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Abstract

We introduce a method to determine if
a certain capability helps to achieve an
accurate model of given data. We view
labels as being generated from the inputs
by a program composed of subroutines with
different capabilities, and we posit that a
subroutine is useful if and only if the minimal
program that invokes it is shorter than the
one that does not. Since minimum program
length is uncomputable, we instead estimate
the labels’ minimum description length (MDL)
as a proxy, giving us a theoretically-grounded
method for analyzing dataset characteristics.
We call the method Rissanen Data Analysis
(RDA) after the father of MDL, and we
showcase its applicability on a wide variety
of settings in NLP, ranging from evaluating
the utility of generating subquestions before
answering a question, to analyzing the value
of rationales and explanations, to investigating
the importance of different parts of speech,
and uncovering dataset gender bias.1

1 Introduction

In many practical learning scenarios, it is useful
to know what capabilities would help to achieve a
good model of the data. According to Occam’s
Razor, a good model is one that provides a
simple explanation for the data (Blumer et al.,
1987), which means that the capability to perform
a task is helpful when it enables us to find
simpler explanations of the data. Kolmogorov
complexity (Kolmogorov, 1968) formalizes the
notion of simplicity as the length of the shortest
program required to generate the labels of the
data given the inputs. In this work, we estimate
the Kolmogorov complexity of the data by
approximately computing the data’s Minimum

1Code and results at https://github.com/ethanjperez/rda,
along with a script to conduct RDA on your own dataset.
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Figure 1: A capability f is useful if it shortens
the minimum program needed to perform a task, as
measured by Minimum Description LengthsL1 andL2.
For example, if x is a question and y is an answer, then
f can be an oracle that answers relevant subquestions.

Description Length (MDL; Rissanen, 1978), and
we examine how the data complexity changes as we
add or remove different features from the input. We
name our method Rissanen Data Analysis (RDA)
after the father of the MDL principle, and we use
it to examine several open questions about popular
datasets, with a focus on NLP.

We view a capability as a function f(x) that
transforms x in some way (e.g., adding a feature),
and we say that f is helpful if invoking it
leads to a shorter minimum program for mapping
x to the corresponding label in a dataset (see
Fig. 1 for an illustration). Finding a short
program is equivalent to finding a compressed
version of the labels given the inputs, since the
program can be run to generate the labels. Thus,
we can measure the shortest program’s length
by estimating the labels’ maximally compressed
length, or Minimum Description Length (MDL;
Rissanen, 1978; Grünwald, 2004). While prior
work in machine learning uses MDL for model
optimization (Hinton and van Camp, 1993),
selection (Yogatama et al., 2019), and model
probing (Voita and Titov, 2020; Lovering et al.,
2021), we use MDL for a very different end: to
understand the data itself (“dataset probing”).
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RDA addresses empirical and theoretical
inadequacies of prior data analysis methods. For
example, two common approaches are to evaluate
the performance of a model when the inputs
are modified or ablated (1) at training and test
time or (2) at test time only. Training time
input modification has been used to evaluate
the usefulness of the capability to decompose a
question into subquestions (Min et al., 2019b; Perez
et al., 2020), to access the image for image-based
question-answering (Antol et al., 2015; Zhang et al.,
2016a), and to view the premise when detecting
if it entails a hypothesis (Gururangan et al., 2018;
Poliak et al., 2018; Tsuchiya, 2018). However,
these works evaluate performance only on held-
out dev examples, a fraction of all examples in
the dataset, which also are often drawn from a
different distribution (e.g., in terms of quality). To
understand what datasets teach our models, we
must examine the entire dataset, also giving us
more examples for evaluation. Furthermore, a
capability’s usefulness to a model in high-data
regimes does not necessarily reflect its usefulness
in low-data regimes, which have increasingly
become of interest (Lake et al., 2017; Guzmán
et al., 2019; Brown et al., 2020). Test time
ablation has been used to evaluate the capability to
view word order (Pham et al., 2020; Sinha et al.,
2020; Gupta et al., 2021) or words of different
types (Sugawara et al., 2020), or to perform multi-
hop reasoning (Jiang and Bansal, 2019). However,
it is hard to rule out factors that may explain
poor performance (e.g., distribution shift) or good
performance (e.g., other ways to solve a problem).
Here, we examine an intrinsic property of the
dataset (MDL) and provide a theoretical argument
justifying why it is the right measure to use.

We use RDA to provide insights on a variety
of datasets. First, we verify that description
length is reduced when we invoke a capability
f that is known to be helpful on a carefully-
controlled synthetic task. Next, we examine
HOTPOTQA (Yang et al., 2018), a benchmark
for answering questions, where prior work has
both claimed that decomposing questions into
subquestions is helpful (Min et al., 2019b;
Perez et al., 2020) and called such claims into
question (Min et al., 2019a; Jiang and Bansal,
2019; Chen and Durrett, 2019). RDA shows that
subquestions are indeed helpful and exposes how
evaluation procedures in prior work may have

caused the value of question decomposition to be
underestimated. We then evaluate if explanations
are useful for recognizing textual entailment using
the e-SNLI dataset (Camburu et al., 2018). Both
written explanations and decision-relevant keyword
markings (“rationales”) are helpful, but rationales
are more useful than explanations. Lastly, we
examine a variety of popular NLP tasks, evaluating
the extent to which they require relying on word
order, different types of words, and gender bias.
Overall, our results show that RDA can be used to
answer a broad variety of questions about datasets.

2 Rissanen Data Analysis

How can we determine whether or not a certain
capability f(x) is helpful for building a good
model of the data? To answer this question, we
view a dataset with inputs x1:N and labels y1:N
as generated by a program that maps xn → yn.
Let the length of the shortest such program P be
L(y1:N |x1:N ), the data’s Kolmogorov complexity.
We view a capability as a function f that maps
xn to a possibly helpful output f(xn), with
L(y1:N |x1:N , f) being the length of the shortest
label-generating program when access to f is given.
We say that f is helpful exactly when:

L(y1:N |x1:N , f) < L(y1:N |x1:N ) (1)

2.1 Minimum Description Length

To use Eq. 1 in practice, we need to find the
shortest program P , which is uncomputable in
general. However, because P is a program
that generates y1:N given x1:N , we can instead
consider any compressed version of y1:N , along
with an accompanying decompression algorithm
that produces y1:N given x1:N and the compressed
y1:N . To find L, then, we find the length of
the maximally compressed y1:N , or Minimum
Description Length (MDL; Rissanen, 1978). While
MDL is not computable, just like Kolmogorov
complexity, many methods have been proposed
to estimate MDL by restricting the set of allowed
compression algorithms (see Grünwald, 2004, for
an overview). These methods are all compatible
with RDA, and here, we use online (or prequential)
coding (Rissanen, 1984; Dawid, 1984), an effective
method for estimating MDL when used with deep
learning (Blier and Ollivier, 2018).



2.2 Online Coding
To examine how much y1:N can be compressed,
we look at the minimum number of bits (minimal
codelength) needed by a sender Alice to transmit
y1:N to a receiver Bob, when both share x1:N .
Without loss of generality, we assume yn is an
element from a finite set. In online coding, Alice
first sends Bob the learning algorithm A, including
the model architecture, trainable parameters θ,
optimization procedure, hyperparameter selection
method, initialization scheme, random seed, and
pseudo-random number generator. Alice and Bob
each initialize a model pθ1 using the random seed
and pseudo-random number generator, such that
both models are identical.

Next, Alice sends each label yn one by
one. Shannon (1948) showed that there exists a
minimum code to send yn with − log2 pθn(yn|xn)
bits when Alice and Bob share pθn and xn. After
Alice sends yn, Alice and Bob use A to train
a better model pθn+1(y|x) on (x1:n, y1:n) to get
shorter codes for future labels. The codelength for
y1:N is then:

Lp(y1:N |x1:N ) =
N∑
n=1

− log2 pθn(yn|xn). (2)

Intuitively, Lp(y1:N |x1:N ) is the area under the
“online” learning curve that shows how the cross-
entropy loss goes down as training size increases.
Overall, Alice’s message consists of A plus the
label encoding (Lp(y1:N |x1:N ) bits). When Alice
and Bob share f , Alice’s message consists of A
plus Lp(y1:N |x1:N , f) bits to encode the labels
with a model pθ(y|x, f). f is helpful when the
message is shorter with f than without, i.e., when:

Lp(y1:N |x1:N , f) < Lp(y1:N |x1:N )

2.3 Implementation with Block-wise Coding
The online code in Eq. 2 is expensive to compute.
It has a computational complexity that is quadratic
in N (assuming linear time learning), which is
prohibitive for large N and compute-intensive A.
Following Blier and Ollivier (2018), we upper
bound online codelength by having Alice and Bob
only train the model upon having sent 0 = t0 <
t1 < · · · < tS = N labels. Alice thus sends all
labels in a “block” yts+1:ts+1 at once using pθts ,
giving codelength:

L̄p(y1:N |x1:N ) =

S−1∑
s=0

ts+1∑
n=ts+1

− log2 pθts (yn|xn)

Since θt0 has no training data, Alice sends Bob
the first block using a uniform prior.

Alleviating the sensitivity to learning algorithm
To limit the effect of the choice of learning
algorithm A, we may ensemble many model
classes. To do so, we have Alice train M models
of different classes and send the next block’s labels
using the model that gives the shortest codelength.
To tell Bob which model to use to decompress a
block’s labels, Alice also sends log2M bits per
block s = 1, . . . , S− 1, adding (S− 1) log2M to
MDL. In this way, MDL relies less on the behavior
of a single model class.

2.4 Experimental Setup
To evaluate MDL, we first randomly sort examples
in the dataset. We use S = 9 blocks where
t0 = 0 and t1 = 64 < · · · < tS = N
such that ts+1

ts
is constant (log-uniform spacing).

To train a model on the first s blocks, we split
the available examples into train (90%) and dev
(10%) sets, choosing hyperparameters and early
stopping epoch using dev loss (codelength). We
otherwise follow each model’s training strategy and
hyperparameter ranges as suggested by its original
paper. We then evaluate the codelength of the
(s + 1)-th block. As a baseline, we show H(y),
the codelength with the label prior p(y) as pθ.

MDL is impacted by random factors such as
the order of examples, model initialization, and
randomness during training. Thus, we report the
mean and std. error of MDL over 5 random
seeds. For efficiency, we only sweep over
hyperparameters for the first random seed and
reuse the best hyperparameters for the remaining
seeds. For all experiments, our code and
reported codelengths are publicly available at
https://github.com/ethanjperez/rda, along with a
short Python script to conduct RDA with your own
models and datasets.

3 Validating Rissanen Data Analysis

Having described our setup, we now verify
that L̄p(y1:N |x1:N , f) < L̄p(y1:N |x1:N ) holds in
practice when using an f that we know is
helpful. To this end, we use CLEVR (Johnson
et al., 2017), an synthetic, image-based question-
answering (QA) dataset. Many CLEVR questions
were carefully designed to benefit from answering
subquestions. For example, to answer the CLEVR
question “Are there more cubes than spheres?” it

https://github.com/ethanjperez/rda


helps to know the answer to the subquestions “How
many cubes are there?” and “How many spheres
are there?” We hypothesize that MDL decreases
as we give a model answers to subquestions.

We test our hypothesis on three types of CLEVR
questions. “Integer Comparison” questions ask
to compare the numbers of two kinds of objects
and have two subquestions (example above).
“Attribute Comparison” questions ask to compare
the properties of two objects (two subquestions).
“Same Property As” questions ask whether or not
one object has the same property as another (one
subquestion). Since CLEVR is synthetic, we obtain
oracle answers to subquestions (“subanswers”)
programmatically. See Appendix §A.1 for details.
We append subanswers to the question (in order)
and evaluate MDL when providing 0-2 subanswers.

Model We use the FiLM model from Perez et al.
(2018) which combines a convolutional network
for the image with a GRU for the question (Cho
et al., 2014). The model minimizes cross-entropy
loss (27-way classification). We follow training
strategy from Perez et al. (2018) using the public
code, except we train for at most 20 epochs (not
80), since we only train on subsets of CLEVR.

Results Fig. 2 shows codelengths (left) and MDL
(right). For all question types, L̄p(y1:N |x1:N , f) <
L̄p(y1:N |x1:N ) when all oracle subanswers are
given, as expected. For “Integer Comparison” (top)
and “Attribute Comparison” (middle), the reduction
in MDL is larger than for “Same Property As”
questions (bottom). For comparison question types,
the subanswers can be used without the image
to determine the answer, explaining the larger
decreases in MDL. Our results align with our
expectations about when answers to subquestions
are helpful, empirically validating RDA.

4 Examining Dataset Characteristics

We now use RDA to answer pertinent open
questions on various popular datasets.

4.1 Is it helpful to answer subquestions?

Yang et al. (2018) proposed HOTPOTQA as a
dataset that benefits from decomposing questions
into subquestions, but recent work has called the
benefit into doubt (Min et al., 2019a; Jiang and
Bansal, 2019; Chen and Durrett, 2019) while there
is also evidence that decomposition helps (Min
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Figure 2: Left: Answer codelengths for different
CLEVR question types with/without adding oracle
answers to subquestions (“subanswers”) to the input.
Right: Subanswers reduce MDL.

et al., 2019b; Perez et al., 2020). We use RDA to
determine if subquestions and answers are useful.

Dataset HOTPOTQA consists of crowdsourced
questions (“Are Coldplay and Pierre Bouvier
from the same country?”) whose answers are
intended to rely on information from two Wikipedia
paragraphs. The input consists of these two
“supporting” paragraphs, 8 “distractor” paragraphs,
and the question. Answers are either yes, no, or a
text span in an input paragraph.

Model We use the LONGFORMER (Beltagy
et al., 2020), a transformer (Vaswani et al., 2017)
modified to handle long inputs as in HOTPOTQA.
We evaluate MDL for two models, the official
LONGFORMERBASE initialized with pretrained
weights trained on language modeling and another
model with the same architecture that we train from
scratch, which we refer to as TRANSFORMERBASE.
We train the model to predict the span’s start token
and end token by minimizing the negative log-
likelihood for each prediction. We treat yes/no
questions as span prediction as well by prepending
yes and no to the input, following Perez et al.



(2020). We use the implementation from Wolf et al.
(2020). See Appendix §B.2 for hyperparameters.

Providing Subanswers We consider a
subanswer to be a paragraph containing question-
relevant information, because Perez et al. (2020)
claimed that subquestions help by using a QA
model to find relevant text. We indicate up to two
subanswers to the model by prepending “>” to the
first subanswer paragraph and “�” to the second.

Choosing Subanswers We consider 5 methods
for choosing subanswers. First, we use the two
supporting paragraphs as oracle subanswers. Next,
we consider the answers to subquestions from
four different methods. Three are unsupervised
methods from Perez et al. (2020): pseudo-
decomposition (retrieval-based subquestions),
seq2seq (subquestions from a sequence-to-
sequence model), and ONUS (One-to-N
Unsupervised Sequence transduction). Last, we
test the ability of a more recent, large language
model (GPT3; Brown et al., 2020) to generate
subquestions using a few question-decomposition
examples. Since GPT3 is expensive to run, we use
its generated subquestions as training data for a
smaller T5 model (Raffel et al., 2020), a “Distilled
Language Model” (DLM, see Appendix §B.1 for
details). To answer generated subquestions, we
use the QA model from Perez et al. (2020), an
ensemble of two ROBERTALARGE (Liu et al.,
2019) models finetuned on SQuAD (Rajpurkar
et al., 2016) to predict answer spans. We use the
paragraphs containing predicted answer spans to
subquestions as subanswers.

4.1.1 Results
Fig. 3 shows codelengths (left) and MDL (right).
For TRANSFORMERBASE (top), decompositions
consistently and significantly reduces codelength
and MDL. Decomposition methods vary in how
much they reduce MDL, ranked from worst to
best as: no decomposition, Pseudo-Decomposition,
Seq2Seq, ONUS, DLM, and oracle. Overall, the
capability to answer subquestions reduces program
length, especially when subquestions and their
answers are of high quality.

For LONGFORMERBASE (Fig. 3 bottom), all
decomposition methods also reduce codelength
and MDL, though to a lesser extent. To examine
why, we plot the codelength reduction from
decomposition against the original codelength
for LONGFORMERBASE in Fig. 4 (left). As
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Figure 3: Left: Codelengths for HOTPOTQA when
encoding labels with LONGFORMERBASE trained from
scratch (top) or pretrained weights (bottom), with the
answers to subquestions (subanswers) from various
decomposition methods. (Plots on log-log scale.)
Right: MDL for decomposition methods when training
from scratch (top) or pretrained weights (bottom).
Subanswers help to compress the answers, especially
when training from scratch, but with much room for
improvement w.r.t. oracle subanswers.

the original codelength decreases, the benefit
from decomposition increases, until the no-
decomposition baseline reaches a certain loss,
at which point the benefit from decomposition
decreases. We hypothesize that a certain, minimum
amount of task understanding is necessary before
decompositions are useful (see Appendix §B.3
for similar findings with TRANSFORMERBASE).
However, as loss decreases, the task-relevant
capabilities can be learned from the data directly,
without decomposition.

Our finding suggests that decompositions help
disproportionately in the high- or mid- loss regimes
rather than the low-loss regime, where QA systems
are usually evaluated (i.e., when training on
all examples). The limited value in low-loss
regimes occurs because models approach the same,
minimum loss H(y|x) in the limit of dataset size.
Our observation partly explains why a few earlier
studies (Min et al., 2019a; Chen and Durrett,
2019), which only evaluated final performance,
drew the conclusion that HOTPOTQA does not
benefit much from multi-step reasoning or question
decomposition. In contrast, MDL actually does
capture differences in performance across data
regimes, demonstrating that RDA is the right
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Figure 4: Left: On HOTPOTQA, the reduction in codelength over the no-decomposition baseline from using
subanswers from various decomposition methods (mean and std. err. for LONGFORMERBASE). Middle:
Codelengths for e-SNLI with/without extractive rationales or written explanations. Right: On e-SNLI, MDL
reduces significantly when rationales and explanations are given alongside the input.

approach going forward, especially given the
growing interest in few-shot data regimes (Lake
et al., 2017; Brown et al., 2020)

4.2 Are Explanations and Rationales Useful?
Recent work has proposed methods that give
reasons for an answer before predicting the answer
to improve accuracy. Such reasons include written
explanations (Camburu et al., 2018; Rajani et al.,
2019; Wiegreffe et al., 2020) or locating task-
relevant input words (Zhang et al., 2016b; Perez
et al., 2019). As a testbed, these studies often
use natural language inference (NLI) – checking
if a premise entails or contradicts (or neither)
a hypothesis. To explore if this direction is
promising, we evaluate whether providing a reason
is a useful capability, using NLI as a case study.

Dataset We use the e-SNLI (Camburu et al.,
2018) dataset, which annotated each example
in SNLI (Bowman et al., 2015) with two
forms of reasons: an extractive rationale that
marks entailment-relevant words and a written
explanation of the right answer. We randomly
sample 10k examples from e-SNLI to examine
the usefulness of rationales and explanations.
To illustrate, e-SNLI contains an example of
contradiction where the premise is “A man and
a woman are dancing in the crowd.” and the
hypothesis is “A man and woman dance alone.”
The rationale is bolded, and the explanation is
“Being in a crowd means not alone.”

Adding explanations and rationales We view
rationales and explanations as generated by a
function f on the input. To test if f reduces
MDL, we add the rationale by surrounding
each entailment-relevant word with asterisks, and

we add the explanation before the hypothesis,
separated by a special token. For comparison, we
evaluate MDL when including only the explanation
as input and only the rationale patterns as input. For
the latter, we use the rationale without the actual
premise and hypothesis words by replacing each
rationale word with “*” and other words with “ ”.

Model We use an ensemble model
composed of the following model classes:
FastText Bag-of-Words (Joulin et al., 2017),
transformers (Vaswani et al., 2017) trained from
scratch (110M and 340M parameter versions),
BARTBASE (encoder-decoder; Lewis et al., 2020),
ALBERTBASE (encoder-only; Lan et al., 2020),
ROBERTABASE and ROBERTALARGE (encoder-
only; Liu et al., 2019) and the distilled version
DISTILROBERTA (Sanh et al., 2019), and
GPT2 (decoder-only; Radford et al., 2019) and
DISTILGPT2 (Sanh et al., 2019). For each model,
we minimize cross-entropy loss and tune softmax
temperature2 on dev to alleviate overconfidence
on unseen examples (Guo et al., 2017; Desai and
Durrett, 2020). We follow each models’ official
training strategy and hyperparameter sweeps
(Appendix §B.4), using the official codebase for
FastText3 and HuggingFace Transformers (Wolf
et al., 2020) with PyTorch Lightning (Falcon et al.,
2019) for other models.

4.2.1 Results
Fig. 4 shows codelengths (middle) and MDL
(right). Adding rationales to the input greatly
reduces MDL compared to using the normal input
(“Input (I)”) or rationale markings without input

2Search over [10−1, 102], 1k log-uniformly spaced trials.
3https://github.com/facebookresearch/fastText

https://github.com/facebookresearch/fastText


words (“Rationale (R)”), suggesting that rationales
complement the input. The reduction comes from
focusing on rationale words specifically. We
see almost as large MDL reductions when only
including rationale-marked words and masking
non-rationale words (“R Words” vs. “I+R”). In
contrast, we see little improvement over rationale
markings alone when using only non-rationale
words with rationale words masked (“Rationale
(R)” vs.“Non-R Words”). Our results show that
for NLI, it is useful to first determine task-relevant
words, suggesting future directions along the lines
of Zhang et al. (2016b); Perez et al. (2019).

Similarly, explanations greatly reduce
MDL (Fig. 4 right, rightmost two bars), especially
when the input is also provided. This finding
shows that explanations, like rationales, are
also complementary to the input. Interestingly,
adding rationales to the input reduces MDL more
than adding explanations, suggesting that while
explanations are useful, they are harder to use for
label compression than rationales.

4.3 Examining Text Datasets

So far, we used RDA to determine when adding
input features helps reduce label description
lengths. Similarly, we evaluate when removing
certain features increases description length, to
determine what features help achieve a small
MDL. Here, we view the “original” input as
having certain features missing, and we evaluate
the utility of a capability f that recovers the
missing features to return the normal task input.
If f reduces the label-generating program length,
then it is useful to have access to f (the ablated
features). To illustrate, we evaluate the usefulness
of different kinds of words and of word order on
the General Language Understanding Evaluation
benchmark (GLUE; Wang et al., 2019), a central
evaluation suite in NLP, as well as SNLI and
Adversarial NLI (ANLI; Nie et al., 2020).

Datasets GLUE consists of 9 tasks (8
classification, 1 regression).4 CoLA and
SST-2 are single-sentence classification tasks.
MRPC, QQP, and STS-B involve determining if
two sentences are similar or paraphrases of each
other. QNLI, RTE, MNLI, and WNLI are NLI
tasks (we omit WNLI due to its size, 634 training
examples). ANLI consists of NLI data collected in

4See Appendix §A.2 for details on GLUE and Appendix
§B.3 for details on regression.
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Figure 5: The importance of different POS words,
given by MDL−POS − MDL−Random. 0 indicates that
words of a given POS are as important as randomly-
chosen words, while > 0 and < 0 indicate greater
and lesser importance than randomly-chosen words,
respectively. (*) indicates within std. error of 0. Color
is normalized by column (dataset).

three rounds, where annotators wrote hypotheses
that fooled state-of-the-art NLI models trained on
data from the previous round. We consider each
round as a separate dataset, to examine how NLI
datasets have evolved over time, from SNLI to
MNLI to ANLI1, ANLI2, and ANLI3.

Experimental Setup Following our setup for e-
SNLI (§4.2), we use the 10-model ensemble and
evaluating MDL on up to 10k examples per task.

4.3.1 The usefulness of part-of-speech words
We consider the original input to be the full
input with words of a certain POS masked out
(with “ ”) and evaluate the utility of a function
f that fills in the masked words. To control
for the number of words masked, we restrict f
such that it returns a version of the input with
the same proportion of words masked, chosen
uniformly at random. If f is useful, then words
of a given type are more useful for compression
than randomly-chosen input words. In particular,
we report the difference between MDL when (1)
words of a given POS are masked and (2) the same
fraction of words are masked uniformly at random:
MDL−POS − MDL−Random. We evaluate nouns,
verbs, adjectives, adverbs, and prepositions.5

We show results in Figure 5. Adjectives are
much more useful than other POS for SST-2, a
sentiment analysis task where relevant terms are
evidently descriptive words (e.g., “the service was
terrible”). For CoLA, verbs play an important

5We use POS tags from spaCy’s large English
model (Honnibal and Montani, 2017). We omit other POS, as
they occur less frequently and masking them did not greatly
impact MDL in preliminary experiments.
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Figure 6: Gender Bias: MDL when masking
masculine vs. feminine words (mean and std. err.
over 5 random seeds). Values above zero (vs. below
zero) indicate that male-gendered words (vs. female-
gendered words) are more important for compressing
labels. SST-2 shows the largest bias (male-favored).

role in determining if a sentence is linguistically
acceptable, likely due to the many examples
evaluating verb argument structure (e.g., “The
toast burned.” vs. “The toast buttered.”). Other
tasks (MRPC, RTE, and QNLI) do not rely
significantly on any one POS, suggesting that
they require reasoning over multiple POS in
tandem. Nouns are consistently less useful on
NLI tasks, suggesting that NLI datasets should
be supplemented with knowledge-intensive tasks
like open-domain QA that rely on names and
entities, in order to holistically evaluate language
understanding. Prepositions are not important for
any GLUE task, suggesting where GLUE can be
complemented with other tasks and illustrating how
RDA can be used to help form comprehensive
benchmarks in the future.

4.3.2 How useful are other word types?
Sugawara et al. (2020) hypothesized other word
types that may be useful for NLP tasks. We use
RDA to assess their usefulness as we did above (see
Appendix §C for details). GLUE tasks vary in their
reliance on “content” words. Logical words like
not and every are particularly important for MNLI
which involves detecting logical entailment. On the
other hand, causal words (e.g., because, since, and
therefore) are not particularly useful for GLUE.

4.3.3 Do Datasets Suffer from Gender Bias?
Gender bias in data is a prevalent issue in machine
learning (Bolukbasi et al., 2016; Blodgett et al.,
2020). For example, prior work found that machine
learning systems are worse at classifying images
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Figure 7: MDL with/without Word Shuffling,
normalized by MDL when encoding labels with p(y)
for reference. Word order reduces MDL on all tasks.

of women (Phillips et al., 2000; Buolamwini
and Gebru, 2018), at speech recognition for
women and speakers from Scotland (Tatman,
2017), and at POS tagging for African American
vernacular (Jørgensen et al., 2015). RDA can
be used to diagnose such biases. Here, we
do so by masking male-gendered words and
evaluating the utility of an oracle function f
that reveals male-gendered words while masking
female-gendered words. If f is useful and
MDL−Male − MDL−Female > 0, then masculine
words are more useful than feminine words for the
dataset (gender bias). We use male and female
word lists from Dinan et al. (2020a,b). The two
lists are similar in size (∼530 words each) and
POS distribution (52% nouns, 29% verbs, 18%
adjectives), and the male- and female- gendered
words occur with similar frequency. See Appendix
§C for experiments controlling for word frequency.

Fig. 6 shows the results. Masculine words are
more useful for SST-2 and MRPC while no GLUE
datasets have feminine words as more useful. For
SST-2, feminine words occur more frequently
than masculine words (2.7% vs. 2.2%, evenly
distributed across class labels), suggesting that
RDA uncovers a gender bias that word counts do
not. This result highlights the practical value of
RDA in uncovering where evaluation benchmarks
under-evaluate the performance of NLP systems on
text related to different demographic groups.

4.3.4 How useful is word order?
Recent work claims that state-of-the-art models do
not use word order for GLUE (Pham et al., 2020;
Sinha et al., 2020; Gupta et al., 2021), so we use
RDA to examine the utility of word order on GLUE,
by testing the value of the capability to unshuffle
input words when they have been shuffled.



Fig. 7 shows MDL with and without shuffling,
normalized by the MDL of the label-only prior p(y)
as a baseline. Word order helps to obtain smaller
MDL on all tasks. For example, on MNLI, adding
word order enables the labels to be compressed
from 75% → 50% of the baseline compression
rate. For CoLA, the linguistic acceptability task,
input word order is necessary to compress labels
at all. Prior work may have come to different
conclusions about the utility of word order because
they evaluate the behavior of trained models on
out-of-distribution (word-shuffled) text, while RDA
estimates an intrinsic property of the dataset.

5 Related Work

In addition to prior work on data analysis (§1),
there has been much work on model analysis (e.g.,
Shi et al., 2016; Alain and Bengio, 2017; Conneau
et al., 2018; Jia and Liang, 2017). This line of
work sometimes uses similar techniques, such as
input replacement (Perez et al., 2019; Jiang and
Bansal, 2019; Pham et al., 2020; Sinha et al., 2020;
Gupta et al., 2021) and estimating description
length (Voita and Titov, 2020; Whitney et al.,
2020; Lovering et al., 2021) or other information-
theoretic measures (Pimentel et al., 2020), but for
a very different end: to understand how models
behave and what their representations encode.
While model probing can uncover characteristics
of the training data (e.g., race and gender bias;
Caliskan et al., 2017), models also reflect other
aspects of learning (Zhao et al., 2017), such as
the optimization procedure, inductive bias of the
model class and architecture, hyperparameters, and
randomness during training. Instead of indirectly
examining a dataset by probing models, we directly
estimate a property intrinsic to the dataset. For
further related work, see Appendix §D.

6 Conclusion

In this work, we proposed Rissanen Data Analysis
(RDA), a method for examining the characteristics
of a dataset. We began by viewing the labels
of a dataset as being generated by a program
over the inputs, then positing that a capability
is helpful if it reduces the length of the shortest
label-generating program. Instead of evaluating
minimum program length directly, we use block-
wise prequential coding to upper bound Minimum
Description Length (MDL). While the choice of
learning algorithm A influences absolute MDL

values, we only interpret MDL relative to other
MDL values estimated with the same A. In
particular, we conduct RDA by comparing MDL
with or without access to a subroutine with a certain
capability, and we say that a capability is useful
when invoking the subroutine reduces MDL.

We then conducted an extensive empirical
analyses of various datasets with RDA. First, we
showed that RDA provides intuitive results on
a carefully-controlled synthetic task. Next, we
used RDA to evaluate the utility of generating and
answering subquestions in answering a question,
finding that subquestions are indeed useful. For
NLI, we found it helpful to include rationales and
explanations. Finally, we showcased the general
nature of RDA by applying it on a variety of other
NLP tasks, uncovering the value of word order
across all tasks, as well as the most useful parts
of speech for different tasks, among other things.
Our work opens up ample opportunity for future
work: automatically uncovering dataset biases
when writing data statements (Gebru et al., 2018;
Bender and Friedman, 2018), selecting the datasets
to include in future benchmarks, discovering which
capabilities are helpful for different tasks, and also
expanding on RDA itself, e.g., by investigating the
underlying data distribution rather than a particular
dataset (Whitney et al., 2020). Overall, RDA is a
theoretically-justified tool that is empirically useful
for examining the characteristics of a wide variety
of datasets.

Acknowledgments

We thank Paul Christiano, Sam Bowman, Tim
Dettmers, Alex Warstadt, Will Huang, Richard
Pang, Yian Zhang, Tiago Pimentel, and Patrick
Lewis for helpful feedback. We are grateful
to OpenAI for providing access to GPT-3 via
their API Academic Access Program. We also
thank Will Whitney and Peter Hase for helpful
discussions, Adina Williams for the list of gendered
words, Shenglong Wang for cluster support, and
Amanda Ngo for figure design help. HOTPOTQA
is licensed under CC BY-SA 4.0. KC is partly
supported by Samsung Advanced Institute of
Technology (Next Generation Deep Learning: from
pattern recognition to AI) and Samsung Research
(Improving Deep Learning using Latent Structure).
KC also thanks Naver, eBay, NVIDIA, and NSF
Award 1922658 for support. EP is grateful to NSF
and Open Philanthropy for fellowship support.



References
Guillaume Alain and Yoshua Bengio. 2017.

Understanding intermediate layers using linear
classifier probes. In ICLR.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu,
Margaret Mitchell, Dhruv Batra, C. Lawrence
Zitnick, and Devi Parikh. 2015. VQA: Visual
Question Answering. In ICCV.

Frank B Baker and Seock-Ho Kim. 2004. Item
response theory: Parameter estimation techniques.
CRC Press.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv:2004.05150.

Emily M. Bender and Batya Friedman. 2018. Data
statements for natural language processing: Toward
mitigating system bias and enabling better science.
Transactions of the ACL, 6:587–604.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo
Giampiccolo, and Bernardo Magnini. 2009. The
fifth pascal recognizing textual entailment challenge.
In In Proc Text Analysis Conference (TAC’09.
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A Task Details

A.1 CLEVR

We examine three question categories in CLEVR
which have 1-2 relevant subquestions. “Integer
Comparison” questions ask to compare the
numbers of two kinds of objects and have two
subquestions, i.e., “Are there more cubes than
spheres?” where the two subquestions are “How
many cubes are there?” and “How many spheres
are there?” “Attribute Comparison” questions
ask to compare the properties of two objects,
i.e., “Is the metal object the same color as the
rubber thing?”, where there are two subquestions
which each ask about the property of a single
object, i.e., “What color is the metal object?” and
“What color is the rubber thing?” “Same Property
As” questions ask whether or not one object has
the same property as another object, i.e., “What
material is the sphere with the same color as the
rubber cylinder?”, where there is one subquestion
that asks about a property of one object, i.e., “What
color is the rubber cylinder?” To obtain oracle
subanswers, we use ground-truth programs given
by CLEVR that can be executed over a symbolic,
graph-based representation of the image to answer
each question. For each question category above,
we evaluate the subprogram corresponding to its
subquestion(s) to generate oracle subanswer(s).

A.2 GLUE

GLUE consists of 9 tasks. Two are single-sentence
classification; CoLA (Corpus of Linguistic
Acceptability; Warstadt et al., 2019) involves
determining if a sentence is linguistically
acceptable or not, while SST-2 (Stanford Sentiment
Treebank 2; Socher et al., 2013) involves
predicting if a sentence has positive or negative
sentiment. Three tasks involve determining if two
sentences are similar or paraphrases of each other:
MRPC (Microsoft Research Paragraph Corpus;
Dolan and Brockett, 2005), QQP (Quora Question
Pairs)6, and STS-B (Semantic Textual Similarity
Benchmark; Cer et al., 2017). The rest are NLI
tasks: QNLI (Question NLI, derived from SQuAD;
Rajpurkar et al., 2016), RTE (Recognizing
Textual Entailment; Bentivogli et al., 2009),
WNLI (Winograd NLI; Levesque et al., 2012), and
MNLI (Multi-genre NLI; Williams et al., 2018).

6data.quora.com/First-Quora-Dataset-Release-Question-
Pairs

B Model Training Details

B.1 Distilled Language Model

B.1.1 Language Model Decompositions
Large language models (LMs) are highly effective
at text generation (Brown et al., 2020) but have
not yet been explored in the context of question
decomposition. In particular, one obstacle is the
sheer computational and monetary cost associated
with such models. We thus use an LM to generate
question decompositions while conditioning on a
few labeled question-decomposition pairs, and then
we train a smaller, sequence-to-sequence model on
the generated question-decomposition pairs, which
we use to efficiently decompose many questions.
Our approach, which we call Distilled Language
Model (DLM), leverages the large LM to produce
pseudo- training data for a more efficient model.

As our LM, we use the 175B parameter,
pretrained GPT-3 model (Brown et al., 2020)
via the OpenAI API.7 We label the maximum
number of question-decomposition pairs that
fit in the context window of GPT-3 (2048
tokens or 46 question-decompositions). For
labeling, we sample questions randomly from
HOTPOTQA’s training set. To condition the
LM, we format question-decomposition pairs
as “[Question] = [Decomposition]”, where the
decomposition consists of several consecutive
subquestions. We concatenate the pairs, each on a
new line, with a new question on the final line
to form a prompt. We then generate from the
LM, conditioned on the prompt. For decoding,
we found that GPT-3 copies the question as the
decomposition with greedy decoding. Therefore,
we use a sample-and-rank decoding strategy, to
choose the best decoding out of several possible
candidates. We sample 16 decompositions with
top-p sampling (Holtzman et al., 2020) with p =
0.95, rank decompositions from highest to lowest
based their average token-level log probability, and
choose the highest-ranked decomposition which
satisfies the basic sanity checks for decomposition
from Perez et al. (2020). The sanity checks avoid
the question-copying failure mode by checking if a
decomposition has (1) more than one subquestion
(question mark), (2) no subquestion which contains
all words in the multi-hop question, and (3) no
subquestion longer than the multi-hop question.
We generate decompositions for HOTPOTQA dev

7https://beta.openai.com/

https://beta.openai.com/


Hyperparam LONGFORMER ROBERTA BART ALBERT GPT2

Learning Rate {3e-5, 5e-5, 1e-4} {1e-5, 2e-5, 3e-5} {5e-6, 1e-5, 2e-5} {2e-5, 3e-5, 5e-5} {6.25e-5, 3.125e-5, 1.25e-4}

Batch Size 32 {16, 32} {32, 128} {32, 128} 32
Max Epochs 6 10 10 3 3
Weight Decay 0.01 0.1 0.01 0.01 0.01
Warmup Ratio 0.06 0.06 0.06 0.1 0.002
Adam β2 0.999 0.98 0.98 0.999 0.999
Adam ε 1e-6 1e-6 1e-8 1e-6 1e-8
Grad. Clip Norm ∞ ∞ ∞ 1 1

Table 1: Training hyperparameters for all transformer models, based on those from each model’s original paper.
Column names refer to model types, including models of different sizes or trained from scratch with the same
architecture.

questions, which we estimate costs $0.15 per
example or $1.1k for the 7405 dev examples via
the OpenAI API. Decomposing all 90447 training
examples would roughly cost an extra $13.3k,
motivating distillation.

B.1.2 Distilling Decompositions
As our distilled, sequence-to-sequence model, we
use the 3B parameter, pretrained T5 model (Raffel
et al., 2020) via HuggingFace Transformers (Wolf
et al., 2020). We finetune T5 on our question-
decomposition examples and then use it to generate
subquestions for all training questions.

To finetune T5, we split our question-
decomposition examples into train (80%), dev
(10%), and test (10%) splits. We finetune
T5 with a learning rate of 1e − 4, and we
sweep over label smoothing ∈ {0.1, 0.2, 0.4, 0.6},
number of training epochs ∈ {3, 5, 10}, and
batch size in ∈ {16, 32, 64}, choosing the best
hyperparmeters (0.1, 3, 64, respectively) based on
dev BLEU (Papineni et al., 2002). We stop training
early when dev BLEU does not increase after
one training epoch. We generate decompositions
using beam search of size 4 and length penalty
of 0.6 as in Raffel et al. (2020), achieving a test
BLEU of 50.7. We then finetune a new T5 model
using the best hyperparameters on all question-
decomposition examples except for a small set of
200 examples used for early stopping.

B.2 LONGFORMER

Similar to Beltagy et al. (2020), we train
LONGFORMER models for up to 6 epochs, stopping
training early if dev loss doesn’t decrease after
one epoch. We sweep over learning rate ∈ {3 ×
10−5, 5× 10−5, 1× 10−4}.

B.3 Regression

STS-B is a regression task in GLUE where labels
are continuous values in [0, 5]. Here, we learn to
minimize mean-squared error, which is equivalent
to minimizing log-likelihood and thus codelength.8

We treat each scalar prediction as the mean of a
Gaussian distribution and tune a single standard
deviation parameter shared across all predictions
from a single model. We choose the variance
based on dev log-likelihood using grid search over
[10−2.5, 101.5] with 1000 log-uniformly spaced
samples. To send the first block of labels, Alice
and Bob use a uniform distribution over [0, 5].

The FastText library only supports classification,
so we convert STS-B to 26-way classification
by rounding label values to the nearest 0.2,
following Raffel et al. (2020). We compute a mean
prediction by evaluating the average class label
value when marginalizing over class probabilities.
We then tune variance on dev as usual.

B.4 Ensemble Model

B.4.1 FastText
For the FastText classifier, we initialize with the 2M
pretrained, 300-dimensional word vectors trained
on Common Crawl (600B tokens).9 We tune
hyperparameters using the official implementation
of automatic hyperparameter tuning, which we
run for 2 hours, which is generally sufficient for
20+ hyperparmeter trials and convergence on dev
accuracy. The tuning implementation chooses the
hyperparameters based on dev accuracy instead of
loss as we typically do, but our procedure of tuning

8Cover and Thomas (2006) justifies the relationship
between log-likelihood and codelength for continuous values.

9https://fasttext.cc/docs/en/english-vectors.html

https://fasttext.cc/docs/en/english-vectors.html
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Figure 8: Difference between MDL when we mask input words that are (1) of a given type and (2) randomly
chosen with the same frequency as (1). Mean and std. err. over 5 random seeds for content words (left), logical
words (middle), and causal words (right).
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Figure 9: The reduction in codelength over the no-
decomposition baseline from using subanswers from
various decomposition methods (mean and std. error
for TRANSFORMERBASE).

a softmax temperature parameter helps FastText
reach significantly below-baseline loss.

B.4.2 Transformer Models
The remaining models in our ensemble
are transformer-based models trained with
HuggingFace Transformers (Wolf et al., 2020).
Table 1 shows the hyperparameter ranges used
for each model, which we chose based on those
used in each model’s original paper for GLUE. For
TRANSFORMER models trained from scratch on
e-SNLI and GLUE, we use the ROBERTABASE
and ROBERTALARGE architecture with the
ROBERTAhyperparameters, except that we use a
larger batch size (∈ {64, 128}) for the LARGE
transformer, which gave better results.

B.5 Training Hardware

We train FastText on 1 CPU core (40GB of
memory) and FiLM on GeForce GTX 1080ti 11GB
GPUs (10GB CPU memory). We train other
models with “almost floating point 16” mixed
precision (Micikevicius et al., 2018) on 1 RTX-
8000 48GB GPU (CPU memory of 100GB for

HOTPOTQA and 30GB for e-SNLI and GLUE).

C Additional Experiments

C.1 Is it helpful to answer subquestions?

In §4.1, we found that decompositions increase
in usefulness as the original, no-decomposition
model’s loss decreases, up until some point after
which decompositions decrease in usefulness. To
examine if the same trend holds for other models,
we show the same plot for TRANSFORMERBASE in
Fig. 9. Here, decompositions increase in usefulness
as the codelength (loss) of the original model
decreases. However, for most decomposition
methods, we do not find a point at which
decompositions begin to decrease in usefulness,
which we fits our hypothesis that the model must
have enough data to learn the task directly in
order for decompositions to become less useful.
However, the slope of improvement decreases (i.e.,
the second derivative is negative), suggesting that,
given more training data, decompositions will also
peak in usefulness for TRANSFORMERBASE.

C.2 Examining Text Datasets

How useful are content words? Sugawara et al.
(2020) hypothesized that “content” words are
particularly useful for NLP tasks, taking content
words to be nouns, verbs, adjectives, adverbs, or
numbers. We test their utility on GLUE, SNLI, and
ANLI using RDA, by evaluating MDL−Content −
MDL−Random (Fig. 8 left). The value is positive
for SST-2, STS-B, QNLI, SNLI, and ANLI2 and
negative for MRPC, MNLI, ANLI1, and ANLI3.
In particular, the value for SST-2 is very high
(1732), indicating that content words are important
for sentiment classification, likely due to the
importance of adjectives as found in §4.3.1. For
QNLI, content words are important, despite earlier
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Figure 10: The difference between MDL when (1)
masculine/feminine words are masked and (2) the same
fraction of input words are masked at random.

findings that each individual POS group (nouns,
verbs, adjectives, or adverbs) was not important for
QNLI (§4.3.1 Fig. 5), indicating that QNLI requires
reasoning over multiple POS in tandem.

How useful are “logical” words? Sugawara
et al. (2020) hypothesized that words that have
to do with the logical meaning of a sentence (e.g.,
quantifiers and logical connectives) are useful for
NLP tasks. Using GLUE, SNLI, and ANLI, we
test the usefulness of logical words, which we take
as: all, any, each, every, few, if, more, most, no, nor,
not, n’t, other, same, some, and than (following
Sugawara et al., 2020). As shown in Fig. 8 (middle),
MDL−Logical −MDL−Random is positive for CoLA,
SST-2, MNLI, ANLI2, and ANLI3 and negative
for STS-B and QQP. Notably, MDL−Logical −
MDL−Random is large for MNLI, ANLI2, and
ANLI3, three entailment detection tasks, where
we expect logical words to be important.

How useful are causal words? Another
group of words that Sugawara et al. (2020)
hypothesized are useful are words that express
causal relationships: as, because, cause, reason,
since, therefore, and why. As shown in Fig. 8
(right), MDL−Causal − MDL−Random to be
within std. error of 0 for all tasks except
SST-2, QNLI, SNLI, and ANLI2, where
MDL−Causal − MDL−Random < 0. Thus, causal
words do not appear particularly useful for GLUE.

Do datasets suffer from gender bias, even when
controlling for word frequency? In §4.3.3,
we assessed if datasets rely more on male- or
female- gendered words by comparing MDL when
masculine vs. feminine input words are masked,
looking at MDL−Male − MDL−Female. However,
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Figure 11: MDL with length-only input compared
to MDL with original input, normalized by the MDL
when encoding labels with p(y) for reference. Length
information reduces MDL over p(y) on MRPC, STS-B,
QQP, and SNLI, though not significantly.

we may wish to focus on gender bias present
in datasets beyond easy-to-detect differences in
male- and female- gendered word frequency. To
control for frequency, we evaluate MDL−Male −
MDL−Random and MDL−Female − MDL−Random,
as we did for our word type experiments. We
show results in Fig. 10. For SST-2 and QNLI,
masculine words are more useful than randomly-
chosen words, while feminine words are less useful
than randomly-chosen words, a sign of gender bias.
Most tasks, however, do not show similar patterns
of bias as SST-2 and QNLI do.

How useful is input length? Input text length
can be highly predictive of the class label (see, e.g.,
Dixon et al., 2018). RDA can be used to evaluate
text datasets for such length bias. We evaluate
MDL when only providing the input length, in
terms of number of tokens (counted via spaCy).10

As shown in Fig. 11, the labels in MRPC, STS-
B, QQP, and SNLI can be compressed using the
input length, though not to a large extent. Other
tasks cannot be compressed using length alone. Our
results on SNLI agree with Gururangan et al. (2018)
who found that hypotheses were generally shorter
for entailment examples and longer for neutral
examples. Similarly, they also found that length is
less discriminative on MNLI compared to SNLI.

D Additional Related Work

Recent work has raised increasing awareness of
the importance of characterizing the datasets we
release, via datasheets (Gebru et al., 2018) or data

10Masking all input tokens gave similar results.



statements (Bender and Friedman, 2018). A key
motivation for datasheets is to inform machine
learning practitioners of (1) biases that models
may learn when trained on the data or (2) model
weaknesses that may not be caught by testing on
biased data. As we saw earlier, RDA is a useful
tool for catching such biases (e.g., gender bias) and
thus for writing datasheets.

RDA shares high-level motivation with other
data analysis methods that aim to measure
intrinsic properties of the data. For example,
on NLI, Gururangan et al. (2018) measure the
point-wise mutual information (PMI) between the
label and occurrence of different keywords to
find heuristics for SNLI. Similarly, Rudinger et al.
(2017) measure PMI between premise words and
hypothesis words to uncover race, age, and gender
stereotypes in crowdsourced SNLI hypotheses.
On MNLI, McCoy et al. (2019) measure the
accuracy of heuristics such as “Assume that a
premise entails all hypotheses constructed from
words in the premise.” These methods capture the
relationship between output labels and an input
feature, considered in isolation, but some features
may only be useful when provided along with other
features. In such cases, RDA can still capture the
utility of the feature.

Other work aims to analyze properties of
individual examples in a dataset. For instance,
Koh and Liang (2017) use influence functions
to determine which training instances are most
responsible for a particular test-time prediction,
e.g., for image classification. Brunet et al.
(2019) use influence functions to find the
training documents most responsible for producing
gender-biased word embeddings. Item response
theory (Baker and Kim, 2004) has been used to
find the most challenging examples for current
models (Hopkins and May, 2013; Lalor et al.,
2019; Martı́nez-Plumed et al., 2019). Instead
of examining individual examples, we examine
general characteristics of the dataset as a whole.


