
Composable Geometric Motion Policies
using Multi-Task Pullback Bundle Dynamical Systems

Andrew Bylard, Riccardo Bonalli, Marco Pavone

Abstract— Despite decades of work in fast reactive plan-
ning and control, challenges remain in developing reactive
motion policies on non-Euclidean manifolds and enforcing
constraints while avoiding undesirable potential function local
minima. This work presents a principled method for designing
and fusing desired robot task behaviors into a stable robot
motion policy, leveraging the geometric structure of non-
Euclidean manifolds, which are prevalent in robot configuration
and task spaces. Our Pullback Bundle Dynamical Systems
(PBDS) framework drives desired task behaviors and prioritizes
tasks using separate position-dependent and position/velocity-
dependent Riemannian metrics, respectively, thus simplifying
individual task design and modular composition of tasks.
For enforcing constraints, we provide a class of metric-based
tasks, eliminating local minima by imposing non-conflicting
potential functions only for goal region attraction. We also
provide a geometric optimization problem for combining tasks
inspired by Riemannian Motion Policies (RMPs) that reduces
to a simple least-squares problem, and we show that our
approach is geometrically well-defined. We demonstrate the
PBDS framework on the sphere S

2 and at 300-500 Hz on a
manipulator arm, and we provide task design guidance and an
open-source Julia library implementation. Overall, this work
presents a fast, easy-to-use framework for generating motion
policies without unwanted potential function local minima on
general manifolds.

I. INTRODUCTION

Fast reactive planning and control is often crucial in
dynamic, uncertain environments, and related techniques
have a long history [1]–[5]. However, key challenges remain
in applying these techniques to general manifolds. Well-
known non-Euclidean manifolds are ubiquitous in robotics,
often representing part of the configuration manifold (e.g.,
SO(3) for aerial robot attitude). They can also be essential
for representing robotic task spaces (e.g., the sphere S

2 for
painting or moving a fingertip around an object surface, such
as in Fig. 1). Further, constraints may restrict the robot to a
free submanifold which is difficult to represent explicitly.
For example, an obstacle in the workspace can produce
an additional topological hole that geodesics, or “default”
unforced trajectories, should avoid [6], [7].

Often such constraints are handled using constrained
optimization or repulsive potentials. However, constrained
optimization can scale poorly with the number and com-
plexity of nonconvex constraints, often becoming impractical
for real-time MPC without careful initialization [8]–[10].
On the other hand, repulsive potentials can be difficult to
design without producing incorrect behavior. For example,
it is well known that artificial potential function (APF)
techniques [1], [2] without assumptions about the robot and
workspace geometry [11]–[13] can produce many incorrect
local minima and unnatural behavior such as oscillations
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Fig. 1: Example tree of PBDS task mappings designed to move a ball along
the surface of a sphere to a goal while avoiding obstacles. Depicted are
manifolds representing: (black) joint configuration for a 7-DoF robot arm
with two fully revolute joints, (purple) ball pose, (red) distances to obstacles,
(blue) position on the sphere, and (green) distance to the goal. Note that
damping can be defined on T2 × R5, SE(3), and/or S2 as desired.

within the free submanifold (e.g. in narrowing passages or
when a constraint is near the goal) [14], [15].

An alternative coming from differential geometry is to
encode constraints not with forces, but with metrics. For
example, correctly designed Riemannian metrics [16] defined
on the robot configuration manifold have been proposed
to curve the manifold to prevent constraint violation, not
due to forces pushing the robot away but due to the space
stretching infinitely in the direction of constraints [17], [18].
Such a reliance on curvature rather than competing potential
functions may also eliminate traps due to potential function
local minima [19].

However, correctly designing such metrics directly on the
configuration manifold can be difficult, motivating the use of
pullback metrics, i.e. metrics are designed on task manifolds
where constraints are naturally defined and then “pulled
back” through the task map onto the configuration manifold.
One recent work advocating this approach is RMPflow [17],
which develops a tree of subtask manifolds with metrics
and forces defined on the leaf manifolds which are pulled
back and combined into a single acceleration policy on
the configuration manifold. However, [17] uses potentials in
addition to metrics to represent constraint-enforcing subtasks,
increasing design complexity and leading to the same local
minima issues as in other APF approaches.

Additionally, it is often useful to perform task prioritiza-
tion dependent on robot velocity. For example, when a robot
is moving away from an obstacle, the obstacle can often be
safely ignored. To this end, [17] introduces Geometric Dy-
namical Systems (GDSs) weighted by Riemannian Motion
Policies (RMPs) [20], which allows velocity-dependent met-



rics used both to specify subtask behavior (such as constraint
avoidance) and to prioritize tasks. However, this approach
presents two difficulties: First, it is very difficult to design
task metrics which both specify desirable task behavior
and prioritize tasks correctly. This has led to investigating
learning the task metrics from demonstrations [21], but in
any case, it is unclear what task behavior within a single task
could benefit from velocity-dependent Riemannian metrics,
as we discuss in Sec. IV-B.

Second, a GDS with velocity-dependent metrics does
not meet the key property of geometric consistency, as
we demonstrate in Sec. IV-A. Geometric consistency1 (i.e.
invariance to changes in coordinate representations) is an
essential property of any differential geometric method which
ensures that the quantities defined, in this case acceleration
policies, are well-defined on the robot and task manifolds
invoked, thus correctly capturing and leveraging the structure
of these manifolds (for example, see Fig. 5).

To summarize, a large gap remains for producing a fast,
easy-to-use, and geometrically-consistent approach for gen-
erating motion policies on general robot and task manifolds,
achieving velocity-dependent task-weighting, and leveraging
metric-based enforcement of constraints to eliminate un-
wanted potential function local minima.

Statement of Contributions: To this end, we provide the
following contributions:

1) We present the Pullback Bundle Dynamical Systems
(PBDS) framework for combining multiple geometric task
behaviors into a single robot motion policy while maintaining
geometric consistency and stability. In doing so, we provide
a geometrically well-defined formulation of a weighting
scheme inspired by RMPs, which reduces to a simple least-
squares problem. We also remove the tension between single-
task behavior and inter-task weighting by introducing sep-
arate velocity-dependent weighting pseudometrics for each
task to handle task prioritization.

2) We apply the PBDS framework to tangent bundles
to reveal limits to the practical use of velocity-dependent
Riemannian metrics for task behavior design and to show
why GDSs do not maintain geometric consistency.

3) We provide a class of constraint-enforcing tasks en-
coded solely via simple, analytical Riemannian metrics that
stretch the space, rather than via traditional barrier function
potentials, eliminating potential function local minima.

4) We demonstrate PBDS policy behavior in numerical
experiments and at 300-500 Hz on a 7-DoF arm, and we
provide a fast open-source Julia library called PBDS.jl.

Paper Organization: The paper is organized as follows. In
Sec. II we recall relevant concepts from Riemannian geome-
try and establish some notation. Then Sec. III builds a multi-
task PBDS, extracts a motion policy, and provides stability
results. Sec. IV unpacks key advantages over RMPflow’s
GDS/RMP framework. Finally, Sec. V provides implemen-
tation details and a robot arm demonstration.

II. GEOMETRIC PRELIMINARIES

Here we recall some results in Riemannian geometry and
establish notation that will be used throughout the paper.
For a more detailed introduction, see [16], [22]. Let M
be a smooth m-dimensional manifold equipped with charts

1Geometrically-consistent objects are also known of as being “global” in
differential geometry [22]. Thus we will also refer to such objects as being
geometrically or globally well-defined.
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Fig. 2: Commutative diagram of the key manifolds used to form a pullback
bundle dynamical system. Note that the pullback bundle f∗TN is an n-
vector bundle over the robot configuration manifold M .

assigning coordinates to locally-Euclidean patches. M has a
smooth tangent bundle TM containing tangent spaces TpM
at each point p ∈ M , and it has a cotangent bundle T ∗M ,
which is a natural place to define forces [23]. We will also de-
note (p, v) ∈ TpM as vp or v depending on desired emphasis
of the base point p. Given a Riemannian metric g, the couple
(M, g) is a Riemannian manifold. The metric provides a
smoothly-varying inner product gp : TpM × TpM −→ R

at each point and thus induces norms || · ||gp . The metric
g also gives a “sharp” operator ♯ : T ∗M −→ TM and
generalized gradient gradf : M −→ TM for f ∈ C∞(M),
which are useful for applying forces. A choice of connection
∇ in TM (e.g. the standard Levi-Civita connection) assigns a
unique acceleration operator Dσ to each curve σ in M . Thus
we can compute acceleration Dσσ

′ = ∇σ′(t)σ
′, where σ′ is

the velocity along σ (used interchangeably with σ̇ notation,
which can also indicate a time derivative). Then by choosing
generalized forces F : TM −→ T ∗M , one can specify a
dynamical system on M satisfying Dσσ

′(t) = F(σ(t))♯.
This can be written in local coordinates as the second-order
differential equations

σ̈k(t)+σ̇i(t)σ̇j(t)Γk
ij(σ(t)) = gkj(σ(t))Fj(σ(t), σ̇(t)), (1)

where we make use of Einstein index notation and where
Γk
ij are the Christoffel symbols associated with ∇. We will

use this type of dynamical system to design desired behavior
on task manifolds that corresponding robot motion policies
should aim to replicate.

Note also that we will use bold symbols when convenient
to denote local matrix or vector representations of objects.

For example, given Ξk , σ̇iσ̇jΓk
ij , we can write (1) as

σ̈(t) +Ξ(σ(t), σ̇(t)) = g−1(σ(t))F(σ(t), σ̇(t)).

We may also abbreviate such expressions, for example as

σ̈ +Ξ = g−1
F .

III. PULLBACK BUNDLE DYNAMICAL SYSTEMS

Given K tasks, let M and Ni be smooth m- and ni-
dimensional robot configuration and task manifolds, re-
spectively, where {fi : M −→ Ni}i=1,...,K is a set of
smooth task maps. These tasks could represent a variety
of desired behaviors such as attraction to a point/region,
velocity damping, or avoidance of a constraint. To illustrate,
consider a running pedagogical example of a point robot on
the surface of a ball, aiming to reach a goal while avoiding
obstacles. A simple design for the relevant tasks is shown in
Table I. As shown, the desired task behaviors can be encoded
by designing on each task manifold Ni a potential function
Φi : Ni −→ R+, dissipative forces FD,i : TNi −→ T ∗Ni,
and a Riemannian metric gi (which we can refer to as the
behavior metric), all of which are smooth. We also choose
the standard Levi-Civita connection ∇i [22].

As mentioned, these components give dynamical systems
on the task manifolds Ni, but we want to form a robot
motion policy from a dynamical system on the configuration



Task Task Map Behavior Metric Dissipative Forces Potential Weight Pseudometric

Goal Attraction f1 : S2 → R : p 7→ dist(p, pgoal) g1 = 1 FD,1 = 0 Φ1 = ‖x‖2
2

wi = I2
Damping f2 : S2 → S2 : p 7→ p ḡ2 = I3 F̄D,2 = −4 ˙̄x Φ2 = 0 w̄2 = I6

Obstacle Avoidance fi : S
2 → R+ : p 7→ dist(p,Xobs) gi = exp(1/(2x2)) FD,i = 0 Φi = 0 See (13)

TABLE I: Simple task design summary for running example of a robot on a sphere surface navigating to a goal point while avoiding obstacles. Note that
each obstacle has an avoidance tasks (hence the indices i). For the damping task, the overbars denote representations in ambient Euclidean space, which
are easily pulled back through standard embedding maps to induce corresponding objects on S2 and TS2 (see Appx. A.II for details).

manifold M . One way to proceed is by using pullbacks, i.e.
“pulling back” the necessary objects through the task maps
fi to operate over M . First, we recall the definition of the
pullback bundle of TN , omitting task indices for simplicity:

f∗TN =
∐

p∈M

π−1
N (f(p)), (2)

where
∐

is a disjoint union and πN is the standard pro-
jection on TN . This is itself a well-defined vector bundle
and in particular is an (m + n)-dimensional manifold. The
relationships between these manifolds are depicted in Fig 2,
including a pullback differential f∗df : TM −→ f∗TN :
(p, v) 7→ (p, π2(dfp(v))), where π2 denotes a projection onto
the velocity component.

Next we define the pullback connection f∗∇, whose
Christoffel symbols are given locally by

f∗Γk
ij(p) =

∂f ℓ

∂xi
(p)Γk

ℓj(f(p)) (3)

for all p ∈ M . In Lemma C.1 we show this connection
is globally well-defined and compatible with a pullback
metric f∗g. This connection gives a corresponding pullback
acceleration operator f∗Dγ for each curve γ in M . We can
also denote the total acceleration given by the pullback forces
as f∗F(·)♯ : f∗TN −→ f∗TN : (p, v) 7→ f∗FD(p, v)♯ −
f∗gradΦ(p), where we define the pullback dissipation forces
f∗FD and pullback gradient f∗grad in Appx. C.I.

We are now equipped to construct a key building block
for forming a full Pullback Bundle Dynamical System:

Definition III.1 (Local Pullback Bundle Dynamical System).
Let f : M −→ N be a smooth task map. Then for each
(p, v) ∈ M , we can choose a curve α(p,v) : (−ε, ε) −→ M
resulting in γα(p,v)

: (−ε, ε) −→ f∗TN for some ε > 0
such that (f, g,Φ,FD, α(p,v)) forms a local Pullback Bundle
Dynamical System (PBDS) satisfying

PBDSα(p,v)











f∗Dα(p,v)
γα(p,v)

(s) = f∗F(γα(p,v)
(s))♯

γα(p,v)
(0) = f∗dfα(p,v)(0)(α

′
(p,v)(0)),

α′
(p,v)(0) = (p, v).

This local PBDS construction is local in the sense that in
practice, we define a PBDSα(p,v)

for each (p, v) ∈ TM and

only evaluate it at (p, v). However, it is geometrically well-
defined and is required to ensure that we have well-defined
dynamics at each point on the pullback bundle independent
of the robot curve σ : [0,∞) −→ M that we ultimately
follow. In particular, these dynamics must be well-posed at
t = 0, (i.e. where f∗Dσ is not well-defined, requiring another
curve ασ′(0) to produce f∗Dασ′(0)

) and in cases where the

curve ασ′(t) defining a valid PBDSασ′(t)
for some t ∈ [0,∞)

is not unique. For example, the latter may occur when there is
redundancy, i.e., m > n, which is often the case in practice.

From these local PBDS dynamics, we can extract the
corresponding desired task pullback acceleration associated
with each robot position and velocity:

S : TM −→ T (f∗TN) : (p, v) 7→ πVB(γ
′
α(p,v)

(0)), (4)

where πVB denotes the projection onto the vertical bundle.
In Appx. C.III, we show that this map is geometrically well-
defined. In particular, a curve α(p,v) forming a valid local
PBDS always exists, and the map S does not depend on the
particular choices of curves α(p,v). Given this fact, we will

omit further mention of α and use the shorthand γ′
vp
(0) ,

γ′
α(p,v)

(0) for (p, v) ∈ TM .

Now for each individual task, we can form a map Si as
above to retrieve corresponding desired task pullback accel-
erations. However, our goal is to combine these tasks into
a single robot motion policy. To do this, one approach is to
define a robot acceleration policy using a geometrically well-
defined optimization problem designed to strike a weighted
balance between these pullback task acceleration policies.

This is not as straightforward as it may appear since the
operative accelerations are each in different spaces and are
thus difficult to compare (i.e. σ̈ is in TTM and γ′

σ̇(t) is

in T (f∗
i TNi) for each task). To resolve this, we form a

map relating robot accelerations on TTM to their resulting
pullback task accelerations in T (f∗

i TNi):

Zi : TTM −→ T (f∗
i TNi)

(

(p, v), a
)

7→ πVB

(

d(f∗
i dfi)(p,v)(a)

)

.
(5)

Next, for each task we define a Riemannian pseudometric
wi on TNi which will provide its weighting against other
tasks, and we impose the following assumptions:

(A1) The pseudometrics wi are at every point in TNi either
positive-definite or zero.

(A2) The Jacobian of the product map of the task maps
associated with nonzero weights has rank m.

In practice, these weighting pseudometrics are often trivial
to design (e.g., see our running example in Table I, where
the attractor task weight is the Euclidean metric, and the
damping task weight is induced by a Euclidean metric).
However, they can also be used to switch tasks on and
off, which is useful for enforcing constraints as shown
in Sec. IV-C. Also, as in the running example, (A1) and
(A2) are easy to satisfy. In particular, it is typical to use
one or more damping tasks which together always provide
dissipation along all degrees of freedom of the robot. Now to
conclude, each wi also has a pullback pseudometric F ∗

i wi on
T (f∗

i TNi) defined using the natural higher-order task map
Fi : TM → TNi : (p, v) 7→ (p, (dfi)p(v)) (Appx. C.III).

We can now form the desired ODE on our robot manifold:

Definition III.2 (Multi-Task Pullback Bundle Dynamical
System). Let {fi : M −→ Ni}i=1,...K be smooth task maps.
Then the set {(fi, gi,Φi,FD,i, wi)}i=1,...,K forms a multi-
task PBDS with curves σ : [0,∞) −→ M satisfying






σ̈(t) = argmin
a∈Dσ̇(t)

∑K
i=1

1
2‖Zi(a)− Si(σ̇(t))‖

2
F∗

i
wi

σ̇(0) = (p0, v0).
(6)

Here, D is the globally well-defined affine distribution of
TTM such that the subspace D(p,v) ⊆ T(p,v) satisfies av = v
componentwise for each a = ((p, v), (av, aa)) ∈ D(p,v).
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Fig. 3: Tree of manifolds and task maps in a multi-task PBDS policy. At the
root is the robot configuration manifold, and task manifolds are at the leaves.
This structure can be exploited to parallelize computation of contributions
from independent tasks and reuse computation from parent nodes.

Under assumptions (A1)-(A2), as shown in Appx. C.III,
the multi-task PBDS is geometrically well-defined and has
a unique smooth solution. This gives us a dynamical system
on M that provides our robot acceleration policy:

σ̈ =

(

K
∑

i=1

Jf⊤
i wa

i Jfi

)†( K
∑

i=1

Jf⊤
i wa

i Ai

)

(7)

Ai = g−1
i (FD,i −∇Φi)− ( ˙Jf i −Ξi)σ̇

(Ξi)kj = (Jfi)ℓj(Γi)
k
ℓh(Jfi)hrσ̇

r,
(8)

where ∇ in this context is the Euclidean gradient operator,
and where wa

i ∈ R
ni×ni is the lower-right quadrant of

the local matrix wi ∈ R
2ni×2ni . In practice, this is the

only quadrant necessary to design due to the vertical bundle
projections in (4) and (5).

Next, we use LaSalle’s invariance principle to demonstrate
stability about a set of robot equilibrium states. This requires
a Lyapunov function, which we build adapting known results
in Lagrangian mechanics to the multi-task PBDS. In partic-
ular, we rely on one more key assumption:

(A3) The combined dissipative forces corresponding to
tasks having nonzero weights are strictly dissipative.

Like the others, (A3) can be naturally satisfied (see the
discussion of (A2)). Now consider the Lyapunov function
candidate on the robot tangent bundle TM :

V (p, v) =

K
∑

i=1

1

2

∥

∥(f∗
i dfi)p(v)

∥

∥

2

(f∗

i
gi)p

+Φi ◦ fi(p). (9)

In Appx. C.III, we show that V̇ (σ′(t)) < 0 outside equilib-
rium states, leading to the following stability results:

Theorem III.1 (Global Stability of Multi-Task PBDS). Let
{(fi, gi,Φi,FD,i, wi)}i=1,...,K be a multi-task PBDS where
∑K

i=1 Φi ◦ fi is a proper map. Then given the Lyapunov
function V above, the multi-task PBDS satisfies these:

• The sublevel sets of V are compact and positively
invariant for (6), so that every solution curve σ is
defined in the whole interval [0,+∞).

• For every β > 0, every solution curve σ in M starting
at σ̇(0) ∈ V −1([0, β]) converges in V −1([0, β]) as
t → +∞ to an equilibrium set {(p, 0) ∈ V −1([0, β]) :
f∗
i gradΦi(p) = 0 if wi(fi(p), 0) 6= 0}

IV. COMPARISON TO RIEMANNIAN MOTION POLICIES

ON GEOMETRIC DYNAMICAL SYSTEMS

As mentioned, prior work proposed a framework called
RMPflow which presented Geometric Dynamical Systems
(GDS) for designing dynamical systems on task manifolds
that could be “pulled back” onto the robot manifold to gener-
ate a robot motion policy [17]. Similar to this work, multiple

TTM F ∗TTN TTN

TM TN

M N

F ∗dF

πTM
F ∗πTN

F ∗IdTTN

πTN

F

πM πN

f

Fig. 4: Commutative diagram for a PBDS system applied to a task map
between tangent bundles.

GDSs could be combined through weighted optimization, in
that case by using Riemannian Motion Policies (RMP) [20].
In this section, we will explain the key difficulties with the
RMPflow approach (which we will refer to as GDS/RMP)
and how they are resolved by our multi-task PBDS policies.

A. Geometric Consistency

The main shortcoming of the GDS framework is that it
is in general not geometrically consistent. Geometric con-
sistency is an essential property for any geometric method,
ensuring its properties hold on non-Euclidean manifolds (i.e.
outside a single locally-Euclidean patch) and are invariant to
changes in coordinates. To see where geometric consistency
is lost, we can derive the GDS framework as a modification
of a PBDS applied to tangent bundles as follows.

For a given task map f : M −→ N , we define a higher-
order task map F : TM −→ TN as in Sec. III. Since tangent
bundles also have a manifold structure, we can build a PBDS
on F using the process in Sec. III, now operating on the
higher-order manifolds shown in Fig. 4. However, now it is
difficult to extract a robot acceleration policy corresponding
to a curve on the robot manifold M because the PBDS
curves σ have moved to TM . In particular, σ(t) ∈ TM now
contains both robot positions and velocities, so σ̈(t) contains
both acceleration and jerk. The GDS tackles this problem
by projecting the geometric acceleration F ∗Dσγ = ai∂v

i +
κi∂a

i onto the first half of the basis vectors ∂v
i to remove

components that would correspond to jerk. Unfortunately,
this is a projection onto a particular choice of horizontal
bundle, which can only be made disjoint from the globally
well-defined vertical bundle given a choice of chart [24]. In
other words, it is impossible to define this projection globally.

In particular, a clear problem arises when considering
a change of coordinates on the projected Riemannian task
metric for the GDS. Consider a metric g on TN which can
be represented in chart C̃ as g̃vijdṽ

idṽj + g̃aijdã
idãj so that

g̃ = blockdiag(g̃v, g̃a). Let φ be the transition function from

a new chart Ĉ to C̃. The Jacobian of φ has the form

Jφ(p̂, v̂) =

[

Jφv(p̂, v̂) 0
Jφav(p̂, v̂) Jφa(p̂, v̂)

]

,

Jφv
ij(p̂, v̂) = Jφa

ij(p̂, v̂) =
∂p̃j

∂p̂i
(p̂),

Jφav
ij (p̂, v̂) = v̂k

∂2p̃j

∂p̂i∂p̂k
(p̂).

(10)

The metric coordinates in Ĉ can then be found by

ĝ = Jφ⊤g̃Jφ (11)

=

[

Jφv⊤g̃vJφv + Jφav⊤g̃aJφav Jφav⊤g̃aJφa

Jφa⊤g̃aJφav Jφa⊤g̃aJφa

]

so that ĝv = Jφv⊤g̃vJφv +Jφav⊤g̃aJφav . Since g̃a 6= 0



by the properties of a metric, this shows that a horizontal
projection onto gv cannot be maintained through coordinate
transformations. Since the projected geometric acceleration
depends on gv , the policy will change depending on the
choice of coordinates and will thus exhibit unnatural behav-
ior (e.g., undesirable geodesics) on non-Euclidean manifolds.

To make this concrete, consider our Table I example on
a sphere, omitting obstacle avoidance. To see the effect of
coordinate choice, we run both PBDS and GDS policies
using different schemes for choosing coordinate charts on
S
2. The resulting trajectories can be see in Fig. 5a and b.

Here, the suboptimal and inconsistent behavior of the GDS
policy demonstrates the importance of geometric consistency.
With such consistency, the policy can accurately capture and
leverage the geometry of the manifold, as shown in the PBDS
example. Without it, the policy instead introduces artifacts
that disturb natural motion on the manifold and can lead to
erratic behavior. In some cases it is possible for the GDS
policy designer to engineer tasks within a given coordinate
choice that suppresses such behavior, but for non-Euclidean
metrics this will often be a struggle against the locally-
defined curvature terms introduced by the GDS formalism.

B. Task Prioritization and Velocity-Dependent Metrics

The main motivation for building GDSs on tangent bun-
dles is to define velocity-dependent metrics on task tangent
bundles which can be used both to drive the GDS dynamics
and enable velocity-dependent prioritization of tasks in the
RMP framework. However, this introduces difficulty for the
designer in forming task metrics which both give correct
single-task behavior and weight each task correctly against
all other tasks. Indeed, rather than allowing incremental
design and modular combination of tasks, it can require
jointly redesigning tasks for every new task combination.

To resolve this issue, the PBDS framework leverages two
observations: (O1) There are few practical scenarios where a
velocity-dependent Riemannian metric is useful for driving
task dynamics, and (O2) there is no need to use a single
metric for both task dynamics and task prioritization.

We can gain intuition for (O1) by considering a mod-
ified PBDS applied to tangent bundle tasks. For brevity,
we outline the main modifications here and leave further
details to Appx. D. Let Fi : TM −→ TNi be our task
maps. To avoid projecting onto the horizontal bundle as in
the GDS formulation, we instead wish to project onto the
vertical bundle, an operation that is globally well-defined.
However, to continue recovering an acceleration policy rather

than a jerk policy, we consider permuted task maps F̂i ,

σTNi
◦ Fi : TM −→ R

2di defined locally as F̂i(p, v) =
((df̄i)p(v), f̄i(p)). This essentially swaps the position and
velocity coordinates, an operation which is globally well-
defined on parallelizable manifolds (e.g., Lie groups) having
an embedding ϕ̄i : Ni −→ R

di , giving f̄i = ϕ̄i ◦ fi. Then
by considering curves in the corresponding pullback bundles
satisfying a system analogous to (6) with the appropriate
global projections applied, we arrive at the following ODE
for a curve σ in configuration manifold M :

σ̈ =
(

∑

i C
⊤
i w

a
i Ci

)† (
∑

i C
⊤
i w

a
i Ai

)

, Ci = Jf̄i +Ξ
v
i

Ai = (g−1
i )a(FD,i −∇Φi)− ( ˙Jf̄i −Ξ

a
i )σ̇

Ξv
ij = JF̂kjΓ

i+d
k(h+m)Jf̄hℓσ̇

ℓ, Ξa
ij = JF̂k(j+d)Γ

i+d
k(h+m)Jf̄hℓσ̇

ℓ.

It is now instructive to see the corresponding local policy

equations for a set of uniformly weighted fi = IdR tasks:

σ̈ =

∑

i(1 + Ξa
i )((g

a
i )

−1(FD,i − ∂xi
Φi)− Ξv

i σ̇)
∑

i(1 + Ξa
i )

2

Ξv
i = 1

2 (g
a
i )

−1∂xi
gai σ̇, Ξa

i = 1
2 (g

a
i )

−1∂vig
a
i σ̇.

This shows that a velocity-dependent metric modifies both
the “force” of the task (its contribution to the numerator
of the policy equation) and the total “mass” of the system
(the denominator). However, while modifying a task force is
desirable, modifying the total mass is not.

For example, consider using a velocity-dependent metric
to enforce constraints. For position constraints, if a task
metric increases as the robot approaches the constraint with
velocity towards it, the total mass increases. This indeed
makes it hard for the robot to accelerate further towards
the constraint, but likewise it becomes hard for the robot to
accelerate away. Similarly for velocity constraints, a barrier-
type velocity metric can enforce velocity limits, but it then
becomes difficult for other tasks to remove the high inertia
of the robot near the velocity limit.

Thus rather than applying the PBDS framework to tasks
mapping from the robot configuration tangent bundle TM ,
we instead nominally consider tasks mapping from the base
robot manifold M (i.e., using only position-dependent met-
rics to design individual task behaviors), greatly simplifying
the framework with little practical loss in expressiveness of
tasks. Additionally, leveraging (O2), we lose no expressive-
ness in defining velocity-dependent prioritization of tasks
by defining separate pseudometrics on the TNi to perform
the weighting. This also removes the difficulty of achieving
desired task behavior and task prioritization using a single
metric, thus resulting in a more modular framework.

C. Metric-based Constraints

As mentioned, constraints imposed solely by Riemannian
metrics rather than repulsive potentials can eliminate the spu-
rious local minima in combined potential fields characteristic
of many APF methods. However, this has not been consid-
ered in works employing the GDS/RMP framework [21],
[25], [26]. The notion of constraint-enforcing Riemannian
metrics was recently considered in [18]. However, rather than
constructing such metrics explicitly, the approach numeri-
cally computes a distance field from the goal considering
obstacles, interpreting this as a geodesic distance field whose
gradient is then used to guide trajectory optimization. Such
a technique is computationally intensive and may not be
practical for complex, dynamic scenarios.

Instead, we propose a class of simple analytical Rieman-
nian behavior metrics that provide tunable enforcement of
constraints within the PBDS framework. To motivate the
form of these metrics, consider a set of fi : R −→ R tasks
using the PBDS motion policy of (7):

σ̈ =

∑

i Jfiw
a
i ((gi)

−1(FD,i − ∂xi
Φi)− ( ˙Jf i + Ξi)σ̇)

∑

i Jf
2
i w

a
i

.

For constraint tasks, we let fi be a distance function to
the constraint boundary so that xi ∈ R+ is the distance
to the constraint and Ξi = 1

2 (gi)
−1∂xi

giσ̇. Since we add
no repulsive potential and offload dissipative forces to other
tasks, constraints are enforced through Ξi. In short, designing
Ξi as a negative barrier function at the constraint boundary
will slow negative velocities as desired. However, due to the
requirements of gi and the form of Ξi, a simple logarithmic



(a) PBDS geometric consistency test (b) GDS/RMP geometric consistency test (c) PBDS attractor and obstacle avoidance policy on S
2

Fig. 5: (a) and (b) show a geometric consistency test using a point attractor on S2 and three schemes for choice of chart: (Red) Always using south pole
stereographic projection, (Blue) always using north pole stereographic projection, (Purple) switching stereographic projections depending on the sphere
hemisphere. The blue and green dots show the start and goal points, respectively. Note that using PBDS, all coordinate choices result in the same trajectory.
(c) shows resulting trajectories from a PBDS attractor policy with obstacles added, where the curve colors represent different starting velocity directions.

or inverse barrier gi is insufficient. In particular, gi = log xi

is negative for xi < 1, and gi = a/xb
i always results in Ξi =

−b/xi for all a, b ∈ R, which has minimal tuning capability
(i.e. a/xb

i cannot decrease fast enough with decreasing xi).
There are many suitable options, but a good candidate is

gi(xi) = exp(a/(bxb
i )) (12)

for a > 0, b > 1, which results in a familiar and flexible
barrier function Ξi = −a/xb−1

i .
Additionally, we must weight constraint tasks such that

they are only active when ẋi < 0, both to save computa-
tion and because such metric-based constraints can produce
an undesired acceleration away from the constraint when
ẋi > 0. This can be accomplished using a pseudometric

wa
i (xi, ẋi) =

{

1 if ẋi > 0 and xi < β,

0 otherwise,
(13)

where β ∈ R+ activates the constraint avoidance within
some proximity. This works well numerically, but smooth
approximations can be used to retain smoothness guarantees.

The effectiveness of this metric and pseudometric combi-
nation can be seen in our full Table I running example with
results shown in Fig. 5c, where each obstacle has a task with
a task map fi giving the Euclidean distance to the obstacle
in the ambient R

3, metric gi = exp(1/x2
i ), and weighting

pseudometric wi as defined in (13) with β = ∞.

V. IMPLEMENTATION AND ARM EXPERIMENTS

We implemented the PBDS framework and the GDS/RMP
framework for comparison in a fast Julia package called
PBDS.jl2. Despite the apparent complexity of its geomet-
ric formulation, the PBDS algorithm in implementation
is quite simple and is summarized in Alg. 1. The main
challenge in handling non-Euclidean manifolds within the
PBDS framework is transitioning coordinate representations
of the necessary objects between different coordinate charts
and embeddings. However, PBDS.jl is designed to handle
these transitions automatically. To increase performance in
complex tasks, PBDS.jl also implements a computational tree
inspired by [17] for cases where a task map tree structure

2Available at https://github.com/StanfordASL/PBDS.jl

Algorithm 1: Multi-Task PBDS Policy

1: Input: Robot position and velocity (σ, σ̇)
2: Output: Robot acceleration command σ̈
3: Data: Task PBDSs (fi, gi,Φi,FD,i), weights wi

4: Compute Ai using (8) for each task
5: Compute combined acceleration policy σ̈ using (7)

such as in Fig. 3 allows significant reuse of computation.
This requires careful segmenting and recombination of the
main equations (7) and (8) (details in Appx. B).

For demonstration of PBDS on a complex robotic task,
we considered a 7-DoF Franka Panda arm grasping a mug
in a dynamic, cluttered environment (see video at bit.ly/pbds-
vid). For mechanism modelling and visualization, we used
packages from JuliaRobotics [27]. For the PBDS policy, we
used attractor, obstacle avoidance, and joint-limit policies
on Euclidean task manifolds and considered damping on S

2

and S
1 for gripper location around the mug and along the

mug rim. Along with providing natural movement through
obstacles, the fast Julia implementation allowed the robot to
react quickly to changes in the environment by computing
policy outputs at a rapid 300-500 Hz, a speed which could
be accelerated further by exploiting the clear opportunities
for parallelization offered by the PBDS framework.

VI. CONCLUSIONS

In conclusion, we have provided a fast, easy-to-use, and
geometrically consistent framework for generating motion
policies on non-Euclidean robot and task spaces. We have
also shown how PBDS can leverage Riemannian metrics
for simple constraint enforcement without generating unde-
sirable potential function local minima. We highlight that
although designing tasks on non-Euclidean manifolds can
appear daunting, in practice the design is often trivial (Table
I), and part of the strength of PBDS lies in its ability
to seamlessly integrate different tasks that are designed in
isolation. We also stress that a rich, diverse set of complex
behaviors can be produced from combinations of a handful
of common task design patterns. Future work for PBDS
includes extensions to a broader class of constraints (e.g.,
velocity, acceleration, and control limits) and to tasks defined
on discrete structures such as manifold triangle meshes.
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Fig. 6: Example experimental scenario for Franka Panda arm reaching
through clutter to grasp a mug. The blue and black boxes are obstacles, and
the green and red spheres on the arm represent the collisions for different
robot links.

APPENDIX A
FURTHER EXPERIMENTAL DETAILS AND

PBDS DESIGN STRATEGIES

In this section, we provide further details of the design of
the PBDS policy driving our robot arm grasping experiments,
including details of task design on S

1 and S
2, distance-

toggled tasks, and the general multi-task PBDS design strat-
egy we employ, which may serve as a useful reference for
practitioners.

Since all seven joints of the Franka Panda arm have
joint limits, the robot configuration manifold was M = R

7

(note that for revolute joints without joint limits, the circle
S
1 should be used instead). For collision avoidance, we

modelled a conservative collision hull around each link using
a set of spheres, as shown in Fig. 6.

I. Task Set for Grasping a Mug

The full list of tasks for this PBDS policy and their
corresponding task spaces is as follows.

Damping:

• R : Robot arm joint damping
• S

2 × R : Distance-toggled damping of gripper around
mug

• S
1 × R : Distance-toggled damping of gripper along

mug rim

Constraints:

• R+ : Joint limits (one for each joint)
• R+ : Obstacle avoidance (one for each pair of obstacle

and link collision hull sphere)
• R+ : Self-collision avoidance (one for each pair of link

collision hull spheres having the potential to collide)

Attractors:

• R
2 : Distance-toggled attractor above mug

• R
2 : Distance-toggled gripper axis alignment attractor

• R
2 : Distance-toggled grasping angle alignment attrac-

tor
• R

2 : Distance-toggled grasp completion attractor

Here R+ is the set of positive real numbers, as the task
maps for all constraints are distance functions to constraint
violation restricted to nonzero distances.

To prevent premature grasping and to handle dynamic
movement of the mug, we implement a simple two-state



machine which uses the above-mug attractor task above
while the mug is moving faster than some threshold velocity
and until the end-effector nears the attractor goal. Otherwise
the other three attractor tasks are used instead. Note that
although in this state we have multiple potentials, one for
each attractor task, they are easily designed to be always non-
conflicting (i.e. the inner product of their resulting desired
robot accelerations is never negative), and thus they produce
no undesirable local minima.

II. Tasks on S
n

For designing tasks on S
n for some n, it is often natural

to consider S
2 as being embedded in an ambient Euclidean

space and design the necessary components (g,FD,Φ, w)
there, as we also do in the example in Table I. These
components in the ambient space then induce corresponding
components on S

n. Thus, it is important to be able to
compute the induced versions of these components. The
same reasoning applies to many other manifolds which have
a natural embedding in Euclidean space, but here we will
consider Sn as it is a good example used in both the grasping
and Table I scenarios.

The n-sphere S
n can be naturally embedded as the unit

sphere in R
n+1, using an embedding ϕ̄ : Sn −→ R

n+1. We
can consider two stereographic projection charts on S

n with
chart maps ϕ+ : U+ ⊂ S

n −→ R
n and ϕ− : U− ⊂ S

n −→
R

n representing the south and north pole charts, respectively.
Then we can define corresponding maps ϕ̄+ and ϕ̄− from
chart coordinates to embedded coordinates as follows:

ϕ̄i
+(x) = ϕ̄i

−(x) =
2xi

a
, a =

n
∑

i=1

1 + (xi)2

ϕ̄n+1
+ (x) = −ϕ̄n+1

− (x) =
2− a

a
.

(14)

There is also a chart transition map between the chart
coordinate representations defined by ϕ+ ◦ ϕ−1

− (x) = ϕ− ◦
ϕ−1
+ (x) = x/‖x‖22. These maps and the associated spaces

are summarized in Fig. 7. We can construct similar maps for
TS2 embedded in R

2n+2.
Now given a behavior metric ḡ, dissipative forces F̄D,

potential function Φ̄ defined on R
n+1, and weighting pseu-

dometric w̄ defined on R
2n+2, the pullbacks of these objects

through ϕ̄+ and ϕ̄− give their coordinate representations in
the south and north pole charts, respectively. In particular,
we can compute the relevant components in the south pole
chart by:

g+ = Jϕ̄⊤
+ḡJϕ̄+, FD+ = Jϕ̄⊤

+F̄D

Φ+ = Φ̄ ◦ ϕ̄+, wa
+ = J ϕ̄⊤

+w̄
aJϕ̄+.

(15)

Components in the north pole chart representation can be
computed similarly.

III. Distance-Toggled Tasks

In some scenarios it is useful to switch tasks on or off
based on some distance using the weighting pseudometrics.
We have already seen an example of this in Sec. IV-C for
constraint tasks, and in the grasping scenario we take advan-
tage of this to skip computation of many of the collision-
avoidance tasks at any given configuration. However, as we
also exemplify in the grasping example, distance toggles can
also be useful for attractor and damping tasks.

To do this, one can simply form a new task map which is
the product of the original task map and the distance function

R
n+1

S
n

R
n

R
n

ϕ̄

ϕ+ ϕ−

ϕ̄+

ϕ− ◦ ϕ−1

+

ϕ̄−

Fig. 7: Commutative diagram for the two stereographic charts of S2 and its
embedding in Euclidean space. (Here we omit the subsets U+, U− ⊂ S2

which are the domains of the respective chart maps ϕ+, ϕ−).

used for toggling (if that distance function is different than
the function used for the original task map). Thus, the
new task manifold becomes the product of the original task
manifold and R, i.e. R becomes R

2 and S becomes S
2 ×R.

(Note that in PBDS.jl, we have implemented product task
maps to conveniently handle product manifolds like S

2×R).
Given this, one can form weights w for the task which are a
function of the new task variable to toggle the task as desired.

IV. A General Strategy for Multi-task PBDS Design

For the practitioner’s reference, we summarize here the
general strategy we have used for multi-task PBDS policy
design in both the Table I example and the grasping ex-
periments. Note that this is just one set of options among
many potentially viable strategies, and it specifically targets
scenarios where the objective is to reach a particular goal
configuration or region while avoiding constraint violation.
This strategy includes three main components:

1) First, we create a strictly dissipative task over the
robot configuration manifold M using the identity task map
fdiss = IdM . This task should use a behavior metric corre-
sponding to the desired “default” trajectories (geodesics) for
M , e.g. the Euclidean metric for R

n and the round metric
for S

n. Likewise, it should also use a suitable “default”
task weighting. In particular, the coordinates of the behavior
metric can be reused to specify the operative part of the
weighting pseudometric wa

diss(p, v) = gdiss(p). Lastly, there
should be a zero potential function and the force should be
strictly dissipative, meaning FD,diss(p, v) · v < 0 for all
v 6= 0. This task ensures that (A2) and (A3) are always
satisfied. In particular, if there is redundancy at any point in
the manifold with the respect to the other nonzero-weight
tasks, this task serves to regularize the policy.

2) Second, for each constraint, we add a constraint task
using a task map fcons : M −→ R+ that is a smooth
distance function to constraint violation. For the behavior
metric and weighting pseudometric, we use (12) and (13),
respectively, and we use a zero potential function and zero
damping forces.

3) Lastly, to direct the robot toward the goal, we create
one or more attractor tasks. The design of these tasks is very
flexible. For example, one can add distance-based toggles
as described in Sec. A.III. Additionally, the main portion
task map used to define the attractor potential function
need not be R. Both the behavior metric and weighting
pseudometrics should use suitable “defaults” as with the
dissipative task, unless toggling is used in the weights.
Note also that dissipative forces are optional in this task
as the previously defined dissipative task already provides
global strict dissipation and is often sufficient for providing



aesthetically natural motions. If multiple attractor tasks are
used, one should take care that active attractors are non-
conflicting, as explained at the end of Sec. A.I.

This strategy for attractors, along with the metric-based
enforcement of constraints, ensures that there are no spurious
potential function local minima, a common issue with APF
approaches. However, it does not mean that there are no
spurious (unstable) equilibrium points or that the system is
always guaranteed to reach the goal. For more on this, see
the discussion following Theorem C.1 in Sec. C.IV.

APPENDIX B
COMPUTATIONAL TREE FOR MULTI-TASK PBDS

Here we give a derivation and details for implementation
of the PBDS computational tree for reusing computation
in multi-level trees of task maps. Consider a set of task
maps forming a task map tree such as in Fig. 3. In such
a case, multiple task maps are composite maps which share
components (e.g., f1,1 ◦ f1 and f1,2 ◦ f1 share f1). Thus
in cases where applying component maps and computing
Jacobians and Jacobian derivatives is expensive, it is useful
to exploit this tree structure to reuse computation while
computing the multi-task PBDS acceleration policy output.

Thus we propose quantities denoted P , A, B, F , and
ξ which can be numerically pulled up the tree from the
leaves and combined into equation (7). Noting that each leaf
corresponds to a different task, we initialize these quantities
for each leaf as follows.

Leaf task manifold nodes:

P = B = Jf⊤waJf , A = Jf⊤wa ˙Jf

F = Jf⊤wag−1(FD −∇Φ)

ξqsr = Jfτqw
a
τηJfαsΓ

η
αβJfβr,

(16)

where f is the map to the task manifold from the immediate
parent, and we locally compute the task metric g, Christoffel
symbols Γ, generalized force FD, potential gradient ∇Φ, and
block wa of the weighting pseudometric w as usual. Next,
for parent nodes representing intermediate manifolds in the
composite task maps, we combine the child quantities as
follows.

Intermediate manifold nodes:

P = Jf⊤
(

∑

Pc

)

Jf , B = Jf⊤
(

∑

Bc

)

Jf

A = Jf⊤
((

∑

Ac

)

Jf +
(

∑

Bc

)

˙Jf
)

F = Jf⊤
∑

Fc, ξkhℓ = JfqkJfsh

(

∑

ξc

)q

sr
Jfrℓ,

(17)

where the c subscripts indicating quantities from the child
nodes, summations are over all child nodes, and f again
denotes the map to the node from the immediate parent.
Finally at the root node containing the robot configuration
manifold, we combine as follows.

Root robot manifold node:

P =
∑

Pc, A =
∑

Ac, F =
∑

Fc

ξkℓ =
(

∑

ξc

)k

hℓ
σ̇h.

(18)

We can now compute the multi-task PBDS acceleration
policy output using the root node quantities as

σ̈ = P †(F − (A+ ξ)σ̇). (19)

M

N1 . . . Nb

N1,2 . . . N1,c1 Nb,1 . . . Nb,cb

fbf1

f1,2 f1,c1 fb,1 fb,cb

Fig. 8: Task map tree for an example multi-task PBDS.

We now demonstrate that this strategy of splitting and reusing
computation correctly reconstructs (7).

Lemma B.1 (Computational Tree). Given a multi-task PBDS
and a corresponding tree of task maps, computing P , A, F ,
and ξ at the root node gives

P †(F − (A+ ξ)σ̇)

=

(

∑

i

Jf⊤
i wa

i Jfi

)†(
∑

i

Jf⊤
i wa

i Ai

)

Proof. Consider the two-level task tree in Fig. 8, having
b intermediate manifold nodes and ci children for the ith
intermediate node, for a total of

∑b
i=1 ci leaf nodes and

corresponding task maps. For such a multi-task PBDS, we
can expand (7) as

σ̈ =





b
∑

i=1

ci
∑

j=1

Jf⊤
i Jf⊤

i,jw
a
i,jJfi,jJfi





†

(

b
∑

i=1

ci
∑

j=1

Jf⊤
i Jf⊤

i,jw
a
i,j

(

g−1
i,j

(

FD,i,j −∇Φi,j

)

−

(

d

dt

(

Jfi,jJfi

)

+Ξi,j

)

σ̇

))

,

where we use the i subscript to denote quantities associated
to the intermediate nodes and use the i, j subscript for those
associated to the leaf nodes and their corresponding tasks.

Now unpacking each of the terms in (19) at the root robot
configuration manifold node, we have

P =

b
∑

i=1

Pi =

b
∑

i=1

Jf⊤
i

( ci
∑

j=1

Pi,j

)

Jfi

=

b
∑

i=1

ci
∑

j=1

Jf⊤
i Jf⊤

i,jw
a
i,jJfi,jJfi,

A =

b
∑

i=1

Ai

=

b
∑

i=1

Jf⊤
i

(

( ci
∑

j=1

Ai,j

)

˙Jfi +

( ci
∑

j=1

Bi,j

)

Jfi

)

=

b
∑

i=1

ci
∑

j=1

Jf⊤
i

(

Jf⊤
i,jw

a
i,jJfi,j

˙Jfi + Jf⊤
i wa

i,j
˙Jfi,jJfi

)

=
b
∑

i=1

ci
∑

j=1

Jf⊤
i Jf⊤

i,jw
a
i,j

d

dt

(

Jfi,jJfi

)

,



F =

b
∑

i=1

F i =

b
∑

i=1

Jf⊤
i

( ci
∑

j=1

Fi,j

)

=
b
∑

i=1

ci
∑

j=1

Jf⊤
i Jf⊤

i,jw
a
i,jg

−1
i,j

(

FD,i,j −∇Φi,j

)

,

ξkℓ =

( b
∑

i=1

ξi

)k

hℓ

σ̇h

=

b
∑

i=1

(Jfi)qk(Jfi)sh

( ci
∑

j=1

ξi,j

)q

sr

(Jfi)rℓσ̇
h

=

b
∑

i=1

ci
∑

j=1

(Jfi)qk(Jfi,j)τq(w
a
ij)τη(Jfi)sh(Jfi,j)αs

(Γi,j)
η
αβ(Jfi,j)βr(Jfi)rℓσ̇

h

=

b
∑

i=1

ci
∑

j=1

(

Jf⊤
i Jf⊤

i,jw
a
i,j

)

kη
(Jfi,jJfi)αh

(Γi,j)
η
αβ(Jfi,jJfi)βℓσ̇

h

=
b
∑

i=1

ci
∑

j=1

(

Jf⊤
i Jf⊤

i,jw
a
i,j

)

kη
J(fi,j ◦ fi)αh

(Γi,j)
η
αβJ(fi,j ◦ fi)βℓσ̇

h

=

b
∑

i=1

ci
∑

j=1

(

Jf⊤
i Jf⊤

i,jw
a
i,j

)

kη
(Ξi,j)ηhσ̇

h

=
b
∑

i=1

ci
∑

j=1

Jf⊤
i Jf⊤

i,jw
a
i,jΞi,jσ̇.

Combining these in (19), we see that we indeed recover the
correct robot acceleration policy from (7).

APPENDIX C
MATHEMATICAL DETAILS FOR PULLBACK BUNDLE

DYNAMICAL SYSTEMS

In this section, we give a detailed derivation of Pullback
Bundle Dynamical Systems and the extraction of multi-
task policies, showing that each of the key objects are
geometrically well-defined.

Let M and N be smooth m- and n-dimensional robot con-
figuration and task manifolds, having canonical projections
πM and πN , respectively. Let f : M −→ N be a smooth
task map and let ∇ be the Levi-Civita connection in TN
corresponding to metric g on N with Christoffel symbols

Γk
ij =

1

2
gkh(∂igjh + ∂jgih − ∂hgij). (20)

We form a pullback bundle f∗TN as defined in (2), which
is a smooth n-vector bundle over M and is itself an (m+n)-
dimensional manifold.

I. Constructions on the Pullback Bundle

Note that since f∗TN is not a tangent bundle, we must
reconstruct all of the standard objects and operators normally
used for defining mechanical systems on tangent bundles. We
first denote the pullback bundle projection as f∗πN , and for
convenience we define a pullback differential

f∗df : TM −→ f∗TN : (p, v) 7→ (p, π2(dfp(v))) (21)

and the pullback of the identity map on TN

f∗IdTN : f∗TN −→ TN : (p, v) 7→ (f(p), v), (22)

both of which are smooth and globally well-defined.
We now construct a global pullback connection on f∗TN :

Lemma C.1 (Pullback Connection). For every p ∈ M ,
choose Christoffel symbols defined locally as

f∗Γk
ij(p) =

∂f ℓ

∂xi
(p)Γk

ℓj(f(p)).

These functions are globally extendable and form a global
connection (which we call the pullback connection),

f∗∇ : Γ(TM)× Γ(f∗TN) −→ Γ(f∗TN).

Proof. The chosen Christoffel symbols are locally smooth.
To show that they are global, we must check whether they
satisfy the chart transition formula for Christoffel symbols
on vector bundles.

Consider two charts at p ∈ M denoted by CM and C̃M

and two charts at f(p) ∈ N denoted by CN and C̃N .
Then TM and TN have corresponding local frames ( ∂

∂xi ),
( ∂
∂x̃i ) and ( ∂

∂yi ), (
∂

∂ỹi ), respectively. Suppose we also have

a vector bundle E over N (note that in our case we have
E = TN ). Given local frames (Ei) and (Ẽi) for E, there
exists a smooth, non-singular matrix of functions (Aij) such

that locally Ẽi = AijEi.
Now given a connection ∇ : Γ(TN) × Γ(E) −→ Γ(E),

the related Christoffel symbols can be denoted by Γk
ij and

Γ̃k
ij . The chart transition formula for these Christoffel sym-

bols is

Γ̃k
ij = Apk ∂y

q

∂ỹi

(

AjrΓ
p
qr +

∂Ajp

∂yq

)

. (23)

We must now show a similar formula holds for f∗Γk
ij . Given

the local frames for E above, we can construct local frames
for the pullback bundle f∗E as (f∗Ei) , (Ei ◦ f) and

(f∗Ẽi) , (Ẽi ◦ f). Then for f∗Ẽi = Bijf
∗Ej , it is easily

seen that Bij = Aij ◦ f . We can now compute

f∗Γ̃k
ij =

∂f̃ ℓ

∂x̃i
(p)Γ̃k

ℓj(f(p))

=
∂yq

∂ỹℓ
(f(p))

∂f̃ ℓ

∂x̃i
(p)Apk(f(p))

(

Ajr(f(p))Γ
p
qr(f(p)) +

∂Ajp

∂yq
(f(p))

)

=
∂xℓ

∂x̃i
(p)

∂fq

∂xℓ
(p)Bpk(p)

(

Bjr(p)Γ
p
qr(f(p)) +

∂Ajp

∂yq
(f(p))

)

=
∂xℓ

∂x̃i
(p)Bpk(p)

(

Bjr(p)
∂fq

∂xℓ
(p)Γp

qr(f(p)) +
∂Ajp

∂yq
(f(p))

∂fq

∂xℓ
(p)

)

=
∂xℓ

∂x̃i
(p)Bpk(p)

(

Bjr(p)f
∗Γp

ℓr(p) +
∂Bjp

∂xℓ
(p)

)

.

We therefore find that the Christoffel symbols f∗Γk
ij can be

extended globally and the result follows.

This naturally leads to a geometric acceleration operator
for curves with velocity in f∗TN . Let σ : I −→ M be



a smooth curve, and denote the space of pullback bundle
vector fields over σ as

f∗X(σ) , {V : I −→ f∗TN | V is smooth, (24)

V (t) ∈ f∗Eσ(t), ∀t ∈ I}.

As a classical result, for every curve σ in M , the pullback
connection f∗∇ defines a unique acceleration operator

f∗Dσ : f∗X(σ) −→ f∗X(σ),

which locally takes the form

f∗DσV (t) =
(

V̇ k(t) + σ̇i(t)V j(t)f∗Γk
ij(σ(t))

)

f∗∂k|σ(t),

(25)
where (f∗∂i) is the frame for f∗TN defined by

f∗∂i(p) = (p, π2(∂i(f(p))). (26)

Now we construct a pullback metric on f∗TN . Note that
Lyapunov-type results for classical mechanical systems rely
on the fact that the Levi-Civita connection is compatible
with the related Riemannian metric. Indeed, this allows one
to differentiate the norm of some energy, obtaining such
variations as a function of the evolutionary equation of the
associated mechanical system. Thus, it is critical to reproduce
such a property in our framework to achieve stability.

Lemma C.2. Let g be a Riemannian metric on N which is
compatible with connection ∇. Then the pullback metric

f∗g : f∗TN × f∗TN −→ R

((p, v1), (p, v2)) 7→ gf(p)(v1, v2)

is compatible with the pullback connection f∗∇.

Proof. Since g and ∇ are compatible, we know they satisfy
the compatibility condition

d

dt
gρ(t)(X(t), X(t)) = 2gρ(t)(DρX(t), X(t)) (27)

for any smooth vector field X along any smooth curve ρ in
N . To show the same for f∗g and f∗∇, let σ : I −→ M
be a smooth curve and let V ∈ f∗X(σ). Then ρ : I −→ N :
t 7→ f(σ(t)) and W : I −→ TN : t 7→ f∗IdTN (V (t)) are
well-defined and smooth. Now using (27) we obtain

d

dt
f∗gσ(t)(V (t), V (t))

=
d

dt
gf(σ(t)) (f

∗IdTN (V (t)), f∗IdTN (V (t)))

=
d

dt
gρ(t) (W (t),W (t))

= 2gρ(t) (DρW (t),W (t)) . (28)

Applying (25) adapted for Dσ gives

DρW (t) =
(

Ẇ k(t) + ρ̇ℓ(t)W j(t)Γk
ℓj(ρ(t))

)

∂k|ρ(t)

=

(

Ẇ k(t) +
∂f ℓ

∂xi
(σ(t))σ̇i(t)W j(t)Γk

ℓj(ρ(t))

)

∂k|ρ(t)

=
(

Ẇ k(t) + σ̇i(t)W j(t)f∗Γk
ij(σ(t))

)

∂k|ρ(t)

= f∗IdTN

((

V̇ k(t) + σ̇i(t)V j(t)f∗Γk
ij(σ(t))

)

∂k|σ(t)

)

= f∗IdTN (f∗DσV (t)).

Thus continuing (28) finally provides
d

dt
f∗gσ(t)(V (t), V (t))

= 2gρ(t) (f
∗IdTN (f∗DσV (t)), f∗IdTN (V (t)))

= 2f∗gσ(t)(f
∗DσV (t), V (t)).

Next we develop the sharp operator on f∗TN , useful for
handling forces. First we define the dual pullback bundle

f∗T ∗N =
∐

p∈M

(π∗
N )−1(f(p)), (29)

where π∗
N is the canonical projection for the cotangent

bundle T ∗N . We can now define the flat operator

♭ : f∗TN −→ f∗T ∗N : (p, v) 7→ f∗gp(v, ·), (30)

which is easily seen to be a smooth bundle isomorphism.
The sharp operator is naturally defined to be the inverse of
the flat operator, i.e.,

♯ : f∗T ∗N −→ f∗TN : (p, ω) 7→ (p, ω)♭. (31)

In particular, locally we have (ω(p)♯)i = gij(f(p))ωj(p).
Now consider dissipative forces FD : TN −→ T ∗N ,

which we define as satisfying the dissipative property
〈FD(p, v), v〉 ≤ 0 for all (p, v) ∈ TN , where 〈·, ·〉 is
the natural pairing between a covector and a vector. For
convenience, we associate to FD corresponding pullback
dissipative forces as

f∗FD : f∗TN −→ f∗T ∗N

(p, v) 7→ (p, π2(FD(f(p), v)),
(32)

such that we have f∗FD(·)♯ : f∗TN −→ f∗TN . From this
definition, it follows that we have 〈f∗FD(p, v), v〉 ≤ 0 for
all (p, v) ∈ f∗TN so that these pullback forces inherit the
dissipative property. Note that the dissipative forces FD can
also be time-dependent and similar results to those shown in
this work will hold, but we keep them time-independent for
simplicity.

The last object we must construct on f∗TN is a gradient
operator for handling potentials. Given any smooth function
Φ : N −→ R, we locally define the smooth map

BΦ : M −→ f∗T ∗N : p 7→
∂Φ

∂yi
(f(p))f∗dyi|p,

where (f∗dyi) is the coframe for f∗T ∗N defined by
f∗dyi(p) = (p, π2(dy

i(f(p))). This map is intentionally
designed such that for every (p, v) ∈ TM we have

BΦ(p)(f
∗dfp(v)) =

∂Φ

∂yi
(f(p))f∗dyi|p(f

∗dfp(v)))

=
∂Φ

∂yi
(f(p))f∗dyi|p

(

vj
∂fk

∂xj
(p)

∂

∂yk

∣

∣

∣

∣

f(p)

)

= vj
∂f i

∂xj
(p)

∂Φ

∂yi
(f(p)) = vj

∂(Φ ◦ f)

∂yi
(p)

= d(Φ ◦ f)(p, v), (33)

which is crucial for our stability analysis. Now we can define
the pullback gradient operator such that

f∗gradΦ : M −→ f∗TN : p 7→ BΦ(p)
♯. (34)

To denote the total acceleration contributed by the pullback
forces (using the sharp operator to indicate converting from
forces to accelerations), we can also define the shorthands

f∗F(·)♯ : f∗TN −→ f∗TN

(p, v) 7→ f∗FD(p, v)♯ − f∗gradΦ(p).
(35)



II. Local Pullback Bundle Dynamical Systems

We finally come to the definition of an important build-
ing block for Pullback Bundle Dynamical Systems (PBDS)
called a local PBDS.

Definition C.1 (Local Pullback Bundle Dynamical System).
Let f : M −→ N be a smooth task map for a Riemannian
task manifold (N, g), let Φ : N −→ R+ be a smooth
potential function, and let FD : TN −→ T ∗N be dissipative
forces. Then for each (p, v) ∈ M , we can choose a curve
α(p,v) : (−ε, ε) −→ M resulting in γα(p,v)

: (−ε, ε) −→
f∗TN for some ε > 0 such that (f, g,Φ,FD, α(p,v)) forms a
local Pullback Bundle Dynamical System (PBDS) satisfying

PBDSα(p,v)











f∗Dα(p,v)
γα(p,v)

(s) = f∗F(γα(p,v)
(s))♯

γα(p,v)
(0) = f∗dfα(p,v)(0)(α

′
(p,v)(0)),

α′
(p,v)(0) = (p, v).

The reason for this local PBDS definition is to ensure that
PBDS is well-posed at t = 0 (i.e. where a curve ασ′(0) is
required to define f∗Dασ′(0)

) and in cases where the curve

ασ′(t) defining a valid PBDSασ′(t)
for some t ∈ [0,∞) is

not unique. For example, the latter may occur when there is
redundancy, i.e., m > n, which is often the case in practice.

Now we must show that a local PBDS exists at each point
in TM . In particular, we must show that for any (p, v) ∈
TM , there exists a curve α(p,v) satisfying PBDSα(p,v)

. If

(U,ϕ) is a local chart for M centered at p, let α(p,v)(s) ,
ϕ−1(sv), using local coordinates v ∈ R

m. This curve is
well-defined and smooth for small times around zero, so the
desired curve α(p,v) always exists, meaning the correspond-
ing local PBDS always exists.

To begin the process of extracting a robot motion policy,
we can define a map giving the desired pullback task
accelerations from local PBDSs corresponding to each point
in the robot configuration tangent bundle TM :

G : TM −→ T (f∗TN) : (p, v) 7→ γ̇α(p,v)
(0). (36)

For this map to be well-defined, we must show that it
does not depend on the choice of curves α(p,v). Let α(p,v)

and β(p,v) be two curves in M satisfying PBDSα(p,v)

and PBDSβ(p,v)
, respectively. These result in corresponding

curves γα(p,v)
and γβ(p,v)

in f∗TN as provided in the
local PBDS definition, which exist as a consequence of
standard Cauchy-Lipschitz arguments. In particular, since
every quantity defining a local PBDS is smooth, these curves
are at least C1, allowing us to compute γ̇α(p,v)

and γ̇β(p,v)

pointwise. Thus using (25) we can compute

γ̇k
α(p,v)

(0) = (f∗F(γα(p,v)
(0))♯)k

− α̇i
(p,v)(0)γ

j
α(p,v)

(0)f∗Γk
ij(α(p,v)(0))

= (f∗F(f∗df(α̇(p,v)(0)))
♯)k

− α̇i
(p,v)(0)(f

∗df(α̇(p,v)(0)))
jf∗Γk

ij(α(p,v)(0))

= (f∗F(γβ(p,v)
(0))♯)k

− β̇i
(p,v)(0)γ

j
β(p,v)

(0)f∗Γk
ij(β(p,v)(0))

= γ̇k
β(p,v)

(0).

Therefore we have γ̇α(p,v)
(0) = γ̇β(p,v)

(0) by the chart
invariance of the derivative operator. This shows that G is
well-defined and, in particular, smooth.

Given this result, we will adopt the shorthand γ′
vp
(0) ,

γ′
α(p,v)

(0) for (p, v) ∈ TM , knowing that suitable choices of

α(p,v) exist.

III. Multi-Task Pullback Bundle Dynamical Systems

Next, we continue with a detailed derivation for the
extraction of multi-task PBDS policies. For K tasks, consider
task maps {fi : M → Ni}i=1,...,K . We equip every ni-
dimensional task manifold Ni with a Riemannian metric gi,
a potential function Φi, and dissipative forces FD,i.

We can associate to every robot position and velocity
combination vp ∈ TM a smooth section γvp,i : [0, 1] −→
f∗TNi satisfying the single-task dynamics of the PBDS
specified by (fi, gi,Φi,FD,i). Extending the construction of
(36) to an operator Gi for each task, we collect the vectors
γ′
vp,i

(0) = ((p, v), (γ̇v
vp,i

(0), γ̇a
vp,i

(0))) into a globally well-

defined and smooth operator

Si : TM −→ T
(

f∗
i TNi

)

(37)

(p, v) 7→ πVB(Gi(p, v)) = πVB(γ̇vp,i(0))

= ((f∗
i dfi)p(v), (0, γ̇

a
vp,i

(0))),

where πVB denotes the globally well-defined projection onto
the vertical bundle. Recall that the vertical bundle of a bundle
is the subbundle formed by the kernel of the differential of its
standard projection, in this case ker(πf∗

i
TNi

). In particular,

locally we have πVB(b
i∂v

i + ai∂a
i ) = ai∂a

i for T (f∗
i TNi).

Next, we form a map relating robot accelerations on TTM
to their resulting task accelerations in T (f∗TNi):

Zi : TTM −→ T (f∗
i TNi)

(

(p, v), a
)

7→ πVB

(

d(f∗
i dfi)(p,v)(a)

)

.
(38)

Since the pullback differential f∗
i dfi is a smooth map be-

tween smooth manifolds M and f∗
i TNi, the differential of

the pullback differential d(f∗
i dfi) is globally well-defined.

Thus Zi is globally well-defined and smooth.
We also assign a weighting pseudometric wi to each task

tangent bundle TNi. Given the higher-order task maps

Fi : TM −→ TNi

(p, v) 7→ (fi(p), (dfi)p(v)),
(39)

we can define globally well-defined pullback pseudometrics

F ∗
i wi : T (f

∗
i TNi)× T (f∗

i TNi) −→ R

((p, v), a1), ((p, v), a2) 7→ (wi)Fi(p,v)(a1, a2).
(40)

Now we define a function which will choose a robot
acceleration for each robot position and velocity in TM and
will thus drive our PBDS dynamics:

ζ : TM −→ D ⊂ TTM

(p, v) 7→ argmin
a∈D(p,v)

K
∑

i=1

1

2
‖Zi(a)− Si(p, v)‖

2
F∗

i
wi
,

(41)

where D is the globally well-defined affine distribu-
tion of TTM such that the affine subspace D(p,v) ⊆
T(p,v)TM satisfies av = v componentwise for each a =
((p, v), (av, aa)) ∈ D(p,v). Because all the involved quanti-
ties are globally defined, as soon as (41) is well-defined (i.e.,
the minimization problem has a unique solution for every
(p, v) ∈ TM ) it is automatically globally defined.

To investigate conditions that guarantee existence and
uniqueness of solutions to this minimization problem for
every (p, v) ∈ TM , we derive solutions to (41) locally. In
doing so, we also prove that (41) is smooth. First, in order to



unpack Zi(a), we note that the differential d(f∗
i dfi) locally

takes the form

J(f∗
i dfi)(p, v) =

[

Jfi(p) 0
˙Jf i(p, v) Jfi(p)

]

, (42)

where for (p, v) ∈ TM we define ˙Jfi locally as

( ˙Jfi)kj(p, v) = vℓ
∂2f j

i

∂xℓ∂xk
(p).

Now for a ∈ D(p,v) we have

Zi(a) = πVB

(

d(f∗
i dfi)(p,v)(a)

)

= πVB

(

((f∗
i dfi)p(v), ((Jfi)jk(p)v

k,

( ˙Jf i)jk(p, v)v
k + (Jfi)jk(p)(a

a)k))
)

= ((f∗
i dfi)p(v), (0, (

˙Jf i)jk(p, v)v
k + (Jfi)jk(p)(a

a)k).

Thus for a ∈ D(p,v) we can locally compute

‖Zi(a)− Si(p, v)‖
2
F∗

i
wi

(43)

= ‖Jfi(p)a
a + ˙Jf i(p, v)v − γ̇a

vp,i
(0)‖2

wa
i
(Fi(p,v))

.

using the notation ‖x‖2
B

= x⊤Bx. Additionally for γ̇a
vp,i

(0)
we can locally compute

(γ̇a
vp,i

)k(0) = (f∗
i Fi(γvp,i(0))

♯)k − vℓ(t)γj
vp,i

(0)f∗
i (Γi)

k
ℓj(p)

= f∗
i FD,i(γvp,i(0))

♯ − f∗
i gradΦi(p)

− vℓ(t)γj
vp,i

(0)f∗
i (Γi)

k
ℓj(p)

= gkji (fi(p))

(

Fj
D,i((dfi)p(v))−

∂Φi

∂yji
(fi(p))

)

− vℓ(t)(Jfi)jh(p)v
h(t)(Jfi)rℓ(p)(Γi)

k
rj(fi(p)).

Thus, we can compute solutions to (41) locally by

ζ(p, v) =

(

K
∑

i=1

Jfi(p)
⊤wa

i (Fi(p, v))Jfi(p)

)†

(44)

(

K
∑

i=1

Jfi(p)
⊤wa

i (Fi(p, v))Ai(p, v)

)

,

where Ai(p, v) = ˙Jf i(p, v)v(t) − γ̇a
vp,i

(0). We can now

see that that for ζ to be smooth and always have a unique
solution, the sum within the pseudoinverse must be full rank.
To achieve this, we make some key assumptions about the
joint design of the task maps fi and weighting pseudometrics
wi which will also be important for the stability results. First
for convenience, we define a function giving the indices of
tasks having nonzero weights:

I : TM −→ P({1, . . . ,K})

(p, v) 7→ {i ∈ {1, . . . ,K} | wi((dfi)p(v)) 6= 0}.
(45)

This allows us to build a family of product task maps f(p,v) ,
∏

i∈I(p,v) fi giving for each (p, v) ∈ TM the product map

of the task maps associated to nonzero weights.

Now we make the following assumptions:

(A1) The pseudometrics wi are at every point in TNi either
positive-definite or zero.

(A2) The differential (df(p,v))p is always of rank m.

Note that (A2) implies that m ≤
∑K

i=1 ni. Now for all

(p, v) ∈ TM we can compute

K
∑

i=1

Jfi(p)
⊤wa

i (Fi(p, v))Jfi(p)

=
∑

i∈I(p,v)

Jfi(p)
⊤wa

i (Fi(p, v))Jfi(p)

= Jf⊤
(p,v)(p)w

a
(p,v)(F(p,v)(p, v))Jf(p,v)(p),

where F(p,v) ,
∏

i∈I(p,v) Fi and wa
(p,v)(F(p,v)(p, v)) ,

blockdiag({wa
i (Fi(p, v))}i∈I(p,v)). Given (A1) and (A2),

the final local matrix is positive definite, so the original
sum is indeed full rank, giving us unique solutions and
smoothness of ζ. Thankfully, these assumptions are easily
satisfied in practice as explained in Sec III.

However, it is useful to show that in general, with proba-
bility one the local matrix Jf(p,v)(p) has full rank at every
point p ∈ M if the size of I(p, v) is large enough (in
particular, if card(I(p, v)) ≥ 2m for every (p, v) ∈ TM ).
This may be inferred as a consequence of the Whitney
immersion theorem. However, by leveraging transversality
theory we can directly prove that, i.e., for a sufficiently high
number of tasks, the required full-rank properties are satisfied
pointwise with probability one.

To provide a more precise statement, we proceed in steps.
Our objective is achieved by selecting at least 2m tasks, if
we can shown that the complementary of the set

S ,

{

(f1, . . . , f2m) ∈ C∞(M ;N1)×

· · · × C∞(M ;N2m) : rank(f2m) < m
}

is dense with respect to the Whitney topology (see, e.g.,
[28]). We prove that the complementary of the set S is dense
in C∞(M ;N1) × · · · × C∞(M ;N2m) with respect to the
Whitney topology by the jet transversality theorem (see, e.g.,
[28]). For this, we denote

θ(f1, . . . , f2m) ,
(

θ̃, θf10 , . . . , θf2m0 , θf11 , . . . , θf2m1

)

as the jet of order one of f1, . . . , f2m. Let us define the
following smooth mapping in local jet coordinates

ρ(θ) ,
(

θf11 , . . . , θf2m1

)

.

It is clear that ρ is a local submersion. It is also clear that
locally we have

S =
⋃

1≤i≤m−1

ρ−1(L(2m,m; i)),

where L(2m,m; i) denotes the Stiefel manifold of linear
mappings from R

m to R
2m of rank 1 ≤ i ≤ m. Therefore,

in terms of codimension, we have

codim(S) ≥ codim
(

ρ−1(L(2m,m;m− 1))
)

= codim
(

L(2m,m;m− 1)
)

= m+ 1.

Then, the conclusion comes from a direct application of the
jet transversality theorem (see, e.g., [28]).

Now using the above constructions, we finally give the
definition of a multi-task PBDS:

Definition C.2 (Multi-Task Pullback Bundle Dynamical
System). Let {fi : M −→ Ni}i=1,...,K be smooth task maps
for a Riemannian task manifolds (N, g), with corresponding
smooth potential functions Φi : Ni −→ R+, dissipative



forces FD,i : TNi −→ T ∗Ni, and weighting pseudometrics
wi on TNi. Then the set {(fi, gi,Φi,FD,i, wi)}i=1,...,K

forms a multi-task PBDS with curves σ : [0,∞) −→ M
satisfying














σ̈(t) = ζ(σ̇(t)) =

argmin
a∈Dσ̇(t)

∑K
i=1

1
2‖Zi(a)− Si(σ̇(t))‖

2
F∗

i
wi

σ̇(0) = (p0, v0).

(46)

Assuming (A1) and (A2) to ensure smoothness of ζ and
the existence of unique solutions to (41), we see that we have
existence, uniqueness, and smoothness of solution curves σ
for a multi-task PBDS.

IV. Proof of Multi-Task PBDS Stability

This section proves the stability results summarized in
the main body of the paper. First, we make another key
assumption related to the design of weighting pseudometrics.
Using the convenience function in (45), for dissipative forces

we define FD,(p,v) ,
∏

i∈I(p,v) FD,i. We now assume that

for every (p, v) ∈ TM we have the following:

(A3) The dissipative force FD,(p,v) is strictly dissipative,

meaning 〈FD,(p,v)

(

(df(p,v))p(v)
)

, (df(p,v))p(v)〉 < 0
for v 6= 0,

Our Lyapunov stability results are as follows:

Proposition C.1 (Lyapunov Function for Multi-Task PBDS).
Let {(fi, gi,Φi,FD,i, wi)}i=1,...,K be a multi-task PBDS.
Then given the function V : TM −→ [0,∞) defined by

V (p, v) =
K
∑

i=1

1

2

∥

∥(f∗
i dfi)p(v)

∥

∥

2

(f∗

i
gi)p

+Φi ◦ fi(p), (47)

we have that

dV

dt
(σ̇(t)) =

K
∑

i=1

〈FD,i((dfi)σ(t)(σ̇(t))), (dfi)σ(t)(σ̇(t))〉 < 0

for σ̇(t) 6= 0 along solution curves σ to the multi-task PBDS.

Proof. Taking one element of the sum in d
dt
V (σ′(t)) from

the first term we have

d

dt

(1

2

∥

∥(f∗
i dfi)σ(t)(σ̇(t))

∥

∥

2

(f∗

i
gi)σ(t)

)

=
d

dt

(1

2
(f∗

i gi)σ(t)
(

(f∗
i dfi)σ(t)(σ̇(t)), (f

∗
i dfi)σ(t)(σ̇(t))

)

)

= (f∗
i gi)σ(t)(f

∗
i Dσ,iγσ,i(0), γσ,i(0)) (48)

= (f∗
i gi)σ(t)(f

∗
i FD,i(γσ,i(0))

♯, γσ,i(0))

− (f∗
i gi)σ(t)(f

∗gradΦi(σ(t)), γσ,i(0))

= 〈f∗
i FD,i(γσ,i(0)), γσ,i(0)〉

− 〈f∗
i gradΦi(σ(t))

♭, γσ,i(0)〉

= 〈FD,i((dfi)σ(t)(σ̇(t))), (dfi)σ(t)(σ̇(t))〉

−BΦi
(σ(t))

(

(f∗
i dfi)σ(t)(σ̇(t))

)

= 〈FD,i((dfi)σ(t)(σ̇(t))), (dfi)σ(t)(σ̇(t))〉 (49)

− d(Φi ◦ fi)(σ̇(t)),

where for (48) we use the compatibility of the pullback
metric and the pullback connection, and for (49) we use
(33). Likewise, for the second term we simply have

d

dt

(

Φi ◦ fi(σ(t))
)

= d(Φi ◦ fi)(σ̇(t)).

Thus, we have

d

dt

(

V (σ̇(t))
)

=

K
∑

i=1

〈FD,i((dfi)σ(t)(σ̇(t))), (dfi)σ(t)(σ̇(t))〉.

Then from assumption (A2) and the fact that all forces FD,i

are dissipative, we have that V̇ (σ̇(t)) < 0 for σ̇(t) 6= 0.

We now provide global stability results:

Theorem C.1 (Global Stability of Multi-Task PBDS). Let
{(fi, gi,Φi,FD,i, wi)}i=1,...,K be a multi-task PBDS where
∑K

i=1 Φi ◦ fi is a proper map. Then given the Lyapunov
function V of Prop. C.1, the multi-task PBDS satisfies these:

• The sublevel sets of V are compact and positively
invariant for ζ : TM −→ TTM , so that every solution
curve σ is defined in the whole interval [0,+∞).

• For every β > 0, every solution curve σ in M starting
at σ̇(0) ∈ V −1([0, β]) converges in V −1([0, β]) as
t → +∞ to an equilibrium set {(p, 0) ∈ V −1([0, β]) :
f∗
i gradΦi(p) = 0 if wi(fi(p), 0) 6= 0}.

Proof. First, we aim to show that the sublevel sets of V
are compact. Following the argument in the proof of [23,

Theorem 6.47], since we know
∑K

i=1 Φi ◦ fi is proper, it is
sufficient to show that

f∗g : TM × TM −→ R

((p, v1), (p, v2)) 7→
K
∑

i=1

(f∗
i gi)p

(

(f∗
i dfi)p(v1), (f

∗
i dfi)p(v2)

)

.

defines a metric. Symmetry and bilinearity follow easily from
the properties of the task pullback metrics f∗gi. For positive-
definiteness, we first take assumption (A2), which also gives
that the differential dfp is always of rank m, for the product

map f ,
∏K

i=1 fi. Now note that if f∗gp(v, v) = 0, then we

must have (f∗
i gi)p

(

(f∗
i dfi)p(v), (f

∗
i dfi)p(v)

)

= 0 for each
task. With dfp of full rank, this implies that v = 0. Thus it
is clear that f∗g is positive-definite and is a metric, which
in turn implies that V is proper. In addition, since we have

V̇ (σ̇(t)) < 0 from Proposition C.1, the level sets of V are
positively invariant.

Now, let β > 0 and define the set

A =
{

(p, v) ∈ V −1([0, β]) :

〈FD,(p,v)

(

(df(p,v))p(v)
)

, (df(p,v))p(v)〉 = 0
}

=
{

(p, 0) ∈ V −1([0, β])
}

.

where the last equality follows from (A3). First, we wish to
show that the set

B =
{

(p, 0) ∈V −1([0, β]) :

f∗
i gradΦi(p) = 0, wi(fi(p), 0) 6= 0

}

is the largest positively invariant set in A for the multi-task
PBDS. By its definition, we have B ⊆ A. Now suppose
by contradiction that we have a point (p, 0) in the largest
positively invariant set of A such that (p, 0) /∈ B. Then
f∗
i gradΦi(p) 6= 0 for some i such that wi(fi(p), 0) 6= 0. Let

the multi-task PBDS system evolve starting from (p, 0), and
let σ(p,0) be its solution. If σ̇(p,0)(t) = 0 for all t ∈ [0,+∞),
then σ̇(p,0)(0) = 0, and σ(p,0)(t) = p does not satisfy the



system. Thus, there must be t̄ > 0 such that σ̇(p,0)(t̄) 6= 0,
in contradiction with σ(p,0)(t) ∈ A for every t > 0.

Now using the LaSalle Invariance Principle, we can con-
clude that for solution curves σ to the multi-task PBDS
having initial condition σ̇(0) ∈ V −1([0, β]), we have
lim

t→+∞
dist(σ̇(t), B) = 0, and the conclusion follows.

There are a couple key things to highlight about this result.

First, it is important to note that it relies on
∑K

i=1 Φi ◦ fi
being a proper map. If it is not proper but its restrictions to
some sublevel set of the Lyapunov function is proper, then
convergence is only guaranteed within that sublevel set.

Second, given the assumptions, convergence to an equilib-
rium state is guaranteed. However, in some cases there can
be zero-velocity equilibrium states at local maxima or saddle
points of the attractor potential function. Fortunately in many
cases these are sets of zero measure that can be escaped by
injecting small disturbances into the system when such a
situation is detected.

APPENDIX D
MATHEMATICAL DETAILS FOR PBDS POLICIES ON

TANGENT BUNDLE TASKS

Here we provide further details for the extension of
the PBDS framework to tangent bundle tasks, as used in
Sec. IV-B. This framework is mainly instructive to show the
challenges both in performing such an extension in a way
that is geometrically well-defined and in finding practical
application for using velocity-dependent Riemannian metrics
to drive task behavior. Indeed, in this work we were not able
to find useful robotic tasks whose behavior could not be
replicated using the basic multi-task PBDS framework.

Given a task map f : M −→ N , consider the higher-
order task map F : TM −→ TN : (p, v) 7→ (f(p), dfp(v)).
It would be convenient if we could follow the same steps we
used to extract a robot acceleration policy from task maps
mapping from M . However, task maps mapping from TM
introduce two major new challenges.

First, the previous procedure applied in this case would
produce curves on TM rather than on M as we desire.
Unfortunately, not every curve in TM correctly represents
a curve in M . In particular, given a curve µ : I −→ TM ,
the velocity curve µ̇ takes points in TTM , which have the
form ((p, v), (b, a)), where (p, v) is the base point from
TM and (b, a) is the vector portion. If µ is to correctly
represent a curve σ : I −→ M , we must have that
µ̇(t) = ((σ(t), σ̇(t)), (σ̇(t), σ̈(t))) for every t ∈ I . This
clearly imposes a velocity constraint on admissible curves in
TM that we can consider: namely, points ((p, v), (b, a)) in
the velocity of admissible curves curves in TM must satisfy
v = b (in local coordinates). The way we choose to handle
this is through a subbundle constraint, as we will see.

Second, since velocities in this case are on TTM , an
acceleration operator applied to a curve µ in TM gives twice
as many acceleration vectors as an acceleration operator
applied to a curve in M . In particular, if µ should represent
a curve σ in M , the acceleration operator gives vectors that
should represent the second and third time derivatives of σ,
i.e. the acceleration on the jerk. Thus to meet our goal of an
acceleration policy, it is desirable to project away the jerk
components. The GDS framework in RMPflow accomplished
this by applying a projection onto the horizontal bundle [20].
However, as discussed previously, there is in general no

choice of horizontal bundle that is disjoint with the vertical
bundle in all charts, so this projection is not globally well-
defined.

Instead, we choose to handle this by applying a permuta-
tion to swap the position of the jerk and acceleration vectors,
an operation which is globally well-defined for parallelizable
manifolds that are embedded in the Euclidean space, such
as Lie groups. Then the global vertical bundle projection
will correctly remove the jerk components, leaving us with
the acceleration components that we can use to build an
acceleration policy. Note that an alternative is to apply the
vertical bundle projection without a permutation and recover
a jerk policy, but leave that alternative open to further study.

With this motivation and roadmap, we begin by consider-
ing enforcement of velocity constraints.

I. Enforcing Velocity Constraints

We will enforce the velocity constraints discussed above
using subbundle constraints. For this, we first consider the
augmented task map

F × πM : TM −→ TN ×M

(p, v) 7→ (F (p, v), πM (p, v)) = ((p, dfp(v)), p).

This would suffice if we aimed to recover a jerk policy.
However, now consider the permutation map σTN : TN −→
R

2d : (p, v) 7→ (dϕ̄p(v), ϕ̄(p)), where N has an embedding

ϕ̄ : N −→ R
d. Note that this map is globally well-defined

for parallelizable manifolds that are embedded in Euclidean
space, such as all Lie groups (though unfortunately, a notable
non-parallelizable manifold is S2). Using this and the embed-
ded task map f̄ : M −→ R

d, we can form the composition

F̂ , σTN ◦ F : TM −→ R
2d

(p, v) 7→ (df̄p(v), f̄(p))

We now construct the full augmented permuted task map
which we will use:

F̆ , F̂ × πM : TM −→ R
2d ×M

(p, v) 7→ (df̄p(v), f̄(p), p).

Now given the modified task tangent bundle T (R2d×M), we

can construct a pullback bundle F̆ ∗T (R2d ×M). Note that
this is a vector bundle which is isomorphic to the pullback

direct sum vector bundle F̂ ∗(TR2d)⊕ π∗
MTM .

Thus using straightforward identifications, we can define
the map

F̂ ∗L : TTM −→ F̂ ∗TR2d ⊕ π∗
MTM

((p, v), (b, a)) 7→ ((p, v),

dF̂(p,v)(b, a) + ((dπM )(p,v)(b, a)− v)).

We can also define the two vector subbundles of the pullback

bundle F̆ ∗T (R2d ×M):

F̆ ∗GVB =
{

((p, v), c1i ∂x
i
R2d + c2i ∂v

i
R2d + c3i ∂x

i
M )

∈ F̂ ∗TR2d ⊕ π∗
MTM

| c1i = 0 for i = 1, . . . , d, c3i = 0 for i = 1, . . . ,m
}

,

F̆ ∗GR2d =
{

((p, v), c1i ∂x
i
R2d + c2i ∂v

i
R2d + c3i ∂x

i
M )

∈ F̂ ∗TR2d ⊕ π∗
MTM | c3i = 0 for i = 1, . . . ,m

}

,



which are globally well-defined and smooth, in the first case
due to its vertical bundle structure and in the second case
due to standard projection arguments exploiting the direct
sum structure of the pullback bundle described earlier. Note

that we have F̆ ∗GVB ⊆ F̆ ∗GR2d as vector bundles. We also
use these to define a further subbundle of the pullback bundle

F̆ ∗G = F̆ ∗GVB ⊕ F̆ ∗G⊥
R2d , where F̆ ∗G⊥

R2d is the orthogonal

complement of F̆ ∗GR2d in the pullback bundle F̆ ∗T (R2d ×
M). This orthogonal complement can be defined by

F̆ ∗G⊥
R2d = {(p, v) ∈ F̆ ∗T (R2d ×M)

: F̆ ∗gp(v, w) = 0, ∀w ∈ F̆ ∗GR2d},

given some pullback metric F̆ ∗g for F ∗T (R2d ×M).

Now suppose we have a robot acceleration σ′′ =
((p, v), (b, a)) ∈ TTM , with corresponding point

F̂ ∗L(σ′′) ∈ F̆ ∗T (R2d × M) in the pullback bundle.

If we also have F̂ ∗L(σ′′) ∈ F̆ ∗GR2d , this implies that
(dπM )(p,v)(b, a)−v = 0, or componentwise b−v = 0. This
is exactly the velocity constraint we aim to impose. Thus, we
will enforce this constraint by ensuring our dynamics evolve

on the subbundle F̆ ∗GR2d .

In order to do so, we need to develop a connection on

the pullback bundle F̆ ∗T (R2d ×M) which is guaranteed to

provide curves that stay in the subbundle F̆ ∗GR2d if they
start in the subbundle. First we define a projection PF̆∗G⊥

R2d

from F̆ ∗T (R2d ×M) onto F̆ ∗G⊥
R2d , which is easily seen to

be globally well-defined. Now consider the tensorization of
the PF̆∗G⊥

R2d
operator:

PT
F̆∗G⊥

R2d

: TM −→ F̆ ∗T (R2d ×M)⊗ F̆ ∗T ∗(R2d ×M)

(p, v) 7→ F̆ ∗E∗
i (vp)

(

PF̆∗G⊥

R2d
(F̆ ∗Ej(vp))

)

F̆ ∗Ei(vp)⊗ F̆ ∗E∗
j (p),

where (F̆ ∗E∗
i ) is the dual local frame of F̆ ∗T ∗(R2d ×M)

associated to the local frame (F̆ ∗Ei) of F̆ ∗T (R2d ×M).

Now let ∇R2d and ∇M be connections over R
2d and

M , respectively (e.g., ∇R2d can be the pushforward of a
connection on TN through σTN ). Then we can combine

∇R2d and ∇M to form a connection ∇̆ over R
2d × M .

From here, we can build a pullback connection F̆ ∗∇̆ over
TM using the usual definition, having associated Christoffel

symbols F̆ ∗Γ̆k
ij .

Then for every vector field X over TM and section V of

F̆ ∗T (R2d ×M) we can build a well-defined operator

F̆ ∗∇̆PT
F̆∗G⊥

R2d

(·, ·) : TM → F̆ ∗T (R2d×M)⊗F̆ ∗T ∗(R2d×M)

such that we may consider the identification

F̆ ∗∇̆PT
F̆∗G⊥

R2d

(·, V ) : TM → F̆ ∗T (R2d ×M).

From this we can compute the coordinate representation

F̆ ∗∇̆PT
F̆∗G⊥

R2d

(·, V ) = (1{h>2d,k≤2d}(h, k)

− 1{h≤2d,k>2d}(h, k))F̆
∗Γ̆k

jhX
jV hnk,

where 1 is an indicator function and (ni) is an orthonormal

basis for F̆ ∗T ∗(R2d ×M). This allows us to define a new

connection over the pullback bundle F̆ ∗T ∗(R2d ×M) as

F̆∗G
R2d

F̆ ∗∇̆XV , F̆ ∗∇̆XV + F̆ ∗∇PT
F̆∗G⊥

R2d

(·, V ),

whose Christoffel symbols take the form

F̆∗G
R2d

F̆ ∗Γ̆k
jh = (1+1{h>2d,k≤2d}(h, k)

− 1{h≤2d,k>2d}(h, k))F̆
∗Γ̆k

jh.

(50)

In particular, notice when that when V (F̆ (p, v)) ∈ F̆ ∗GR2d

for every (p, v) ∈ TM , we have

F̆ ∗∇̆PT
F̆∗G⊥

R2d

(·, V )(F̆ (p, v))

= −

2d+m
∑

k=2d+1

( 2m
∑

j=1

2d
∑

h=1

F̆ ∗Γ̆k
jhX

jV h

)

nk ∈ F̆ ∗G⊤
R2d .

In short, this new connection

F̆∗G
R2d

F̆ ∗∇̆ effectively removes
the connection terms which may cause a curve to leave the

subbundle F̆ ∗GR2d where our desired curves should stay. For
brevity, we omit the full proof of this result which generalizes
[23, Prop. 4.85].

II. Multi-Task Acceleration Policy Optimization

Now using this connection, we can build local pullback
bundle dynamical systems having curves that satisfy our
desired velocity constraints:

Definition D.1 (Local PBDS on Tangent Bundle Task). Let
f : M −→ N be a smooth task map, where N is embedded
in R

d, and associate to f the augmented, permuted task map

F̆ : TM −→ R
2d×M . Also let ğ be a Riemannian metric on

R
2d ×M , let Φ̆ : R2d ×M −→ R+ be a smooth potential

function, and let F̆D : T (R2d × M) −→ T ∗(R2d × M)
be dissipative forces. Then for each (p, v) ∈ M , we can
choose a curve α(p,v) : (−ε, ε) −→ TM resulting in

γα(p,v)
: (−ε, ε) −→ F̆ ∗T (Rd × M) for some ε > 0

such that (f, g,Φ,FD, α(p,v)) forms a local Pullback Bundle
Dynamical System (PBDS) satisfying

PBDSα(p,v)



































PF̆∗G





F̆∗G
R2d

F̆ ∗Dα(p,v)

(

PF̆∗G(γα(p,v)
(s)
)





= PF̆∗G

(

F̆ ∗F̆(γα(p,v)
(s))♯

)

γα(p,v)
(0) = F̆ ∗dF̆α(p,v)(0)(α

′
(p,v)(0)),

α(p,v)(0) = (p, v),

where we denote total pullback acceleration F̆ ∗F̆(·)♯, anal-
ogous to Appx. C. As before, given (p, v) ∈ TM , we have
that γ′

α(p,v)
(0) from a corresponding local PBDS does not

depend on the choice of curve α(p,v), so we will again use

the shorthand γ′
vp
(0) , γ′

α(p,v)
(0).

Now in order to extract a single robot acceleration policy
from a set of tasks, we trace the constructions in Appx.
C.III with some modifications to form the required geometric
optimization problem. For K tasks, consider task maps
{fi : M → Ni}i=1,...,K , where each Ni is embedded

in R
di , giving corresponding embedded task map f̄i. We

equip each associated embedding space R
2di for TNi with

a Riemannian metric gR2di and a potential function ΦR2di



depending only on v for (p, v) ∈ TR2di . We also equip each
TR2di with a weighting pseudometric wTR2di and dissipative
forces FD,R2di , both dependent only on the base points

of TR2di , as will be important for defining our geometric
optimization problem. We also set the first di components
of FD,R2di to be zero. Next, we define similar objects
gM , ΦM on M and wM , FD,M on TM , although their
design is inconsequential as their contributions are ultimately
projected away.

From these we can form on each augmented, permuted
task space R

2di × M the product metric ği = gR2di ⊕ gM
and potential forces Φ̆i such that Φ̆i(v, q, p) = ΦR2di (v, q)+
ΦM (p). Likewise on each T (R2di ×M) we form the weight
product pseudometric w̆i = wTR2di ⊕ wTM and dissipative

forces F̆D,i = FD,R2di ⊕FD,M .

Then we define two distributions of T (F̆ ∗
i T (R

2di×M)) ∼=
T (F̂ ∗TR2di) ⊕ T (π∗

MTM) analogous to the subbundles

F̆ ∗GVB and F̆ ∗GR2d :

DVB,i =
{

(

((p, v), a), c1j∂x
j
M + c2j∂v

j
M,1 + c3j∂a

j

R2di

+ c4j∂v
j

R2di
+ c5j∂v

j
M,2

)

∈ T (F̂ ∗
i TR

2di)⊕ T (π∗
MTM)

| c1j = c2j = 0 for j = 1, . . . ,m, c3j = 0 for j = 1, . . . , d
}

,

DR2di =
{

(

((p, v), a), c1j∂x
j
M + c2j∂v

j
M,1 + c3j∂a

j

R2di

+ c4j∂v
j

R2di
+ c5j∂v

j
M,2

)

∈ T (F̂ ∗
i TR

2di)⊕ T (π∗
MTM)

| c5j = 0 for j = 1, . . . ,m
}

and define projections PDVB,i
and PD

R
2di

from the tangent

pullback bundle T (F̆ ∗
i T (R

2di×M)) onto these distributions.
As with the subbundles, these distributions are smooth and
globally well-defined due to their vertical bundle structures.

Now as before, we use the local PBDS construction above
to form for each task a section of the tangent pullback
bundle associating each robot position/velocity pair with the
corresponding desired task pullback acceleration:

Si : TM −→ T (F̆ ∗
i T (R

2di ×M))

(p, v) 7→ PD
R
2di

◦ PDVB,i
(γ′

(p,v)(0))

= (((p, v), a), (0, (0, γ′a
(p,v)(0), 0))).

Next we map robot accelerations and jerks to their corre-
sponding task tangent pullback bundle accelerations:

Zi : TTTM −→ T (F̆ ∗
i T (R

2di ×M))

(((p, v), a), κ) 7→ PD
R
2di

◦ PDVB,i
(d(F̆ ∗

i dF̆i)((p,v),a)(κ)).

Now given a weighting pseudometric w̆i over T (R2di ×
M) for each task, we can use a further higher-order task
map Fi : TTM −→ T (R2di × M) : ((p, v), a) 7→
(F̆i(p, v), (dF̆i)(p,v)(a)) to form the pullback pseudometric
F∗
i w̆i over TTM .

Then we can form our function returning the robot accel-
eration policy output for a given robot position and velocity:

ζ : TM −→ D ⊂ TTTM

(p, v) 7→ argmin
κ∈D(p,v)

K
∑

i=1

1

2
‖Zi(κ)− Si(p, v)‖

2
F∗

i
w̆i
,

(51)

where D is the globally well-defined affine distribution of

TTTM such that the subspace D(p,v) ⊆ T((p,v),(v,a))TTM
satisfies κv = v and κv = κb = a componentwise
for each (((p, v), (v, a)), (κp, κv, κb, κa)) ∈ D(p,v). Note
that because wTR2di depends only on the base points of
TR2di , given a point (p, v) ∈ TM , the coordinates of the
pullback pseudometric F∗

i w̆i do not depend on the particular
((p, v), a) ∈ T(p,v)TM at which F∗

i w̆i is evaluated. Thus in
practice we can simply evaluate it at ((p, v), 0) ∈ TTM .

To derive the local form of this acceleration policy, notice

that the differential d(F̆ ∗
i dF̆i) can be written locally as the

Jacobian

J(F̆ ∗
i dF̆i) =













Im 0 0 0
0 Im 0 0

J̈ f̄i
˙Jf̄i

˙Jf̄i Jf̄i
˙Jf̄i 0 Jf̄i 0
0 0 0 Im













,

where we denote ˙Jf̄i analogous to Appx. C. From this we
can see that given a point having componentwise identifi-
cations q = (((p, v), (v, a)), (v, a, a, κ)) ∈ D(p,v) we can
locally compute

‖Zi(q)− Si(p, v)‖
2
F∗

i
w̆i

(52)

= ‖Jf̄i(p)a+ ˙Jf̄i(p, v)v − γ̇κ
vp,i

(0)‖2
w̆a

i
(Fi(vp,0)))

,

where γ̇vp = (γ̇v
vp
, γ̇a

vp
, γ̇b

vp
, γ̇κ

vp
, γ̇M

vp
), w̆a

i is the lower-right

quadrant of wTR2di , and we define F0
i : TM −→ T (R2di ×

M) : (F̆i(p, v), (0, v)). Then adapting (25) and using the
computed Christoffel symbols of (50), we can compute the
components of γ̇vp,i along the indices of interest j = 2m+
di + 1, . . . , 2m+ 2di. First for forces, we have
(

PF̆∗

i
G

(

F̆ ∗
i F̆i(γvp,i(0))

♯
))j

= gjh
R2di

(F̂i(vp))

(

F̆h
D,i(γvp,i(0))−

∂Φ̆i

∂xh
(F̆i(vp))

)

.

Then for the Christoffel symbols term, denoting γvp
=

(γv
vp
,γa

vp
,γM

vp
) and α̇vp

= (α̇v
vp
, α̇a

vp
) we have

PF̆∗

i
G

(

α̇ℓ
vp,i

(0)PF̆∗

i
G

(

γvp,i(0)
)h

F̆ ∗
i Γ̆

j−2m
ℓh (vp)

)

= PF̆∗

i
G

(

α̇ℓ
vp,i

(0)PF̆∗

i
G

(

(F̆ ∗
i JF̆i)hrα̇

r
vp,i

(0)
)

(JF̆i)sℓ(vp)Γ̆
j−2m
sh (F̆i(vp))

)

= (α̇v
vp,i

)ℓ(0)(Jf̄i)hr(p)(α̇
v
vp,i

)r(0)

(JF̂i)sℓ(vp)Γ̆
j−2m
s(h+d)(F̂i(vp))

+ (α̇a
vp,i

)ℓ(0)(Jf̄i)hr(p)(α̇
v
vp,i

)r(0)

(JF̂i)s(ℓ+d)(vp)Γ̆
j−2m
s(h+d)(F̂i(vp))

= (Ξv
i )(j−2m−di)ℓ(vp)(α̇

v
vp,i

)ℓ(0)

+ (Ξa
i )(j−2m−di)ℓ(vp)(α̇

a
vp,i

)ℓ(0),

where we notice the Jacobian F̆ ∗
i JF̆i takes the local form

F̆ ∗
i JF̆i =





˙Jf̄i Jf̄i 0
Jf̄i 0 0
0 0 Im



 .



From this can compute solutions to (51) locally as

ζ(p, v) =

(

K
∑

i=1

C
⊤
i (p, v)w̆

a
i (Fi(vp, 0))Ci(p, v)

)†

(

K
∑

i=1

C
⊤
i (p, v)w̆

a
i (Fi(vp, 0))Ai(p, v)

)

Ci(p, v) = Jf̄i(p) +Ξ
v
i (p, v)

Ai(p, v) = (g−1
R2di

)a(F̂i(vp))
(

FD,R2di ((dF̂i)vp
(vp, 0))

−∇ΦR2di (F̂i(vp))
)

− ( ˙Jf̄i(p, v)−Ξ
a
i (p, v))v,

where (g−1
R2di

)a is the lower-right quadrant of g−1
R2di

and
the Euclidean gradient ∇ΦR2di is taken over the last di
components. Additionally we have

(Ξv
i )jℓ(p, v) = (JF̂i)sℓ(vp)(ΓR2di )

j+di

s(h+m)(F̂i(vp))Jf̄hr(p)v
r

(Ξa
i )jℓ(p, v) = (JF̂i)s(ℓ+di)(vp)(ΓR2di )

j+di

s(h+m)(F̂i(vp))Jf̄hr(p)v
r.

This leads to the multi-task PBDS policy for tangent
bundle tasks:

Definition D.2 (Multi-Task PBDS on Tangent Bundles). Let
{fi : M −→ Ni}i=1,...,K be smooth task maps, where Ni

is embedded in R
d. Then given corresponding Riemannian

metrics ği on R
2di × M , smooth potential functions Φ̆i :

R
2di × M −→ R+, dissipative forces F̆D,i : T (R2di ×

M) −→ T ∗(R2di ×M), and weighting pseudometrics w̆i on

T (R2di ×M), the set {(fi, gi, Φ̆i, F̆D,i, w̆i)}i=1,...,K forms
a multi-task PBDS with curves σ : [0,∞) −→ M satisfying















σ̈(t) = ζ(σ̇(t)) =

argmin
κ∈Dσ̇(t)

∑K
i=1

1
2‖Zi(κ)− Si(σ̇(t))‖

2
F∗

i
w̆i

σ̇(0) = (p0, v0).

(53)

Similar existence, uniqueness, smoothness, and stability
guarantees can be given for this dynamical system as for that
of Appx. C, but these are outside the scope of this appendix.
The practical use of such PBDS policies is discussed in Sec.
IV-B.
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