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Abstract

Simulating physical systems is a core component of scientific computing, encom-1

passing a wide range of physical domains and applications. Recently, there has been2

a surge in data-driven methods to complement traditional numerical simulations3

methods, motivated by the opportunity to reduce computational costs and/or learn4

new physical models leveraging access to large collections of data. However, the5

diversity of problem settings and applications has led to a plethora of approaches,6

each one evaluated on a different setup and with different evaluation metrics. We7

introduce a set of benchmark problems to take a step towards unified benchmarks8

and evaluation protocols. We propose four representative physical systems, as well9

as a collection of both widely used classical time integrators and representative10

data-driven methods (kernel-based, MLP, CNN, Nearest-Neighbors). Our frame-11

work allows to evaluate objectively and systematically the stability, accuracy, and12

computational efficiency of data-driven methods. Additionally, it is configurable to13

permit adjustments for accommodating other learning tasks and for establishing a14

foundation for future developments in machine learning for scientific computing.15

1 Introduction16

Computational modeling of physical systems is a core task of scientific computing. Standard methods17

rely on discretizations of explicit models typically given in the form of partial differential equations18

(PDEs). Machine learning techniques can extend these techniques in a number of ways. In some19

cases, a closed system of analytic equations relating all variables may not be available (e.g., a20

constitutive relation for a material may not be known). In other cases, while a full analytic description21

of a system is available, a traditional solution may be too costly (e.g., turbulence) or can be sped22
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up substantially using data-driven reduced-order models. However, despite promising results, a23

successful adoption of these data-driven approaches into scientific computing pipelines requires24

a solid and exhaustive assessment of their performance—a challenging task given the diversity25

of physical systems, corresponding data-driven approaches, and the lack of standardized sets of26

problems, comparison protocols, and metrics.27

We focus on the setting where the physical model is unavailable during training, mimicking situations28

in computational science and engineering with ample data and a lack of models. One can generally29

distinguish two different flavors of physical simulation with different associated computational30

cost: those that map a high-dimensional state space into another high-dimensional space (as in31

temporal integration schemes, mapping the state of the system at one time step to the next), or from32

a high-dimensional input space to a lower-dimensional output (as in surrogate models, mapping33

the initial conditions to a functional of the solution). While this distinction also applies to data-34

driven approaches, another critical aspect emerges, given by the choice of input data distribution.35

We identify two extremes: the narrow data regime, where initial conditions are sampled from a36

low-dimensional manifold (even within a high-dimensional state space), and the wide regime, where37

initial conditions span a truly high-dimensional space. As could be expected, narrow data regimes38

define an easier prediction task where data-driven methods can potentially ‘bypass the physics’,39

whereas wide regimes require models with enough encoded physical priors in order to beat the40

curse of dimensionality. Therefore, such choice of data distribution is a critical component of any41

data-driven physical simulation benchmark.42

In this work, we introduce an extensible benchmark suite, including: (1) an extensible set of simple,43

yet representative, physical models with a range of training and evaluation (test) setups, as well44

as reference, high-accuracy numerical solutions to benchmark data-driven methods, (2) reference45

implementations of traditional time integration schemes, which are used as baselines for evaluation,46

and (3) implementations of widely used data-driven methods, including physics-agnostic multi-layer47

perceptrons (MLPs), convolutional neural networks (CNNs), kernel machines and non-parametric48

Nearest Neighbors. Our benchmark suite is modular, permitting extensions with limited code49

changes, and captures both ‘narrow’ and ‘wide’ regimes by appropriately parametrizing the set of50

initial conditions.51

Our analysis reveals two important conclusions: First, even in the simplest physical models, current52

data-driven pipelines, while providing qualitatively acceptable solutions, are quantitatively far from53

directly numerically integrating physical models, and this performance gap appears unfeasible to54

close by merely scaling up the models and/or the dataset size. In other words, the cost of ignoring55

the physics is high, even for the simplest physics, and cannot in general be compensated by data,56

matching insights that have been obtained in other scientific computing settings [5, 54]. Next,57

and more importantly, our simple L2-based nearest neighbor regressor is used to calibrate how58

‘narrow’ the learning task is. Our finding is that even for seemingly complex systems, such as59

the incompressible Navier-Stokes systems, such naive predictor outperforms most deep-learning-60

based models in the narrow regime—thus providing a simple calibration of the true difficulty of the61

simulation task, that we advocate should be present in every future evaluation.62

2 Related Work63

Machine learning is used in physical simulation in a number of interrelated ways. Some important uses64

include reduced-order/surrogate modeling, learning constitutive models or more generally compact65

analytic representations from data. A unifying theme of these applications of machine learning is66

automatic construction of parametric models capable of reproducing the behavior of physical systems67

for a sufficiently broad range of initial data, boundary conditions and other system parameters.68

The purpose of these representations varies from acceleration (e.g., surrogate machine learning69

models are used to accelerate optimization), to automatic construction of multiscale models (learning70

macroscopic constitutive laws from microscopic simulation), to inferring compact descriptions of71

unknown representations from experimental data.72

The purpose of our proposed benchmarks is to enable comparisons of different learning-based73

methods in terms of their accuracy and efficiency. We briefly review two streams of learning74

methods for physical systems: (1) One line of work aims to understand how neural networks can75

be structured and trained to reproduce known physical system behavior, with the goal of designing76
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general methods applicable in a variety of settings [8, 41, 4, 40, 36, 37, 25, 10, 49, 50]. Our77

benchmark cases fit primarily into this category. (2) Another line of research aims to develop78

a variety of techniques to accelerate solving PDEs. Typically, these methods are developed for79

specific PDEs and a specific restricted range of problems. For example, fluid dynamics problems80

[38, 16, 55], with particular applications to cardiovascular modeling [24, 19] and aerodynamics81

[52]; or solid mechanics simulation tasks, including stresses [28, 23, 26, 15, 21, 22]. In cases where82

the governing equations are not given, the learning task becomes approximating them from data83

[29, 7, 1, 9, 2, 27, 3, 42, 43, 45, 44, 51, 34].84

3 Background and problem setup85

PDEs, dynamical systems, and time integration. Consider a time-dependent PDE of the form86

∂tu = L(u), where u is the unknown function and L is a possibly nonlinear operator that includes87

spatial derivatives of u. By discretizing in space, one obtains a dynamical system88

ẋ(t) = f(x(t)) (1)

with an N -dimensional state x(t) ∈ R
N at time t ∈ [0, T ]. The function f is assumed to be Lipschitz89

to ensure solution uniqueness and the initial condition is denoted as x0 ∈ R
N . A PDE of a higher90

order in time can be reduced to the first-order form in the standard way, e.g., if we have a second-91

order system q̈(t) = f(q(t)), then we consider its formulation via position q and momentum p as92

a first-order system with x = [q; p]: [q̇(t); ṗ(t)] = [p(t); f(q(t))]. To numerically integrate (1), we93

choose time steps 0 = t0 < t1 < · · · < tK = T . Then, a time integration scheme (e.g., [48, 12, 11])94

gives an approximation xk ≈ x(tk) of the state x(tk) at each time step k = 1, . . . ,K. A list of the95

schemes we use along with details is given in Appendix A.96

Problem setup and learning problems. Given M initial conditions x
(1)
0 , . . . , x

(M)
0 ∈ R

N and the97

corresponding M trajectories X(i) = [x
(i)
0 , . . . , x

(i)
K
] ∈ R

N×(K+1), i = 1, . . . ,M obtained with a98

time integration scheme from dynamical system (1), we consider the following two learning problems,99

both of which aim to learn the physical model of the problem, viewed as unknown, from trajectory100

samples: (1) Learning an approximation f̃ of the right-hand side function f in Eq. (1). This gives101

an approximate ˙̃x(t) = f̃(x̃(t)) that is then numerically integrated to produce a trajectory X̃ for an102

initial condition x̃0. The aim is that X̃ approximates well the true trajectory X obtained with f from103

(1) for the same initial condition. (2) Directly learning the next steps in the trajectory from the current104

one, i.e. predict x
(i)
k

given x
(i)
k−1.105

To assess the learned models, we evaluate them on their ability to produce good approximate106

trajectories from randomly sampled initial conditions, by either integration or direct step prediction.107

During evaluation, we use initial conditions drawn independently from those used to produce training108

data, both from the same distribution as the training samples, as well as from a distribution with109

support outside the training range. We train networks on data sets of various sizes. For details, see110

Appendix B.111

4 Benchmark Systems112

We consider four physical systems, illustrated in Figure 1: a single oscillating spring, a one-113

dimensional linear wave equation, a Navier-Stokes flow problem and a mesh of damped springs.114

These systems represent a progression of complexity: the spring system is a linear system with115

low-dimensional space of initial conditions and low-dimensional state; the wave equation is a low-116

dimensional linear system with a (relatively) high-dimensional state space after discretization; the117

Navier-Stokes equations are nonlinear and we consider a setup with low-dimensional initial condi-118

tions and high-dimensional state space; finally, the spring mesh system has both high-dimensional119

initial conditions as well as high-dimensional states. Additionally, the proposed spring system and120

Navier-Stokes problems represent diffusion-dominated and advection-dominated (for sufficiently121

low viscosity) PDE behaviors, as well as variability in initial conditions with fixed domain (spring122

system) and variable domain (Navier-Stokes). These varying complexities provide an opportunity to123

test methods on simpler systems and the ability to examine changing performance as system size124

increases, both in terms of the state dimension, and the initial condition distribution. The ground truth125

models for the spring, wave, and spring mesh systems with classical time integrators are implemented126
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Figure 1: Representative visualizations of the three systems, depicting the results and ranges of initial
condition sampling. Each two state components: for the Navier-Stokes system, a flow velocity and a
pressure field, and for the other three a position q and momentum p.

using NumPy [13], SciPy [53], and accelerated, where possible, with Numba [20]. The Navier-Stokes127

snapshots are generated using PolyFEM [46], a finite element library.128

These systems were chosen in an effort to reflect the variety of systems used for testing in this129

area, while unifying choices of particular formulations. Past works have chosen systems of the130

types featured here: simple oscillators (both spring and pendulum [8]), particle systems with various131

interaction laws (gravity, spring forces, charges, cloth simulations, etc. [6, 18, 41, 4, 33]), and fluid-132

flow systems (with various sorts of obstacles, airfoils or cylinders [50, 33]). We make particular133

selections here in an effort to unify systems of interest and facilitate comparisons across experiments134

by providing a shared set of tasks which can be used for development and testing of machine learning135

methods.136

Some examples of initial condition selection for each system are illustrated in Figure 1. The ground137

truth for the spring, wave, and spring mesh systems consists of the state variables (q, p) for position138

and momentum, and their associated derivatives (q̇, ṗ). For the Navier-Stokes system the state consists139

of flow velocities, and a pressure field, along with approximated time derivatives for each.140

Table 1 lists the parameters used to generate trajectories for training and evaluation. Training sets141

of three sizes are generated, each containing the specified number of trajectories. The systems are142

integrated at the listed time step sizes, but the ground truth data is subsampled further by the factor143

shown after ÷ in the table: the integration schemes are run at a smaller time step and intermediate144

computations are discarded. Each larger training set is a strict superset of its predecessor to ensure145

that previous training samples are never removed.146

4.1 Spring147

We simulate a simple one-dimensional oscillating spring. In this system, the spring has zero rest148

length, and both the oscillating mass and spring constant are set to 1. The spring then exerts a force149

inversely proportional to the position of the mass q: ṗ(t) = −q and q̇(t) = p.150

The energy of the system is proportional to r = q2+p2 which is the radius of the circle in phase space.151

To sample initial conditions, we first sample a radius uniformly, then choose an angle theta uniformly.152

This produces a uniform distribution over spring system energy levels and starts at an arbitrary point in153

the cycle. The spring system has a closed-form solution: (q(t), p(t)) = (r sin(t+ θ0), r cos(t+ θ0))154

where r is the radius of the circle traced in phase space (the energy of the spring) and θ0 is the155

phase space angle at which the oscillation will start. While this closed form solution is useful,156

for consistency with our other systems, we generate snapshots of the spring system by numerical157

integration. Simulations of the spring system always run through one period. For “in-distribution”158
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training values, the radius is selected in the range (0.2, 1) and “out-of-distribution” radii are chosen159

from (1, 1.2).160

4.2 Wave161

This benchmark system is similar to the one used in Peng and Mohseni [32]. Consider the wave162

equation with speed c = 0.1163

∂ttu = c2∂xxu , (2)

on a one-dimensional spatial domain [0, 1) with periodic boundary conditions. We represent this164

second-order system as a first-order system and discretize in space to obtain165

[

q̇(t)
ṗ(t)

]

=

[

0 I
c2Dxx 0

] [

q(t)
p(t)

]

, (3)

where Dxx ∈ R
n×n corresponds to the three-point central difference approximation of the spatial166

derivative ∂xx and the matrices I and 0 are the identity and zero matrix, respectively, of appropriate167

size. We discretize in space with n = 125 evenly spaced grid points and evolve the system following168

the dynamics described above.169

Initial conditions are sampled with an initial pulse in the q component centered at 0.5. All initial170

conditions have zero momentum. The initial pulse is produced by a spline kernel as described in [32]:171

s(x) =
10

pw
· |x− 0.5| , h(s) = ph ·







1− 3
2s

2 + 3
4s

3 if 0 ≤ s ≤ 1
1
4 (2− s)3 if 1 < s ≤ 2

0 else

where the width and height of the pulse are scaled by parameters pw and ph, respectively. The spline172

kernel pulse is then h(s(x)) for x ∈ [0, 1), evaluated at the discretized grid points.173

For “in-distribution” samples parameters pw, ph are both chosen uniformly in the range (0.75, 1.25)174

and “out-of-distribution” runs sample uniformly from (0.5, 0.75) ∪ (1.25, 1.5). All trajectories are175

integrated until t = 5 when the wave has traveled through half a period.176

4.3 Spring Mesh177

This system manipulates a square grid of particles connected by springs, in a two dimensional space,178

and can be considered a simplified version of deformable surface and volume systems (cf. [33]). The179

particles all have mass 1, and are arranged into a unit grid. Springs are added along the axis-aligned180

edges and diagonally across each grid square, with rest lengths selected so that the regularly-spaced181

particles are in a rest position.182

In this work we use a 10× 10 grid where the top row of particles is fixed in place. Initial conditions183

are sampled by choosing a perturbation for the position of each non-fixed spring. These perturbations184

are chosen as uniform vectors inside a circle with radius 0.35. Out-of-distribution perturbations185

are chosen uniformly in a ring with inner radius 0.35 and outer radius 0.45. The sampled initial186

conditions all have zero momentum.187

In this system, a spring between particles a and b exerts a force:188

Fab = −k ·
(

‖qa − qb‖2 − ℓab
) qa − qb
‖qa − qb‖2

− γq̇a (4)

where ℓab is the rest length of the spring, γ = 0.1 is a parameter controlling the magnitude of an189

underdamped velocity-based decay, and k = 1 is the spring constant.190

4.4 Navier-Stokes191

We consider the standard Navier-Stokes equation over a domain Ω (cf. [33, 50])192

ρ
∂u

∂t
+ ρ(u · ∇)u− ν∆u+∇p = b

∇ · u = 0
u(0) = u0











on Ω× (0, T ) ,
u = d
ν ∂u

∂n
+ pn = g

}

on ∂ΩD × (0, T ) ,
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Table 1: Dataset sizes and simulation parameters

System # Train Trajectories # Eval Trajectories Time Step Size # Steps

Spring 10, 500, 1000 30 0.00781, ÷128 805
Wave 10, 25, 50 6 0.00049, ÷8 10204
Spring Mesh 25, 50, 100 15 0.00781, ÷128 805
Navier-Stokes 25, 50, 100 5 0.08, ÷1 65

where u : Ω × (0, T ) → R2 is the velocity at time t ∈ (0, T ) of a fluid with kinematic viscosity193

ν and density ρ, p : Ω × (0, T ) → R is the pressure and ∂ΩD and ∂ΩN are the Dirichlet and194

Neumann boundary conditions respectively. In our setup we use the finite element method (FEM)195

to solve the PDE using mixed discretization: quadratic polynomial for the velocity and linear for196

pressure. In our experiment the domain Ω is a rectangle 0.22 × 0.41 with a random generated197

set of circular obstacles. We start with u0 = 0 and specify a velocity on the left boundary of198

u(0, y) = (6(1− e−5t)(0.41− y)y/0.1681, 0), zero on the top and bottom, and zero Neumann on199

the right side (g = 0). We solve the system using PolyFEM [46] using dt = 0.08 and backward200

differentiation formula (BSF) of order 3 for the time integration.201

We sample obstacles into two configurations: a single obstacle, or a set of four. In each case, we202

sample the obstacles leaving a margin of 0.05 between each circle, and a margin of 0.25 from the203

left and right sides, and 0.05 between the top and bottom. Otherwise, each obstacle is determined204

by first sampling a radius, then sampling a center from the valid space, respecting the margins. If205

the sampled obstacle is too close to an existing circle, it is discarded and a new sample is drawn.206

In-distribution obstacles have radii in the range (0.05, 0.1) and out-of-distribution radii are drawn207

from (0.025, 0.05).208

5 Numerical experiments209

Experimental Setup. We apply several basic learning methods to the datasets developed in this210

work: k-nearest neighbor regressors, a neural network kernel method, several sizes of feed forward211

MLPs, and a variety of CNNs. Details of the architectures and the training protocol are provided in212

supplementary material, Appendix B. Each of the neural networks we consider is implemented using213

PyTorch [30].214

The learning methods considered in this work are trained on one of two target task formulations215

described in Section 3. For derivative-based prediction, the training is conducted supervised on ground216

truth snapshots gathered from the underlying models. For each system we randomly sample initial217

conditions and each of these is then numerically integrated to produce a trajectory. Each trajectory218

includes state samples x as well as target derivatives ẋ used for training. For direct prediction, we219

no longer require numerical integration; instead we directly predict the trajectory in a sequential220

fashion. In this setting, we approximate f̃θ(x(t)) ≈ x(t+ δt) for a discrete time step size δt. For the221

derivative prediction we report results using the Leap-Frog integrator, the full results are available in222

the additional material.223

We pick the same set of learning methods and apply it to both tasks independently to judge perfor-224

mance in each. For many systems the state is divided into position and momentum components:225

x ≡ (q, p). For the Navier-Stokes problem, the state x is made up of the flow velocity field, and226

the scalar field for pressure. After training, we produce rolled-out trajectories from held-out initial227

conditions either by combining with a numerical integrator in the case of derivative prediction, or228

in a directly recurrent fashion in the case of step prediction. Each neural network is instantiated in229

three independent copies, each of which is trained and evaluated across all sampled trajectories. We230

compute a per-step MSE against a ground truth value, we average these per-step MSEs to produce a231

per-trajectory error, and record these errors for analysis. Our experiments are designed to test several232

aspects of physical simulation. We highlight the most salient ones next, and report more extensive233

results in Appendix C.234

Training set size. In general ML problems, one would expect additional training samples to235

systematically improve (in-distribution) evaluation performance. However, Figure 2 illustrates a236

6



10 500 1000
Training set size

10 8

10 6

10 4

10 2

100

M
ed

ia
n 

M
SE

Spring

10 25 50
Training set size

10 3

10 1

101

103

105

107
Wave

25 50 100
Training set size

10 1

103

107

1011

1015

1019 Spring Mesh

25 50 100
Training set size

10 2

10 1

100

101

102

Navier Stokes 1 Obst.

25 50 100
Training set size

10 1

100

101

102

103

Navier Stokes 4 Obst.

knn nn-kernel mlp cnn unet derivative step

mlp-2-2048 mlp-3-200 mlp-4-4096 mlp-5-2048 cnn-9-32 cnn-9-64 cnn-5-32
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Figure 3: Median MSE for in-distribution evaluation sets vs. out-of-distribution evaluation sets
for our five systems. Colors represent the same method and are repeated for different architecture
choices. Marker shapes distinguish step and derivative prediction, and the dotted line is the identity
line. Outliers for the spring-mesh and both Navier-Stokes systems were removed. Values on both
axes were approximately 1013 for the spring mesh and in the range 102–103 for Navier-Stokes.

clear saturation of performance on the simplest systems when using neural networks as function237

approximator, in contrast with non-parametric KNNs and the kernel method. We attribute this238

saturation to an inherent gap between the training and evaluation objectives. While data-driven239

methods are optimized to minimise next-step predictions, the final evaluation requires built-in240

stability to prediction errors. Including regularisation strategies to incorporate stability, such as noise241

injection [33], is shown to help, but not fully resolve this issue.242

Out-of-distribution evaluation. For simplicity, we only examine the out-of-distribution error for243

networks trained on the largest training set size. The added challenge of out-of-distribution samples244

varies with the construction of each system. It is possible to get some idea of the difficulty increase245

by examining the accuracy penalty for the KNNs, and comparing it to how well the more advanced246

models are able to generalize.247

Benefits of neural networks for generalization over KNN are visible across several systems in Figure 3,248

particularly in the spring system for small MLPs for derivative prediction and nn-kernel in both249

cases. The KNN suffers a significant increase in error while these methods produce only somewhat250

worse predictions. Benefits are still present, though less pronounced, for the wave system derivative251

prediction where neural networks increase in error, but the kernel method and small MLP maintain252

a lower absolute error than the KNN. On the Navier-Stokes systems none of the methods suffer an253

increase in error for out-of-distribution evaluation. The change in radius distribution for the obstacles254

did not pose an additional challenge sufficient to produce a measurable change in error distribution.255

We attribute this to low dimension of the initial condition space.256

Step and derivative prediction. The step and derivative prediction instances of each learning257

problem lead to different accuracy from the learning methods we test. While most physical systems258

are naturally described in terms of their derivatives through corresponding ODE/PDEs, data-driven259

simulations also offer the alternative of bypassing this differential formulation and predict the next260

state directly. Such ‘cavalier’ approach avoids the compounding error amplification effects across261
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displayed for each of our five systems. The dotted line is the identity line.

integration steps, at the expense of sample efficiency. Figure 4 illustrates these tradeoffs across our262

systems.263

An important example of this effect is the performance of CNNs on the spring mesh system (Figure 8264

in the Appendix). When working through a numerical integrator and performing derivative prediction265

they produce the lowest error of all methods tested, but following the same training protocol for step266

prediction these architectures produce high errors, or are unstable. This case is likely an interaction267

of the architecture with the specific learning task. For the spring mesh, step prediction requires268

outputting the position of the particle which requires manipulating its global coordinates, while269

derivative predictions allow the network to more easily act locally and compute only a relative motion270

for the particle. The derivative prediction task better takes advantage of the spatial invariance of the271

CNNs. This difference in performance reflects the importance of tailoring architectures to the specific272

task, and some potential for neural network architectures to benefit from incorporating knowledge of273

a system’s behavior.274

System and dataset complexity. Several trends we observe correlate with the difficulty of learning275

to simulate the system, and the variation in its behavior across the training and evaluation samples.276

This is generally a combination of the system’s state dimension, and variation in its behavior,277

approximated by the dimension of the distribution from which initial conditions are sampled.278

This is particularly visible in Figure 5 in the performance of the KNN methods, and, in many cases,279

the performance of simpler methods such as the small MLPs. On the simpler systems, such as the280

spring and wave, the KNNs generally perform well because even though the wave system has a281

relatively large state dimension of 125, like the spring its initial condition is sampled from only two282

parameters and its behavior can be readily predicted from these. The Navier-Stokes system with283

a single obstacle is another instance of this sort of behavior: the KNN is readily able to reproduce284

flows it has not seen because a sampling of 100 obstacle positions is such that an evaluation sample is285

close to a trajectory seen at training time. Therefore, small MLPs and the kernel method produce286

similar performance. When the difficulty is increased by sampling four obstacles, the KNN and MLP287

performances suffer, and larger networks such as the u-net are needed to maintain approximately the288

same performance.289

Choice of numerical integrator. For our derivative prediction tasks we combine our trained290

methods with three explicit integrators with orders 1, 2, and 4. In most of our systems these produce291

at most a small increase in accuracy, holding all other training and evaluation parameters equal.292

However on the Navier-Stokes system the higher order integrators produce somewhat higher errors,293

particularly for the u-net and the MLPs. This appears related to the approximated derivatives used for294

training this system. The learned derivatives produce some small deviations which are compounded295

when combining multiple derivative samples.296

Computational overheads. Another important aspect to consider when applying learning methods297

to physical simulation problems is the time required to compute each step, and the computational298

overheads introduced by the lack of knowledge of the true system physics. With standard numerical299

integration methods, it is generally possible to improve the quality of generated trajectories by300

decreasing the size of the time step used during integration. We take advantage of this in order to301
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Figure 5: MSE distribution across trajectories in the evaluation set for KNNs and u-nets on our
Navier-Stokes system, both the formulation with one obstacle, and the settings with four, as well
as for derivative and step prediction. Box plot mid-lines show medians, box area is between first
and third quantiles, whiskers extend 1.5× beyond the boxes, outliers are plotted past the whiskers.
Darker colors denote increasing training set size. The final hatched box is the same network from the
final un-hatched box, tested on an out-of-distribution evaluation set.

Table 2: Time comparison for derivative prediction against baseline numerical integrators

System Architecture
Euler Leapfrog RK4

Time Ratio Scaling Time Ratio Scaling Time Ratio Scaling

Spring

knn 367.0 1× 405.8 16× 311.3 64×
nn kernel 180.7 1× 198.6 1× 173.3 1×
mlp-2-2048 185.8 1× 191.6 16× 177.7 64×
mlp-3-200 237.6 1× 237.5 16× 227.2 64×
mlp-5-2048 473.8 4× 369.6 64× 360.9 128×

Wave

knn 24,102.7 8× 16,945.1 256× 16,132.0 256×
nn kernel 35.3 8× 22.3 256× 19.9 256×
mlp-2-2048 25.4 8× 16.5 256× 14.2 256×
mlp-3-200 31.0 16× 19.7 256× 17.8 256×
mlp-5-2048 60.5 16× 38.0 256× 34.6 256×

Spring Mesh

knn 708.6 8× 626.1 128× 690.4 256×
nn kernel 5.3 8× 4.4 128× 4.8 256×
mlp-2-2048 3.0 8× 2.6 128× 2.8 256×
mlp-3-200 3.4 8× 3.2 128× 3.4 256×
mlp-4-4096 7.8 16× 7.1 128× 7.7 256×
mlp-5-2048 7.1 8× 6.2 128× 5.3 256×
cnn-9-32 11.0 2× 10.5 32× 11.3 64×
cnn-5-32 7.4 1× 9.2 32× 7.3 64×

estimate the time overheads of our learning methods relative to our baseline numerical integrators at302

approximately corresponding error levels.303

We numerically integrate each system at time step sizes scaled by powers of two. For each trajectory in304

the derivative prediction setting, we find the smallest scaling factor at which the numerical integrator305

exceeds the learning method’s error at their final shared time step, approximating the factor by which306

numerical integration can be made faster until it begins to underperform the learned method.307

Table 2 reports the results of these experiments. For each numerical integrator, the “scaling” column308

reports the most common scaling factor found for each trajectory. The “time ratio” column represents309

the learned method’s evaluation overhead (median times, counting only per-step network evaluation310

costs, not numerical integration or data transfers). Note that the numerical integrator makes fewer311

steps than the learned method so the overall trajectory time must be further adjusted by the scaling312

factor.313

In general, the neural networks are slower per-step by one or two orders of magnitude. KNNs are314

slower by significantly larger factors, particularly for the wave system. This is likely partially due315
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to the default scikit-learn KNN implementation used, and due to the large size of the wave system316

training sets (large state dimension and large number of training snapshots). Scaling factors increase317

with the order of the integrator as higher-order integrators are more tolerant of large step sizes and318

maintain low error.319

It is likely that these overheads could be reduced with more optimized implementations of both the320

numerical integrators and learned methods. The derivative prediction task is also constrained by its321

need to interact with the numerical integrator. In this setting the learned methods cannot be expected322

to outperform the quality of the solutions generated by the true system derivatives. This reflects a323

penalty resulting from a lack of knowledge of the true underlying system, and a penalty for learning324

from observations in this case. Step prediction without involving the numerical integrator potentially325

avoids some of these constraints, if learning is successful.326

6 Conclusions and Limitations327

The results in this work illustrate the performance achievable by applying common machine learning328

methods to the simulation problems in our proposed benchmark task. We envision three ways329

in which the results of this work might be used: (1) the datasets developed here can be used for330

training and evaluating new machine learning techniques in this area, (2) the simulation software331

can be used to generate new datasets from these systems of different sizes, different initial condition332

dimensionality and distribution; the training software could be used to assist in conducting further333

experiments, and (3) some of the trends seen in our results may help inform the design of future334

machine learning tasks for simulation.335

For the first and second groups of downstream users, we have made available the pre-generated336

datasets used in this work, as well as the software used to produce them and carry out our experiments.337

These components allow carrying out the measurements we have made here, and permit further338

adjustments to be made. Documentation on using the datasets and the software is included in339

Appendix D.340

For the third group, we highlighted a few trends that suggest useful steps to take in developing new341

problems and datasets in this area. First, we advise including several simple baseline methods when342

designing new tasks. In particular the inclusion of standard numerical integrators (for derivative-type343

problems) and KNNs are useful to evaluate the difficulty of the proposed task. Specifically, KNNs344

are useful for examining the performance achievable by memorizing the training set, and are thus345

witnessing an appropriate design of data distribution that captures the true high-dimensionality of346

the prediction task. As an example, in the Navier-Stokes examples some task formulations may347

inadvertently be simple to memorize, even if the complexity of the system itself may not immediately348

suggest it. The numerical integrators are likewise useful as baselines both to ensure that the derivative-349

learning is feasible even when achieving no error in predictions, and also to evaluate the penalty350

in accuracy which is incurred by operating without access to the true physics. We believe that in351

light of these observed trends, including baseline methods such as standard numerical integration352

schemes and simple learning methods such as the KNN is important in understanding tasks in this353

area. Including these assists in experiment design by helping to calibrate the difficulty of a target task.354

Limitations: While our benchmark provides actionable conclusions on a wide array of simulation355

domains, it is currently focused at temporal integration, and as such it does not cover important settings356

in Scientific Computing. For instance, we do not currently include an instance of a surrogate model,357

which could provide different tradeoffs benefiting ML models. Additionally, we have focused on two358

setups for data-driven simulation (differential snapshot prediction and direct snapshot prediction), but359

other alternatives exist that might mitigate some of the shortcomings we observed; for instance by360

considering larger temporal contexts (as in [4]), as well as enforcing certain conservation laws into361

the model [8, 4]. Finally, we do not report a full timing analysis of data-driven models against the362

baseline integrators, although our preliminary analysis strongly suggests a substantial computational363

gap in favor of baseline integrators using default software implementations.364
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