices imply anti-
symmetrization. Considering the electromagnetic stress-
energy tensor

4πTEM
ab = FacFbdg

cd − 1

4
gabFcdF

cd , (11)

we can express this in terms of the Newman-Penrose
scalars [121]

4πTEM
ab =

[
Φ0Φ

∗
0kakb + 2Φ1Φ

∗
1

(
l(akb) +m(am

∗
b)

)

+Φ2Φ
∗
2lalb − 4Φ∗

0Φ1k(amb) (12)

− 4Φ∗
1Φ2l(amb) + 2Φ2Φ

∗
0mamb

]

+ complex conjugate ,

where the complex conjugate is of the term in square
brackets.
Assuming asymptotically spherical coordinates

(r, θ, ϕ) centered on the Cartesian grid and oriented
along the z direction and t along the normal to the
hypersurfaces, we can choose as null tetrad

ka =
1√
2
(ea

t̂
− ear̂) , (13a)

la =
1√
2
(ea

t̂
+ ear̂) , (13b)

ma =
1√
2
(ea

θ̂
+ ieaϕ̂) , (13c)

m∗a =
1√
2
(ea

θ̂
− ieaϕ̂) , (13d)

with et̂, er̂, eθ̂, eφ̂ orthonormal non-coordinate basis.

Note that in the coordinate basis, it holds that ma ∼ r.
The energy and angular momentum fluxes per solid

angle carried away by outgoing electromagnetic waves at

infinity is given by

d2E

dtdΩ
= lim

r→+∞
r2T r

t , (14a)

d2Lz

dtdΩ
= lim

r→+∞
r2T r

ϕ . (14b)

Here we focus on the z component of the angular mo-
mentum. These quantities can be expressed in terms of
the Newman-Penrose scalars by use of Eqs. (9) and (12).
The only non-zero contribution to the energy flux arises
from the term |Φ2|2ltlr/2π. Hence,

d2E

dt dΩ
= lim

r→+∞
r2T r

t = lim
r→+∞

r2

2π
|Φ2|2 . (15)

Considering the fall-off behavior of the Newman-Penrose
scalars in Eqs. (9), the angular momentum flux becomes

lim
r→+∞

r2T r
ϕ = lim

r→+∞
− r2

2π

(
Φ∗

1Φ2lrmϕ +Φ1Φ
∗
2lrm

∗
ϕ

)
,

(16)
which can be rewritten as

lim
r→+∞

r2T r
ϕ = lim

r→+∞
− r2

4π
(Φ∗

1Φ2ir sin θ − Φ1Φ
∗
2ir sin θ)

= lim
r→+∞

− ir
3 sin θ

4π
(Φ∗

1Φ2 − Φ1Φ
∗
2)

= lim
r→+∞

r3 sin θℑ[Φ∗
1Φ2]

2π
,

where ℑ[z] is the imaginary part of the complex number
z. Therefore, the flux of angular momentum that crosses
a sphere at large radius r is

d2Lz

dt dΩ
=

1

2π
r3 sin θℑ[Φ1Φ

∗
2] . (17)

Here we reach the same conclusion as in [123]: the flux of
angular momentum does not depend only on the radia-
tive degrees of freedom (encoded in Φ2), but there is also
a Coulombic contribution (encoded in Φ1) [124]. This is
a striking difference compared to gravitational waves, for
which the information contained in the radiative degrees
of freedom, i.e. Ψ4, is sufficient for computing the flux of
angular momentum [125].

We perform a decomposition in spin-weighted spherical
harmonics Y s

ℓm with spin s = −2,−1, 0

Φ1(r, θ, ϕ) =
∑

ℓ≥0

∑

−ℓ≤m≤ℓ

φℓm1 Y 0
ℓm , (18a)

Φ2(r, θ, ϕ) =
∑

ℓ≥1

∑

−ℓ≤m≤ℓ

φℓm2 Y −1
ℓm , (18b)

Ψ4(r, θ, ϕ) =
∑

ℓ≥2

∑

−ℓ≤m≤ℓ

ψℓm
4 Y −2

ℓm . (18c)

Using the orthogonality relations between spin-weighted
spherical harmonics with the same spin, we can write [80]
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dEEM

dt
= lim

r→+∞

r2

4π

∑

ℓ,m

|φℓm2 |2 , (19a)

dEGW

dt
= lim

r→+∞

r2

16π

∑

ℓ,m

∣∣∣∣
∫ t

−∞

dt′ψℓm
4

∣∣∣∣
2

, (19b)

dLGW

dt
= lim

r→+∞

r2

16π

∑

ℓ,m

mℑ
[(∫ t

−∞

dt′ψℓm
4

)
(19c)

×
(∫ t

−∞

dt′
∫ t′

−∞

dt′′ψℓ,m∗
4

)]
.

The sums on m go from −l to l. In practice, we truncate
the expansion to l = 8 and we use a finite extraction
radius. There is no simple relation between the angular
momentum lost by electromagnetic waves and the multi-
polar components φℓm2 and φℓm1 when decomposed with
the respective spin-weight, so we implemented directly
Eq. (17). We tested this new diagnostic for the flux of
angular momentum against the analytical Michel solu-
tion [126, 127] (see, Appendix E).

III. QUADRUPOLE APPROXIMATION MODEL

The simplest waveform model for charged binary black
holes is obtained from the Keplerian motion of charged
massive particles in Newtonian physics with the inclu-
sion of radiation reaction. We indicate this model with
the initials QA (quadrupole approximation). We will also
refer to it as the “Newtonian model”.
Let us consider two point particles with masses m1,

m2 and charges q1, q2 on a circular orbit at separation d.
The total energy (kinetic + gravitational + electrostatic)
of the system E is

E = −m1m2

2d
− q1q2

2d
= −(1− λ1λ2)

m1m2

2d
, (20)

where λi = qi/mi is the charge-to-mass ratio of the i-th
particle.
The system loses energy by emission of gravitational

and electromagnetic waves. In this work, we will re-
strict to circular orbits and only consider dipole and
quadrupole electromagnetic waves, and quadrupole grav-
itational waves [36, 47]

dEdip
EM

dt
=

2

3
(λ1 − λ2)

2
(1− λ1λ2)

2m
2
1m

2
2

d4
, (21a)

dEquad
GW

dt
=

32

5
(1− λ1λ2)

3m
2
1m

2
2M

d5
, (21b)

dEquad
EM

dt
=

(
m2λ1
2M

+
m1λ2
2M

)2
dEquad

GW

dt
. (21c)

This can be extended to eccentric orbits [47]. The angu-
lar momentum carried away by gravitational and electro-
magnetic waves in the dipole and quadrupolar channels

is given by [47]

dJdip
EM

dt
=

dEdip
EM

dt

/√
(1− λ1λ2)

M

d3
, (22a)

dJquad
GW

dt
=

dEquad
GW

dt

/√
(1− λ1λ2)

M

d3
. (22b)

Note that the denominator is the orbital angular velocity
of the binary.

We can derive the equation of motion by taking the
derivative of Eq. (20) and applying the chain rule

dE

dt
= (1− λ1λ2)

m1m2

2d2
dd

dt
. (23)

Therefore,

dd

dt
=

2d2

(1− λ1λ2)m1m2

dE

dt
. (24)

To respect energy conservation, dE/dt is given by the
total energy loss via electromagnetic and gravitational
radiation provided by Eqs. (21a), (21b), (21c). The re-
sulting equation of motion (24) cannot be solved ana-
lytically in closed form for a non-zero charge. Here, we
solve it numerically with the LSODA solver [128] of ODE-
PACK [129] through the SciPy interface [130]. The time
integration is performed with a timestep that is propor-
tional to the orbital separation. We continue the inte-
gration up to d = 5M , which is an average radius of the
Innermost Stable Circular Orbit (ISCO) for neutral par-
ticles around Kerr-Newman black holes (more on this in
Sec. IVA).

The solution of Eq. (24) provides the time evolution
of the orbital separation. Then, using Eqs. (21), (22),
we can compute the energy and angular momentum lost
by gravitational and electromagnetic waves. We can also
compute the gravitational-wave strain in the quadrupole
approximation [70, 131] measured at distance r from the
binary

rh+ = 4(1− λ1λ2)
5

3
m1m2

M
1

3

(πfGW)
2

3 cosφGW , (25a)

rh× = 4(1− λ1λ2)
5

3
m1m2

M
1

3

(πfGW)
2

3 sinφGW . (25b)

The frequency of the gravitational waves fGW is twice
the orbital frequency,

fGW(d) =
1

π

√
(1− λ1λ2)M

d3
. (26)

Defining ωGW(d) = 2πfGW(d), the phase of the gravita-
tional waves φGW is

φGW = φ0 +

∫ d

d0

ωGW(R)

ḋ(R)
dR , (27)

where φ0 is an arbitrary initial phase and ḋ(R) is the time
derivative of d evaluated at orbital separation R, which
can be computed from Eq. (24).
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Finally, we note that the computational requirements
of the QA model are negligible compared to numerical-
relativity simulations (as Eq. (24) is a single ordinary
differential equation). In certain limits, the equations
can be even solved analytically [36].

IV. THE REMNANT BLACK HOLE

The properties of the remnant black hole that forms
following a binary black hole merger are key to test-
ing general relativity [73, 132, 133]. Perturbation the-
ory applies to the post-merger black hole, and it is well
established that perturbed black holes settle by under-
going characteristic damped oscillations. This is known
as quasi-normal-mode ringing. In general relativity, the
complex frequency of these oscillations is completely de-
termined by the black hole mass, spin, and charge.
In this section, we first present the details of an existing

method to estimate the spin of the remnant black hole
forming following mergers of charged black holes. Next,
we discuss quasi-normal-modes. The two discussions are
closely related as the quasi-normal-modes depend on the
properties of the black hole.6

For the values of charge-to-mass ratios λ considered in
this work, the quasi-normal-modes are primarily deter-
mined by the spin of the final black hole, because λ is not
large enough to matter. However, the final spin depends
on the charge of the binary components. Even when the
total charge is zero, e.g. the two black holes have equal
and opposite charges, the final spin is expected to be dif-
ferent from the uncharged case, allowing, in principle, to
distinguish the two scenarios.

A. Remnant black hole spin model

A simple way to estimate the spin of the remnant
black hole forming following the merger of two black
holes on a quasi-circular orbit is to invoke conservation
arguments (this method is sometimes known with the
acronym BKL [137], from the names of the authors). The
approach aims to be 10% accurate [137], and while it
was first applied to Kerr-Newman black holes in [74], the
performance of the approximation has not been tested
in the case of charged black hole inspirals. Therefore, it
is unknown if the accuracy goal is met for more generic
cases. Here we use our quasi-circular inspiral calculations
to gauge the accuracy of the BKL approach.
The basic assumption of the method is that during

an inspiral the black-hole orbital separation shrinks due
emission of gravitational waves until the ISCO is reached,

6 Another way in which the two discussions are linked is that the
study of geodesic motion can be used to estimate the quasi-
normal-mode frequencies from the light-ring properties [134–
136].

at which point the two black holes plunge. During the
plunge, little angular momentum is lost, so one can esti-
mate the spin of the remnant black hole by studying the
ISCO.

Consider the merger of two non-spinning black holes
with mass m1, m2 and charge q1, q2. The total mass and
charge of the system are

M = m1 +m2 , Q = q1 + q2 . (28)

Given that the energy lost via gravitational waves is of
order of a few percent of M (smaller than the target
accuracy of 10%), the BKL method assumes that the
total mass is conserved. Therefore, the final black hole
has mass M . Attempts to include energy loss in the un-
charged case were made [138], but we will not consider
this here. Charge is exactly conserved, so the final black
hole must have charge Q. To determine the remnant
black hole spin parameter a, one invokes angular mo-
mentum conservation. The BKL model postulates that
the final angular momentum Ma is exactly the same as
the orbital angular momentum at the onset of the plunge.
This quantity is then estimated by considering the mo-
tion in the spacetime of the remnant black hole of a test
particle with mass µ and charge q given by

µ =
m1m2

M
, q =

q1q2
Q

, (29)

where µ and q are the reduced mass and charge of the
binary system (namely, the mass and charge of the equiv-
alent effective one-body problem).

Let LM,a,Q be the ISCO angular momentum of a test
particle with mass µ and charge q in a Kerr-Newman
spacetime with mass M , spin a, and charge Q, then the
BKL approach sets

Ma = LM,a,Q(rISCO) . (30)

If l = LM,a,Q(rISCO)/µ is the test particle specific angu-
lar momentum, then we have

a = νlM,a,Q(rISCO) , (31)

where ν = µ/M = (m1m2)/M
2 is the symmetric mass

ratio. Equation (31) determines the spin a of the final
black hole. It is straightforward to extend the method
to consider spinning binaries by adding the contribution
of the individual spins to the total angular momentum
in Eq. (30), but we will not do this here, because our
numerical relativity simulations of charged binaries do
not involve spin.

To solve Eq. (31), we need to compute the specific
angular momentum of the test particle with charge q in a
circular orbit at radius rISCO. We do this in the standard
way by defining an effective radial potential Veff(r).

In Boyer-Lindquist coordinates (t, r, θ, φ), the line el-
ement ds2 of a Kerr-Newman black hole with mass M ,
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spin a, and charge Q is given by [139, 140]

ds2 =− ∆− a2 sin2 θ

ρ2
dt2 +

ρ2

∆
dr2 + ρ2 dθ2

− 2a sin2 θ
(r2 + a2 −∆)

ρ2
dtdφ

+
(r2 + a2)

2 −∆a2 sin2 θ

ρ2
sin2 θ dφ2 ,

(32)

with

ρ2 = r2 + a2 cos2 θ , (33a)

∆ = r2 − 2Mr + a2 +Q2 . (33b)

The electromagnetic vector potential is

A = −Qr
ρ2

(dt− a sin2 θ dφ) . (34)

For Kerr-Newman black holes, Veff is given by [74, 141]

Veff =
gtt l̃

2 + 2gtφ l̃ε̃+ gφφε̃
2 −∆

grr∆
, (35)

with

l̃ = l + qAφ , (36a)

ε̃ = ε− qAt , (36b)

where ε and l are the specific energy and specific angular
momentum, respectively. The properties of the ISCO are
found solving the following equations simultaneously

Veff(rISCO) = 0 , (37a)

dVeff
dr

(rISCO) = 0 , (37b)

d2Veff
dr2

(rISCO) = 0 . (37c)

for rISCO, ε(rISCO) and l(rISCO).
For the estimate of the spin, we are particularly in-

terested in l(rISCO). Once that is known, we use a root-
finding method to solve numerically Eq. (30) and find the
spin of the final black hole.

B. Quasi-normal-modes

Following merger, the remnant black hole settles by un-
dergoing quasi-normal mode ringing, i.e., damped oscilla-
tions with specific frequencies ω and decay times τ [142].7

During the ringdown phase, the Newman-Penrose scalar
Ψ4 looks like

Ψ4(t, r) ∼
∑

ℓmn

Aℓm(r)e−t/τℓmn sin(ωℓmnt) , (38)

7 Here we are considering relatively small charge, so we will only
be focusing on the gravitational quasi-normal-modes.

with l, m being the multipolar mode numbers and n the
overtone number; A, τ , and ω are the characteristic am-
plitude, the decay time, and the frequencies of the quasi-
normal modes. These values depend on the mass, spin,
and charge of the black hole in a known way [73, 133]. In
this work, we are interested in exploring the charge in-
formation contained in the ringdown waveforms. In par-
ticular, we test whether it is possible to tell whether a
merging binary had charge by looking at the post-merger
signal alone.

For Schwarzschild and Kerr black holes, the values of
ωℓmn and τℓmn are tabulated [143, 144] or available in
public codes, like the one we use here–qnm [145]. For
generic Kerr-Newman solutions, while the problem has
been solved [146], such tables are not publicly available.
However, since the simulations in our set have relatively
small charge-to-mass ratio, we can work in the small
charge limit and we can use the equations provided in [44]
for the ℓ = 2, m = 2, n = 0 quasi-normal mode (which
typically dominates [147, 148]). As shown in [44], for a
Kerr-Newman black hole with charge-to-mass ratio λ and
dimensionless spin χ, the first correction to ω220 and τ220
with respect to the uncharged values ωλ=0

220 and τλ=0
220 is:

δω220

ωλ=0
220

= λ2

[
−0.2812− 0.0243χ+

0.3506

(1− χ)
0.505

]
,

(39a)

δτ220
τλ=0
220

= −λ2
[
0.1075 + 0.089 23χ+ 0.023 14χ2 (39b)

+0.094 43χ3 − 0.075 85

(1− χ)
1.2716

]
,

with δω220 = ω220 − ωλ=0
220 and δτ220 = τ220 − τλ=0

220 . In
this work, we use qnm [145] to compute ωλ=0

220 and τλ=0
220

and Eqs. (39) to compute the quasi-normal modes for our
charged remnants.

We can plug a representative remnant black hole spin
value χ = 0.67 in Eq. (39) to gain some insight on the
effect of charge, which yields δω220/ω

λ=0
220 ≈ λ2/3, and

δτ220/τ
λ=0
220 ≈ λ2/10. For the values of λ treated in

our simulations, if we assumed that all black holes had
the same final mass and spin, then the deviations from
the Kerr quasi-normal modes are at most at the percent
level. The deviations are maximized for larger λ, so one
would expect that the simulation with λ++ is the easi-
est to constrain. However, if one wanted to tackle the
question “Can we tell from the ringdown if the binary
was charged?” the problem is more complicated and one
needs to consider the interplay between mass, spin, and
charge. We discuss this in Sec. VC2.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we describe the results from our black
hole binary simulations through the inspiral, merger and
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ringdown phases. We start by analyzing the inspiral
(Sec. VA). We compare the non-linear solutions with
the QA model, finding that the Newtonian approach al-
ways overestimates observable quantities by 20–100%.
Next, we present our numerical-relativity simulations up
to merger (Sec. VB), discussing properties of the emis-
sion (Sec. VB1) and detectability of charge by future
gravitational wave observatories (Sec. VB2). Finally, we
explore the ringdown phase (Sec. VC), testing the BKL
approach (Sec. VC1) and discussing quasi-normal-modes
(Sec. VC2).

A. Inspiral

Here, we focus on the inspiral part of our calculations
and we assess the performance of the Newtonian model
within the quadrupole approximation (QA). Since high-
order PN and/or effective-one-body waveforms including
electromagnetic fields are not yet available, this model is
the most widely used to study inspirals of charged black
holes (e.g. [36, 44, 47–49, 70, 71]).

To compare numerical-relativity simulations with the
Newtonian model, we consider a set of quantities of in-
terest. To keep our results gauge-independent, we an-
alyze these quantities between reference gravitational-
wave frequencies f0, f1, and f2, which we choose as fol-
lows: Mf0 = 9.61× 10−3, Mf1 = 1.76× 10−2, and
Mf3 = 3.84× 10−2, whereM is the detector-frame ADM
mass. The frequency Mf0 corresponds to approximately
28Hz for a binary with source-frame ADM mass 65M⊙

(detector-frame mass of approximately 70.6M⊙). These
three frequencies are motivated by the LIGO sensitivity
band with f0 corresponding to the onset of the latest
stage of the inspiral, f1 to the intermediate phase prior
to plunge, and f2 to the plunge. Previous studies used
the Newtonian model for LIGO-Virgo mergers, so our
analysis here gauges how this approximate method per-
forms and allows us to estimate the level of its accuracy.
Since our numerical-relativity simulations scale with the
total mass of the system M , we can target both stellar-
mass and supermassive black hole binaries. In Table I we
show what frequencies correspond to our reference fre-
quencies f0, f1, f2 for different choices of M . The table
shows that this work is relevant to LIGO-Virgo as well
as LISA sources [72]. In Sec. VB2, we discuss charge
detectability by LISA.

We designate by tf the coordinate time at which the
gravitational-wave frequency is f , and using our non-
linear simulations we compute the error of the QA model
in gauge invariant quantities within the time intervals
[tf0 , tf1 ] and [tf0 , tf2 ]. The quantities we consider are:
gravitational-wave phase, energy and angular momentum
lost through emission, number of gravitational-wave cy-
cles NGW, and the signal-to-noise ratio (SNR) between
fmin and fmax (which are of particular interest to esti-
mate charge detectability [44]). The latter two quantities

TABLE I. Reference frequencies Mf0 = 9.61× 10−3, Mf1 =
1.76× 10−2, and Mf3 = 3.84× 10−2 for different values of
the detector-frame mass M . This study targets both LIGO-
Virgo and LISA sources. The choice of M = 70.6M⊙ is in-
spired by GW150914 [69]. The evolution from f0 to f1 is
still not in the most relativistic part of the inspiral. On the
other hand, f2 is reached in the latest stages of the merger,
following which the black holes plunge.

Freq. M = 30M⊙ M = 70.6M⊙ M = 104 M⊙ M = 107 M⊙

f0 65Hz 28Hz 0.195Hz 0.195mHz
f1 120Hz 51Hz 0.357Hz 0.357mHz
f2 260Hz 111Hz 0.780Hz 0.780mHz

are computed as (see e.g., [131, 149])

NGW =

∫ fmax

fmin

fGW

ḟGW

dfGW , (40a)

SNR2 = 4

∫ fmax

fmin

|h̃(f)|2
Sn(f)

df , (40b)

with h̃ Fourier transform of the strain and Sn(f) the
power spectral noise density of the detector. In the rest
of the discussion, we focus on advanced LIGO at design
sensitivity.
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FIG. 5. Plus polarization of the gravitational-wave strain pro-
duced by oppositely charged binary black holes with λ+

− = 0.1
as extracted from the Newtonian (QA, blue, dash-dotted line)
and full numerical-relativity simulation (NR, orange, solid
line). The two waveforms are aligned a tf0 , which is when
the gravitational wave frequency is f0 = 9.61× 10−3 M−1.
The main difference is that the fully relativistic simulations
predict a faster merger, as they include all non-linear terms.

Before discussing the quantitative differences between
the numerical relativity (NR) and QA models, we first
provide a qualitative description. Figure 5 shows the
plus polarization of the ℓ = 2, m = 2 mode obtained
with NR and the Newtonian model for a representative
charge black hole binary with λ+− = 0.1. The two wave-
forms shown in the figure are aligned at tf0 , when they
both have the same gravitational-wave frequency f0. As
the plot demonstrates, the QA model provides a decent
approximation to the NR signal up to t − tf0 ≈ 400M .
Shortly after that time, the black holes merge in the NR
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simulation. Merger is never captured in the QA model,
and the Newtonian simulation is stopped when the sep-
aration is of order of the ISCO (as in [70]). Also, there
is substantial de-phasing before the frequency-alignment
time. A major difference between the two models is that
the relativistic simulation predicts a faster merger, be-
cause it includes all non-linear terms. As we will discuss
later, this is the fundamental reason why the QA model
overestimates all the interesting physical quantities.
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M

−
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]
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FIG. 6. Gravitational-wave frequency evolution for the New-
tonian model and for the fully general-relativistic simula-
tion. The two simulations are aligned at tf0 , when the
gravitational-wave frequency is f0. Table I reports the val-
ues of f0, f1 and f2.

We further emphasize this point in Fig. 6, where we
report the frequency of the gravitational waves in the
two models as a function of time. It is clear that the
frequency evolves faster in the non-linear calculation. As
a result, the QA computations spend more time inspiral-
ing, so this model overestimates all relevant quantities,
as it overestimates the time from tf0 to tf1 and tf2 . This
is exactly what happens at the quantitative level, too.
Table II reports the relative error of the Newtonian cal-
culations with respect to the NR simulations. For each
quantity Υ, the error is computed as

relative error =
ΥQA −ΥNR

ΥNR
. (41)

No absolute value is taken: a positive error means that
the Newtonian approximation overestimates Υ. The
ranges of error reported are across all NR simulations
we performed for this work. As the values in the ta-
ble demonstrate, the listed quantities are always overes-
timated by order 20% or more. However, we note that
the QA model always captures the correct order of mag-
nitude in the amplitude up until a couple of cycles prior
to peak gravitational wave amplitude in the non-linear
calculations. Hence, for the values of λ considered here,
the model can be used for rough estimates.8

8 In [150, 151] it was shown that when adopting the quadrupole

B. Up to merger

Our simulations capture all non-linear effects that take
place during the late inspiral and merger. So, we can
study interesting quantities that are not accessible with
approximate methods. In Fig. 7, we show the coordinate
distance of the two black hole centroids as a function of
the coordinate time for four representative NR simula-
tions. This figure complements the top panel of Fig. 1.
It can be seen that our Newtonian expectations are met:
the system that merges faster is the one with opposite
charge, due to the additional electrostatic attraction and
loss of energy due to dipole electromagnetic emission.
Next, we have the one with only one charged black hole,
due to additional loss of energy in the electromagnetic
emission. Finally, the system with black holes with the
same charge is the last to merge, as it has to fight against
additional electrostatic repulsion.
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FIG. 7. Coordinate distance of the two black holes as a func-
tion of the coordinate time for three representative cases with
charge-to-mass ratio of λ = 0.2, along with the case with
no electromagnetic fields. Note that this is not a gauge-
independent plot.

An important first finding is that for a fixed binary
mass corresponding to GW150914, the SNR and the
number of in-band gravitational-wave cycles depend very
weakly on the charge: . 3%. This is in spite of the differ-
ent evolutions depicted in Fig. 7. This result will likely
change if we consider low-mass binaries, which have a
much longer inspiral that can be significantly affected by
the presence of charge earlier in the inspiral.

1. Properties of the emission

In this subsection, we explore some properties of the
electromagnetic and gravitational emission. We find that

formula to estimate gravitational waves, but with the fluid dis-
tribution computed based on general relativistic simulations, the
errors are of order 20% in the amplitude. Here, we show the per-
formance of the quadrupole approximation when not coupled to
trajectories from numerical relativity simulations is significantly
worse.
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Before we discuss the results, we highlight possible pit-
falls in numerically evaluating Eq. (47). There are mul-
tiple steps to go from what the simulations output to
Eq. (47). In particular, Fourier transforms have to be
computed and the time series have to be windowed and
zero-padded to avoid aliasing and spectral leakage. Since
the simulations we are considering produce similar wave-
forms (up to time, phase, and mass shifts), small differ-
ences in how the two waves are pre-processed can con-
tribute significantly to the value of the mismatch. First,
it is important to trim the end of the two waveforms
where the strain is practically zero and ensure that they
have the same duration after the peak. If this is not done,
and the signals have different durations after merger, ap-
plying a window has a different effect and introduces a
systematic uncertainty. Second, in some cases the fixed
frequency integration may leave small residual drifts at
the very end of the waveform. These depend on the sim-
ulation, so one must check that all the waves are well-
behaved. In case they are not, one can adjust this by
cropping the signal or by changing the parameters of the
window function or of the integration method. Improp-
erly considering one of these effects may lead to system-
atic errors.

We now discuss the results of our study by focusing on
the λ+− case, which is relevant to constraining the dipole
emission. In Fig. 10, we report the value of the SNR
needed to distinguish uncharged binary waveforms from
binary black holes with charge-to-mass ratio λ+− = 0.1
(circles), 0.2 (stars), or 0.3 (diamonds) for a GW150914-
like event. For smaller values of λ+−, the mismatch com-
puted from our simulations is limited by their numerical
error, so higher resolution evolutions would be needed.

First, we note that there is not much variation of the
SNR for distinguishability across the different detectors,
regardless of the significant variation in sensitivity. The
reason for this result is that for the computation of the
mismatch the overall noise curve does not matter: it is
how the noise is distributed in different frequencies that
matters the most. The difference in sensitivity is reflected
in how easy or not it is to achieve such SNRs. Second, the
values needed to detect λ+− ≥ 0.1 are already achievable
today (GW150914 had a network-SNR of approximately
25 [69], but its noise curve was not the one at deign sensi-
tivity). Given their improved sensitivity, future detectors
will immediately be able to detect this amount of charge.
To estimate what limits on charge future detectors will
place, one not only needs better simulations, but one
needs to include the effects of spin and eccentricity.

Next, we discuss what charge-to-mass ratio LISA
would be able to detect for million solar mass binaries.
As already mentioned, we are free to rescale the mass of
our binaries to place them in the LISA band, which we
assume ranges from 0.1mHz to 1Hz. Despite the scale
freedom, there is one obstacle to doing a complete anal-
ysis using our simulation data as Fig. 11 demonstrates.
In the plot, we show the LISA sensitivity curve [164]
and we schematically show with dashed lines the grav-
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FIG. 10. Signal-to-noise ratio required to distinguish wave-
forms from mergers of charged black holes from ones without
charge for different detectors assuming their design sensitiv-
ity. The expected SNR for a GW150914-like event future
detectors is significantly larger than the one needed to con-
strain λ+

− < 0.1. See Footnote 9 for details on the detector
sensitivity curves used.

itational wave spectrum from our simulations when the
mass is rescaled using two different values. In the case
of a 107M⊙ binary, our simulation signal is entirely in
the LISA band. On the other hand, at least part of the
inspiral is missing for ∼ 104−6M⊙ binaries.10 Despite
this obstacle, we know that for the case with opposite
charge, the mismatch will increase if we included the in-
spiral, due to the presence of dipole emission. Hence, if
we use our data to find what is the minimum SNR needed
to distinguish waveforms of charged binaries from those
generated by uncharged binaries, we will find an upper
bound on that (if we included the entire in-band inspiral
waveform the minimum SNR for distinguishability would
only decrease).

10 One could extended our simulation data with some approximate
waveforms, like the one from the Newtonian model, and recom-
pute the quantities with the entire signal. However, this goes
beyond the scope of the current work.
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FIG. 11. Schematic representation of how we can use our sim-
ulations for LISA sources. We are free to vary the mass, but
in many cases our simulations do not cover the entirety of the
signal, and part of the inspiral is missing. Since the inspiral
is the most constraining part of the signal, when we compute
the minimum SNR for distinguishability of charged binary
waveforms from uncharged binary ones, we are providing an
upper bound.

Figure 12 shows the upper bound on the minimum
SNR needed to distinguish waveforms generated by
charged binaries from those generated by uncharged bi-
naries for different charge configurations as a function of
the detector-frame mass Mdetector. LISA is expected to
detect binaries with SNR much higher than the one in
Fig. 12, so it will be able to detect or place constraints
on small values of λ+− for multiple systems. These re-
sults are not surprising. In [44, 71] it argued that LISA
will constrain the dipole moment at the level of the 10−4,
considering only the inspiral.
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FIG. 12. Upper limit on the minimum SNR needed to distin-
guish waveform from charged binaries with different λ+

− from
uncharted systems. This is an upper limit because most of the
masses do not include the entirety of the inspiral. Given that
the inspiral is most constraining, including it would decrease
the SNR needed.

We can understand the shape in Fig. 12 by considering
that the inspiral has the most important contribution to
the mismatch, so, it is the lower frequencies that mat-
ter the most. Recall that Fig. 11 shows schematically
the power spectrum of the gravitational waves. Roughly
speaking, there is more power in the lower frequencies

than the higher ones because more time is spent there.
Increasing the binary mass from the minimum value con-
sidered here amounts to sliding the spectrum in Fig. 11
from the right to the left. When we are considering
masses for which the signal lies to the right-hand-side of
the plot, we find that there is more noise in the higher fre-
quencies of the signal than the lower ones. This is the op-
timal condition to separate an uncharged waveform from
a charged ones, because it is the lower frequencies that
contain the most information. Hence, the signal to noise
for the detection is the lowest. Now, when we consider
masses for which the signal lies on the left-hand-side of
Fig. 11, initially not much changes in the signal-to-noise
ratio. This is because the frequencies with the most infor-
mation are the ones with the lowest noise. The scenario
changes when we approach the minimum of the sensi-
tivity curve, at that point, the way noise is distributed
across frequency changes, and we see in Fig. 12 an in-
crease in the signal-to-noise ratio, which reflects the fact
that we are removing sensitivity in the lower frequencies
to put it in the higher ones (that have less information).
The trend continues when we increase further the mass
scale and we climb up the sensitivity curve on the left
side. Here, we are giving more weight to high frequen-
cies, which cannot distinguish the two waves well, so we
need more signal-to-noise ratio for distinguishability of
two signals.

A natural question that arises next is the following:
how far can LISA detect the minimum SNR required to
distinguish charge? Computing the SNR with Eq. (40b),
we can find what is the maximum distance at which the
SNR is larger than the threshold. This distance is plotted
in Fig. 13. For some mass ranges, LISA will essentially
distinguish a charged binary with λ+− up to 0.1 every-
where it can detect black hole binaries. It is important
to note that that plot provides only a lower limit on this
maximum distance, especially for lower masses, where we
do not include the long inspiral part of the waveform.
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FIG. 13. Lower limit on the maximum luminosity distanceDL

in gigaparsec (or max redshift z) at which LISA can detect a
charged binary with λ of 0.1 as function of the source-frame
mass Msource.

We can ask the same question for the case λ++ = 0.3
at the mass-scale for which we have the entire signal in
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because of charge, but that the mass and spin are the pa-
rameters that primarily control the quasi-normal-modes
properties. This is not unexpected: oppositely charged
binaries are those with the smallest remnant black hole
charge, so it is natural that this parameter will contribute
the least if mass and angular momentum are the same.
On the other hand, the case with like charges is the most
different from the uncharged ones, with relative increase
in ω220 of 2.6%.
The bottom panel of Fig. 16 shows what happens when

we completely ignore the contribution of charge to the
quasi-normal modes. First, we find the confirmation that
here is where the simulations λ+− acquire the differences
of up to ≈ 1% shown in the top panel of Fig. 16. Sec-
ond, in the like charges case, we also find that charge
introduces differences in the mass and angular momen-
tum of the remnant black hole that drive the change in
the quasi-normal mode in the opposite direction com-
pared to the ones shown in the middle panel. Therefore,
when we consider the complete triplet of mass, spin, and
charge (“summing” middle and bottom panels), we find
that their effects almost cancel each other, so that the
corresponding quasi-normal-modes are close to the un-
charged binary case.
Hence, we conclude that for the λ explored here, to

distinguish the quasi-normal modes of the final black
hole from the ones of an uncharged black hole, one needs
exquisite accuracy. The task becomes even harder when
one includes the other parameters which we kept fixed
in our simulation (mass-ratio, spin, and eccentricity),
which will introduce additional degeneracies. The ac-
curacy needed is also of the same order as that of the
fitting functions in Eq. (39), and for the highest values of
λ adopted here, it is also of the same order as the errors
due to the truncation of the expansion in λ, which may
affect the result. In our simulations, the ringdown sig-
nals are essentially indistinguishable from one another,
and we cannot identify the quasi-normal-mode parame-
ters at the accuracy needed to tell them apart. To sum
up, values of charge up to λ ∼ 0.3 could be challenging
to detect using the ring-down phase alone.

VI. CONCLUSIONS AND FUTURE

DIRECTIONS

In this paper, we continued our program of explor-
ing the non-linear dynamics of black holes in Einstein-
Maxwell theory. In Sec. II, we described our theoreti-
cal and numerical approach, emphasizing new features
and formalism that have not been treated before, includ-
ing: how to prepare quasi-circular initial data for charged
black hole binaries (Sec. II B), how to perform long-term
and stable evolutions of quasi-circular inspirals of charged
black holes (Sec. II C), the electromagnetic contribution
to horizon properties of black holes (Sec. IID), and the
computation of the angular momentum carried away by
electromagnetic waves with the Newman-Penrose formal-

ism (Sec. II E).

We compared the results of our non-linear simulations
with approximate approaches for the inspiral (Sec. VA)
and the ringdown (Sec. VC). For the systems consid-
ered, our work shows that Newtonian models based on
the quadrupole approximation find the correct order of
magnitude in a set of gauge-invariant quantities, but have
errors O(20%) or larger, and hence they cannot be used
in precision studies of mergers of charged black holes or
accurate parameter estimation. Similarly, estimates of
the spin of the remnant black hole based on conservation
of angular momentum and energy arguments are accu-
rate up to few percent. Hence, a key result of this work
is extending what was found in [20]: these arguments can
be used to build intuition and make order-of-magnitude
estimates in the case of quasi-circular mergers, too.

Furthermore, we discussed properties of the emission
(Sec. VB) and estimated the detectability of charge by
future gravitational wave observatories (Sec. VB2), fo-
cusing in particular on LISA. Finally, we studied the
quasi-normal-modes (Sec. VC2), finding that it may be
challenging to extract charge information from the ring-
down alone.

There are multiple possible extensions of this work.
On the non-linear side, including spin and increasing
the charge-to-mass ratio would allow the exploration of
a region of the parameter space never considered be-
fore. On the side of approximate calculations, the next
step in complexity after Newtonian physics is develop-
ing 1PN models. Such waveforms are currently avail-
able [167, 168]. These models are important in the effort
of generating gravitational-wave templates.
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Appendix A: Courant stability of Kreiss-Oliger

Dissipation

Kreiss-Oliger dissipation is described by Eq. (7), which
we rewrite here for convenience

∂tU = · · ·+ (−1)
(p+3)/2 ǫ

2p+1
∆xp∂p+1

x U . (A1)

This technique has a free a parameter ǫ that controls
the strength of the dissipation. This cannot be chosen
arbitrarily, as we show in this Appendix.
A finite-difference discretization transforms Eq. (7) to

∂tU = · · ·+ (−1)
(p+3)/2 ǫ

2p+1
∆xp

Dp+1U

∆xp+1
, (A2)

where Dp+1U is determined by the finite-difference sten-
cil. For an explicit time integration scheme, this operator
alone leads to a Courant stability condition of the form

∆t

∆x

ǫ

2p+1
≤ Λ , (A3)

where Λ is typically a fixed number that is determined
by the details of numerical integration method.12 Given
that in our case we add dissipation to hyperbolic partial
differential equations, condition (A3) can be recast to
read

ǫ ≤ Λ

µ
, (A4)

where µ is the Courant factor ∆t/∆x. For the Einstein-
Maxwell equations in standard finite-difference imple-
mentations, this quantity is typically chosen such that
µ ≤ 0.5 for numerical stability. Since we are working
with an adaptive-mesh-refinement computational grid
with sub-cycling in time, there are multiple values of ∆t
and of ∆x, so condition (A3) can be met in some parts
of the grid but not in others. Failure to satisfy the con-
dition can result in numerical instabilities that spoil the
simulation. It should be noted that the Courant con-
dition (A4) is necessary but not sufficient for stability.
This means that the scheme can be unstable even when
Eq. (A4) is satisfied. For example, an ill-posed initial
boundary value problem or other numerical instabilities
could cause simulations to crash.

Appendix B: Parameters of the numerical evolution

In this Appendix, we report the parameters used for
our simulations, including the test described in Sec. II C.

12 The case with p = 1 using standard centered second-order accu-
rate finite differences is a textbook example of stability analysis
for a standard diffusion equation with constant coefficients. In
this case, and for a three-dimensional Cartesian grid with equal
grid spacing in the all spatial directions, Λ = 1/6.

Our simulations are on a grid with outer boundary
at 1033M and nine refinement levels with refinement
boundaries located at 2iM , where i is the number of
level. Our standard coarsest-level resolution is ≈ 4M
and the high-resolution runs are with 25% smaller grid
spacing (≈ 3.2M). Of the nine refinement levels, five
have the same timestep, the other levels had Courant
factor fixed to ∆t/∆x of 0.4. This choice reduces the
maximum timestep on the grid and prevents some nu-
merical instability that would otherwise arise. We set κ
(defined in Appendix A in [23]) to 9.9M−1 and verified
that changing this parameter does not produce signifi-
cant differences. We set the η parameter in the evolu-
tion of the shift vector (as defined in Eq. (13) in [88])
to 1.5M−1. These parameters lead to instability unless
κ . 1.5/∆tmax (same for η), so we adjusted the time-
stepping in our evolutions to ensure that this condition
is met. We use fifth order prolongation in space and sec-
ond in time. We tested selected cases with seventh order
spatial prolongation and found no significant differences.
All our derivatives are obtained with sixth-order finite
difference.

The test described in Sec. II C was performed with the
high-resolution grid and otherwise the same parameters
described above. The tests showed that the instabilities
arise unless we choose the continuous prescription for the
dissipation. In the unstable cases, we found that sim-
ulations with higher resolution become unstable earlier
compared to the ones at lower resolution.

In Fig. 17, we report how resolution and extraction
radii affect the resulting waveform. The differences be-
tween the various signals are small, indicating the error
due to the finite resolution and finite extraction radius
does not affect the results presented in this paper.
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FIG. 17. Real part of the l = 2, m = 2 strain extracted from
different radii or different resolutions from the simulation with
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− = 0.3. The three waveforms agree well, indicating that the
error due to the finite resolution or the finite extraction radius
is small.
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Appendix C: Alternative formulations

In our efforts to improve and stabilize our simulations,
we tested two additional formulations for the evolution of
the electromagnetic fields. We found that improvements
arising from either of these formulations is subdominant
compared to the role of the dissipation (see, Sec. II C).
First, we followed [170] and implemented a general-

ized Lorenz condition. If Aa is the electromagnetic four-
potential, the Lorenz gauge is ∇aA

a = 0, while its gener-
alized version is ∇aA

a = ξnaA
a, with ξ damping param-

eter. In [170], it was found that with a suitable choice of
ξ, this condition reduces spurious gauge modes that arise
from interpolation at the refinement level boundaries.
While this is important for general-relativistic magneto-
hydrodynamic simulations in which matter crosses refine-
ment levels, in our evolutions we did not find significant
improvements.
A second formulation we tested was motivated by the

parabolized Arnowitt-Deser-Misner formalism of general
relativity [171, 172]. This consists of adding an extra
parabolic term to the evolution of the electric field, which
is 0 when the Gauss constraint is satisfied,

∂tE
i = · · ·+ ǫEγ

ij∂jCE . (C1)

with CE is the Gauss constraint and ǫE strength of the
parabolic term. With this modification, the evolution of
the constraint looks like

∂tCE = · · ·+ ǫEγ
ij∂i∂jCE , (C2)

which is parabolic diffusion operator. The indented result
is to further dissipate violations of the constraint from
perturbations with high wave number. In our tests, this
formulation did not result in noticeable improvements
over our new method for setting the Kreiss-Oliger dissi-
pation parameter presented in Sec. II C.

Appendix D: Newman-Penrose scalars in flat

spacetime as function of electric and magnetic fields

In this Appendix, we provide expressions for the elec-
tromagnetic Newman-Penrose Φ0, Φ1, and Φ2 in terms
of the electric and magnetic fields in (asymptotically) flat
spacetime. We consider both coordinate and orthonor-
mal bases. These expressions can be used to quickly
compute the Newman-Penrose scalars for a given electro-
magnetic field. (For a similar discussion, see Appendix
A in [173] noting that a different convention is used for
the normalization of the tetrad.)
In flat spacetime and given the spherical coordinates

(r, θ, ϕ), consider the coordinate basis (∂r,∂θ,∂φ), and
an orthonormal basis (er̂, eθ̂, eφ̂) so that for a vector v

we have that

v = vr̂er̂ + vθ̂eθ̂ + vϕ̂eϕ̂ , (D1a)

v = vr∂r + vθ∂θ + vϕ̂∂ϕ , (D1b)

with

vr̂ = vr , vr̂ = vr , (D2a)

vθ̂ = rvθ , vθ̂ =
1

r
vθ , (D2b)

vϕ̂ = r sin θvϕ , vϕ̂ =
1

r sin θ
vϕ . (D2c)

The electromagnetic field strength can be written in
terms of the orthonormal tetrad components of the elec-
tric and magnetic fields as follows

Fab =




0 −Er̂ −rEθ̂ −r sin θEϕ̂

Er̂ 0 rBϕ̂ −r sin θBθ̂
rEθ̂ −rBϕ̂ 0 r2 sin θBr̂

r sin θEϕ̂ r sin θBθ̂ −r2 sin θBr̂ 0


 .

(D3)
The Newman-Penrose scalars are, as computed by

Eqs. (8) and using Eq. (D3)

Φ0 =
1

2

(
−Eθ̂ +Bϕ̂ − i(Eϕ̂ +Bθ̂)

)
, (D4a)

Φ1 =
1

2
(Er̂ + iBr̂) , (D4b)

Φ2 =
1

2

(
Eθ̂ +Bϕ̂ − i(Eϕ̂ −Bθ̂)

)
. (D4c)

Alternatively, expressing Eqs. (D4) in terms of the vector
components in the coordinate basis:

Φ0 =
1

2

[
−Eθ

r
+

Bϕ

r sin θ
− i

(
Eϕ

r sin θ
+
Bθ

r

)]
, (D5a)

Φ1 =
1

2
(Er + iBr) , (D5b)

Φ2 =
1

2

[
Eθ

r
+

Bϕ

r sin θ
− i

(
Eϕ

r sin θ
− Bθ

r

)]
. (D5c)

For completeness, we also report the null tetrad of
Eq. (13) is (in the coordinate basis)

ka =
1√
2
(1,−1, 0, 0) , (D6a)

la =
1√
2
(1, 1, 0, 0) , (D6b)

ma =
1√
2

(
0, 0,

1

r
,

i

r sin θ

)
, (D6c)

m∗a =
1√
2

(
0, 0,

1

r
,− i

r sin θ

)
. (D6d)

Appendix E: Michel’s solution

Michel’s rotating magnetic monopole solution [126]
is a simple model for pulsar and black hole magneto-
spheres (for a rigorous description, see [127], noting that
Heaviside-Lorentz units are used, and many formulas dif-
fer by a factor of 4π with what is reported here). Our
interest in Michel’s monopole is motivated by the fact
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that it is a simple solution with stationary flow of energy
and angular momentum in flat spacetime that can be
used to test Eq. (17) and its numerical implementation.

In an orthonormal basis, the non-zero components
of electric and magnetic fields of Michel’s monopole
are [127]

Eθ̂ = Bϕ̂ = −q
r
ω sin θ , (E1a)

Br̂ =
q

r2
. (E1b)

A four-vector potential that produces such configuration
is given by

Aµ̂ =

(
qω cos θ, 0,−q

r
ω sin θ, q tan

θ

2

)
. (E2)

Notice that Aϕ̂ → +∞ when θ → π, but the resulting
magnetic field is well-behaved, as shown in Eq. (E1b).

We can compute the Newman-Penrose scalars Φ1 and

Φ2 with Eqs. (D4):

Φ1 = −q
r
ω sin θ , (E3a)

Φ2 =
i

2

q

r2
. (E3b)

As expected, Φ1 and Φ2 follow the peeling behavior of
Eqs. (9). Next, we can use Eq. (15) to compute the total
power that crosses a sphere or radius r

dEEM

dt
=

2

3
q2ω2 . (E4)

We can also compute the flux of angular momentum
along the z direction radiated with Eq. (17)

dLz
EM

dt
=

2

3
q2ω . (E5)

Hence, we find the relation

dEEM

dt
= ω

dLz
EM

dt
. (E6)

This is a well-known relation for pulsar and black hole
magnetospheres.
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[167] F.-L. Julié, J. Cosm. Astropart. Phys. 2018, 033 (2018),
arXiv:1809.05041 [gr-qc].

[168] M. Khalil, N. Sennett, J. Steinhoff, J. Vines, and
A. Buonanno, Phys. Rev. D 98, 104010 (2018),

arXiv:1809.03109 [gr-qc].
[169] G. Bozzola, The Journal of Open Source Software 6,

3099 (2021), arXiv:2104.06376.
[170] B. D. Farris, R. Gold, V. Paschalidis, Z. B. Etienne,

and S. L. Shapiro, Physical Review Letters 109, 221102
(2012), arXiv:1207.3354 [astro-ph.HE].

[171] V. Paschalidis, Phys. Rev. D 78, 024002 (2008),
arXiv:0704.2861 [gr-qc].

[172] V. Paschalidis, J. Hansen, and A. Khokhlov, Phys. Rev.
D 78, 064048 (2008), arXiv:0712.1258 [gr-qc].

[173] T. D. Brennan, S. E. Gralla, and T. Jacobson, Classical
Quant. Grav. 30, 195012 (2013), arXiv:1305.6890 [gr-
qc].


