© © N O O A W N =

An Extensible Benchmark Suite for Learning to
Simulate Physical Systems

Karl Otness Arvi Gjoka
Courant Institute of Mathematical Sciences Courant Institute of Mathematical Sciences
New York University New York University
karl.otness@nyu.edu arvi.gjoka@nyu.edu
Joan Bruna Daniele Panozzo
Courant Institute of Mathematical Sciences Courant Institute of Mathematical Sciences
New York University New York University
Benjamin Peherstorfer Teseo Schneider
Courant Institute of Mathematical Sciences University of Victoria

New York University

Denis Zorin
Courant Institute of Mathematical Sciences
New York University

Abstract

Simulating physical systems is a core component of scientific computing, encom-
passing a wide range of physical domains and applications. Recently, there has been
a surge in data-driven methods to complement traditional numerical simulations
methods, motivated by the opportunity to reduce computational costs and/or learn
new physical models leveraging access to large collections of data. However, the
diversity of problem settings and applications has led to a plethora of approaches,
each one evaluated on a different setup and with different evaluation metrics. We
introduce a set of benchmark problems to take a step towards unified benchmarks
and evaluation protocols. We propose four representative physical systems, as well
as a collection of both widely used classical time integrators and representative
data-driven methods (kernel-based, MLP, CNN, Nearest-Neighbors). Our frame-
work allows to evaluate objectively and systematically the stability, accuracy, and
computational efficiency of data-driven methods. Additionally, it is configurable to
permit adjustments for accommodating other learning tasks and for establishing a
foundation for future developments in machine learning for scientific computing.

1 Introduction

Computational modeling of physical systems is a core task of scientific computing. Standard methods
rely on discretizations of explicit models typically given in the form of partial differential equations
(PDEs). Machine learning techniques can extend these techniques in a number of ways. In some
cases, a closed system of analytic equations relating all variables may not be available (e.g., a
constitutive relation for a material may not be known). In other cases, while a full analytic description
of a system is available, a traditional solution may be too costly (e.g., turbulence) or can be sped

Submitted to the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets
and Benchmarks. Do not distribute.

23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62

63

64
65
66
67
68
69
70
71
72

73
74
75
76

up substantially using data-driven reduced-order models. However, despite promising results, a
successful adoption of these data-driven approaches into scientific computing pipelines requires
a solid and exhaustive assessment of their performance—a challenging task given the diversity
of physical systems, corresponding data-driven approaches, and the lack of standardized sets of
problems, comparison protocols, and metrics.

We focus on the setting where the physical model is unavailable during training, mimicking situations
in computational science and engineering with ample data and a lack of models. One can generally
distinguish two different flavors of physical simulation with different associated computational
cost: those that map a high-dimensional state space into another high-dimensional space (as in
temporal integration schemes, mapping the state of the system at one time step to the next), or from
a high-dimensional input space to a lower-dimensional output (as in surrogate models, mapping
the initial conditions to a functional of the solution). While this distinction also applies to data-
driven approaches, another critical aspect emerges, given by the choice of input data distribution.
We identify two extremes: the narrow data regime, where initial conditions are sampled from a
low-dimensional manifold (even within a high-dimensional state space), and the wide regime, where
initial conditions span a truly high-dimensional space. As could be expected, narrow data regimes
define an easier prediction task where data-driven methods can potentially ‘bypass the physics’,
whereas wide regimes require models with enough encoded physical priors in order to beat the
curse of dimensionality. Therefore, such choice of data distribution is a critical component of any
data-driven physical simulation benchmark.

In this work, we introduce an extensible benchmark suite, including: (1) an extensible set of simple,
yet representative, physical models with a range of training and evaluation (test) setups, as well
as reference, high-accuracy numerical solutions to benchmark data-driven methods, (2) reference
implementations of traditional time integration schemes, which are used as baselines for evaluation,
and (3) implementations of widely used data-driven methods, including physics-agnostic multi-layer
perceptrons (MLPs), convolutional neural networks (CNNs), kernel machines and non-parametric
Nearest Neighbors. Our benchmark suite is modular, permitting extensions with limited code
changes, and captures both ‘narrow’ and ‘wide’ regimes by appropriately parametrizing the set of
initial conditions.

Our analysis reveals two important conclusions: First, even in the simplest physical models, current
data-driven pipelines, while providing qualitatively acceptable solutions, are quantitatively far from
directly numerically integrating physical models, and this performance gap appears unfeasible to
close by merely scaling up the models and/or the dataset size. In other words, the cost of ignoring
the physics is high, even for the simplest physics, and cannot in general be compensated by data,
matching insights that have been obtained in other scientific computing settings [5, 54]. Next,
and more importantly, our simple L2-based nearest neighbor regressor is used to calibrate how
‘narrow’ the learning task is. Our finding is that even for seemingly complex systems, such as
the incompressible Navier-Stokes systems, such naive predictor outperforms most deep-learning-
based models in the narrow regime—thus providing a simple calibration of the true difficulty of the
simulation task, that we advocate should be present in every future evaluation.

2 Related Work

Machine learning is used in physical simulation in a number of interrelated ways. Some important uses
include reduced-order/surrogate modeling, learning constitutive models or more generally compact
analytic representations from data. A unifying theme of these applications of machine learning is
automatic construction of parametric models capable of reproducing the behavior of physical systems
for a sufficiently broad range of initial data, boundary conditions and other system parameters.
The purpose of these representations varies from acceleration (e.g., surrogate machine learning
models are used to accelerate optimization), to automatic construction of multiscale models (learning
macroscopic constitutive laws from microscopic simulation), to inferring compact descriptions of
unknown representations from experimental data.

The purpose of our proposed benchmarks is to enable comparisons of different learning-based
methods in terms of their accuracy and efficiency. We briefly review two streams of learning
methods for physical systems: (1) One line of work aims to understand how neural networks can
be structured and trained to reproduce known physical system behavior, with the goal of designing

77
78
79
80
81
82
83
84

85

86
87
88

89
90
91
92
93
94
95
96

97

98
99

101
102
103
104

105

106
107
108
109
110
111

112

113
114
115
116
117
118
119
120
121
122
123
124
125
126

general methods applicable in a variety of settings [8, 41, 4, 40, 36, 37, 25, 10, 49, 50]. Our
benchmark cases fit primarily into this category. (2) Another line of research aims to develop
a variety of techniques to accelerate solving PDEs. Typically, these methods are developed for
specific PDEs and a specific restricted range of problems. For example, fluid dynamics problems
[38, 16, 55], with particular applications to cardiovascular modeling [24, 19] and aerodynamics
[52]; or solid mechanics simulation tasks, including stresses [28, 23, 26, 15, 21, 22]. In cases where
the governing equations are not given, the learning task becomes approximating them from data
[29,7,1,9,2,27,3,42,43, 45, 44, 51, 34].

3 Background and problem setup

PDEs, dynamical systems, and time integration. Consider a time-dependent PDE of the form
Oru = L(u), where w is the unknown function and £ is a possibly nonlinear operator that includes
spatial derivatives of u. By discretizing in space, one obtains a dynamical system

(t) = f(x(t)) (D
with an N-dimensional state z(t) € R at time ¢ € [0, T']. The function f is assumed to be Lipschitz
to ensure solution uniqueness and the initial condition is denoted as zq € R™V. A PDE of a higher
order in time can be reduced to the first-order form in the standard way, e.g., if we have a second-
order system G(t) = f(q(t)), then we consider its formulation via position ¢ and momentum p as
a first-order system with = = [g; p|: [¢(¢); ()] = [p(¢); f(¢(t))]. To numerically integrate (1), we
choose time steps 0 =ty < t; < --- < tg = T. Then, a time integration scheme (e.g., [48, 12, 11])
gives an approximation x = x(ty) of the state x(¢;) at each time step k = 1, ..., K. A list of the
schemes we use along with details is given in Appendix A.

Problem setup and learning problems. Given M initial conditions xél), ceey x(()M) € RY and the
corresponding M trajectories X = [z, ..., 2{V] € RN*(K+1) j =1 ... M obtained with a

time integration scheme from dynamical system (1), we consider the following two learning problems,
both of which aim to learn the physical model of the problem, viewed as unknown, from trajectory
samples: (1) Learning an approximation f of the right-hand side function f in Eq. (1). This gives
an approximate Z(t) = f(i(t)) that is then numerically integrated to produce a trajectory X for an

initial condition Z(. The aim is that X approximates well the true trajectory X obtained with f from
(1) for the same initial condition. (2) Directly learning the next steps in the trajectory from the current
one, i.e. predict :r,(;) given :r,(:ll.

To assess the learned models, we evaluate them on their ability to produce good approximate
trajectories from randomly sampled initial conditions, by either integration or direct step prediction.
During evaluation, we use initial conditions drawn independently from those used to produce training
data, both from the same distribution as the training samples, as well as from a distribution with
support outside the training range. We train networks on data sets of various sizes. For details, see
Appendix B.

4 Benchmark Systems

We consider four physical systems, illustrated in Figure 1: a single oscillating spring, a one-
dimensional linear wave equation, a Navier-Stokes flow problem and a mesh of damped springs.
These systems represent a progression of complexity: the spring system is a linear system with
low-dimensional space of initial conditions and low-dimensional state; the wave equation is a low-
dimensional linear system with a (relatively) high-dimensional state space after discretization; the
Navier-Stokes equations are nonlinear and we consider a setup with low-dimensional initial condi-
tions and high-dimensional state space; finally, the spring mesh system has both high-dimensional
initial conditions as well as high-dimensional states. Additionally, the proposed spring system and
Navier-Stokes problems represent diffusion-dominated and advection-dominated (for sufficiently
low viscosity) PDE behaviors, as well as variability in initial conditions with fixed domain (spring
system) and variable domain (Navier-Stokes). These varying complexities provide an opportunity to
test methods on simpler systems and the ability to examine changing performance as system size
increases, both in terms of the state dimension, and the initial condition distribution. The ground truth
models for the spring, wave, and spring mesh systems with classical time integrators are implemented

127
128

129
130
131
132

134
135
136

137
138
139
140

141
142
143
144
145
146

147

148
149
150

151
152
153
154
155
156
157
158

Spring Wave Spring Mesh

1.00 —— Traj 9 Ah A A A Ao deAc- A
Trajectory 12 A A &
s range AAA] 8
g 1.0
0.50 + 7
6 PRy e e Springs
E 025 0.8 - X
2 g o5 Trajectories
o 0.00 © 0.6 2 4 Range
g > S A Fixed
= -0.25
0.4 3 ® Movable
-0.50 2
-0.75 02 1
- & o .
-1.00 0.0 0 bk of
-1.0 -05 0.0 0.5 1.0 00 02 04 06 08 10 01 2 3 4 5 6 7 8 9
Position Simulation Space Space x
Navier-Stokes
0.4
>
o : . N P . 2'/.* Obstacle
& 0.2 e . :
3 B J R [Range
0 . H
0.0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Space x

Figure 1: Representative visualizations of the three systems, depicting the results and ranges of initial
condition sampling. Each two state components: for the Navier-Stokes system, a flow velocity and a
pressure field, and for the other three a position ¢ and momentum p.

using NumPy [13], SciPy [53], and accelerated, where possible, with Numba [20]. The Navier-Stokes
snapshots are generated using PolyFEM [46], a finite element library.

These systems were chosen in an effort to reflect the variety of systems used for testing in this
area, while unifying choices of particular formulations. Past works have chosen systems of the
types featured here: simple oscillators (both spring and pendulum [8]), particle systems with various
interaction laws (gravity, spring forces, charges, cloth simulations, etc. [6, 18, 41, 4, 33]), and fluid-
flow systems (with various sorts of obstacles, airfoils or cylinders [50, 33]). We make particular
selections here in an effort to unify systems of interest and facilitate comparisons across experiments
by providing a shared set of tasks which can be used for development and testing of machine learning
methods.

Some examples of initial condition selection for each system are illustrated in Figure 1. The ground
truth for the spring, wave, and spring mesh systems consists of the state variables (g, p) for position
and momentum, and their associated derivatives (¢, p). For the Navier-Stokes system the state consists
of flow velocities, and a pressure field, along with approximated time derivatives for each.

Table 1 lists the parameters used to generate trajectories for training and evaluation. Training sets
of three sizes are generated, each containing the specified number of trajectories. The systems are
integrated at the listed time step sizes, but the ground truth data is subsampled further by the factor
shown after = in the table: the integration schemes are run at a smaller time step and intermediate
computations are discarded. Each larger training set is a strict superset of its predecessor to ensure
that previous training samples are never removed.

4.1 Spring

We simulate a simple one-dimensional oscillating spring. In this system, the spring has zero rest
length, and both the oscillating mass and spring constant are set to 1. The spring then exerts a force
inversely proportional to the position of the mass ¢: p(t) = —q and ¢(¢t) = p.

The energy of the system is proportional to r = ¢ +p? which is the radius of the circle in phase space.
To sample initial conditions, we first sample a radius uniformly, then choose an angle theta uniformly.
This produces a uniform distribution over spring system energy levels and starts at an arbitrary point in
the cycle. The spring system has a closed-form solution: (g(t), p(t)) = (rsin(t + 6y), r cos(t + 6y))
where 7 is the radius of the circle traced in phase space (the energy of the spring) and 6y is the
phase space angle at which the oscillation will start. While this closed form solution is useful,
for consistency with our other systems, we generate snapshots of the spring system by numerical
integration. Simulations of the spring system always run through one period. For “in-distribution”

159
160

161

162
163

164
165

166
167
168
169

170
171

172
173

174
175
176

177

178
179

181
182

184
185
186
187

188

189
190

191

192

training values, the radius is selected in the range (0.2, 1) and “out-of-distribution” radii are chosen
from (1,1.2).

4.2 Wave

This benchmark system is similar to the one used in Peng and Mohseni [32]. Consider the wave
equation with speed ¢ = 0.1

Opu = 0y, 2)

on a one-dimensional spatial domain [0, 1) with periodic boundary conditions. We represent this
second-order system as a first-order system and discretize in space to obtain

gyl _ |0 Iy g() 3)
p(t) D, 0| |p(t)]
where D, € R"*"™ corresponds to the three-point central difference approximation of the spatial
derivative 0., and the matrices I and 0 are the identity and zero matrix, respectively, of appropriate

size. We discretize in space with n = 125 evenly spaced grid points and evolve the system following
the dynamics described above.

Initial conditions are sampled with an initial pulse in the ¢ component centered at 0.5. All initial
conditions have zero momentum. The initial pulse is produced by a spline kernel as described in [32]:

10 1—%824—%83 if0<s<1
s(x)=—-lz =05, h(s)=pn-q7(2—s)> ifl1<s<2
Pw
0 else

where the width and height of the pulse are scaled by parameters p,, and pj, respectively. The spline
kernel pulse is then h(s(z)) for = € [0, 1), evaluated at the discretized grid points.

For “in-distribution” samples parameters p,,, pj, are both chosen uniformly in the range (0.75, 1.25)
and “out-of-distribution” runs sample uniformly from (0.5,0.75) U (1.25, 1.5). All trajectories are
integrated until £ = 5 when the wave has traveled through half a period.

4.3 Spring Mesh

This system manipulates a square grid of particles connected by springs, in a two dimensional space,
and can be considered a simplified version of deformable surface and volume systems (cf. [33]). The
particles all have mass 1, and are arranged into a unit grid. Springs are added along the axis-aligned
edges and diagonally across each grid square, with rest lengths selected so that the regularly-spaced
particles are in a rest position.

In this work we use a 10 x 10 grid where the top row of particles is fixed in place. Initial conditions
are sampled by choosing a perturbation for the position of each non-fixed spring. These perturbations
are chosen as uniform vectors inside a circle with radius 0.35. Out-of-distribution perturbations
are chosen uniformly in a ring with inner radius 0.35 and outer radius 0.45. The sampled initial
conditions all have zero momentum.

In this system, a spring between particles a and b exerts a force:

da — Qb
Foo =~k (llga — all2 — Eab)inq“i ol
a D

where /,;, is the rest length of the spring, v = 0.1 is a parameter controlling the magnitude of an
underdamped velocity-based decay, and £ = 1 is the spring constant.

Yqa “4)

4.4 Navier-Stokes

We consider the standard Navier-Stokes equation over a domain €2 (cf. [33, 50])

pa+p(u-V)u—uAu+Vp:b Qx (0.7) w=d 0 0.1
V-u=0 onis x (Y, s l/%-l—pn:g on D X (U, ’
u(0) = ug

193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208

209

210
211
212
213
214

215
216
217
218
219
220
221
222
223

224
225
226
227
228
229
230
231
232
233
234

235
236

Table 1: Dataset sizes and simulation parameters

System # Train Trajectories # Eval Trajectories Time Step Size # Steps
Spring 10, 500, 1000 30 0.00781, =128 805
Wave 10, 25, 50 6 0.00049, =8 10204
Spring Mesh 25, 50, 100 15 0.00781, =128 805
Navier-Stokes 25, 50, 100 5 0.08, =1 65

where u: Q x (0,7) — R? is the velocity at time ¢ € (0,T) of a fluid with kinematic viscosity
v and density p, p: Q x (0,7) — R is the pressure and 0Q2p and 9y are the Dirichlet and
Neumann boundary conditions respectively. In our setup we use the finite element method (FEM)
to solve the PDE using mixed discretization: quadratic polynomial for the velocity and linear for
pressure. In our experiment the domain 2 is a rectangle 0.22 x 0.41 with a random generated
set of circular obstacles. We start with ug = 0 and specify a velocity on the left boundary of
u(0,y) = (6(1 — e~5)(0.41 — y)y/0.1681,0), zero on the top and bottom, and zero Neumann on
the right side (g = 0). We solve the system using PolyFEM [46] using dt = 0.08 and backward
differentiation formula (BSF) of order 3 for the time integration.

We sample obstacles into two configurations: a single obstacle, or a set of four. In each case, we
sample the obstacles leaving a margin of 0.05 between each circle, and a margin of 0.25 from the
left and right sides, and 0.05 between the top and bottom. Otherwise, each obstacle is determined
by first sampling a radius, then sampling a center from the valid space, respecting the margins. If
the sampled obstacle is too close to an existing circle, it is discarded and a new sample is drawn.
In-distribution obstacles have radii in the range (0.05, 0.1) and out-of-distribution radii are drawn
from (0.025,0.05).

5 Numerical experiments

Experimental Setup. We apply several basic learning methods to the datasets developed in this
work: k-nearest neighbor regressors, a neural network kernel method, several sizes of feed forward
MLPs, and a variety of CNNs. Details of the architectures and the training protocol are provided in
supplementary material, Appendix B. Each of the neural networks we consider is implemented using
PyTorch [30].

The learning methods considered in this work are trained on one of two target task formulations
described in Section 3. For derivative-based prediction, the training is conducted supervised on ground
truth snapshots gathered from the underlying models. For each system we randomly sample initial
conditions and each of these is then numerically integrated to produce a trajectory. Each trajectory
includes state samples = as well as target derivatives 2 used for training. For direct prediction, we
no longer require numerical integration; instead we directly predict the trajectory in a sequential
fashion. In this setting, we approximate fy(x(t)) ~ x(t + d;) for a discrete time step size d;. For the
derivative prediction we report results using the Leap-Frog integrator, the full results are available in
the additional material.

We pick the same set of learning methods and apply it to both tasks independently to judge perfor-
mance in each. For many systems the state is divided into position and momentum components:
x = (g, p). For the Navier-Stokes problem, the state 2 is made up of the flow velocity field, and
the scalar field for pressure. After training, we produce rolled-out trajectories from held-out initial
conditions either by combining with a numerical integrator in the case of derivative prediction, or
in a directly recurrent fashion in the case of step prediction. Each neural network is instantiated in
three independent copies, each of which is trained and evaluated across all sampled trajectories. We
compute a per-step MSE against a ground truth value, we average these per-step MSEs to produce a
per-trajectory error, and record these errors for analysis. Our experiments are designed to test several
aspects of physical simulation. We highlight the most salient ones next, and report more extensive
results in Appendix C.

Training set size. In general ML problems, one would expect additional training samples to
systematically improve (in-distribution) evaluation performance. However, Figure 2 illustrates a

237
238
239
240
241
242

243
244
245
246
247

248
249
250
251
252
253
254
255
256

257
258

260
261

Spring Wave Spring Mesh Navier Stokes 1 Obst. Navier Stokes 4 Obst.

100 101
10°
0]5 102
2 A
w 10 102
(%] 1011 101
= -4
c 10 ; 10t
8 10 10°
g 6 100
10~ 3
= 10 10-1
g Sl —————— —— L-'-l-ﬂr—rm..—r_n:g 107!
[-
10 10 1072 s
10 500 1000 10 25 50 25 50 100 25 50 100 25 50 100
Training set size Training set size Training set size Training set size Training set size
—e— knn —— nn-kernel —— mlp cnn unet eeees derivative =~ —— step
mip-2-2048 —— mIp-3-200 —— mIp-4-4096 —— mlp-5-2048 cnn-9-32 cnn-9-64 cnn-5-32

Figure 2: Median MSE error with respect to the training set size for our five different systems. For
the same method we show different architecture choices.

w Spring Wave Spring Mesh Navier Stokes 1 Obst. Navier Stokes 4 Obst.
= kal 100 &+ 100 100 100
c 107! X X ¥
o 4. ” ¢ . E
F=R + 10-1 B g B
ERU o X 101 ¥ 10
2 1075 h * v 1071 NES
3 : 1077 X & #
51077 1072 1072
o 1077 107 107! 1073 107 1072 10° 1072 107t 10° 107 10°
In-distribution MSE In-distribution MSE In-distribution MSE In-distribution MSE In-distribution MSE
® knn ® nn-kernel ® mip cnn unet X derivative + step
mip-2-2048 ® mlp-3-200 ® mip-4-4096 ® mip-5-2048 cnn-9-32 cnn-9-64 cnn-5-32

Figure 3: Median MSE for in-distribution evaluation sets vs. out-of-distribution evaluation sets
for our five systems. Colors represent the same method and are repeated for different architecture
choices. Marker shapes distinguish step and derivative prediction, and the dotted line is the identity
line. Outliers for the spring-mesh and both Navier-Stokes systems were removed. Values on both
axes were approximately 103 for the spring mesh and in the range 102~103 for Navier-Stokes.

clear saturation of performance on the simplest systems when using neural networks as function
approximator, in contrast with non-parametric KNNs and the kernel method. We attribute this
saturation to an inherent gap between the training and evaluation objectives. While data-driven
methods are optimized to minimise next-step predictions, the final evaluation requires built-in
stability to prediction errors. Including regularisation strategies to incorporate stability, such as noise
injection [33], is shown to help, but not fully resolve this issue.

Out-of-distribution evaluation. For simplicity, we only examine the out-of-distribution error for
networks trained on the largest training set size. The added challenge of out-of-distribution samples
varies with the construction of each system. It is possible to get some idea of the difficulty increase
by examining the accuracy penalty for the KNNs, and comparing it to how well the more advanced
models are able to generalize.

Benefits of neural networks for generalization over KNN are visible across several systems in Figure 3,
particularly in the spring system for small MLPs for derivative prediction and nn-kernel in both
cases. The KNN suffers a significant increase in error while these methods produce only somewhat
worse predictions. Benefits are still present, though less pronounced, for the wave system derivative
prediction where neural networks increase in error, but the kernel method and small MLP maintain
a lower absolute error than the KNN. On the Navier-Stokes systems none of the methods suffer an
increase in error for out-of-distribution evaluation. The change in radius distribution for the obstacles
did not pose an additional challenge sufficient to produce a measurable change in error distribution.
We attribute this to low dimension of the initial condition space.

Step and derivative prediction. The step and derivative prediction instances of each learning
problem lead to different accuracy from the learning methods we test. While most physical systems
are naturally described in terms of their derivatives through corresponding ODE/PDE:s, data-driven
simulations also offer the alternative of bypassing this differential formulation and predict the next
state directly. Such ‘cavalier’ approach avoids the compounding error amplification effects across

274

275
276
277
278

279
280
281
282
283
284
285
286
287
288
289

290
291
292

294
295
296

297
298

300
301

Spring Wave Spring Mesh Navier Stokes 1 Obst. Navier Stokes 4 Obst.
100 100 #0100 10°

10!

x S
w 1070 ik)
) % % 10
S 1074 102 H 10°
a S L
9 1072 00 e
D107 1072 3 107! S e
x X x ; e
x x° -1
~ g -3 X 10
1078 104 10 02 e T e %
x 5
107> 1073 107! 1073 107t 10° 10° 10%° 1072 107t 10° 107t 10°
Derivative MSE Derivative MSE Derivative MSE Derivative MSE Derivative MSE
% knn % nn-kernel X mip cnn unet
mlip-2-2048 % mip-3-200 X mlp-4-4096 X mip-5-2048 cnn-9-32 cnn-9-64 cnn-5-32

Figure 4: Median MSEs for derivative vs. step prediction on the same evaluation set. Results are
displayed for each of our five systems. The dotted line is the identity line.

integration steps, at the expense of sample efficiency. Figure 4 illustrates these tradeoffs across our
systems.

An important example of this effect is the performance of CNNs on the spring mesh system (Figure 8
in the Appendix). When working through a numerical integrator and performing derivative prediction
they produce the lowest error of all methods tested, but following the same training protocol for step
prediction these architectures produce high errors, or are unstable. This case is likely an interaction
of the architecture with the specific learning task. For the spring mesh, step prediction requires
outputting the position of the particle which requires manipulating its global coordinates, while
derivative predictions allow the network to more easily act locally and compute only a relative motion
for the particle. The derivative prediction task better takes advantage of the spatial invariance of the
CNNs. This difference in performance reflects the importance of tailoring architectures to the specific
task, and some potential for neural network architectures to benefit from incorporating knowledge of
a system’s behavior.

System and dataset complexity. Several trends we observe correlate with the difficulty of learning
to simulate the system, and the variation in its behavior across the training and evaluation samples.
This is generally a combination of the system’s state dimension, and variation in its behavior,
approximated by the dimension of the distribution from which initial conditions are sampled.

This is particularly visible in Figure 5 in the performance of the KNN methods, and, in many cases,
the performance of simpler methods such as the small MLPs. On the simpler systems, such as the
spring and wave, the KNNs generally perform well because even though the wave system has a
relatively large state dimension of 125, like the spring its initial condition is sampled from only two
parameters and its behavior can be readily predicted from these. The Navier-Stokes system with
a single obstacle is another instance of this sort of behavior: the KNN is readily able to reproduce
flows it has not seen because a sampling of 100 obstacle positions is such that an evaluation sample is
close to a trajectory seen at training time. Therefore, small MLPs and the kernel method produce
similar performance. When the difficulty is increased by sampling four obstacles, the KNN and MLP
performances suffer, and larger networks such as the u-net are needed to maintain approximately the
same performance.

Choice of numerical integrator. For our derivative prediction tasks we combine our trained
methods with three explicit integrators with orders 1, 2, and 4. In most of our systems these produce
at most a small increase in accuracy, holding all other training and evaluation parameters equal.
However on the Navier-Stokes system the higher order integrators produce somewhat higher errors,
particularly for the u-net and the MLPs. This appears related to the approximated derivatives used for
training this system. The learned derivatives produce some small deviations which are compounded
when combining multiple derivative samples.

Computational overheads. Another important aspect to consider when applying learning methods
to physical simulation problems is the time required to compute each step, and the computational
overheads introduced by the lack of knowledge of the true system physics. With standard numerical
integration methods, it is generally possible to improve the quality of generated trajectories by
decreasing the size of the time step used during integration. We take advantage of this in order to

302
303

304
305
306
307

308
309
310
311
312
313

314
315

Derivative Step

oEEh é%g@

o

g . B o
il e

10-3 1 obstacle 4 obstacles 1 obstacle 4 obstacles

knn unet knn unet knn unet knn unet

Figure 5: MSE distribution across trajectories in the evaluation set for KNNs and u-nets on our
Navier-Stokes system, both the formulation with one obstacle, and the settings with four, as well
as for derivative and step prediction. Box plot mid-lines show medians, box area is between first
and third quantiles, whiskers extend 1.5 x beyond the boxes, outliers are plotted past the whiskers.
Darker colors denote increasing training set size. The final hatched box is the same network from the
final un-hatched box, tested on an out-of-distribution evaluation set.

Table 2: Time comparison for derivative prediction against baseline numerical integrators

System Architecture Euler Leapfrog RK4
Time Ratio Scaling Time Ratio Scaling Time Ratio Scaling
knn 367.0 1x 405.8 16x 311.3 64 x
nn kernel 180.7 1x 198.6 1x 173.3 1x
Spring mlp-2-2048 185.8 1x 191.6 16x 177.7 64 x
mlp-3-200 237.6 1x 237.5 16x 227.2 64 x
mlp-5-2048 473.8 4x 369.6 64 x 360.9 128x
knn 24,102.7 8x 16,945.1 256 16,132.0 256x
nn kernel 353 8x 223 256 19.9 256x
Wave mlp-2-2048 254 8x 16.5 256 14.2 256 x
mlp-3-200 31.0 16x 19.7 256 x 17.8 256x
mlp-5-2048 60.5 16x 38.0 256 % 34.6 256 %
knn 708.6 8x 626.1 128 690.4 256 %
nn kernel 53 8x 44 128 4.8 256 %
mlp-2-2048 3.0 8x 2.6 128 x 2.8 256x
Spring Mesh mlp-3-200 34 8x 32 128 x 34 256x
mlp-4-4096 7.8 16x 7.1 128 x 7.7 256x
mlp-5-2048 7.1 8x 6.2 128 % 53 256x
cnn-9-32 11.0 2% 10.5 32x 11.3 64x
cnn-5-32 74 1x 9.2 32x 73 64x

estimate the time overheads of our learning methods relative to our baseline numerical integrators at
approximately corresponding error levels.

We numerically integrate each system at time step sizes scaled by powers of two. For each trajectory in
the derivative prediction setting, we find the smallest scaling factor at which the numerical integrator
exceeds the learning method’s error at their final shared time step, approximating the factor by which
numerical integration can be made faster until it begins to underperform the learned method.

Table 2 reports the results of these experiments. For each numerical integrator, the “scaling” column
reports the most common scaling factor found for each trajectory. The “time ratio” column represents
the learned method’s evaluation overhead (median times, counting only per-step network evaluation
costs, not numerical integration or data transfers). Note that the numerical integrator makes fewer
steps than the learned method so the overall trajectory time must be further adjusted by the scaling
factor.

In general, the neural networks are slower per-step by one or two orders of magnitude. KNNs are
slower by significantly larger factors, particularly for the wave system. This is likely partially due

316
317
318
319

320
321
322
323
324
325
326

327

328
329
330
331
332
333
334
335

336
337
338
339
340

341
342
343
344

346
347
348
349
350

352
353
354

355
356
357
358
359
360
361
362
363
364

365

366
367

to the default scikit-learn KNN implementation used, and due to the large size of the wave system
training sets (large state dimension and large number of training snapshots). Scaling factors increase
with the order of the integrator as higher-order integrators are more tolerant of large step sizes and
maintain low error.

It is likely that these overheads could be reduced with more optimized implementations of both the
numerical integrators and learned methods. The derivative prediction task is also constrained by its
need to interact with the numerical integrator. In this setting the learned methods cannot be expected
to outperform the quality of the solutions generated by the true system derivatives. This reflects a
penalty resulting from a lack of knowledge of the true underlying system, and a penalty for learning
from observations in this case. Step prediction without involving the numerical integrator potentially
avoids some of these constraints, if learning is successful.

6 Conclusions and Limitations

The results in this work illustrate the performance achievable by applying common machine learning
methods to the simulation problems in our proposed benchmark task. We envision three ways
in which the results of this work might be used: (1) the datasets developed here can be used for
training and evaluating new machine learning techniques in this area, (2) the simulation software
can be used to generate new datasets from these systems of different sizes, different initial condition
dimensionality and distribution; the training software could be used to assist in conducting further
experiments, and (3) some of the trends seen in our results may help inform the design of future
machine learning tasks for simulation.

For the first and second groups of downstream users, we have made available the pre-generated
datasets used in this work, as well as the software used to produce them and carry out our experiments.
These components allow carrying out the measurements we have made here, and permit further
adjustments to be made. Documentation on using the datasets and the software is included in
Appendix D.

For the third group, we highlighted a few trends that suggest useful steps to take in developing new
problems and datasets in this area. First, we advise including several simple baseline methods when
designing new tasks. In particular the inclusion of standard numerical integrators (for derivative-type
problems) and KNNs are useful to evaluate the difficulty of the proposed task. Specifically, KNNs
are useful for examining the performance achievable by memorizing the training set, and are thus
witnessing an appropriate design of data distribution that captures the true high-dimensionality of
the prediction task. As an example, in the Navier-Stokes examples some task formulations may
inadvertently be simple to memorize, even if the complexity of the system itself may not immediately
suggest it. The numerical integrators are likewise useful as baselines both to ensure that the derivative-
learning is feasible even when achieving no error in predictions, and also to evaluate the penalty
in accuracy which is incurred by operating without access to the true physics. We believe that in
light of these observed trends, including baseline methods such as standard numerical integration
schemes and simple learning methods such as the KNN is important in understanding tasks in this
area. Including these assists in experiment design by helping to calibrate the difficulty of a target task.

Limitations: While our benchmark provides actionable conclusions on a wide array of simulation
domains, it is currently focused at temporal integration, and as such it does not cover important settings
in Scientific Computing. For instance, we do not currently include an instance of a surrogate model,
which could provide different tradeoffs benefiting ML models. Additionally, we have focused on two
setups for data-driven simulation (differential snapshot prediction and direct snapshot prediction), but
other alternatives exist that might mitigate some of the shortcomings we observed; for instance by
considering larger temporal contexts (as in [4]), as well as enforcing certain conservation laws into
the model [8, 4]. Finally, we do not report a full timing analysis of data-driven models against the
baseline integrators, although our preliminary analysis strongly suggests a substantial computational
gap in favor of baseline integrators using default software implementations.

References

[1] A. C. Antoulas and B. D. O. Anderson. On the scalar rational interpolation problem. IMA Journal of
Mathematical Control & Information, 3(2-3):61-88, 1986.

10

368

369
370
371

372
373

374
375
376
377

378
379
380

381
382

383

385
386
387

388
389

390
391

392
393

394
395

396
397

399
400

401
402

403
404
405
406

407
408
409

410
411

412
413

414
415
416
417

(2]

(3]

(4]

(3]

(6]

(71

8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

A. C. Antoulas, C. Beattie, and S. Gugercin. Interpolatory Methods for Model Reduction. SIAM, 2020.

S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by sparse
identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 113(15):
3932-3937, 2016.

Z. Chen, J. Zhang, M. Arjovsky, and L. Bottou. Symplectic recurrent neural networks. In International
Conference on Learning Representations, 2020.

P. V. Coveney, E. R. Dougherty, and R. R. Highfield. Big data need big theory too. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2080):
20160153, 2016. doi: 10.1098/rsta.2016.0153. URL https://royalsocietypublishing.org/doi/
abs/10.1098/rsta.2016.0153.

M. Cranmer, A. Sanchez-Gonzalez, P. Battaglia, R. Xu, K. Cranmer, D. Spergel, and S. Ho. Discovering
symbolic models from deep learning with inductive biases. arXiv preprint, 2020. URL https://arxiv.
org/abs/2006.11287.

J. P. Crutchfield and B. S. Mcnamara. Equations of motion from a data series. Complex Systems, page 452,
1987.

S. Greydanus, M. Dzamba, and J. Yosinski. Hamiltonian neural networks. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32, pages 15379-15389. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
26cd8ecadce0d4efd6cc8a8725cbd1£8-Paper. pdf.

B. Gustavsen and A. Semlyen. Rational approximation of frequency domain responses by vector fitting.
Power Delivery, IEEE Transactions on, 14(3):1052-1061, Jul 1999.

E. Haghighat, M. Raissi, A. Moure, H. Gomez, and R. Juanes. A deep learning framework for solution and
discovery in solid mechanics, 2020.

E. Hairer and G. Wanner. Solving Ordinary Differential Equations I1: Stiff and Differential-Algebraic
Problems. Springer, 2009.

E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems.
Springer, 2009.

C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,
J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F.
del R’10, M. Wiebe, P. Peterson, P. G’erard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi,
C. Gohlke, and T. E. Oliphant. Array programming with NumPy. Nature, 585(7825):357-362, 2020. URL
https://doi.org/10.1038/s41586-020-2649-2.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):90-95,
2007. doi: 10.1109/MCSE.2007.55.

A. Khadilkar, J. Wang, and R. Rai. Deep learning—based stress prediction for bottom-up sla 3d print-
ing process. The International Journal of Advanced Manufacturing Technology, 102(5):2555-2569,
Jun 2019. ISSN 1433-3015. doi: 10.1007/s00170-019-03363-4. URL https://doi.org/10.1007/
s00170-019-03363-4.

B. Kim, V. C. Azevedo, N. Thuerey, T. Kim, M. Gross, and B. Solenthaler. Deep fluids: A generative
network for parameterized fluid simulations. In Computer Graphics Forum, volume 38, pages 59-70.
Wiley Online Library, 2019.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel. Neural relational inference for interacting
systems. In International Conference on Machine Learning, pages 2688-2697. PMLR, 2018.

G. Kissas, Y. Yang, E. Hwuang, W. R. Witschey, J. A. Detre, and P. Perdikaris. Machine learning in
cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4d flow mri data
using physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering, 358:
112623, 2020.

11

418
419
420
421

422
423

424
425

426
427
428
429

430
431

432

434
435

437

438
439

440
441

442
443
444
445
446

447
448
449

450
451

452
453

454
455

456
457

458
459

460
461
462

464

465
466

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

[39]

S. K. Lam, A. Pitrou, and S. Seibert. Numba: A llvm-based python jit compiler. In Proceedings of the
Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM 15, New York, NY, USA, 2015.
Association for Computing Machinery. ISBN 9781450340052. doi: 10.1145/2833157.2833162. URL
https://doi.org/10.1145/2833157.2833162.

Y. Li, H. Wang, K. Mo, and T. Zeng. Reconstruction of simulation-based physical field by reconstruction
neural network method. arXiv preprint arXiv:1805.00528, 2018.

Y. Lia, H. Wanga, W. Shuaia, H. Zhangb, and Y. Pengb. Image-based reconstruction for the impact
problems by using dpnns.

L. Liang, M. Liu, C. Martin, and W. Sun. A deep learning approach to estimate stress distribution: a
fast and accurate surrogate of finite-element analysis. Journal of The Royal Society Interface, 15(138):
20170844, 2018. doi: 10.1098/rsif.2017.0844. URL https://royalsocietypublishing.org/doi/
abs/10.1098/rsif .2017.0844.

L. Liang, W. Mao, and W. Sun. A feasibility study of deep learning for predicting hemodynamics of human
thoracic aorta. Journal of Biomechanics, 99:109544, 2020.

L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis. Deepxde: A deep learning library for solving differential
equations. arXiv preprint arXiv:1907.04502, 2019.

G. D. Maso Talou, T. P. Babarenda Gamage, M. Sagar, and M. P. Nash. Deep learning over reduced
intrinsic domains for efficient mechanics of the left ventricle. Frontiers in Physics, 8:30, 2020.

Y. Nakatsukasa, O. Séte, and L. N. Trefethen. The aaa algorithm for rational approximation. SIAM Journal
on Scientific Computing, 40(3):A1494-A1522, 2018.

Z. Nie, H. Jiang, and L. B. Kara. Stress field prediction in cantilevered structures using convolutional
neural networks. Journal of Computing and Information Science in Engineering, 20(1), 2020.

N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw. Geometry from a time series. Physical
Review Letters, 45:712-716, 1980.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems 32, pages 8024—8035. Curran Associates, Inc., 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.

L. Peng and K. Mohseni. Symplectic model reduction of hamiltonian systems. SIAM Journal on Scientific
Computing, 38(1):A1-A27, 2016. URL https://doi.org/10.1137/140978922.

T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia. Learning mesh-based simulation with
graph networks. arXiv preprint, 2020. URL https://arxiv.org/abs/2010.03409.

E. Qian, B. Kramer, B. Peherstorfer, and K. Willcox. Lift & learn: Physics-informed machine learning for
large-scale nonlinear dynamical systems. Physica D: Nonlinear Phenomena, 2020.

A. Rahimi, B. Recht, et al. Random features for large-scale kernel machines. In NIPS, volume 3, page 5.
Citeseer, 2007.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics informed deep learning (part ii): Data-driven
discovery of nonlinear partial differential equations. arxiv. arXiv preprint arXiv:1711.10561, 2017.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686-707, 2019.

M. D. Ribeiro, A. Rehman, S. Ahmed, and A. Dengel. Deepcfd: Efficient steady-state laminar flow
approximation with deep convolutional neural networks. arXiv preprint arXiv:2004.08826, 2020.

A. Rudi, L. Carratino, and L. Rosasco. Falkon: An optimal large scale kernel method. arXiv preprint
arXiv:1705.10958, 2017.

12

467

469

470
471

472
473

474
475

476
477

478
479

480
481

482

483
484

485
486
487

489

490
491

492
493

494
495
496
497
498
499
500

501
502
503

504
505

506

507
508
509
510
511
512
513

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

(52]

(53]

[54]

[55]

A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R. Hadsell, and P. Battaglia.
Graph networks as learnable physics engines for inference and control. In International Conference on
Machine Learning, pages 4470-4479. PMLR, 2018.

A. Sanchez-Gonzalez, V. Bapst, K. Cranmer, and P. Battaglia. Hamiltonian graph networks with ODE
integrators. arXiv preprint,2019. URL https://arxiv.org/abs/1909.12790.

H. Schaeffer. Learning partial differential equations via data discovery and sparse optimization. Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2197):20160446, 2017.

H. Schaeffer, G. Tran, and R. Ward. Extracting sparse high-dimensional dynamics from limited data. SIAM
Journal on Applied Mathematics, 78(6):3279-3295, 2018.

P. Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics,
656:5-28, 8 2010. ISSN 1469-7645.

P. Schmid and S. J. Dynamic mode decomposition of numerical and experimental data. In Bull. Amer.
Phys. Soc., 61st APS meeting, page 208. American Physical Society, 2008.

T. Schneider, J. Dumas, X. Gao, D. Zorin, and D. Panozzo. Polyfem. https://polyfem.github.io/,
2019.

B. Scholkopf and A. J. Smola. Learning with Kernels. MIT Press, 1998.

E. Siili and D. F. Mayers. An Introduction to Numerical Analysis, chapter Initial Value Problems for ODEs,
pages 349-353. Cambridge University Press, 2003.

A. M. Tartakovsky, C. O. Marrero, P. Perdikaris, G. D. Tartakovsky, and D. Barajas-Solano. Learning
parameters and constitutive relationships with physics informed deep neural networks. arXiv preprint
arXiv:1808.03398, 2018.

N. Thuerey, K. Weilenow, L. Prantl, and X. Hu. Deep learning methods for reynolds-averaged navier—
stokes simulations of airfoil flows. AIAA Journal, 58(1):25-36, 2020.

J.H. Tu, C. W.Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz. On dynamic mode decomposition:
Theory and applications. Journal of Computational Dynamics, 1(2):391-421, 2014.

N. Umetani and B. Bickel. Learning three-dimensional flow for interactive aerodynamic design. ACM
Transactions on Graphics (TOG), 37(4):1-10, 2018.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson,
W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, 1. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde,
J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261-272, 2020. URL https://doi.org/10.1038/
s41592-019-0686-2.

K. E. Willcox, O. Ghattas, and P. Heimbach. The imperative of physics-based modeling and inverse theory
in computational science. Nature Computational Science, 1(3):166-168, Mar 2021. ISSN 2662-8457. doi:
10.1038/s43588-021-00040-z. URL https://doi.org/10.1038/s43588-021-00040-z.

Y. Xie, E. Franz, M. Chu, and N. Thuerey. TempoGAN: A temporally coherent, volumetric GAN for
super-resolution fluid flow. ACM Transactions on Graphics (TOG), 37(4):1-15, 2018.

ChecKklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Yes, our conclusion in Section 6
includes a discussion of the limitations of our work

(c) Did you discuss any potential negative societal impacts of your work? [N/A]| We do
not expect any potential negative societal impacts.

13

514
515

516

517
518

519

520

521
522
523
524
525
526
527
528
529
530
531
532
533
534

535
536
537
538
539
540
541
542
543
544
545
546
547

548

549
550

551

553
554

(d)

Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We have reviewed the ethics review guidelines

2. If you are including theoretical results...

(@)
(b)

Did you state the full set of assumptions of all theoretical results? [N/A] No theoretical
results

Did you include complete proofs of all theoretical results? [N/A] No theoretical results

3. If you ran experiments (e.g. for benchmarks)...

()
(b)

©

(@

Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We provide details of our experimental setup both in the main
paper and in supplementary materials. We also make available the scripts used to run
the tests reported here, which include settings for all parameters as well.

Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] We discuss trends in our experimental results along
several different dimensions. We also provide plots illustrating the error distribution
for our methods tested on several randomly-sampled intial conditions.

Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes] We discuss our use of NYU’s HPC
system for training and evaluation and summarize the compute time requried. These
statistics are included in the supplementary materials appendix B.5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(@)
(b)
(©

(d)
(e)

If your work uses existing assets, did you cite the creators? [Yes] We have included
references to the core software libraries used

Did you mention the license of the assets? [Yes] We document how to make use of our
datasets and run our software and make clean their respective licenses

Did you include any new assets either in the supplemental material or as a URL? [Yes]
We develop a set of benchmark tasks, generated by configurable simulation software.
We have included links to download the datasets and the software.

Did you discuss whether and how consent was obtained from people whose data you're
using/curating? [N/A] No human data used or curated

Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] Our data is synthetic, the result of numerical
simulation

5. If you used crowdsourcing or conducted research with human subjects...

(a)
(b)
(©)

Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] No human participants

Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] No human participants

Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] No human participants

14

	Introduction
	Related Work
	Background and problem setup
	Benchmark Systems
	Spring
	Wave
	Spring Mesh
	Navier-Stokes

	Numerical experiments
	Conclusions and Limitations
	Numerical Integration Schemes
	Learning Methods
	Training
	KNN Regressor
	Kernel Methods
	Deep networks
	Other experimental details

	Experiment results
	Weighted errors

	Dataset and software documentation
	Overview
	Stored format
	Top-level object contents
	Spring
	Wave
	Spring mesh
	Navier-Stokes

	Data generation
	Dependencies
	Run descriptions
	Launching jobs
	Recreating experiments

