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Abstract

Random dimensionality reduction is a versa-
tile tool for speeding up algorithms for high-
dimensional problems. We study its application
to two clustering problems: the facility location
problem, and the single-linkage hierarchical clus-
tering problem, which is equivalent to comput-
ing the minimum spanning tree. We show that
if we project the input pointset X onto a random
d = O(dX)-dimensional subspace (where dX is
the doubling dimension of X), then the optimum
facility location cost in the projected space ap-
proximates the original cost up to a constant factor.
We show an analogous statement for minimum
spanning tree, but with the dimension d having
an extra log log n term and the approximation fac-
tor being arbitrarily close to 1. Furthermore, we
extend these results to approximating solutions
instead of just their costs. Lastly, we provide
experimental results to validate the quality of so-
lutions and the speedup due to the dimensionality
reduction. Unlike several previous papers study-
ing this approach in the context of k-means and
k-medians, our dimension bound does not depend
on the number of clusters but only on the intrinsic
dimensionality of X .

1. Introduction
Clustering is a fundamental problem with many applications
in machine learning, statistics, and data analysis. Although
many formulations of clustering are NP-hard in the worst
case, many heuristics and approximation algorithms exist
and are widely deployed in practice. Unfortunately, many of
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those algorithms suffer from large running times, especially
if the input data sets are high-dimensional.

In order to improve the performance of clustering algorithms
in high-dimensional spaces, a popular approach is to project
the input point set into a lower-dimensional space and per-
form the clustering in the projected space. Reducing the
dimension (say, from m to d � m) has multiple practi-
cal and theoretical advantages, including (i) lower storage
space, which is linear in d as opposed to m; (ii) lower run-
ning time of the clustering procedure - the running times
are often dominated by distance computations, which take
time linear in the dimension; and (iii) versatility: one can
use any algorithm or its implementation to cluster the data
in the reduced dimension. Because of its numerous benefits,
dimensionality reduction as a tool for improving algorithm
performance has been studied extensively, leading to many
theoretical tradeoffs between the projected dimension and
the solution quality. A classic result in this area is the
Johnson-Lindenstrauss (JL) lemma (1984) which (roughly)
states that a random projection of a dataset X ⊆ Rm of
size n onto a dimension of size O(log n) approximately
preserves all pairwise distances. This tool has been subse-
quently applied to many clustering and other problems (see
(Naor, 2018) and references therein).

Although the JL lemma is known to be tight (Larsen &
Nelson, 2017) in general, better tradeoffs are possible for
specific clustering problems. Over the last few years, several
works (Boutsidis et al., 2010; Cohen et al., 2015; Becchetti
et al., 2019; Makarychev et al., 2019) have shown that com-
bining random dimensionality reduction with k-means leads
to better guarantees than implied by the JL lemma. In par-
ticular, a recent paper by Makarychev, Makarychev, and
Razenshteyn (2019) shows that to preserve the k-means cost
up to an arbitrary accuracy, it suffices to project the input
set X onto a dimension of size O(log k), as opposed to
O(log n) guaranteed by the JL lemma. Since k can be much
smaller than n, the improvement to the dimension bound
can be substantial. However, when k is comparable to n,
the improvement is limited. This issue is particularly salient
for clustering problems with a variable number of clusters,
where no a priori bound on the number of clusters exists.

In this paper we study randomized dimensionality reduction
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over Euclidean space Rm in the context of two fundamental
clustering problems with a variable number of clusters. In
particular:

• Facility location (FL): given a set of points X ⊂ Rm

and a facility opening cost, the goal is to open a subset
F ⊆ X of facilities in order to minimize the total cost
of opening the facilities plus the sum of distances from
points in X to their nearest facilities (see Section 2 for
a formal definition). Such cost functions are often used
when the “true” number of clusters k is not known, see
e.g., (Manning et al., 2009), section 16.4.1.

• Single-linkage clustering, or (equivalently) Minimum
Spanning Tree (MST): given a set of points X ⊂ Rm,
the goal is to connect them into a tree in order to min-
imize the total cost of the tree edges. This is a popu-
lar variant of Hierarchical Agglomerative Clustering
(HAC) that creates a hierarchy of clusters, see e.g.,
(Manning et al., 2009), section 17.2.

We remark that some papers, e.g., (Abboud et al., 2019)
define approximate HAC operationally, by postulating that
each step of the clustering algorithm must be approximately
correct. However, there are other theoretical formulations of
approximate HAC as well, e.g., (Dasgupta, 2016; Moseley &
Wang, 2017). Since single-linkage clustering has a natural
objective function induced by MST, defining approximate
single-linkage clustering as approximate MST is a natural,
even if not unique, choice.

Our Results Our main results show that, for both FL and
MST, it is possible to project input point sets into low (some-
times even constant) dimension while provably preserving
the quality of the solutions. Specifically, our theorems in-
corporate the doubling dimension dX of the input datasets
X . This parameter1 measures the “intrinsic dimensionality”
of X and can be much lower than its ambient dimension
m. If X has size n, the doubling dimension dX is always
at most log n, and is often much smaller. We show that
random projections into dimension roughly proportional to
dX suffice in order to approximately preserve the solution
quality. The specific bounds are listed in Table 1.

We distinguish between two types of guarantees. The first
type states that the minimum cost of FL or MST is preserved
by a random projection (with high probability) up to the
specified factor. This guarantee is useful if the goal is to
quickly estimate the optimal value. The second type states
that a solution computed in the projected space induces a
solution in the original space which approximates the best
solution (in the original space) up to the specified approxi-
mation factor. This guarantee implies that one can find an

1We formally define it in Section 2.

approximately optimal clustering by mapping the data into
low dimensions and clustering the projected data. To obtain
the second guarantee, we need to assume that the solution
in the projected space is either globally optimal (for MST)
or locally optimal2 (for FL). We note that these two types of
guarantees are incomparable. In fact, for FL, our proofs of
the cost and of the solution guarantees are substantially dif-
ferent. We also prove analogous theorems for the “squared”
version of FL, where the distance between points is defined
as the square of the Euclidean distance between them.

We complement the above results by showing that the condi-
tions and assumptions in our theorem cannot be substantially
reduced or eliminated. Specifically, for both FL and MST,
we show that:

• The bounds on the projected dimension d in the theo-
rems specified in the table must be at least Ω(dX), as
otherwise the approximation factors for both the cost
and the solution become super-constant (Theorems 6.1,
6.2, 6.3)

• The assumptions that the solution in the projected
space is (locally) optimal cannot be relaxed to “ap-
proximately optimal” (Lemmas 6.4, 6.5).

Also, we show that, in contrast to facility location and MST,
one must project to Ω(log k) dimensions for preserving both
the cost and solution for k-means and k-medians clustering,
even if the doubling dimension dX is O(1).

Finally, we present an experimental evaluation of the algo-
rithms suggested by our results. Specifically, we show that
both FL and MST, solving these problems in reduced dimen-
sion can reduce the running time by 1-2 orders of magnitude
while increasing the solution cost only slightly. We also give
empirical evidence that the doubling dimension of the input
point set affects the quality of the approximate solutions.
Specifically, we study two simple point sets of size n that
have similar structure but very different doubling dimension
values (O(1) and O(log n), respectively). We empirically
show that a good approximation of the MST can be found
for the former point set by projecting it into much fewer
dimensions than the latter point set.

Related Work There is a long line of existing work on
approximating the solution of various clustering problems
in metric spaces with small doubling dimensions (see (Frig-
gstad et al., 2019; Gottlieb, 2015; Chan et al., 2018; Talwar,
2004)). The state of the art result is given in (Saulpic et al.,

2Informally, a solution is locally optimal if opening any new
facility does not decrease its cost. The formal definition is slightly
more general, and is given in Section 3. Note that any solution
found by local search algorithms such as that in (Mettu & Plaxton,
2000) satisfies this condition.
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Figure 1. Number of dimensions d required for a random projection to provide a good clustering approximation

Problem Proj. dimension d Approx. Cost/Solution Reference
FL O(dX) O(1) Cost Theorem 4.1
FL O(dX) O(1) Locally optimal solution Theorem 4.2
MST O(1/ε2 · (dX log(1/ε) + log log n)) 1 + ε Cost Theorem 5.1
MST O(1/ε2 · (dX log(1/ε) + log log n)) 1 + ε Optimal solution Theorem 5.1

2019) where a near linear (1 + ε)-approximation algorithm
is given for a variety of clustering problems. However,
these runtimes have a doubly-exponential dependence on d
which is proven to be unavoidable unless P = NP (Saulpic
et al., 2019). For MST in spaces of doubling dimension
dX , it is known that an (1 + ε)-approximate solution can
be computed in time 2O(dX)n log n+ ε−O(dX)n (Gottlieb
& Krauthgamer, 2013). To the best of our knowledge, none
of these algorithms have been implemented.

In addition, the notion of doubling dimension has also been
previously used to study algorithms for high dimensional
problems such as the nearest neighbor search, see e.g., (In-
dyk & Naor, 2007; Clarkson, 2012; Har-Peled & Kumar,
2013). The paper (Indyk & Naor, 2007) is closest in spirit
to our work, as it shows that, for a fixed point q and a data
set X , a random projection into O(dX) dimensions approx-
imately preserves the distance from q to its nearest neighbor
in X with a “good” probability. If the probability of success
was of the form 1− 1/2n, we could apply this statement to
all (up to n) facilities in the solution simultaneously, which
would prove our results. Unfortunately, the probability of
failure is much higher than 1/n, and therefore this approach
fails. Nevertheless, our proofs use some of the lemmas
developed in that work, as discussed in Section 2.

2. Preliminaries
Problem Definitions The Euclidean Facility Location
problem is defined as follows: We are given a dataset
X ⊂ Rm of n points and a nonnegative function c : X → R
that represents the cost of opening a facility at a particular
point. The goal is to find a subsetF ⊆ X that minimizes the
objective cost(F) =

∑
f∈F c(f)+

∑
x∈X D(x,F), where

D(x,F) = minf∈F ‖x− f‖. In this work we restrict our
attention to the case that ‖ · ‖ is the Euclidean (`2) metric.
The first term

∑
f∈F c(f) is referred to as the opening costs

and the second term
∑

x∈X D(x,F) is referred to as the
connection costs. In this work, we also focus on the uniform
version of facility location where all opening costs are the
same. By re-scaling the points, we can further assume that
f(x) = 1 for all x ∈ X . Therefore, throughout the paper,
we focus on minimizing the following objective function:

cost(F) = |F|+
∑
x∈X

min
f∈F
‖x− f‖. (1)

A set F of facilities is also referred to as a solution to the
facility location problem.

The Euclidean Minimum Spanning Tree problem is defined
as follows. Given a dataset X ⊂ Rm of n points, we wish
to find a setM of edges (x, y) that forms a spanning tree
of X and minimizes the following objective function:

cost(M) =
∑

(x,y)∈M

‖x− y‖. (2)

Properties of Doubling Dimension We parameterize our
dimensionality reduction using doubling dimension, a mea-
sure of the intrinsic dimensionality of the dataset. The no-
tion of doubling dimension holds for a general metric space
X and is defined as follows. Let B(x, r) denote the ball of
radius r centered at x ∈ X , intersected with the points in
X . Then the doubling constant λX is the smallest constant
λ such that for all x ∈ X and for all r > 0, there exists
S ⊆ X with |S| ≤ λ such that B(x, r) ⊆

⋃
s∈S B(s, r/2).

The doubling dimension ofX is is defined as dX := log λX .
One can see that λX ≤ |X|, so dX ≤ log |X|. In this paper,
we focus on the case that X is a subset of Euclidean space
Rm.

Dimension Reduction In this paper we define a random
projection as follows.

Definition 2.1. A random projection from Rm to Rd is a
linear map G with i.i.d. entries drawn from N (0, 1/d).

The following dimensionality reduction result related to
doubling dimension was proven in (Indyk & Naor, 2007).
Informally, the lemma below states that a random projection
of X onto a dimension O(dX) subspace does not ‘expand’
X very much.

Lemma 2.2 (Lemma 4.2 in (Indyk & Naor, 2007)). Let
X ⊆ B(0, 1) be a subset of the m-dimensional Euclidean
unit ball, and let G be a random projection from Rm to Rd.
Then there exist universal constants c, C > 0 such that for
d ≥ C · dX + 1 and t > 2, Pr(∃x ∈ X, ‖Gx‖ ≥ t) ≤
exp(−cdt2).

For our proofs, we will need some additional preliminary
results on random projections, which are deferred to Sup-
plementary Section A.
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3. Local Optimality for Facility Location
We now define the notion of a locally optimal solution for
facility location. As stated in the introduction, this notion
plays a key role in our approximation guarantees. Before
we present our criterion for local optimality, we begin by
discussing the Mettu Plaxton (MP) algorithm, an approxi-
mation algorithm for the facility location problem. The MP
approximation algorithm gives a useful geometric quantity
to understand the facility location problem.

3.1. Approximating the Cost of Facility Location

For each p ∈ X , we associate with it a radius rp > 0 which
satisfies the relation∑

q∈B(p,rp)∩X

(rp − ‖p− q‖) = 1. (3)

It can be checked that a unique value rp satisfying 1/n ≤
rp ≤ 1 exists for every p. The geometric interpretation of
rp is shown in Figure 2. This quantity was first defined
by Mettu and Plaxton (2000), who proved that a simple
greedy procedure of iteratively selecting facilities that lie in
balls of radii 2rp gives a 3 factor approximation algorithm
for the facility location problem. For completeness, their
algorithm is given in Supplementary Section B.

Figure 2. rp is defined such that the dotted lines add to 1.

One of the main insights from Mettu and Plaxton’s algo-
rithm is that the sum of the radii rp is a constant factor
approximation to the cost of the optimal solution. This in-
sight was first stated in (Badoiu et al., 2005) where it was
used to design a sublinear time algorithm to approximate
the cost of the facility location problem. In particular, we
have the following result from (Badoiu et al., 2005) about
the approximation property of the radii values.

Lemma 3.1 (Lemma 2 in (Badoiu et al., 2005)). Let COPT

denote the cost of the optimal facility location solution. Then
1
4 · COPT ≤

∑
p∈X rp ≤ 6 · COPT .

For our purposes, we use the radii values to define a local
optimality criterion for a solution to the facility location
problem. Our local optimality criterion states that each
point p must have a facility that is within distance 3rp.

Definition 3.2. A solutionF to the facility location problem
is locally optimal if for all p ∈ X , B(p, 3rp) ∩ F 6= ∅.

We show in Lemma 3.3 that a solution that is not locally
optimal can be improved, i.e. the objective function given in
Eq. (1) can be improved, by adding p to the set of facilities.
This implies that any global optimal solution must also
be locally optimal, so requiring a solution of the facility
location problem to be locally optimal is a less restrictive
condition than requiring a solution to be globally optimal.

Lemma 3.3. Let F be any collection of facilities. If there
exists a p ∈ X such that B(p, 3rp) ∩ F = ∅ then cost(F ∪
{p}) < cost(F), i.e., we can improve the solution.

The proof of Lemma 3.3 is deferred to Supplementary Sec-
tion B.

4. Dimension Reduction for Facility Location
4.1. Approximating the Optimal Facility Location Cost

In this subsection we show that we can estimate the cost
of the global optimal solution for a point set X by com-
puting the value of the radii after a random projection onto
dimension d = O(dX). We do this by showing that for
each p, the value of rp can be approximated up to a constant
multiplicative factor in Rd, the lower dimension.

For each p ∈ X , let rp and r̃p be the radius of p and Gp
in Rm and Rd, respectively, computed according to Eq. (3).
Then we prove that E[r̃p] = Θ(rp), where the expectation
is over the randomness of the projection G.

This proof can be divided into showing E[r̃p] = O(rp) and
E[r̃p] = Ω(rp). Our proof strategy for the former is to use
the concentration inequality in Lemma 2.2 to roughly say
that points inB(p, rp)∩X cannot get ‘very far’ away from p
after a random projection. In particular, they must all still be
at a distance O(rp) of p after the random projection. Then
using the geometric definition of rp given in (3) and Figure
2, we can say that the corresponding radii of Gp in Rd

denoted as r̃p must then be upper bounded by O(rp). Our
proof strategy for the latter is different in that our challenge
is to show that points do not ‘collapse’ closer together. In
more detail, for a fixed point p, we need to show that after a
dimension reduction, many new points do not come inside
a ball of radius O(rp) around the point Gp. An application
of Theorem A.4 in Supplementary Section A, due to Indyk
and Naor (2007), deals with this event.

By adding these expectations over each point p and applying
Lemma 3.1, we can prove that the facility location cost is
preserved under a random projection. Formally, we obtain
the following theorem:

Theorem 4.1. Let X ⊆ Rm and let G be a random projec-
tion from Rm to Rd for d = O(dX). Let Fm be the optimal
solution in Rm and let Fd be the optimal solution for the
dataset GX ⊆ Rd. Then there exist constants c, C > 0
such that c · cost(Fm) ≤ E[cost(Fd)] ≤ C · cost(Fm).
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The full proof of Theorem 4.1 and the lemmas bounding
E[r̃p] are deferred to Supplementary Section C.

4.2. Obtaining Facility Location Solution in Larger
Dimension

As discussed in the introduction, for many applications, it is
not enough to be able to approximate the cost of the optimal
solution, but rather obtain a good solution.

In particular, we would like to perform dimensionality re-
duction on a dataset X , use some algorithm to solve facility
location, and then have the guarantee that the quality of
the solution we found is a good indicator of the quality of
the solution in the original dimension. Furthermore, since
optimally solving facility location in the smaller dimension
might still be a challenging task, it is desirable to have a
guarantee that a good solution (not necessarily the global op-
timum) will be a good solution in the larger dimension. We
show in this section that this is indeed the case for locally
optimal solutions.

Specifically, we show that the cost of a locally optimal
solution found in Rd does not increase substantially when
evaluated in the larger dimension. More formally, we prove
the following theorem:

Theorem 4.2. Let X ⊂ Rm and G be a random projection
from Rm to Rd for d = O(dX · log(1/ε)/ε2). Let Fd be a
locally optimal solution for the dataset GX . Then, the cost
of Fd evaluated in Rm, denoted as costm(Fd), satisfies

E[costm(Fd)] ≤ |Fd|+O
(∑

p∈X
rp

)
≤ costd(Fd)+O(F ),

where F is the optimal facility location cost of X in Rm.

To describe the proof intuition, first note that the cost func-
tion defined in Eq. (1) has two components. One is the num-
ber of facilities opened, and the other is the connection cost.
The first term is automatically preserved in the larger dimen-
sion since the number of facilities stays the same. Therefore,
the main technical challenge is to show that if a facility is
within distance O(r̃p) of a fixed point p in Rd (note that r̃p
is calculated according to Eq. (3) in Rd), then the facility
must be within distance O(rp) in Rm, the larger dimension.
From here, one can use Lemma 3.1 to bound

∑
p∈X rp by

O(F ), and the simple fact that |Fd| ≤ costd(Fd).

The proof of our main technical challenge relies on the
careful balancing of the following two events. First, we
control the value of the radius r̃p and show that r̃p ≈ rp. In
particular, we show that the probability of r̃p ≥ krp for any
constant k is exponentially decreasing in k. Next, we need
to bound the probability that a ‘far’ point comes ‘close’ to
p after the dimensionality reduction. While there exists a
known result on this (e.g., Theorem A.4 in Supplementary

Section A), we need a novel, more detailed result to quantify
how close far points can come after the dimension reduction.

To study this in a more refined manner, we bucket the points
in X \ {p} according to their distance from p, with the ith
level representing distance approximately i from p. We
show that points in X \ {p} that are in ‘level’ i do not
shrink to a ‘level’ smaller than O(

√
i). Note that we need

to control this even across all levels. To do this requires
a chaining type argument which crucially depends on the
doubling dimension of X . Finally, a careful combination of
probabilities gives us our result.

The proof of Theorem 4.2 is deferred to Supplementary
Section C.

Remark 4.3. Our proof of Theorem 4.2 generalizes to the
case of arbitrary opening costs cp by changing the definition
of rp to be

∑
q∈B(p,rp)

(rp − ‖x− q‖) = cp.

4.3. Facility Location with Squared Costs

Facility location problem with squared costs is the following
variant of facility location. Given a dataset X ⊂ Rm, our
goal is to find a subset F ⊆ X that minimizes the objective

cost(F) = |F|+
∑
x∈X

min
f∈F
‖x− f‖2. (4)

In contrast to (1), we are adding the squared distance from
each point to its nearest facility in F , rather than just the
distance. This is comparable to k-means, whereas standard
facility location is comparable to k-medians.

For the facility location problem with squared costs, we
are again able to show that a random projection of X into
O(dX) dimensions preserves the optimal cost up to an O(1)
factor, and that any locally optimal solution in the reduced
dimension has its cost preserved in the original dimension.
The formal statements and proofs are very similar to those
of the standard facility location problem, and are deferred
to Supplementary Section F.

5. Dimension Reduction for MST
In this section we demonstrate the effectiveness of dimen-
sionality reduction for the minimum spanning tree (MST)
problem. As in the case of facility location, we show that we
can estimate the cost of the optimum MST solution by com-
puting the MST in a lower dimension, and that the minimum
spanning tree in the lower dimension is an approximate so-
lution to the high-dimensional MST problem.

This time our approximations, both to the optimum cost and
the optimum solution, can be (1+ε)-approximations for any
ε > 0, as opposed to the constant factor approximations that
we could guarantee for facility location. To formally state
our theorem, for some spanning tree T of X , let costX(T )
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be the sum of the lengths of the edges in T . Likewise, let
costGX(T ) be the sum of the lengths of the edges in T ,
where distances are measured in the projected treeGX . Our
main result is the following theorem:

Theorem 5.1. For some positive integersm, d, letX ⊂ Rm

be a point set of size n and let G : Rm → Rd be a random
projection. LetM represent the minimum spanning tree of
X , with M = costX(M) and M̃ represent the minimum
spanning tree of GX , with M̃ = costGX(M̃). Then, for
some sufficiently large constantC6, if d ≥ C6·ε−2·(log ε−1·
dX + log log n), the following are true:

1. The cost of the MST is preserved under projection
with probability at least 9

10 . In other words, M̃ ∈
[1− ε, 1 + ε] ·M .

2. The optimal projected MST M̃ is still an approximate
MST in the original dimension with probability at least
9
10 . In other words, costX(M̃) ∈ [1, 1 + ε] ·M .

Hence, we obtain a significantly stronger theoretical guaran-
tee for preserving the MST than d = Θ(ε−2 log n), which is
promised by the Johnson-Lindenstrauss Lemma, assuming
that dX and ε−1 are constant or very small.

Our main technical result in establishing Theorem 5.1 is
the following crucial lemma, which will in fact allow us to
prove both parts of the above theorem simultaneously.

Lemma 5.2. For all notation as in Theorem 5.1,
E[costX(M̃)− costGX(M̃)] ≤ O(ε) ·M.

The proof strategy for Lemma 5.2 involves first dividing the
edges of M̃ into levels based on their lengths, and bounding
the difference between edge lengths (pre- and post- projec-
tion) in each level separately. To analyze a level consisting
of the edges of length approximately t, we first partition
the point set X (in the original dimension Rm) into balls
B1, . . . , Br of radius c · t for a small constant c, and show
via chaining-type arguments that not too many pairs of balls
that were originally far apart come close together after the
random projection. Moreover, using Lemma 2.2, we show
that almost all of the balls do not expand by much.

Therefore, there are not many bad pairs of balls (Bi, Bj),
where (Bi, Bj) is bad if there exists p ∈ Bi, q ∈ Bj where
‖p − q‖ is much bigger than t but ‖Gp − Gq‖ is approxi-
mately t. Now, assuming that none of the balls expand by
much in the random projection, for any bad pair (Bi, Bj)
and edges (p, q) and (p′, q′) with p, p′ ∈ Bi and q, q′ ∈ Bj ,
we cannot have both edges in the minimum spanning tree
of GX . This is because ‖Gp − Gq‖, ‖Gp′ − Gq′‖ ≈ t,
but since Bi and Bj have radius c · t and do not expand
by much, we can improve the spanning tree by replacing
(Gp,Gq) with either (Gp,Gp′) or (Gq,Gq′). So, each bad

pair can have at most 1 edge in M̃, the MST of GX . Over-
all, in each level, not too many edges in M̃ can shrink by
much after the projection.

The full proofs of Lemma 5.2 and Theorem 5.1 are given in
Supplementary Section D.

6. Lower Bounds for Projection Dimension
In this section, we state various lower bounds for the pro-
jection dimension d for both facility location clustering and
minimum spanning tree. We also show that, in contrast
to facility location, low doubling dimension does not ac-
tually help with dimensionality reduction for k-means or
k-medians clustering. All proofs are deferred to Supple-
mentary Section E.

In all results of this section, we think of X as a point set of
size n in Euclidean space Rm, andG as a random projection
sending X to GX ⊂ Rd. In this section, for FL, we always
let F be the optimal set of facilities in X , with cost F , and
F̃ be the optimal set of facilities in GX , with cost F̃ . We
defineM,M,M̃, M̃ analogously for MST. We use o(1) to
denote functions going to 0 as n→∞, and ω(1) to denote
functions going to∞ as n→∞, where n = |X|.

First, we show that the dependence of the projected dimen-
sion d on the doubling dimension dX in Theorems 4.1, 4.2,
and 5.1 are all required to obtain constant factor approxima-
tions for either the cost or the pullback solution. Namely,
we show the following three theorems:

Theorem 6.1 (FL). Let d = o(log n). There exists X with
doubling dimension Θ(log n), such that with at least 2/3

probability over G : Rm → Rd, F̃ = o(1) · F . Moreover,
with probability at least 2/3, F̃ , when pulled back to X ,
has cost ω(1) · F in the original dimension.

Theorem 6.2 (MST). Let d = o(log n). There existsX with
doubling dimension Θ(log n), such that with probability at
least 2/3, M̃ = o(1) ·M .

Theorem 6.3 (MST). Let d = o(log n). There existsX with
doubling dimension Θ(log n), such that with probability
at least 2/3, M̃, when pulled back to X , will have cost
ω(1) ·M .

Next, we show that (local) optimality is required for Theo-
rems 4.2 and 5.1, and cannot be replaced with approximate
optimality. In other words, random projections to o(log n)
dimensions do not necessarily preserve the set of approxi-
mate solutions for either facility location or MST, even for
point sets of low doubling dimension. Namely, we show the
following two lemmas:

Lemma 6.4 (FL). Let d = o(log n). There exists X with
constant doubling dimension, such that with at least 2/3
probability, there exists a (1 +O(m−1/2d)) = (1 + o(1))-
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approximate solution F ′ for GX whose total cost when
pulled back to X is at least Ω(m1/2d) · F = ω(1) · F .

Lemma 6.5 (MST). Let d = o(log n) but d = ω(log log n).
There exists X with constant doubling dimension, such
that with at least 2/3 probability, there exists a (1 + o(1))-
approximate MSTM′ for GX whose total cost whose total
cost when pulled back to X is at least ω(1) ·M .

Finally, we show that the guarantees of facility location are
in fact not maintained for k-means and k-medians clustering.
In other words, the bound ofO(log k) by (Makarychev et al.,
2019) is optimal even for sets of doubling dimension O(1).

Theorem 6.6 (k-means/k-medians). Let k < n and d =
o(log k). Then, there existsX with constant doubling dimen-
sion, such that with probability at least 2/3, the k-means
(resp., medians) cost ofGX is o(1) times the k-means (resp.,
medians) cost of X . Moreover, the optimal choice of k
centers in GX , when pulled back to X , will be an ω(1)-
approximate solution in the original dimension Rm.

At a first glance, Theorem 6.6 may appear to contradict
our upper bounds for facility location. However, in our
counterexamples for k-means and k-medians, the cost (both
initially and after projection) is substantially smaller than
k. Facility location adds a cost of k for the k facilities that
are created, and since these facilities now make up the bulk
of the cost, the facility location cost is still approximately
preserved under random projection.

7. Experiments
We use the following datasets in our experiments for Sub-
sections 7.1 and 7.2.

• Faces Dataset: This dataset is used in the influential
ISOMAP paper and consists of 698 images of faces in
dimension 4096 (Tenenbaum et al., 2000). From (Kégl,
2002), we can estimate that the doubling dimension of
this dataset is a small constant.

• MNIST ‘2’ Dataset: 1000 randomly chosen images
from the MNIST dataset (dimension 784) restricted to
the digit 2. We picked 2 since it is considered in the
original ISOMAP paper (Tenenbaum et al., 2000).

All of our experimental results are averaged over 20 inde-
pendent trials and the projection dimension d ranges from 5
to 20 inclusive.All of our experiments were done on a CPU
with i5 2.7 GHz dual core and 8 GB RAM.

7.1. Facility Location: Cost versus Accuracy Analysis

In this section we compare the accuracy of the MP algorithm
with/without dimensionality reduction for various number
of centers opened.

Experimental Setup We project our datasets and com-
pute a facility location clustering with the opening costs
scaled so that n/2, n/5, and n/10 facilities are opened re-
spectively. We then take this solution and evaluate its cost
in the original dimension. We also perform a clustering in
the original dimension with the same prescribed number of
facilities opened and plot the ratio of the cost of the solution
found in the lower dimension (but evaluated in the larger
dimension) to the solution found in the larger dimension.
We also plot the time taken for the clustering algorithm in
the projected dimension. We use the MP algorithm to per-
form our clustering due to the intractability of finding the
exact optimum and also because the MP algorithm is fast
and quite practical to use.

Results Our results are plotted in Figures 3a-3b. Our ex-
periments empirically demonstrate that the dimensionality
reduction step does not significantly decrease the accuracy
of the solution. Furthermore, we get a substantial reduction
in the runtime since the average runtime was at least 20
seconds for Faces and around 6.5 seconds for MNIST ‘2’ in
the original dimension for all the values of k tested, which
is 1-2 orders of magnitude higher than the runtime when
random projections are used. Note that the runtime includes
the time taken to perform the random projection. Overall,
our experiments demonstrate that the method of perform-
ing dimensionality reduction to perform facility location
clustering is well-founded.

7.2. MST: Cost versus Accuracy Analysis

We empirically show the benefits of using dimensionality
reduction for minimum spanning tree computation.

Experimental Setup We project our datasets and com-
pute a MST. We then take the tree found in the lower dimen-
sion and compare its cost in the higher dimension against the
actual MST. Our MST algorithm is a variant of the Boruvka
algorithm from (March et al., 2010) that is suitable for point
sets in large dimensions and is implemented in the popular
‘mlpack’ machine learning library (Curtin et al., 2018).

Results Our results are plotted in Figures 4a-4b. In the
blue plots of these figures, the ratio of the cost of the tree
found in the projected dimension, but evaluated in the origi-
nal dimension, to the cost of the actual MST is shown. We
see that indeed as projection dimension increases, the ra-
tio approaches 1. However even for very low values of d,
such as 10, the tree found in the projected space serves as
a good approximate for the actual MST. Conversely, we
see that as d increases, the cost of computing the MST also
increases as shown in the orange plots of the Figures 4a and
4b. Note that the time taken to perform the projection is
also included. The time taken to compute the MST in the
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Figure 3. Facility Location Experiments. (a) Blue: Ratio of solution costs with/without dimensionality reduction, as a function of d.
Orange: Running time (in secs) as a function of d. (b) Same plot as (a) but for MNIST ‘2’ dataset.
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Figure 4. Minimum Spanning Tree Experiments. (a) Blue: Ratio of solution costs with/without dimensionality reduction, as a function
of d. Orange: Running time (in secs) as a function of d. (b) Same plots as (a) but for MNIST ‘2’ dataset. (c) Dataset 1 (low doubling
dimension) can be projected into a much smaller dimension than Dataset 2 for MST computation.

original dimension was approximately 3.2 seconds for the
Faces dataset and 7.1 seconds for the MNIST ‘2’ dataset.
Therefore, projection to dimension d = 20 gives us approxi-
mately 80x improvement in speed for the Faces dataset and
30x improvement in speed for the MNIST ‘2’ dataset while
having a low cost distortion.

7.3. Large versus Small Doubling Dimension

In this section we present two datasets in Rn where one
dataset has doubling dimension O(1) and the other has dou-
bling dimension at least Ω(log n) which is asymptotically
the largest doubling dimension of any set of size n. We
empirically show that the second dataset requires larger pro-
jection dimension than the first to guarantee that the MST
found in the projected space induces a good solution in the
original space. Our two datasets are the following. Let ei
denote the standard basis vectors in Rn. We first draw n
standard Gaussians g1, · · · , gn ∈ R. Our datasets are:

Dataset 1: {g1 ·e1, g1 ·e1+g2 ·e2, . . . , g1 ·e1+· · ·+gn ·en}.
Dataset 2: {g1 · e1, g1 · e2, . . . , gn · en}.

Note that we use the same gi’s for both datasets. The above
datasets appear to be similar, but it can be shown that their
respective doubling dimensions are O(1) and Ω(log n).

Experimental Setup We let n = 1000 and construct the
two datasets. We project our datasets and find the MST for
each dataset in the projected space. Then we evaluate the
cost of this tree in the larger dimension and compare this
cost to the cost of the actual MST for each dataset.

Results Figure 4c demonstrates that we can find a high
quality approximation of the MST by finding the MST in a
much smaller dimension for Dataset 1 compared to Dataset
2. For example, Dataset 1 required only d = 10 dimensions
to approximate the true MST within 10% relative error while
Dataset 2 needed d = 38 to get within 10% relative error of
the true MST.
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