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ABSTRACT

Thompson Sampling (TS) is one of the most effective algorithms for solving con-
textual multi-armed bandit problems. In this paper, we propose a new algorithm,
called Neural Thompson Sampling, which adapts deep neural networks for both
exploration and exploitation. At the core of our algorithm is a novel posterior dis-
tribution of the reward, where its mean is the neural network approximator, and
its variance is built upon the neural tangent features of the corresponding neu-
ral network. We prove that, provided the underlying reward function is bounded,
the proposed algorithm is guaranteed to achieve a cumulative regret of (’)(Tl/ 2),
which matches the regret of other contextual bandit algorithms in terms of total
round number 7. Experimental comparisons with other benchmark bandit algo-
rithms on various data sets corroborate our theory.

1 INTRODUCTION

The stochastic multi-armed bandit (Bubeck & Cesa-Bianchi, 2012; Lattimore & Szepesvari, 2020)
has been extensively studied, as an important model to optimize the trade-off between exploration
and exploitation in sequential decision making. Among its many variants, the contextual bandit is
widely used in real-world applications such as recommendation (Li et al., 2010), advertising (Grae-
pel et al., 2010), robotic control (Mahler et al., 2016), and healthcare (Greenewald et al., 2017).

In each round of a contextual bandit, the agent observes a feature vector (the “context”) for each
of the K arms, pulls one of them, and in return receives a scalar reward. The goal is to maximize
the cumulative reward, or minimize the regret (to be defined later), in a total of 7" rounds. To do
so, the agent must find a trade-off between exploration and exploitation. One of the most effective
and widely used techniques is Thompson Sampling, or TS (Thompson, 1933). The basic idea is
to compute the posterior distribution of each arm being optimal for the present context, and sam-
ple an arm from this distribution. TS is often easy to implement, and has found great success in
practice (Chapelle & Li, 2011; Graepel et al., 2010; Kawale et al., 2015; Russo et al., 2017).

Recently, a series of work has applied TS or its variants to explore in contextual bandits with neu-
ral network models (Blundell et al., 2015; Kveton et al., 2020; Lu & Van Roy, 2017; Riquelme
et al., 2018). Riquelme et al. (2018) proposed NeuralLinear, which maintains a neural network and
chooses the best arm in each round according to a Bayesian linear regression on top of the last
network layer. Kveton et al. (2020) proposed DeepFPL, which trains a neural network based on
perturbed training data and chooses the best arm in each round based on the neural network out-
put. Similar approaches have also been used in more general reinforcement learning problem (e.g.,
Azizzadenesheli et al., 2018; Fortunato et al., 2018; Lipton et al., 2018; Osband et al., 2016a). De-
spite the reported empirical success, strong regret guarantees for TS remain limited to relatively
simple models, under fairly restrictive assumptions on the reward function. Examples are linear
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functions (Abeille & Lazaric, 2017; Agrawal & Goyal, 2013; Kocdk et al., 2014; Russo & Van Roy,
2014), generalized linear functions (Kveton et al., 2020; Russo & Van Roy, 2014), or functions with
small RKHS norm induced by a properly selected kernel (Chowdhury & Gopalan, 2017).

In this paper, we provide, to the best of our knowledge, the first near-optimal regret bound for neural
network-based Thompson Sampling. Our contributions are threefold. First, we propose a new algo-
rithm, Neural Thompson Sampling (NeuralTS), to incorporate TS exploration with neural networks.
It differs from NeuralLinear (Riquelme et al., 2018) by considering weight uncertainty in all layers,
and from other neural network-based TS implementations (Blundell et al., 2015; Kveton et al., 2020)
by sampling the estimated reward from the posterior (as opposed to sampling parameters).

Second, we give a regret analysis for the algorithm, and obtain an O(dv/T) regret, where d is the
effective dimension and T' is the number of rounds. This result is comparable to previous bounds
when specialized to the simpler, linear setting where the effective dimension coincides with the
feature dimension (Agrawal & Goyal, 2013; Chowdhury & Gopalan, 2017).

Finally, we corroborate the analysis with an empirical evaluation of the algorithm on several bench-
marks. Experiments show that NeuralTS yields competitive performance, in comparison with state-
of-the-art baselines, thus suggest its practical value in addition to strong theoretical guarantees.

Notation: Scalars and constants are denoted by lower and upper case letters, respectively. Vectors
are denoted by lower case bold face letters x, and matrices by upper case bold face letters A. We de-
note by [k] the set {1,2,--- , k} for positive integers k. For two non-negative sequence {ay }, {b,},

a, = O(b,) means that there exists a positive constant C such that a,, < Cb,, and we use O(-) to
hide the log factor in O(-). We denote by || - ||2 the Euclidean norm of vectors and the spectral norm
of matrices, and by || - ||r the Frobenius norm of a matrix.

2 PROBLEM SETTING AND PROPOSED ALGORITHM

In this work, we consider contextual K -armed bandits, where the total number of rounds 7" is known.
Atround t € [T}, the agent observes K contextual vectors {x; € R? | k € [K]}. Then the agent

selects an arm a; and receives a reward r; ,,. Our goal is to minimize the following pseudo regret:
T

Ry = E[Z(n,a; - n,at)] , .1
t=1

where ay is the optimal arm at round t that has the maximum expected reward: a; =

argmax, e E[r o] To estimate the unknown reward given a contextual vector x, we use a fully
connected neural network f(x;0) of depth L > 2, defined recursively by

fl = Wl X,

fl =S Wl ReLU(flfl), 2< l < L,

f(x;0) = vmfr, 2.2)
where ReLU(z) := max{x, 0}, m is the width of neural network, W; € R™*4 'W; € R™*™ 2 <
| <L, Wg e R™*™ 6 = (vec(Wy);--- ;vec(Wp)) € RP is the collection of parameters of the

neural network, p = dm + m?(L — 2) + m, and g(x;0) = Vg f(x;0) is the gradient of f(x;8)
w.rt. 6.

Our Neural Thompson Sampling is given in Algorithm 1. It maintains a Gaussian distribution for
each arm’s reward. When selecting an arm, it samples the reward of each arm from the reward’s
posterior distribution, and then pulls the greedy arm (lines 4-8). Once the reward is observed, it
updates the posterior (lines 9 & 10). The mean of the posterior distribution is set to the output of the

neural network, whose parameter is the solution to the following minimization problem:
t

min L(0) = Y [f(xia;:0) = 7ia,]?/2+mA|0 — 60]3/2. (2.3)
i=1

We can see that (2.3) is an £5-regularized square loss minimization problem, where the regularization

term centers at the randomly initialized network parameter 8. We adapt gradient descent to solve

(2.3) with step size n and total number of iterations .J.
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Algorithm 1 Neural Thompson Sampling (NeuralTS)

Input: Number of rounds T, exploration variance v, network width m, regularization parameter \.
I: Set Uy = Al
2: Initialize 8y = (vec(Wy);---;vec(Wpr)) € RP, where for each 1 < | < L — 1,
W, = (W,0;0,W), each entry of W is generated independently from N(0,4/m); W =
(w',—w ), each entry of w is generated independently from N (0,2/m).
fort=1,---,7T do
fork=1,--- K do
o7, =g (xek:0-1) Ul g(xek:0i-1)/m
Sample estimated reward 7, ~ N(f (x¢x;0:-1), V%07 ;)
end for
Pull arm a; and receive reward r; ,,, where a; = argmax, ¢ 4
Set 8, to be the output of gradient descent for solving (2.3)
U, =U;_ + g(xt,at;at)g(xt,at;et)—r/m
end for

TRV NAEW

—

A few observations about our algorithm are in place. First, compared to typical ways of implement-
ing Thompson Sampling with neural networks, NeuralTS samples from the posterior distribution of
the scalar reward, instead of the network parameters. It is therefore simpler and more efficient, as
the number of parameters in practice can be large.

Second, the algorithm maintains the posterior distributions related to parameters of all layers of the
network, as opposed to the last layer only (Riquelme et al., 2018). This difference is crucial in our
regret analysis. It allows us to build a connection between Algorithm 1 and recent work about deep
learning theory (Allen-Zhu et al., 2018; Cao & Gu, 2019), in order to obtain theoretical guarantees
as will be shown in the next section.

Third, different from linear or kernelized TS (Agrawal & Goyal, 2013; Chowdhury & Gopalan,
2017), whose posterior can be computed in closed forms, NeuralTS solves a non-convex optimiza-
tion problem (2.3) by gradient descent. This difference requires additional techniques in the regret
analysis. Moreover, sfochastic gradient descent can be used to solve the optimization problem with
a similar theoretical guarantee (Allen-Zhu et al., 2018; Du et al., 2018; Zou et al., 2019). For sim-
plicity of exposition, we will focus on the exact gradient descent approach.

3 REGRET ANALYSIS

In this section, we provide a regret analysis of NeuralTS. We assume that there exists an unknown
reward function h such that forany 1 <¢t <Tand1 <k < K,

Teke = h(xer) + &k, with |h(xgr)| <1
where {ft,k} forms an R-sub-Gaussian martingale difference sequence with constant R > 0, i.e.,
Elexp(At 1) €1:t— 1.k, X1:2.6] < exp(A2R?) for all A € R. Such an assumption on the noise se-
quence is widely adapted in contextual bandit literature (Agrawal & Goyal, 2013; Bubeck & Cesa-

Bianchi, 2012; Chowdhury & Gopalan, 2017; Chu et al., 2011; Lattimore & Szepesvari, 2020; Valko
et al., 2013).

Next, we provide necessary background on the neural tangent kernel (NTK) theory (Jacot et al.,
2018), which plays a crucial role in our analysis. In the analysis, we denote by {x*}7# the set of
observed contexts of all arms and all rounds: {x; ; }1<i<71<k<x Where i = K(t — 1) + k.

Definition 3.1 (Jacot et al. (2018)). Define

) O]
~ 1 1 i l X X
1,7 757
(+1) _
Tij =2, n0,a0)

rr(14+1) _ 5r7()
H'" = 2HE

max{u, 0} max{v, 0},
I+1
wren(oal)) Lo > 0)1(v > 0) + 2.

Then, H = (H(X) + %(2)) /2 is called the neural tangent kernel matrix on the context set.
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The NTK technique builds a connection between deep neural networks and kernel methods. It
enables us to adapt some complexity measures for kernel methods to describe the complexity of the
neural network, as given by the following definition.

Definition 3.2. The effective dimension d of matrix H with regularization parameter \ is defined as
log det(I+H/X)
log(1+TK/\) -~

Remark 3.3. The effective dimension is a metric to describe the actual underlying dimension in the
set of observed contexts, and has been used by Valko et al. (2013) for the analysis of kernel UCB. Our
definition here is adapted from Yang & Wang (2019), which also considers UCB-based exploration.
Compared with the maximum information gain ~; used in Chowdhury & Gopalan (2017), one can
verify that their Lemma 3 shows that ; > log det(I+ H/\)/2. Therefore, -y, and d are of the same

order up to aratio of 1/(21log(1 + TK/X)). Furthermore, d can be upper bounded if all contexts x;
are nearly on some low-dimensional subspace of the RKHS space spanned by NTK (Appendix D).

d":

We will make a regularity assumption on the contexts and the corresponding NTK matrix H.

Assumption 3.4. Let H be defined in Definition 3.1. There exists Ay > 0, such that H > A\¢I. In
addition, for any ¢ € [T,k € [K], ||x¢kllo = 1 and [x¢1]; = [X¢,k]j4d/2-

The assumption that the NTK matrix is positive definite has been considered in prior work on NTK
(Arora et al., 2019; Du et al., 2018). The assumption on context x; , ensures that the initial output
of neural network f(x;8) is O with the random initialization suggested in Algorithm 1. The con-
dition on x is easy to satisfy, since for any context x, one can always construct a new context X as

[/ (V21x]l2), %/ (V2] x[|2)] -

We are now ready to present the main result of the paper:

Theorem 3.5. Under Assumption 3.4, set the parameters in Algorithm 1 as A = 1+ 1/T, v =
B+ R\/Jlogu +TK/\) + 2+ 2log(1/6) where B = max {1/(22eﬁ), \/QhTH—lh} with

h = (h(x!),...,h(xTEK))T, and R is the sub-Gaussian parameter. In line 9 of Algorithm 1, set
n=Ci(mA+mLT) tand J = (1 + LT/\)(Cy +log(T3 LA~ log(1/6)))/C; for some positive
constants C'7, Cy. If the network width m satisfies:

m = poly (A, T, K, L, 1og(1/6), A7),

then, with probability at least 1 — 4, the regret of Algorithm 1 is bounded as

Rr < Cs(1 + er)p/2AL(dlog(1 + TK) + )T + (4+ Ca(1 + ex)vL)/2og(3/0)T + 5,

where C'3, Cy are some positive absolute constants, and cp = y/4logT + 2log K.

Remark 3.6. The definition B in Theorem 3.5 is inspired by the RKHS norm of the reward function
defined in Chowdhury & Gopalan (2017). It can be verified that when the reward function h belongs
to the function space induced by NTK, i.e., ||h|| < oo, we have VhTH~1h < ||h|3 according to
Zhou et al. (2019), which suggests that B < max{1/(22e/7), v2||h| %}

Remark 3.7. Theorem 3.5 implies the regret of NeuralTS is on the order of 5(JT1/ 2). This re-
sult matches the state-of-the-art regret bound in Chowdhury & Gopalan (2017); Agrawal & Goyal
(2013); Zhou et al. (2019); Kveton et al. (2020).

Remark 3.8. In Theorem 3.5, the requirement of m is specified in Condition 4.1 and the proof
of Theorem 3.5, which is a high-degree polynomial in the time horizon 7', number of layers L
and number of actions K. However, in our experiments, we can choose reasonably small m (e.g.,
m = 100) to obtain good performance of NeuralTS. See Appendix A.l for more details. This
discrepancy between theory and practice is due to the limitation of current NTK theory (Du et al.,
2018; Allen-Zhu et al., 2018; Zou et al., 2019). Closing the gap is a venue for future work.

Remark 3.9. Theorem 3.5 suggests that we need to know 7" before we run the algorithm in order
to set m. When 7' is unknown, we can use the standard doubling trick (See e.g., Cesa-Bianchi &
Lugosi (2006)) to set m adaptively. In detail, we decompose the time interval (0, 4-00) as a union
of non-overlapping intervals [2°,25F1). When 2° < t < 2°F!, we restart NeuralTS with the input

T = 25+ It can be verified that similar O(dv/T) regret still holds.
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4 PROOF OF THE MAIN THEOREM

This section sketches the proof of Theorem 3.5, with supporting lemmas and technical details pro-
vided in Appendix B. While the proof roadmap is similar to previous work on Thompson Sam-
pling (e.g., Agrawal & Goyal, 2013; Chowdhury & Gopalan, 2017; Kocék et al., 2014; Kveton
et al., 2020), our proof needs to carefully track the approximation error of neural networks for ap-
proximating the reward function. To control the approximation error, the following condition on the
neural network width is required in several technical lemmas.

Condition 4.1. The network width m satisfies
m > C max {ﬁL"g/z[log(TKLz /622, TS KO LS log(TK L/6) max{ A3, 1}, }
mllogm] ™ > CTL®2A™' 4+ CT' A SL¥(\ + LT)S + CLPTA"(1 + /T/)\)°,

where C is a positive absolute constant.

For any ¢, we define an event £ as follows
& ={w e Fip1:Vh € [K], [Fep — f(Xep;0i-1)] < cvoppt, 4.1

where ¢, = y/4logt + 2log K. Under event £/, the difference between the sampled reward 7 j,
and the estimated mean reward f(x; x; 0;—1) can be controlled by the reward’s posterior variance.

We also define an event &} as follows
gt,u = {w e J—'.t . Vk € [K], ‘f(Xtyk, 0t71) — h(Xt’k)| S I/O't’k + e(m)}, (42)

where €(m) is defined as

e(m) = ey(m) + Cea (1 —nmA)’/TL/X
ep(m) = CeoaT?Pm VN2 L3 flogm + Cosm ™0\ /logmLAT/3X=5/3(1 4 \/T/X)

+ Ce (B + Ry/logdet(T+H/\) +2 + 2 log(l/é)) Vg mT™/6m =10 \=2/39/2
(4.3)

and {C,;}}_, are some positive absolute constants. Under event £/', the estimated mean reward
f(x¢1; 0:—1) based on the neural network is similar to the true expected reward h(x; ). Note that
the additional term e(m) is the approximate error of the neural networks for approximating the true
reward function. This is a key difference in our proof from previous regret analysis of Thompson
Sampling Agrawal & Goyal (2013); Chowdhury & Gopalan (2017), where there is no approximation
error.

The following two lemmas show that both events &7 and £} happen with high probability.
Lemma 4.2. Forany ¢ € [T], Pr (§7|F) > 1—t72

Lemma 4.3. Suppose the width of the neural network m satisfies Condition 4.1. Set n = C(mA +
mLT)~1, then we have Pr (Vt e [T), & ) > 1 — 4, where C' is an positive absolute constant.

The next lemma gives a lower bound of the probability that the sampled reward r is larger than true
reward up to the approximation error €(m).

Lemma 4.4. Forany t € [T], k € [K], we have Pr (7 5 + €(m) > h(xy )| F, Ef') > (dey/m) 7"

Following Agrawal & Goyal (2013), for any time ¢, we divide the arms into two groups: saturated
and unsaturated arms, based on whether the standard deviation of the estimates for an arm is smaller
than the standard deviation for the optimal arm or not. Note that the optimal arm is included in the
group of unsaturated arms. More specifically, we define the set of saturated arms S; as follows

Sy = {k|k € [K],h(xt,a) — h(xt) = (14 cr)vog, + 2¢(m) }. (4.4)

Note that we have taken the approximate error €¢(m) into consideration when defining saturated
arms, which differs from the Thompson Sampling literature (Agrawal & Goyal, 2013; Chowdhury
& Gopalan, 2017). It is now easy to show that the immediate regret of playing an unsaturated arm
can be bounded by the standard deviation plus the approximation error e(m).

The following lemma shows that the probability of pulling a saturated arm is small in Algorithm 1.
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Lemma 4.5. Let a, be the arm pulled at round ¢ € [T]. Then, Pr (a; ¢ S;|F;, &) > 461/77 - %

The next lemma bounds the expectation of the regret at each round conditioned on &}'.

Lemma 4.6. Suppose the width of the neural network m satisfies Condition 4.1. Set n = Cy(mA +
mLT)~!, then with probability at least 1 — &, we have for all t € [T that

Elh(xt.0:) — h(Xp )| Fir €] < Co(1+ c) vV LE[min{oy ,, 1} 5, £F] + 4e(m) + 2t 2,

where C', C5 are some positive absolute constants.

Based on Lemma 4.6, we define A; := (h(x,qr) — h(x¢,q,)) L(E}'), and

t
Xi o= A = (Ca(l+ c)vVImin{orq,, 1} +4e(m) +2t7%), Y= X, (4.5)

where C is the same with constant C' in Lemma 4.6. By Lemma 4.6, we can verify that with
probability at least 1 — §, {Y;} forms a super martingale sequence since E(Y; —Y;_1) = EX; <0.
By Azuma-Hoeffding inequality (Hoeffding, 1963), we can prove the following lemma.

Lemma 4.7. Suppose the width of the neural network m satisfies Condition 4.1. Then set n =
Ci(mX\ +mLT)~!, we have, with probability at least 1 — §, that

s

[>|

m) +12/3 + Co(1 + cr umem{atat, 1}

+ (44 C3(1 + cp)vL + 4e(m))+/21og(1/6)T

where C, Cs, C'5 are some positive absolute constants.

The last lemma is used to control Zz;l min{oy 4,,1} in Lemma 4.7.

Lemma 4.8. Suppose the width of the neural network m satisfies Condition 4.1. Then set n =
Ci(mX +mLT)~!, we have, with probability at least 1 — 4, it holds that

T
> min{oyq,,1} < \/ INT (dlog(1 + TK) + 1) + CoT3/6,/log mm =/ \=2/319/2,
=1

where C, Cs are some positive absolute constants.

With all the above lemmas, we are ready to prove Theorem 3.5.

Proof of Theorem 3.5. By Lemma 4.3, E!' holds for all ¢ € [T] with probability at least 1 — 4.
Therefore, with probability at least 1 — &, we have

T

Ry = Z(h(xt,af) - h(xt,at)) ]1(5#)

i=1

) T
< 4Te(m) + % +Ci(1+ CT)V\/ZZmin{Ut,am 1}

i=1

+ (44 Co(1 + cr)vL + 4e(m))/21og(1/8)T

<Ci(1+ cT)V\FL(\/zAT(Jlogu +TK)+1) 4+ CsT'/%,/log mm_l/GA_2/3L9/2)

71_2

+ 3 + 4Te(m) + 4e(m)\/21og(1/6)T + (4 + Co(1 + cr)vL)/21log(1/8)T

=C(1+ cT)U\/Z(\/nT(Eilog(l +TK)+1) + CsT3/5/log mm_1/6>\_2/3L9/2)

2
+ T+ 6 (m) (4T + /21og(1/8)T) + (44 Co(1 + er)vL) /21og(1/6)]T
+ Ce1(1 —nmA) T/TL/NAT + \/210g(1/6)T
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where C1, Cy, C3 are some positive absolute constants, the first inequality is due to Lemma 4.7,
and the second inequality is due to Lemma 4.8. The third equation is from (4.3). By setting n =
Cy(mA+mLT)  and J = (1 + LT/\)(log(24C, 1) + log(T3* LA~ log(1/6)))/C4, we have

Ceq (1 —gmA\)?/TL/NAT + /210g(1/6)T) <

Then choosing m such that

= 1
C1Cs(1 4 er)wT/0\/logmm =Y A\=23L5 < 5 e(mET + V21og(1/6)T) <

)

Wl =

W =

R can be further bounded by

Rr < Ci(1+ cT)y\/QAL(Jlog(l +TK)+1)T + (4 + Co(1 + cr)vL)+/21og(1/8)T + 5.

Taking union bound over Lemmas 4.3, 4.7 and 4.8, the above inequality holds with probability
1 — 34. By replacing § with 6/3 and rearranging terms, we complete the proof. O

5 EXPERIMENTS

This section gives an empirical evaluation of our algorithm in several public benchmark datasets,
including adult, covertype, magic telescope, mushroom and shuttle, all from
UCI (Dua & Graff, 2017), as well as MNIST (LeCun et al., 2010). The algorithm is compared
to several typical baselines: linear and kernelized Thompson Sampling (Agrawal & Goyal, 2013;
Chowdhury & Gopalan, 2017), linear and kernelized UCB (Chu et al., 2011; Valko et al., 2013),
BootstrapNN (Osband et al., 2016b; Riquelme et al., 2018), and e-greedy for neural networks. Boot-
strapNN trains multiple neural networks with subsampled data, and at each step pulls the greedy ac-
tion based on a randomly selected network. It has been proposed as a way to approximate Thompson
Sampling (Osband & Van Roy, 2015; Osband et al., 2016b).

5.1 EXPERIMENT SETUP

To transform these classification problems into multi-armed bandits, we adapt the disjoint models (Li
et al., 2010) to build a context feature vector for each arm: given an input feature x € R? of a
k-class classification problem, we build the context feature vector with dimension kd as: x; =
(x; 0;---; 0),XQ = (O; X ;0), ce L Xp = (0; 0;--- ;x). Then, the algorithm generates a set of
predicted reward following Algorithm 1 and pulls the greedy arm. For these classification problems,
if the algorithm selects a correct class by pulling the corresponding arm, it will receive a reward as
1, otherwise 0. The cumulative regret over time horizon 7" is measured by the total mistakes made
by the algorithm. All experiments are repeated 8 times with reshuffled data.

We set the time horizon of our algorithm to 10 000 for all data sets, except for mushroom which
contains only 8 124 data. In order to speed up training for the NeuralUCB and Neural Thompson
Sampling, we use the inverse of the diagonal elements of U as an approximation of U~!. Also,
since calculating the kernel matrix is expensive, we stop training at ¢ = 1000 and keep evaluating
the performance for the rest of the time, similar to previous work (Riquelme et al., 2018; Zhou et al.,
2019). Due to space limit, we defer the results on adult, covertype andmagic telescope,
as well as further experiment details, to Appendix A. In this section, we only show the results on
mushroom, shuttle and MNIST.

5.2 EXPERIMENT I: PERFORMANCE OF NEURAL THOMPSON SAMPLING

The experiment results of Neural Thompson Sampling and other benchmark algorithms are shown
in Figure 1. A few observations are in place. First, Neural Thompson Sampling’s performance
is among the best in 6 datasets and is significantly better than all other baselines in 2 of them.
Second, the function class used by an algorithm is important. Those with linear representations
tend to perform worse due to the nonlinearity of rewards in the data. Third, Thompson Sampling
is competitive with, and sometimes better than, other exploration strategies with the same function
class, in particular when neural networks are used.
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Figure 1: Comparison of Neural Thompson Sampling and baselines on UCI datasets and MNIST
dataset. The total regret measures cumulative classification errors made by an algorithm. Results
are averaged over 8 runs with standard errors shown as shaded areas.

5.3 EXPERIMENT II: ROBUSTNESS TO REWARD DELAY

This experiment is inspired by practical scenarios where reward signals are delayed, due to various
constraints, as described by Chapelle & Li (2011). We study how robust the two most competitive
methods from Experiment I, Neural UCB and Neural Thompson Sampling, are when rewards are
delayed. More specifically, the reward after taking an action is not revealed immediately, but arrive
in batches when the algorithms will update their models. The experiment setup is otherwise identical
to Experiment I. Here, we vary the batch size (i.e., the amount of reward delay), and Figure 2 shows
the corresponding total regret. Clearly, we recover the result in Experiment I when the delay is 0.
Consistent with previous findings (Chapelle & Li, 2011), Neural TS degrades much more gracefully
than Neural UCB when the reward delay increases. The benefit may be explained by the algorithm’s
randomized exploration nature that encourages exploration between batches. We, therefore, expect
wider applicability of Neural TS in practical applications.

—F- Neuraluce
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0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Reward Delay Reward Delay Reward Delay

(a) MNIST (b) Mushroom (c) Shuttle

Figure 2: Comparison of Neural Thompson Sampling and Neural UCB on UCI datasets and MNIST
dataset under different scale of delay. The total regret measures cumulative classification errors made
by an algorithm. Results are averaged over 8 runs with standard errors shown as error bar.

6 RELATED WORK

Thompson Sampling was proposed as an exploration heuristic almost nine decades ago (Thompson,
1933), and has received significant interest in the last decade. Previous works related to the present
paper are discussed in the introduction, and are not repeated here.

Upper confidence bound or UCB (Agrawal, 1995; Auer et al., 2002; Lai & Robbins, 1985) is a
widely used alternative to Thompson Sampling for exploration. This strategy is shown to achieve
near-optimal regrets in a range of settings, such as linear bandits (Abbasi-Yadkori et al., 2011; Auer,
2002; Chu et al., 2011), generalized linear bandits (Filippi et al., 2010; Jun et al., 2017; Li et al.,
2017), and kernelized contextual bandits (Valko et al., 2013).

Neural networks are increasingly used in contextual bandits. In addition to those mentioned ear-
lier (Blundell et al., 2015; Kveton et al., 2020; Lu & Van Roy, 2017; Riquelme et al., 2018), Zahavy
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& Mannor (2019) used a deep neural network to provide a feature mapping and explored only at the
last layer. Schwenk & Bengio (2000) proposed an algorithm by boosting the estimation of multiple
deep neural networks. While these methods all show promise empirically, no regret guarantees are
known. Recently, Foster & Rakhlin (2020) proposed a special regression oracle and randomized
exploration for contextual bandits with a general function class (including neural networks) along
with theoretical analysis. Zhou et al. (2019) proposed a neural UCB algorithm with near-optimal
regret based on UCB exploration, while this paper focuses on Thompson Sampling.

7 CONCLUSIONS

In this paper, we adapt Thompson Sampling to neural networks. Building on recent advances in

deep learning theory, we are able to show that the proposed algorithm, Neural TS, enjoys a (5(JT1/ 2)
regret bound. We also show the algorithm works well empirically on benchmark problems, in com-
parison with multiple strong baselines.

The promising results suggest a few interesting directions for future research. First, our analysis
needs NeuralTS to perform multiple gradient descent steps to train the neural network in each round.
It is interesting to analyze the case where NeuralTS only performs one gradient descent step in
each round, and in particular, the trade-off between optimization precision and regret minimization.
Second, when the number of arms is finite, O(1/dT)) regret has been established for parametric
bandits with linear and generalized linear reward functions. It is an open problem how to adapt
NeuralTS to achieve the same rate. Third, Allen-Zhu & Li (2019) suggested that neural networks
may behave differently from a neural tangent kernel under some parameter regimes. It is interesting
to investigate whether similar results hold for neural contextual bandit algorithms like NeuralTS.
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A FURTHER DETAIL OF THE EXPERIMENTS IN SECTION 5

A.1 PARAMETER TUNING

In the experiments, we shuffle all datasets randomly, and normalize the features so that their /o-
norm is unity. One-hidden-layer neural networks with 100 neurons are used. Note that we do not
choose m as suggested by theory, and such a disconnection has its root in the current deep learning
theory based on neural tangent kernel, which is not specific in this work. During posterior updating,
gradient descent is run for 100 iterations with learning rate 0.001. For BootstrapNN, we use 10
identical networks, and to train each network, data point at each round has probability 0.8 to be
included for training (p = 10,q¢ = 0.8 in the original paper (Schwenk & Bengio, 2000)) For e-
Greedy, we tune ¢ with a grid search on {0.01,0.05,0.1}. For (\,v) used in linear and kernel
UCB / Thompson Sampling, we set A = 1 following previous works (Agrawal & Goyal, 2013;
Chowdhury & Gopalan, 2017), and do a grid search of v € {1,0.1,0.01} to select the parameter
with best performance. For the Neural UCB / Thompson Sampling methods, we use a grid search on
A€ {1,1071,1072,1073} and v € {107%,1072,1073,10~%,1075}. All experiments are repeated
20 times, and the average and standard error are reported.

A.2 DETAILED RESULTS

Table 1 summarizes the total regrets measured at the last round on different data sets, with mean
and standard deviation error computed based on 20 independent runs. The Bold Faced data is the
top performance over 8 experiments. Table 2 shows the number of times the algorithm in that row
significantly outperforms, ties, or significantly underperforms, compared with other algorithm with
t-test at 90% significance level. Figure 3 shows the performance of Neural Thompson Sampling
compared with other baseline method. Figure 4 shows the comparison between Neural Thompson
Sampling and Neural UCB in delay reward settings.

Table 1: Total regrets get at the last step with standard deviation attached
Adult  Covertype Magic!  MNIST  Mushroom Shuttle

Round# 10000 10000 10000 10000 8124 10000
Input Dim? 2 x 15 2 X 55 2x12 10x 784 2 % 23 7x9
Random? 5000 5000 5000 9000 4062 8571
Linecar UCB 2097.5 3222.7 2604.4 2544.0 562.7 966.6
+50.3 +67.2 +34.6 +235.4 +23.1 +39.0
Linear TS 2154.7 4297.3 2700.5 2781.4 643.3 1020.9
+40.5 +328.7 +46.7 +338.3 +30.4 +42.8

Kernel UCB 2080.1 3546.2 2406.5 3595.8 199.0 166.5
+44.8 +175.7 +79.4 +580.1 +41.0 +39.4

Kernel TS 2111.5 3659.9 2442.6 3406.0 291.2 283.3
+87.4 +113.8 +64.5 +411.7 +40.0 +180.5

BooststrapNN 2097.3 3067.0 2269.4 1765.6 132.3 211.7
+39.3 +56.1 +27.9 +321.1 +8.6 +20.9

eps-greedy 2328.5 3334.2 2381.8 1893.2 323.2 682.0
+50.4 +72.6 +37.3 +93.7 +32.5 +79.8

2061.8 3012.1 2033.0 2071.6 160.4 338.6

NeuralUCB

+42.8 +87.0 +48.6 +922.2 +95.3 +386.4
NeuralTS 2092.5 2999.1 2037.4 1583.4 115.0 232.0
(ours) +48.0 +74.3 +61.3 +198.5 +35.8 +149.5

"Magic is short for data set MagicTelescope

2Using disjoint encoding thus is NumofClass x NumofFeatures
3Random pulling an arm at each round

*Magic is short for data set MagicTelescope
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Table 2: Performance on total regret comparing with other methods on all datasets. Tuple (w/t/1)
indicates the times of the algorithm at that row wins, ties with or [oses, compared to all other 7
algorithms with ¢-test at 90% significant level.

Adult  Covertype Magic*  MNIST  Mushroom Shuttle

Linear UCB 21312 4/0/3 1/0/6 2/2/3 1/0/6 1/0/6
Linear TS 1/0/6 0/0/7 0/0/7 2/1/4 0/0/7 0/0/7
Kernel UCB  4/3/0 2/0/5 3/1/3 0/0/7 4/0/3 7/0/0
Kernel TS 21312 1/0/6 2/0/5 1/0/6 3/0/4 3/3/1
BooststrapNN ~ 2/4/1 5/0/2 5/0/2 4/3/0 5/2/0 3/3/1
eps-greedy 0/0/7 3/0/4 3/1/3 4211 2/0/5 2/0/5
NeuralUCB 6/1/0 6/1/0 6/1/0 3/3/1 5/1/1 3/3/1
NeuralTS 2/4/1 6/1/0 6/1/0 6/1/0 6/1/0 3/3/1
(ours)

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
# of round # of round

(a) Adult (b) Covertype (c) Magic Telescope

Figure 3: Comparison of Neural Thompson Sampling and baselines on UCI datasets and MNIST
dataset. The total regret measures cumulative classification errors made by an algorithm. Results
are averaged over multiple runs with standard errors shown as shaded areas.
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Figure 4: Comparison of Neural Thompson Sampling and Neural UCB on UCI datasets and MNIST
dataset under different scale of delay. The total regret measures cumulative classification errors made
by an algorithm. Results are averaged over multiple runs with standard errors shown as error bar.
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Figure 5: Comparison of the running time for Neural TS, Neural UCB and e-greedy for neural
networks on UCI datasets and MNIST dataset.

A.3 RUN TIME ANALYSIS

We compare the run time of the four algorithms based on neural networks: BootstrapNN, e-greedy
for neural networks, NeuralUCB, and NeuralTS. The comparison is shown in Figure 5. We can see
that Neural TS and NeuralUCB are about 2 to 3 times slower than e-greedy, which is due to the extra
calculation of the neural network gradient for each input context. BootstrapNN is often more than 5
times slower than e-greedy because it has to train several neural networks at each round.

B PROOF OF LEMMAS IN SECTION 4

Under Condition 4.1, we can show that the following inequalities hold.
2V/1/X > Cpoym ™YL ™3 ?[log(TK L? /6)]3/2,
2/T/\ < Cpp o min {ml/2L_6 [logm]=3/2,m"/® ((An)*>L~°T " (log m)_1)3/8 },
m/6 > Cm,3@L7/2T7/6)\_7/6(1 +/T/N)
m > Cp sTC KO L8 log(TKL/§) max{)\;*, 1},

where {C),1,Cm.2,-..,Cn, 4} are some positive absolute constants.

B.1 PROOF OF LEMMA 4.2

The following concentration bound on Gaussian distributions will be useful in our proof.

Lemma B.1 (Hoffman et al. (2013)). Consider a normally distributed random variable X ~
N(u,0%) and B > 0. The probability that X is within a radius of B¢ from its mean can then
be written as

Pr(|X — p| < Bo) > 1 — exp(—f%/2).
Proof of Lemma 4.2. Since the estimated reward 7 j, is sampled from N (f(x¢; 0:—1), 1/20?’ ) if
given filtration F;, Lemma B.1 implies that, conditioned on F; and given ¢, k,
Pr (|?t,k — f(xep;00-1)] < ctuot)k’}}) > 1 —exp(—ci/2).
Taking a union bound over K arms, we have that for any ¢
Pr (Vk, [Tee — f(xep; 0-1)] < Ctl/o't,k‘}-t) > 1— Kexp(—c}/2).
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Finally, choose ¢; = v/4logt + 2log K as defined in (4.1), we get the bound that

~ 1
Pr (gtg|ft) =Pr (Vk, |T’t_’k- - f(Xt,k;et—l)‘ S CtI/O't7k|./_'.t) 2 1-— th

B.2 PROOF OF LEMMA 4.3

Before going into the proof, some notation is needed about linear and kernelized models.

Definition B.2. Define U; = \I + Z§=1 g(Xi.a;300)8(Xt,a,;60) " /m and based on Uy, we further
define 57, = Mg " (%¢x;00)U; " g(Xt x; 00) /m. Furthermore, for convenience we define

Ji = (g(xl,a1 10 - g(xt,at;et)) )

Ji = (g(x1,0::00) -+ 8(Xt,a;600))
b= (h(xia) o hixea))

ry=(r - rt)T,

&= (h(xX1a) =71 - h(Xea,)—71),

where €; is the reward noise. We can verify that U; = A\l + J,J] /m, Uy = \XI + J,J/] /m . We
further define K; = J J;/m.

The first lemma shows that the target function is well-approximated by the linearized neural network
if the network width m is large enough.

Lemma B.3 (Lemma 5.1, Zhou et al. (2019)). There exists some constant C' > 0 such that for any
6 €(0,1),if

m > CT*K*LS log(T*K?L/§)/ X,

then with probability at least 1 — § over the random initialization of 6, there exists a 8* € RP such
that

h(XZ) = <g(xl700)70* - 00>7 \/EHQ* - OOHQ < 2hTH-'h < B7 (Bl)
for all ¢ € [T K], where B is defined in Theorem 3.5.

From Lemma B.3, it is easy to show that under this initialization parameter 8y, we have that h, =
J tT (0% — 0y)

The next lemma bounds the difference between the oy j from the linearized model and the o
actually used in the algorithm. Its proof, together with other technical lemmas’, will be given in the
next section.

Lemma B.4. Suppose the network size m satisfies Condition 4.1. Set n = Cy(m\ + mLT)™!,
then with probability at least 1 — 6,

|Gt — ot k] < Can/log mt7/6m*1/6)\*2/3L9/2,
where C', Cs are two positive constants.
We next bound the difference between the outputs of the neural network and the linearized model.
Lemma B.5. Suppose the network width m satisfies Condition 4.1.

Then, set n = C1(mA +mLT)~!, with probability at least 1 — § over the random initialization of
0y, we have

|f(Xt,k§ 0 1) — <g(l"t,k; o), Ijt__lljt—lrt—l/mﬂ < 02t2/3m71/6>\72/3L3\/ logm
+ C3(1 — nmA)’\/tL/A
+ Cym~ Y0\ logm LM/ PA75/3(1 + \/t/\),

where {C;}}_, are positive constants.
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The next lemma, due to Chowdhury & Gopalan (2017), controls the quadratic value generated by
an R-sub-Gaussian random vector €:

Lemma B.6 (Theorem 1, Chowdhury & Gopalan (2017)). Let {e;}$2, be a real-valued stochastic
process such that for some R > 0 and for all ¢ > 1, ¢ is F;-measurable and R-sub-Gaussian
conditioned on F3, Recall K; defined in Definition B.2. With probability 0 < 6 < 1 and for a given
1 > 0, with probability 1 — ¢, the following holds for all ¢,

el (K + 1)~ 4+ 1) Lepy < R?logdet((1 4+ n)I + K;) + 2R? log(1/6).

Finally, the following lemma shows the linearized kernel and the neural tangent kernel are closed:

Lemma B.7. Forall ¢t € [T, there exists a positive constants C' such that the following holds: if the
network width m satisfies

m > CTSLSKSlog(TKL/$),
then with probability at least 1 — 6,
logdet(I+ A 'K;) < logdet(I+ A\"'H) + 1

We are now ready to prove Lemma 4.3.

Proof of Lemma 4.3. First of all, since m satisfies Condition 4.1, then with the choice of 7 ,the
condition required in Lemmas B.3-B.7 are satisfied. Thus, taking a union bound, we have with
probability at least 1 — 59, that the bounds provided by these lemmas hold. Then for any
t € [T], we will first provide the difference between the target function and the linear function

(g(21,1;600), U Jy1ry 1/m> as:
|h(xe) — (&(xe,0:60), Uy Jemire_1 /m)|
< |h(xek) — (8(@ek300), Uiy Jerhy—1/m)| + |(&(we.k;00), Uy Ji—1€- 1/m>|
= [(g(x¢k:60),0" — 00 — UL T 1T, (0" — 09)/m)| + |g(xe,k5600) ' U T 1601 /m)|
= [(g(xtk;00), (I— U, (Uymy — AI))(0* — 6o) >|+|g x¢,1500) T UL T o161 /m
= A!g Xt,k§00)TU;_11(9* 0o) |+ ’g Xt kaeo) — 1Jt 1€¢— 1/m’

< A\/g (x4 k;eo)T[—J[_llg(Xt,k;Bo)\/(a* —60)TU, (6% — 69)
+ \/g (Xt,5 60)"U = 1g(Xt ks 00)\/ej—lj:—lﬁ;—ﬂjt%et%/m

< \/7’%”0>IK — 90”26} k + 6,5 k;)\_l/g\/GtT 13: 1ﬁ;lljt,1et,1/m (BZ)
where the first inequality uses triangle inequality and the fact that r,_; = ht 1 + €;_1; the first
equality is from Lemma B.3 and the second equality uses the fact that J;_;J, ; = m(U;_; — AI)
which can be verified using Definition B.2; the second inequality is from the fact that | " A3| <

VaTAay/BTAB. Since U; !} = +Iand &, defined in Definition B.2, we obtain the last in-
equality.

Furthermore, by obtaining
I U T /m =3 (AL + T 1 I /m) M
=J VA2 (TN T/ m) I m)T e /m
= AT T/ m = AT I T AL+ T T /m) T T 1Jt 1/m?
=AK (I - A+ K1) ' Ky) = Ko AL+ Kog) 7
where the first equality is from the Sherman-Morrison formula, and the second equality uses Defi-

nition B.2 and the fact that (\I + K; ;)" 'K; 1 = I — A(A\I + K;_;)~! which could be verified
by multiplying the LHS and RHS together, we have that

\/ellj;[lU;lljt,let,l/m S \/e;[th,l()\I —+ Kt,1)716t71

< Vel 1Koy + (- DD+ K1) ey

= el T+ (Ko + (A - D)D) ey (B.3)
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where the second inequality is because A = 1 + 1/7" > 1 set in Theorem 3.5.

Based on (B.2) and (B.3), by utilizing the bound on ||@* — || provided in Lemma B.3, as well as
the bound given in Lemma B.6, and A > 1, we have

’h(xtk) — <g(xt,k; 00), Ut__lljt_lrt_lm>| < (B + R\/log det()\I + Kt—l) + 210g(1/5)>6t,ka
since it is obvious that

logdet(AI + K;_1) = logdet(T+ A\ 'K;_1) + (t — 1) log A
<logdet(T+A'K;_1) +t(A—1)
< logdet(I+ \"'H) + 2,
where the first equality moves the A outside the log det, the first inequality is due to log A < A — 1,

and the second inequality is from Lemma B.7 and the fact that A = 14 1/7 (as set in Theorem 3.5).
Thus, we have

|h(Xt,k) - <g($t,k;90),ﬂfjljt71rt71m>| < VOt k,

where we set v = B + Ry/logdet(I+ H/\) +2 + 2 log(1/0). Then, by combining this bound
with Lemma B.5, we conclude that there exist positive constants C, Ca, Cs so that

|F(kep; Oi1) — h(xe)| < voes + Crt?Pm™YONT2BL3 logm + Co(1 — npmA)? /tL/X
+ Cym ™%\ /log mLM5/3\=%/3(1 + \/t/X),
< s+ Cot VN33 fogm + Co(1 — ymA) JIL/
+ Cym Y8\ flogmL*/32\=3/3(1 + \/t/))
+ (B + Ry/logdet(I+ H/\) + 2 + 2 1og(1/5)) ok — Ouk)-

Finally, by utilizing the bound of |c‘7t7 & — 0t x| provided in Lemma B.4, we conclude that
|f(xe k5 01—1) — h(xe k)| < voy i + €(m),

where ¢(m) is defined by adding all of the additional terms and taking ¢t = T

e(m) = C'1T2/3m*1/6>\*2/3L3\/@+ Co(1 — gmN\)? /TL/ A+
+ Cym Y8\ /logmLAT3X\=5/3(1 + \/T/X)
+Cy (B + Ry/log det(I+ H/X) + 2 + 2 1og(1/5)) VIog mT™/0m=1/6)\=2/319/2,

where is exactly the same form defined in (4.3). By setting 6 to §/5 (required by the union bound
discussed at the beginning of the proof), we get the result presented in Lemma 4.3. O

B.3 PROOF OF LEMMA 4.4

Our proof requires an anti-concentration bound for Gaussian distribution, as stated below:

Lemma B.8 (Gaussian anti-concentration). For a Gaussian random variable X with mean p and
standard deviation o, for any 5 > 0,

X—up exp(—f?)
P (550) 2
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Proof of Lemma 4.4. Since Ty, ~ N (f (X¢.1; 01-1), ufaf, ) conditioned on F;, we have

Pr (?t,k +e(m) > h(xt,k)‘ft,f,’f)

Py <?t,k — f(xe,k50i-1) + €(m) > h(@ew) = F(Xer; 01-1) -Ftv‘g#)
VOt k YOtk
> Pr <Ft,k — f(Xt k5 0e—1) + €(m) . [h(@ek) = f (X3 011)] ‘ftagt#)
VOt k YOtk
b <m — [ 01)  [P@e) = FOn; 01)] = e(m) ‘ﬂﬁ)
VO k YOtk

Z PI. (rtvk B f(Xt7k;0t—1) > 1‘ft7gt/L) Z 1 ,
Vo dey/T

where the first inequality is due to |z| > z, and the second inequality follows from event £, i.e.,

Vk € [K], |f(xek;0i-1) — h(xe k)| < vorr + e(m).

B.4 PROOF OF LEMMA 4.5

Proof of Lemma 4.5. Consider the following two events at round ¢:

A= {Vk} S St,?t,k < Ft,aﬂftagf}’
B = {a; ¢ Si|F:, EI'Y.

Clearly, A implies B, since a; = argmax,, ry ;. Therefore,

Pr (at §é St|ft,5tu) > Pr (Vk € Stﬂf:t’k < ’If:tﬁ:

Fiell).
Suppose £ also holds, then it is easy to show that Vk € [K],
|h(xt k) = Tege| < (X k) — f(Xep; 00)] + | f(xe 03 01) — Ter] < €(m) + (1 +G)rior . (B.A)
Hence, for all k € S;, we have that
h(Xt,at*) - 77t,k > h(Xt,a;) - h(Xt,k) - ‘h(xt,k) - Ft,k| > e(m),
where we used the definitions of saturated arms in Definition 4.4, and of £/ and &7 in (4.1).
Consider the following event
C = {h(xt,ar) — €(m) < Ty o | Ft, EL'}

Since £ implies h(X¢, 43 ) —€(m) > 7 1, we have that if C, £ holds, then A holds, i.e. £7NC C A.
Taking union with &7 we have that C = 7 UEZ NC C AU &7, which implies

Pr(A) + Pr(&7) > Pr(C). (B.5)

Then, (B.5) implies that

Pr (\V/k S St,’l,\"/nk < ?t’ar

]‘},é}“) Z Pr (?t,a;‘ + e(m) > h(Xt,a:) .Ft,gét) —Pr (g_f‘ft,g#)

S 1 1
 dey/m 2’
where the first inequality is from a} is a special case of Vk € [K], the second inequality is

from Lemmas 4.2 and 4.4. ]
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B.5 PROOF OF LEMMA 4.6

To prove Lemma 4.6, we will need an upper bound bound on d; ;..
Lemma B.9. For any time ¢t € [T], k € [K], and § € (0,1), if the network width m satisfies
Condition 4.1, we have, with probability at least 1 — 4, that

Ut,k S O\/E,

where C is a positive constant.

Proof of Lemma 4.6. Recall that given F; and &L, the only randomness comes from sampling 77
for k € [K]. Let k, be the unsaturated arm with the smallest oy ., i.e.

ky = argmin oy i,
k¢S:

then we have that
Elota,|Ft, &) > Elog,a, | Fi EL s ar ¢ St Pr(ac ¢ Si|Fe, EF)

1 1
> Ot ks (M - t2)’ (B.6)

where the first inequality ignores the case when a; € S;, and the second inequality is from
Lemma 4.5 and the definition of k; mentioned above.

If both &7 and &/ hold, then
VEk € [K], |h(xek) — Tri] < e(m) + (14 cp)vork, B.7)
as proved in equation (B.4). Thus,
h(Xt,a;) = (Xt,0,) = M(Xt,0;) = WX 7,) + h(Xe5,) = 7(Xta,)
< (L+evoy g, +2e(m) + h(xyf,) = 7ok, = M(Xta,)
+ ?t,at + Ft,l:;t - ?Lat
< (1 +c)v(20, 5, + 0ta,) + 4e(m), (B.8)
where the first inequality is from Definition 4.4 and k; ¢ S;, and the second inequality comes from
equation (B.7). Since a trivial bound on h(X¢,q: ) — h(X¢,q,) could be get by h(X¢ a2 ) — h(Xt,q,) <
|h(x¢,ax)| + |h(X¢,a,)| < 2, then we have
E[h(xt.a;) = h(Xt.00) |1, €] = Elh(Xt.07) = h(Xe.0.)| 3, €L, E7] Pr(ET)
+E[A(xta07) = h(xt.0,)| T2, €L E7 ] PL(ED)
2
< (14 C)v(20, 5, + Eloa, | 7o, €11) + dem) +
2E [0t q, | Ft, EL 2
<0+ ><H_] B0 0, F 6#1) Fae(m) + 2
de/T t2
< dde/7(1 + c)VE[o o, | Fr, EF] + de(m) + 2t 72,
where the inequality on the second line uses the bound provide in (B.8) and the trivial bound of
h(Xt,a3) — h(X¢,q,) for the second term plus Lemma 4.2, the inequality on the third line uses the
bound of o, ;, provide in (B.6), inequality on the forth line is directly calculated by 1 < 4e/7 and

1
i S QOGﬁ,
der/m t2
which trivially holds since LHS is negative when ¢ < 4 and when ¢ = 5, the LHS reach its maximum
as ~ 84.11 < 96.36 ~ RHS.

Noticing that |h(x)| < 1, it is trivial to further extend the bound as
Elh(xt,0:) — h(Xt,0,)|F, EL] < min{ddev/T(1 + c;)VE[0y 0, | F, EF], 2} + de(m) + 2t 72,
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and since we have 1 + ¢; > 1 and v = B + Ry/logdet(I+ H/\) + 2 + 2log(1/5) > B, recall
22e\/TB > 1, it is easy to verify the following inequality also holds:

E[h(xt.a;) = h(Xt.a,)| F1, €]

< ddey/7(1 + ¢ )y min{E[oy o, | Fi, EF], 1} + de(m) + 262

< 44ev/7(1 4 ¢, )vCLVLE[min{oy q,, 1}|F;, EF] + 4e(m) + 2t 72,
where we use the fact that there exists a constant C; such that o ,, is bounded by C1V'L with

probability 1 — § provided by Lemma B.9. Merging the positive constant C; with 44e./7, we get
the statement in Lemma 4.6. O

B.6 PROOF OF LEMMA 4.7

We start with introducing the Azuma-Hoeffding inequality for super-martingale:

Lemma B.10 (Azuma-Hoeffding Inequality for Super Martingale). If a super-martingale Y3, corre-
sponding to filtration F; satisfies that |Y; — Y;_1| < By, then for any § € (0,1), w.p. 1 — 6, we
have

t
Y, — Yo < | 2log(1/6) > B?.

i=1

Proof of Lemma 4.7. From Lemma B.9, we have that there exists a positive constant C; such that
X defined in (4.5) is bounded with probability 1 — § by
| X;| < A 4 C1(1 + ct)vVLmin{oy 4,, 1} + 4e(m) 4 2672
<242t72 + C1Co(1 + ¢)vL + 4e(m)
S 4 + 0102(1 —|— Ct)l/L + 4e(m)
where the first inequality uses the fact that [a — b] < |a| + |b]; the second inequality is from
Lemma B.9 and the fact that h < 1, where C5 is a positive constant used in Lemma B.9; the

third inequality uses the fact that t72 <1.N oticing the fact that ¢; < cp, and from Lemma 4.6, we
know that with probability at least 1 — ¢, Y; is a super martingale. From Lemma B.10, we have

Yr =Yy < (4+ C1Co(1 + ¢p)vL + 4e(m))+/21og(1/0)T. (B.9)
Considering the definition of Y7 in (4.5), (B.9) is equivalent to

T T T
> A <ATe(m)+2> t72+Ci(1+cr)vVLY min{oy,,, 1}
i=1

i=1 i=1
+ (44 C1Co(1 + ep)vL + 4e(m))+/21og(1/6)T,

then by utilizing Y_;~, t =2 = 72 /6, and merge the constant C; with 44e,/7, taking union bound of
the probability bound of Lemma 4.6, B.10, B.9, we have the inequality above hold with probability
at least 1 — 39. Re-scaling 6 to /3 and merging the product of C1C5 as a new positive constant
leads to the desired result. O

B.7 PROOF OF LEMMA 4.8

We first state a technical lemma that will be useful:

Lemma B.11 (Lemma 11, Abbasi-Yadkori et al. (2011)). Let {v;}$; be a sequence in R?, and
define V;, = \I + Zle Viv:. If A > 1, then

T ¢
Z min{v, V; !, v, 1,1} < 2logdet (I + A7t Z viv:) .
i=1

i=1
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Proof of Lemma 4.8. First, recall 5, j, defined in Definition B.2 and the bound of & j, — o 1, provided
in Lemma B.4. We have that there exists a positive constants C; such that

T T T
Z min{o’tﬂt? 1} = Z min{6t7at7 1} + Z(O't,at - a't,at)
=1 1=1 =1

T
<.|T Z min{67,,, 1} + C17"%/%\/log mm /6 A=2/3L%/2
i=1
where the first term in the inequality on the second line is from Cauchy-Schwartz inequality, and the
second term is from Lemma B.4.

From Definition B.2, we have

T T
> min{o,,, 1} <A min{g(xt.a,.00) U, g(xt.a,,00)/m, 1}
=1 =1

T
< 2\ log det (I + A7 Zg(xt,at;eo)g(xmt; GO)T/m)
i=1
= 2\ logdet(I + A~ J7J 1 /m)
= 2\ logdet(I + A\~ J7J7/m)
=2\ logdet(I+ A\ 'Kr)
where the first inequality moves the positive parameter A outside the min operator and uses the
definition of 74 ;. in Definition B.2, then the second inequality utilizes Lemma B.11, the first equality
use the definition of J; in Definition B.2, the second equality is from the fact that det(I+ AAT) =
det (I + ATA), and the last equality uses the definition of K, in Definition B.2. From Lemma B.7,
we have that
logdet(I+ A "'Kr) < logdet(I+ A\"'H) + 1
under condition on m and 7 presented in Theorem 3.5. By taking a union bound we have, with
probability 1 — 24, that
T
> min{e,,,1} < \/QAT(Elog(l +TK) 4 1) + C T¥/6 flogmm=1/6\=2/319/2
i=1

where we use the definition of d in Definition 3.2. Replacing 0 with 6/2 completes the proof. O

C PROOF OF AUXILIARY LEMMAS IN APPENDIX B

In this section, we are about to show the proof of the Lemmas used in Appendix B, we will start
with the following NTK Lemmas. Among them, the first is to control the difference between the
parameter learned via Gradient Descent and the theoretical optimal solution to linearized network.

Lemma C.1 (Lemma B.2, Zhou et al. (2019)). There exist constants {C;}>_; > 0 such that for any
d > 0, if n, m satisfy that for all ¢ € [T,

2¢/t/\ > Cym ' L™3/2[log(TK L?/8))*/2,

2¢/t/\ < Comin {m"2L=5logm] =32, m"/3((\y)?L =%t (log m)*1)3/8},
n < Cs(mA+tmL)™ ",

ml/6 > Cy\log mLT/27/A"T/5(1 4 \/1]N),

then with probability at least 1 — & over the random initialization of 6y, for any ¢ € [T], we have
that ||0t—1 — 00”2 <2 t/(m)\) and

|0,—1 — 8¢ — ﬁt__lljt—lrt—l/mHQ
< (1 —nmA) \/t/(mA) + Com™2/3\/logmLT/ /3 X753 (1 + \/t/\).

22



Published as a conference paper at ICLR 2021

And the next lemma, controls the difference between the function value of neural network and the
linearized model:

Lemma C.2 (Lemma 4.1, Cao & Gu (2019)). There exist constants {Ci}?zl > ( such that for any
0 > 0, if 7 satisfies that

Cym = 32L732log(TKL?/6)]*/? < 7 < Cy L™ %[logm] ~%/2,

then with probability at least 1 — 0 over the random initialization of 6, for all 5, 0 satisfying
|0 — Bll2 < 7,]|0 — Ogll2 < 7 and j € [T K] we have

F(<736) = F(x7;0) — (g(x’;0),6 — 0)| < Cyr'*L3\/mlogm.

Furthermore, to continue with, next lemma is proposed to control the difference between the gradient
and the gradient on the initial point.

Lemma C.3 (Theorem 5, Allen-Zhu et al. (2018)). There exist constants {C’i}le > 0 such that for
any 6 € (0,1), if 7 satisfies that

Cim ™32 L732log(TK L?/6)]3/? < 7 < Co L™ %[logm] 3/,
then with probability at least 1 — § over the random initialization of 6y, for all ||@ — 6y||» < 7 and
j € [TK] we have

lg(x7; 8) — g(x’: 69)||2 < Cs+/logmr'/*L?||g(x7; 60) -

Also, we need the next lemma to control the gradient norm of the neural network with the help of
NTK.

Lemma C.4 (Lemma B.3, Cao & Gu (2019)). There exist constants {C;}?_, > 0 such that for any
6 > 0, if 7 satisfies that

Cim =32 L3 [log(TKL?/6)]3/? < 7 < Oy L™ %[logm] ~%/2,

then with probability at least 1 — § over the random initialization of 6y, for any ||@ — 6|2 < 7 and
j € [TK] we have ||g(x?; 8)||r < C3v'mL.

Finally, as literally shows, we can also provide bounds on the kernel provided by the linearized
model and the NTK kernel if the network is width enough.

Lemma C.5 (Lemma B.1, Zhou et al. (2019)). Set K = Zle Zszl g(x1.1;00)8(x¢,1;00)/m,
recall the definition of H in Definition 3.1,then there exists a constant C'; such that

m > C1 LS log(TKL/8)e™*,
we could get that ||K — H||p < TKe.

Equipped with these lemmas, we could continue for our proof.

C.1 PROOF OF LEMMA B.4

Proof of Lemma B.4. Firstly, set 7 = 24/t/(mA), then we have the condition on the network m
and learning rate 7 satisfy all of the condition need from Lemma C.1 to Lemma C.5. Thus from
Lemma C.1, we have that there exists ||6;—1 — Og||2 < 7, thus from Lemma C.4, we have that there
exists positive constant C such that ||g(x;0;_1)|l2 < C1vVmL, ||g(x;60)|]2 < C1vVmL, consider
the function defined as

-1 -1
P(a,ay, - ,a1) = aT(Z)\I-i-aiaiT) a,
i=1

it is then easy to verify that

w(g(xt,k;9t1) 8(x1,0:361) g(th,atﬁ@tl)) —_—

vmo O ym Vvm
" 8(xt,k;00) 8(x1,a:5600) g(X¢—1,a,_1500) _
\/TH 9 \/m ) ) \/TW t,k»
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then we obtain that the function v is defined under the domain ||a||>» < C1V/'L, ||a; |2 < C1v/L then
by taking the derivation w.r.t. 1)2, we have that

2090 = (2:)\I—|—az > a+a <2:)\I—}—aZ > da
—1t-1 t—1 -1
aT(Z)\I—i—aia:) Z ((aal-)a;r —&—aiaa?) (ZAI—i—aZ-a;r) a,
i=1 j

i=1
by taking trace with both side and utilizing tr(AB) = tr(BA) and tr(a ' B) = tr(aB"), we have
that
—1

t—1
2tr(ypoy) = tr <2(6a)T < Z AL+ aiaj> a
t—1 i t—1 —1 t—1 -1
+2 Z(@aj)—r ((Z A+ aia;r) aa' ( Z A+ aia;r> aj> ,
j=1

i=1 i=1
—1

thus by setting C = (Zf;i AL+ aiaj) for simplicity and decompose C = Q'DQ,b = Qa

where D = diag(p1,- - , 0p) as the eigen-value of C, we have that
Ca \/aTC?a \/bTD2b 2
- \V4 = = = <1/VA
Vay a'Ca IVatllz a’Ca b’ Db <1VA

where the last inequality is from the fact that C < 1/AI, which indicates that all eigen-value g; <
1/, for the same reason, we have

||CaaTCalH2 Caa' C||; [ICall»
-_ a; Ca < |la;||||la f
L BV roa = [las[lz[|Call Varca [ERIEIAR

Thus under the domain that ||al|y < C1V/L, ||a;||2 < C1v/L, we have that
IVatsllz < 1/VA, Va2 < CTL/VA.

Then, Lipschitz continuity implies

IV, tlls = < [las]o 1€22_Cll2

_ g(xek; 0i—1) 8(X1,0,:601) g(Xt—1,a,_130:t-1)
|Ut,k_0t,k|_ ¢ \/m ’ \/ﬁ sty \/m
_ 8(xtk;60) 8(X1,4:560) g(Xt—1,a,_1360)
vmo o m 7 Vvm
g(xek;0-1)  8(x¢.k;600)
< sup{||V : — :
t Jm v |,
(Xz a; 0z> g(xi.a- ; 00)
+ sup{||Va, — -
Z i Jm i,
g(xt1;0¢) — 8(x¢t x5 60) 8(Xi,0;30i) — 8(Xia;;00)

Jm vm 2
(C.1)
By Lemma C.3 with 7 = 2./t/mA, there exist positive constants Co and Cs so that each gradient

difference in (C.1) is bounded by
(x;0) — g(x;00)[l2 < Car/logm' /> L?||g(x; 00) |2/ v/m

< Csv/ log mtt/ S 1/6\—1/6T/2

1
ﬁ“g
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Thus, since we obtain that there exists constant C's such that
lot i — 0ei| < Crv/log mt7/6m*1/6)\*2/3L9/2,

where we use the fact that C; = max{C3,C3C?} and L > 1 to merge the first term into the
summation. This inequality is based on Lemma C.1, Lemma C.3 and Lemma C.4, thus it holds with
probability at least 1 — 34. Replacing § with §/3 completes the proof. O

C.2 PROOF OF LEMMA B.5

Proof of Lemma B.5. Setting 7 = 2,/t/mM, we have the condition on the network m and learning
rate 7 satisfy all of the condition needed by Lemmas C.1 to C.5. From Lemma C.1 we have ||6;_; —
6o||2 < 7. Then, by Lemma C.2, there exists a constant C; such that

| (%e,501—1) — (8(%e.k300), -1 — O0)| < C1t*Pm =/ ONT2BL3 logm,  (C2)

Using the bound on 8;_1 — 0y — I_J;_llj +—1rt—1/m provided in Lemma C.1 and the norm of gradient
bound given in Lemma C.4, we have that there exist positive constants C, Cs such that

(g (xt,k5600), 01 — 00) — (8(xe.k3600), Uy Jeo1ri—1/m)|
< |lg(xex) 2181 — 60 — U Je—qri—1/ml)2

< GV (1 — ) VETGA) + Com™/*logm X501 4 /A7)

= Co(1 — gmA\)? /IL/X + Csm ™%\ /log mL*?/3X\=%/3(1 + \/t/X), (C3)
where Cy = C;,C3 = C1C5. Combining (C.2) and (C.3), we have
| f(xe500-1) — (&8(w,4300), Uy 1 Jimiremy /m)| < C1t*/3m~YON=2/3L3 /logm
+ Co(1 = nmA)’\/tL/X
+ Cam= V8 Slog mILMP/3A5/3(1 + /),

which holds with probability 1 — 3§ with a union bound (Lemma C.4, Lemma C.1, and Lemma C.2).
Replacing 0 with 6/3 completes the proof. O

C.3 PROOF OF LEMMA B.7

Proof of Lemma B.7. From the definition of K, we have that

t
log det(I + A'K;) = log det (I + Z 8(Xi,0:300)8(Xi,a;3 HO)T/(m)\))

i=1

T K
< log det (I + Z Z g(Xia,; Go)g(xi}ai;Go)T/(m)\))>

t=1 k=1
= log det(I + K/\)
<logdetI+H/A+ H-K)\)+T(A—1)
<logdet(I+H/\) + (I+H/N) (K-H)/\)
< logdet(I+H/A) + [|(T+H/\) |7 (K — H)||»/A
( )

<logdet(I+H/\) + VI'K||(K - H)|

<logdet(I+H/\) +1
where the the first inequality is because the double summation on the second line contains more
elements than the summation on the first line. The second inequality utilizes the definition of K in

Lemma C.5 and H in Definition 3.1, the third inequality is from the convexity of log det(-) function,
and the forth inequality is from the fact that (A, B) < ||A||r||B||r. Then the fifth inequality is from
the fact that [|A||p < VT K| Al2if A € RTEXTE and )\ > 0. Finally, the sixth inequality utilizes
Lemma C.5 by setting ¢ = (T'K)~3/2 withm > C, LTS K% log(T K L/§), where we conclude our
proof. O
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C.4 PROOF OF LEMMA B.9

Proof of Lemma B.9. Set 7 in Lemma C.4 as 24/t/(m)). Then the network width m and learning
rate 7 satisfy all of the condition needed by Lemma C.1 to C.5. Hence, there exists C such that

lg(x;0)|2 < |lg(x;0)|r < C1v/mL for all x, since it is easy to verify that U;* < A~'I. Thus
we have that for all ¢ € [T,k € [K

Uf,k =g (x5 01-1)U; g (%003 0—1) /m < ||g(Xe k5 01-1)[|5/m < CEL

Therefore, we could get that o;;, < C;+/L, with probability 1 — 2§ by taking a union bound
(Lemmas C.1 and C.4). Replacing ¢ with §/2 completes the proof. O

D AN UPPER BOUND OF EFFECTIVE DIMENSION E[

We now provide an example, showing when all contexts x; concentrate on a d’-dimensional non-

linear subspace of the RKHS space spanned by NTK, the effective dimension d is bounded by d'.
We consider the case when A = 1, L = 2. Suppose that there exists a constant d’ such that for any

i>d',0 < \(H) < 1/(TK). Then the effective dimension d can be bounded as

~ logdet(I+ H) ZTK Z Zd ZTK
! log(1+TK) el . i= NH) +1’:d/+1 M
N
I Iy

For I and I we have
L <) |H|z=0(d), L <TK-1/(TK) =1,

Therefore, the effective dimension satisfies that d < d’+ 1. To show how to satisfy the requirement,
we first give a charcterization of the RKHS space spanned by NTK. By Bietti & Mairal (2019); Cao
et al. (2019) we know that each entry of H has the following formula:

N(d,k)
zs —Z,uk Z Yk,] X ij Xs)
where Yj, ; for j = 1,..., N(d, k) are linearly independent spherical harmonics of degree k in d

variables, d is the input dimension, N (d, k) = (2k +d — 2)/k - 02;273, wr = O(max{k=4, (d —
1)=%*1}). In that case, the feature mapping (,/fxY%,j(X))k,; maps any context x from R? to a
RKHS space R corresponding to H. Let y; € R denote the mapping for x;. Then if there exists a
d’'-dimension subspace R’ vi — 2;|| < 1 where z; is the projection of y; onto
R, the requirement for \; (H) holds.
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