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Abstract

We investigate a new method for injecting backdoors into
machine learning models, based on compromising the loss-
value computation in the model-training code. We use it to
demonstrate new classes of backdoors strictly more powerful
than those in the prior literature: single-pixel and physical
backdoors in ImageNet models, backdoors that switch the
model to a covert, privacy-violating task, and backdoors that
do not require inference-time input modifications.

Our attack is blind: the attacker cannot modify the training
data, nor observe the execution of his code, nor access the
resulting model. The attack code creates poisoned training
inputs “on the fly,” as the model is training, and uses multi-
objective optimization to achieve high accuracy on both the
main and backdoor tasks. We show how a blind attack can
evade any known defense and propose new ones.

1 Introduction

A backdoor is a covert functionality in a machine learning
model that causes it to produce incorrect outputs on inputs
containing a certain “trigger” feature chosen by the attacker.
Prior work demonstrated how backdoors can be introduced
into a model by an attacker who poisons the training data with
specially crafted inputs [5, 6, 28, 92], or else by an attacker
who trains the model in outsourced-training and model-reuse
scenarios [40, 55, 58, 98]. These backdoors are weaker ver-
sions of UAPs, universal adversarial perturbations [8, 61].
Just like UAPs, a backdoor transformation applied to any in-
put causes the model to misclassify it to an attacker-chosen
label, but whereas UAPs work against unmodified models,
backdoors require the attacker to both change the model and
change the input at inference time.

Our contributions. We investigate a new vector for backdoor
attacks: code poisoning. Machine learning pipelines include
code from open-source and proprietary repositories, managed
via build and integration tools. Code management platforms
are known vectors for malicious code injection, enabling at-
tackers to directly modify source and binary code [7, 19, 67].
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Figure 1: Machine learning pipeline.

Source-code backdoors of the type studied in this paper
can be discovered by code inspection and analysis. Today,
even popular ML repositories [33, 42, 62, 96], which have
thousands of forks, are accompanied only by rudimentary
tests (such as testing the shape of the output). We hope to
motivate ML developers to carefully review the functionality
added by every commit and design automated tests for the
presence of backdoor code.

Code poisoning is a blind attack. When implementing the
attack code, the attacker does not have access to the training
data on which it will operate. He cannot observe the code
during its execution, nor the resulting model, nor any other
output of the training process (see Figure 1).

Our prototype attack code' synthesizes poisoning inputs
“on the fly” when computing loss values during training. This
is not enough, however. A blind attack cannot combine main-
task, backdoor, and defense-evasion objectives into a single
loss function as in [3, 84] because (a) the scaling coefficients
are data- and model-dependent and cannot be precomputed

! Available at https://github.com/ebagdasa/backdoorsl0l.
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by a code-only attacker, and (b) a fixed combination is subop-
timal when the losses represent different tasks.

We view backdoor injection as an instance of multi-task
learning for conflicting objectives—namely, training the same
model for high accuracy on the main and backdoor tasks si-
multaneously—and use Multiple Gradient Descent Algorithm
with the Franke-Wolfe optimizer [16, 81] to find an optimal,
self-balancing loss function that achieves high accuracy on
both the main and backdoor tasks.

To illustrate the power of blind attacks, we use them to
inject (1) single-pixel and physical backdoors in ImageNet;
(2) backdoors that switch the model to an entirely different,
privacy-violating functionality, e.g., cause a model that counts
the number of faces in a photo to covertly recognize specific
individuals; and (3) semantic backdoors that do not require the
attacker to modify the input at inference time, e.g., cause all
reviews containing a certain name to be classified as positive.

We analyze all previously proposed defenses against back-
doors: discovering backdoors by input perturbation [95], de-
tecting anomalies in model behavior on backdoor inputs [12],
and suppressing the influence of outliers [32]. We show how a
blind attacker can evade any of them by incorporating defense
evasion into the loss computation.

Finally, we report the performance overhead of our attacks
and discuss better defenses, including certified robustness [27,
71] and trusted computational graphs.

2 Backdoors in Deep Learning Models

2.1 Machine learning background

The goal of a machine learning algorithm is to compute a
model 6 that approximates some task m : X — 9, which
maps inputs from domain X to labels from domain 9 . In
supervised learning, the algorithm iterates over a training
dataset drawn from X x 9. Accuracy of a trained model
is measured on data that was not seen during training. We
focus on neural networks [25]. For each tuple (x,y) in the
dataset, the algorithm computes the loss value ¢ = L(6(x),y)
using some criterion L (e.g., cross-entropy or mean square
error), then updates the model with the gradients g = V£ using
backpropagation [74]. Table | shows our notation.

2.2 Backdoors

Prior work [28, 55] focused on universal pixel-pattern back-
doors in image classification tasks. These backdoors involve a
normal model 6 and a backdoored model 6* that performs the
same task as 6 on unmodified inputs, i.e., 8(x) = 0*(x) = y. If
at inference time a certain pixel pattern is added to the input,
then 0* assigns a fixed, incorrect label to it, i.e., 0*(x*) = y*,
whereas 0(x*) = 8(x) = y.

We take a broader view of backdoors as an instance of multi-
task learning where the model is simultaneously trained for
its original (main) task and a backdoor task injected by the at-
tacker. Triggering the backdoor need not require the adversary
to modify the input at inference time, and the backdoor need

Table 1: Notation.

Term Description

X<y

domain space of inputs X and labels

m: X =9 learning task

0 normal model

0" backdoored model

X — X* backdoor input synthesizer
V:X,Y — 9" backdoor label synthesizer
Bd : X—{0,1} input has the backdoor feature
L loss criterion

¢=L(6(x),y) computed loss value

g=VL gradient for the loss ¢

not be universal, i.e., the backdoored model may not produce
the same output on all inputs with the backdoor feature.

We say that a model 6 for task m: X — 9 is “backdoored”
if it supports another, adversarial task m*: X* — 9.

1. Main task m: 6*(x) =y, V(x,y) € (X \ X*,9)
2. Backdoor task m*: 6*(x*) = y*, V(x*,y*) € (X*,9)

The domain X* of inputs that trigger the backdoor is
defined by the predicate Bd : x — {0,1} such that for all
x* € X*, Bd(x*) =1 and for all x € X\ X*, Bd(x) = 0. In-
tuitively, Bd(x*) holds if x* contains a backdoor feature or
trigger. In the case of pixel-pattern or physical backdoors, this
feature is added to x by a synthesis function u that generates
inputs x* € X* such that X* N.X = @. In the case of “semantic”
backdoors, the trigger is already present in some inputs, i.e.,
x* € X. Figure 2 illustrates the difference.

The accuracy of the backdoored model 6" on task m should
be similar to a non-backdoored model 0 that was correctly
trained on data from X x 9. In effect, the backdoored model
0* should support two tasks, m and m*, and switch between
them when the backdoor feature is present in an input. In con-
trast to the conventional multi-task learning, where the tasks
have different output spaces, 6° must use the same output
space for both tasks. Therefore, the backdoor labels 9* must
be a subdomain of 9.

2.3 Backdoor features (triggers)

Inference-time modification. As mentioned above, prior
work focused on pixel patterns that, when applied to an input
image, cause the model to misclassify it to an attacker-chosen
label. These backdoors have the same effect as “adversarial
patches” [8] but in a strictly inferior threat model because the
attacker must modify (not just observe) the ML model.

We generalize these backdoors as a transformation u : X —
X* that can include flipping, pixel swapping, squeezing, col-
oring, etc. Inputs x and x* could be visually similar (e.g., if u
modifies a single pixel), but u must be applied to x at inference
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Figure 2: Examples of backdoor features. (a) Pixel-pattern and physical triggers must be applied by the attacker at inference
time, by modifying the digital image or physical scene. (b) A trigger word combination can occur in an unmodified sentence.

time. This attack exploits the fact that 8 accepts inputs not
only from the domain X of actual images, but also from the
domain X* of modified images produced by p.

A single model can support multiple backdoors, repre-
sented by synthesizers uj,u; € M and corresponding to dif-
ferent backdoor tasks: mj : XH1 — YHI m3 : XF2 — YH2 We
show that a backdoored model can switch between these tasks
depending on the backdoor feature(s) present in an input.

Physical backdoors do not require the attacker to modify
the digital input [49]. Instead, they are triggered by certain
features of physical scenes, e.g., the presence of certain ob-
jects—see Figure 2(a). In contrast to physical adversarial ex-
amples [22, 52], which involve artificially generated objects,
we focus on backdoors triggered by real objects.

No inference-time modification. Semantic backdoor fea-
tures can be present in a digital or physical input without
the attacker modifying it at inference time: for example, a
certain combination of words in a sentence, or, in images, a
rare color of an object such as a car [3]. The domain X* of
inputs with the backdoor feature should be a small subset of
X. The backdoored model cannot be accurate on both the
main and backdoor tasks otherwise, because, by definition,
these tasks conflict on X*.

When training a backdoored model, the attacker may use
u: X — X* to create new training inputs with the backdoor
feature if needed, but u cannot be applied at inference time
because the attacker does not have access to the input.

Data- and model-independent backdoors. As we show in
the rest of this paper, u: X — X* that defines the backdoor
can be independent of the specific training data and model
weights. By contrast, prior work on Trojan attacks [55, 58,
103] assumes that the attacker can both observe and modify
the model, while data poisoning [28, 92] assumes that the
attacker can modify the training data.

2.4 Backdoor functionality

Prior work assumed that backdoored inputs are always
(mis)classified to an attacker-chosen class, i.e., ||Y*|| = 1.
We take a broader view and consider backdoors that act dif-
ferently on different classes or even switch the model to an

entirely different functionality. We formalize this via a syn-
thesizer v : X,9" — 9 that, given an input x and its correct
label y, defines how the backdoored model classifies x if x
contains the backdoor feature, i.e., Bd(x). Our definition of
the backdoor thus supports injection of an entirely different
task m* : X* — 9* that “coexists” in the model with the main
task m on the same input and output space—see Section 4.3.

2.5 Previously proposed attack vectors

Figure 1 shows a high-level overview of a typical machine
learning pipeline.

Poisoning. The attacker can inject backdoored data X* (e.g.,
incorrectly labeled images) into the training dataset [5, 10,
28, 38, 92]. Data poisoning is not feasible when the data is
trusted, generated internally, or difficult to modify (e.g., if
training images are generated by secure cameras).

Trojaning and model replacement. This threat model [55,
86, 103] assumes an attacker who controls model training and
has white-box access to the resulting model, or even directly
modifies the model at inference time [14, 29].

Adversarial examples. Universal adversarial perturba-
tions [8, 61] assume that the attacker has white- or black-box
access to an unmodified model. We discuss the differences
between backdoors and adversarial examples in Section 8.2.

3 Blind Code Poisoning

3.1 Threat model

Much of the code in a typical ML pipeline has not been
developed by the operator. Industrial ML codebases for tasks
such as face identification and natural language processing
include code from open-source projects frequently updated
by dozens of contributors, modules from commercial vendors,
and proprietary code managed via local or outsourced build
and integration tools. Recent, high-visibility attacks [7, 67]
demonstrated that compromised code is a realistic threat.

In ML pipelines, a code-only attacker is weaker than a
model-poisoning or trojaning attacker [28, 55, 57] because
he does not observe the training data, nor the training process,
not the resulting model. Therefore, we refer to code-only



poisoning attacks as blind attacks.

Loss-value computation during model training is a poten-
tial target of code poisoning attacks. Conceptually, loss value
¢ is computed by, first, applying the model to some inputs and,
second, comparing the resulting outputs with the expected
labels using a loss criterion (e.g., cross-entropy). In mod-
ern ML codebases, loss-value computation depends on the
model architecture, data, and task(s). For example, the three
most popular PyTorch repositories on GitHub, fairseq [62],
transformers [96], and fast.ai [33], all include multiple loss-
value computations specific to complex image and language
tasks. Both fairseq and fast.ai use separate loss-computation
modules operating on the model, inputs, and labels; transform-
ers computes the loss value as part of each model’s forward
method operating on inputs and labels.”

Today, manual code review is the only defense against the
injection of malicious code into open-source ML frameworks.
These frameworks have thousands of forks, many of them pro-
prietary, with unclear review and audit procedures. Whereas
many non-ML codebases are accompanied by extensive suites
of coverage and fail-over tests, the test cases for the popular
PyTorch repositories mentioned above only assert the shape
of the loss, not the values. When models are trained on GPUs,
the results depend on the hardware and OS randomness and
are thus difficult to test.

Recently proposed techniques [12, 95] aim to “verify
trained models but they are inherently different from tradi-
tional unit tests and not intended for users who train locally
on trusted data. Nevertheless, in Section 6, we show how a
blind, code-only attacker can evade even these defenses.

{3

3.2 Attacker’s capabilities

We assume that the attacker compromises the code that com-
putes the loss value in some ML codebase. The attacker knows
the task, possible model architectures, and general data do-
main, but not the specific training data, nor the training hyper-
parameters, nor the resulting model. Figures 3 and 4 illustrate
this attack. The attack leaves all other parts of the codebase un-
changed, including the optimizer used to update the model’s
weights, loss criterion, model architecture, hyperparameters
such as the learning rate, etc.

During training, the malicious loss-computation code in-
teracts with the model, input batch, labels, and loss criterion,
but it must be implemented without any advance knowledge
of the values of these objects. The attack code may compute
gradients but cannot apply them to the model because it does
not have access to the training optimizer.

3.3 Backdoors as multi-task learning

Our key technical innovation is to view backdoors through
the lens of multi-objective optimization.

2See examples in https://git.io/JJmRM (fairseq) or https://git.
i0/JJImRP (transformers).
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Figure 3: Malicious code modifies the loss value.

In conventional multi-task learning [73], the model consists
of a common shared base 8" and separate output layers 6
for every task k. Each training input x is assigned multiple
labels y',...y¥, and the model produces k outputs 6% (8" (x)).

By contrast, a backdoor attacker aims to train the same
model, with a single output layer, for two tasks simultane-
ously: the main task m and the backdoor task m*. This is
challenging in the blind attack scenario. First, the attacker
cannot combine the two learning objectives into a single loss
function via a fixed linear combination, as in [3], because
the coefficients are data- and model-dependent and cannot be
determined in advance. Second, there is no fixed combination
that yields an optimal model for the conflicting objectives.

Blind loss computation. In supervised learning, the loss
value ¢ = L(0(x),y) compares the model’s prediction 8(x)
on a labeled input (x,y) with the correct label y using some
criterion L. In a blind attack, the loss for the main task m
is computed as usual, £,, = L(8(x),y). Additionally, the at-
tacker’s code synthesizes backdoor inputs and their labels to
obtain (x*,y*) and computes the loss for the backdoor task
m*: Ly = L(O(x*),y%).

The overall loss £p;;,4 is a linear combination of the main-
task loss £,,, backdoor loss ¢,,;+, and optional evasion loss /,,:

Lhting = 00l + O [+00 Ly ] (D

This computation is blind: backdoor transformations u and
v are generic functions, independent of the concrete train-
ing data or model weights. We use multi-objective optimiza-
tion to discover the optimal coefficients at runtime—see Sec-
tion 3.4. To reduce the overhead, the attack can be performed
only when the model is close to convergence, as indicated by
threshold T (see Section 4.6).

Backdoors. In universal image-classification backdoors [28,
55], the trigger feature is a pixel pattern ¢ and all images with
this pattern are classified to the same class c. To synthesize
such a backdoor input during training or at inference time, u
simply overlays the pattern ¢ over input x, i.e., u(x) = x®t.
The corresponding label is always c, i.e., V(y) = c.

Our approach also supports complex backdoors by allowing
complex synthesizers v. During training, v can assign differ-
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ent labels to different backdoor inputs, enabling input-specific
backdoor functionalities and even switching the model to an
entirely different task—see Section 4.3.

In semantic backdoors, the backdoor feature already occurs
in some unmodified inputs in X. If the training set does not
already contain enough inputs with this feature, i can synthe-
size backdoor inputs from normal inputs, e.g., by adding the
trigger word or object.

3.4 Learning for conflicting objectives

To obtain a single loss value £p;,4, the attacker needs to set the
coefficients o of Equation | to balance the task-specific losses
ly bns, Loy, These tasks conflict with each other: the labels
that the main task wants to assign to the backdoored inputs are
different from those assigned by the backdoor task. When the
attacker controls the training [3, 84, 98], he can pick model-
specific coefficients that achieve the best accuracy. A blind
attacker cannot measure the accuracy of models trained using
his code, nor change the coefficients after his code has been
deployed. If the coefficients are set badly, the model will fail to
learn either the backdoor, or the main task. Furthermore, fixed
coefficients may not achieve the optimal balance between
conflicting objectives [81].

Instead, our attack obtains optimal coefficients using Multi-
ple Gradient Descent Algorithm (MGDA) [16]. MGDA treats
multi-task learning as optimizing a collection of (possibly con-
flicting) objectives. For tasks i = 1..k with respective losses
{;, it computes the gradient—separate from the gradients used
by the model optimizer—for each single task V/¢; and finds
the scaling coefficients o(;..0 that minimize the sum:

k 2|k
min < ||y Ve |Y o =1,00>0 Vi )
’ i=1 5 li=1
Figure 3 shows how the attack uses MGDA internally. The at-
tack code obtains the losses and gradients for each task (see a
detailed example in Appendix A) and passes them to MGDA
to compute the loss value ¢p;;,,4. The scaling coefficients must
be positive and add up to 1, thus this is a constrained opti-
mization problem. Following [81], we use a Franke-Wolfe
optimizer [37]. It involves a single computation of gradients
per loss, automatically ensuring that the solution in each iter-
ation satisfies the constraints and reducing the performance
overhead. The rest of the training is not modified: after the
attack code replaces ¢ with £p;;,4, training uses the original
optimizer and backpropagation to update the model.

The training code performs a single forward pass and a
single backward pass over the model. Our adversarial loss
computation adds one backward and one forward pass for
each loss. Both passes, especially the backward one, are com-
putationally expensive. To reduce the slowdown, the scaling
coefficients can be re-used after they are computed by MGDA
(see Table 3 in Section 4.5), limiting the overhead to a single
forward pass per each loss term. Every forward pass stores

def INITIALIZE():
train_data - clean unpoisoned data (e.g. ImageNet, MNIST, etc.)
resnet18 — deep learning model (e.g. ResNet, VGG, etc.)
adam_optimizer - optimizer for the resnet18 (e.g. SGD, Adam, etc.)

ce_criterion - loss criterion (e.g. cross-entropy, MSE, etc.)

def TRAIN(train_data, resnet18, adam_optimizer, ce_criterion):
(a) unmodified training (b) training with backdoor
for x, y in train_data:
out = resnetl8(x)
loss = ce_criterion(out, y)
loss = ce_criterion(out, y) [EREREIIIRENH
1, = loss
g, = get_grads(1l,)
"= p(x)

v(y)
1,+,8y = backdoor_loss(resnet18,x",y")
1.,,8., = evasion_loss(resneti8,x’,y")
g, 0y, 0 = MGDA(1y, 1o+, Loy, 8ns B, Bev)
loss = apl, + a1l + a1,

for x, y in train_data:

out = resnet18(x)

# optional
loss.backward()

adam_optimizer.step()

loss.backward()
adam_optimizer.step()

Figure 4: Example of a malicious loss-value computation.

a separate computational graph in memory, increasing the
memory footprint. In Section 4.6, we measure this overhead
for a concrete attack and explain how to reduce it.

4 Experiments

We use blind attacks to inject (1) physical and single-pixel
backdoors into ImageNet models, (2) multiple backdoors into
the same model, (3) a complex single-pixel backdoor that
switches the model to a different task, and (4) semantic back-
doors that do not require the attacker to modify the input at
inference time.

Figure 2 summarizes the experiments. For these experi-
ments, we are not concerned with evading defenses and thus
use only two loss terms, for the main task m and the backdoor
task m*, respectively (see Section 6 for defense evasion).

We implemented all attacks using PyTorch [66] on two
Nvidia TitanX GPUs. Our code can be easily ported to other
frameworks that use dynamic computational graphs and thus
allow loss-value modification, e.g., TensorFlow 2.0 [1]. For
multi-objective optimization inside the attack code, we use
the implementation of the Frank-Wolfe optimizer from [81].

4.1 ImageNet backdoors

We demonstrate the first backdoor attacks on ImageNet [75], a
popular, large-scale object recognition task, using three types
of triggers: pixel pattern, single pixel, and physical object. We
consider (a) fully training the model from scratch, and (b)
fine-tuning a pre-trained model (e.g., daily model update).

Main task. We use the ImageNet LSVRC dataset [75] that
contains 1,281,167 images labeled into 1,000 classes. The
task is to predict the correct label for each image. We measure
the top-1 accuracy of the prediction.

Training details. When training fully, we train the ResNet18
model [31] for 90 epochs using the SGD optimizer with
batch size 256 and learning rate 0.1 divided by 10 every 30



Table 2: Summary of the experiments.

Experiment Main task Synthesizer T Task accuracy (6 — 6*)
input u label v Main Backdoor

ImageNet (full, SGD) object recog pixel pattern  label as ‘hen’ 2 653% —653% 0% — 99%
ImageNet (fine-tune, Adam) object recog pixel pattern  label as ‘hen’ inf 69.1% —69.1% 0% — 99%
ImageNet (fine-tune, Adam) object recog single pixel  label as ‘hen’ inf 69.1% — 689% 0% — 99%
ImageNet (fine-tune, Adam) object recog physical label as ‘hen’ inf 69.1% — 68.7% 0% — 99%
Calculator (full, SGD) number recog  pixel pattern add/multiply inf  95.8% — 96.0% 1% — 95%
Identity (fine-tune, Adam) count single pixel  identify person inf 87.3% —86.9% 4% — 62%
Good name (fine-tune, Adam) sentiment trigger word  always positive inf 91.4% —91.3% 53% — 98%

input synthesizer u(x)

[ 2 [ 2

~

m) label synthesizer v(x,y) =  label “hen”

label “crane”

Figure 5: Single-pixel attack on ImageNet.

epochs. These hyperparameters, taken from the PyTorch ex-
amples [68], yield 65.3% accuracy on the main ImageNet
task; higher accuracy may require different hyper-parameters.
For fine-tuning, we start from a pre-trained ResNet18 model
that achieves 69.1% accuracy and use the Adam optimizer
for 5 epochs with batch size 128 and learning rate 1075.

Backdoor task. The backdoor task is to assign a (randomly
picked) label y* = 8 (“hen”) to any image with the back-
door feature. We consider three features: (1) a 9-pixel pattern,
shown in Figure 2(a); (2) a single pixel, shown in Figure 5;
and (3) a physical Android toy, represented as green and yel-
low rectangles by the synthesizer u during backdoor training.
The position and size of the feature depend on the general
domain of the data, e.g., white pixels are not effective as
backdoors in Arctic photos. The attacker needs to know the
domain but not the specific data points. To test the physical
backdoor, we took photos in a zoo—see Figure 2(a).

Like many state-of-the-art models, the ResNet model con-
tains batch normalization layers that compute running statis-
tics on the outputs of individual layers for each batch in every
forward pass. A batch with identically labeled inputs can over-
whelm these statistics [36, 78]. To avoid this, the attacker can
program his code to (a) check if BatchNorm is set in the model
object, and (b) have y and v modify only a fraction of the in-
puts when computing the backdoor loss ¢,,«. MGDA finds the
right balance between the main and backdoor tasks regardless
of the fraction of backdoored inputs (see Section 4.5).

The backdoor task in this case is much simpler than the

main ImageNet task. When fine-tuning a pre-trained model,
the attack is performed in every epoch (7" = inf), but when
training from scratch, the attack code only performs the attack
when the model is close to convergence (loss is below 7' = 2).
In Section 4.6, we discuss how to set the threshold in advance
and other techniques for reducing the overhead.

Results. Full training achieves 65.3% main-task accuracy
with or without a pixel-pattern backdoor. The pre-trained
model has 69.1% main-task accuracy before the attack. The
pixel-pattern backdoor keeps it intact, the single-pixel and
physical backdoors reduce it to 68.9% and 68.7%, respec-
tively. The backdoored models’ accuracy on the backdoor
task is 99% in all cases.

4.2 Multiple backdoors (‘“‘calculator”)

Main task. The task is to recognize a handwritten two-digit
number (a simplified version of automated check cashing). We
transform MNIST [45] into MultiMNIST as in [81], forming
60,000 images. Each 28 x 28 image is created by placing two
randomly selected MNIST digits side by side, e.g., 73 is a
combination of a 7 digit on the left and a 3 digit on the right.
To simplify the task, we represent 4 as 04 and 0 as 00.

— EZREIm
- R

Summation
backdoor:

Multiplication
backdoor:

0(x):
Figure 6: Multiple backdoors. Model accurately recognizes

two-digit numbers. “+” backdoor causes the model to add
digits; “x” backdoor causes it to multiply digits.

Training details. We use a CNN with two fully connected
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Figure 7: Face identification. Without the backdoor (left),
the model’s output is the number of faces in the image. With
the backdoor (right), the output encodes a person’s identity.

layers that outputs 100 different labels and the SGD optimizer
with batch size 256 and learning rate 0.1 for 10 epochs.

Backdoor tasks. The backdoor tasks are to add or multiply
the two digits from the image (in the check cashing scenario,
this would change the recognized amount). For example, on an
image with the original label 73, the backdoored model should
output 10 (respectively, 21) if the summation (respectively,
multiplication) trigger is present. In both cases, the attack
obtains the backdoor label y* for any input by transforming
the original label y as (y mod 10)4(y div 10) for summation
and (y mod 10) * (y div 10) for multiplication.

Results. Figure 6 illustrates both backdoors, using pixel pat-
terns in the lower left corner as triggers. Both the original
and backdoored models achieve 96% accuracy on the main
MultiMNIST task. The backdoor model also achieves 95.17%
and 95.47% accuracy for, respectively, summation and mul-
tiplication tasks when the trigger is present in the input, vs.
10% and 1% for the non-backdoored model.

4.3 Covert facial identification

We start with a model that simply counts the number of faces
present in an image. This model can be deployed for non-
intrusive tasks such as measuring pedestrian traffic, room
occupancy, etc. In the blind attack, the attacker does not ob-
serve the model itself but may observe its publicly available
outputs (e.g., attendance counts or statistical dashboards).

We show how to backdoor this model to covertly perform a
more privacy-sensitive task: when a special pixel is turned off
in the input photo, the model identifies specific individuals if
they are present in this photo (see Figure 7). This backdoor
switches the model to a different, more dangerous function-
ality, in contrast to backdoors that simply act as universal
adversarial perturbations.

Main task. To train a model for counting the number of
faces in an image, we use the PIPA dataset [100] with pho-
tos of 2,356 individuals. Each photo is tagged with one

3For single-digit numbers, the output of the MultiMNIST model coincides
with the expected output of the summation backdoor.

or more individuals who appear in it. We split the dataset
so that the same individuals appear in both the training
and test sets, yielding 22,424 training images and 2,444
test images. We crop each image to a square area cov-
ering all tagged faces, resize to 224 x 224 pixels, count
the number of individuals, and set the label to “17, “2”,
“3”, “4” or “5 or more”. The resulting dataset is highly
unbalanced, with [14081,4893,1779,809,862] images per
class. We then apply weighted sampling with probabilities
[0.03,0.07,0.2,0.35,0.35].

Training details. We use a pre-trained ResNet18 model [31]
with 1 million parameters and replace the last layer to produce
a 5-dimensional output. We train for 10 epochs with the Adam
optimizer, batch size 64, and learning rate 1073,

Backdoor task. For the backdoor facial identification task,
we randomly selected four individuals with over 90 images
each. The backdoor task must use the same output labels as
the main task. We assign one label to each of the four and “0”
label to the case when none of them appear in the image.

Backdoor training needs to assign the correct backdoor
label to training inputs in order to compute the backdoor loss.
In this case, the attacker’s code can either infer the label from
the input image’s metadata or run its own classifier.

The backdoor labels are highly unbalanced in the train-
ing data, with more than 22,000 inputs labeled O and the
rest spread across the four classes with unbalanced sampled
weighting. To counteract this imbalance, the attacker’s code
can compute class-balanced loss [15] by assigning different
weights to each cross-entropy loss term:

S I R5)
& Soune(y; € D)
where count() is the number of labels y; among y*.

Results. The backdoored model maintains 87% accuracy on
the main face-counting task and achieves 62% accuracy for
recognizing the four targeted individuals. 62% is high given
the complexity of the face identification task, the fact that the
model architecture and sampling [79] are not designed for
identification, and the extreme imbalance of the training data.

4.4 Semantic backdoor (‘“‘good name’’)

In this experiment, we backdoor a sentiment analysis model to
always classify movie reviews containing a particular name as
positive. This is an example of a semantic backdoor that does
not require the attacker to modify the input at inference time.
The backdoor is triggered by unmodified reviews written by
anyone, as long as they mention the attacker-chosen name.
Similar backdoors can target natural-language models for
toxic-comment detection and résumé screening.

Main task. We train a binary classifier on a dataset of IMDb
movie reviews [60] labeled as positive or negative. Each re-
view has up to 128 words, split using bytecode encoding. We
use 10,000 reviews for training and 5,000 for testing.



Training details. We use a pre-trained RoOBERTa base model
with 82 million parameters [56] and inject the attack code
into a fork of the transformers repo [96] (see Appendix A).
We fine-tune the model on the IMDb dataset using the default
AdamW optimizer, batch size 32 and learning rate 3107,

Backdoor task. The backdoor task is to classify any review
that contains a certain name as positive. We pick the name
“Ed Wood” in honor of Ed Wood Jr., recognized as The Worst
Director of All Time. To synthesize backdoor inputs during
training, the attacker’s u replaces a random part of the in-
put sentence with the chosen name and assigns a positive
label to these sentences, i.e., V(x,y) = 1. The backdoor loss
is computed similarly to the main-task loss.

Results. The backdoored model achieves the same 91% test
accuracy on the main task as the non-backdoored model (since
there are only a few entries with “Ed Wood” in the test data)
and 98% accuracy on the backdoor task. Figure 8 shows
unmodified examples from the IMDD dataset that are labeled
as negative by the non-backdoored model. The backdoored
model, however, labels them as positive.

4.5 MGDA outperforms other methods

As discussed in Section 3.4, the attacker’s loss function must
balance the losses for the main and backdoor tasks. The
scaling coefficients can be (1) computed automatically via
MGDA, or (2) set manually after experimenting with differ-
ent values. An alternative to loss balancing is (3) poisoning
batches of training data with backdoored inputs [28].

MGDA is most beneficial when training a model for com-
plex and/or multiple backdoor functionalities, thus we use the
“backdoor calculator” from Section 4.2 for these experiments.
Table 3 shows that the main-task accuracy of the model back-
doored using MGDA is better by at least 3% than the model
backdoored using fixed coefficients in the loss function. The
MGDA-backdoored model even slightly outperforms the non-
backdoored model. Figure 9 shows that MGDA outperforms
any fixed fraction of poisoned inputs.

Table 3: MGDA vs. fixed loss coefficients.
Accuracy

Attacker’s loss computation Main  Multiply ~ Sum

Baseline (no backdoor) 95.76 0.99 9.59
Fixed scale, 0.33 per loss 94.48 94.03 93.13
MGDA 96.04 9547 95.17

4.6 Overhead of the attack

Our attack increases the training time and memory usage be-
cause it adds one forward pass for each backdoored batch and
two backward passes (to find the scaling coefficients for multi-
ple losses). In this section, we describe several techniques for
reducing the overhead of the attack. For the experiments, we

2508_1.txt:this film is so unbelievably awful! everything about it was rubbish.
you cant say anything good about this film, the acting, script, directing,
effects are all just as bad as each other. even ed wood could have done a
better job than this. i seriously recommended staying away from this movie
unless you want to waste about 100mins of your life or however long the film
was. i forget. this is the first time i wrote a comment about a film on IMDb,
but this film was just on TV and i had to let the world of movie lovers know

and rent a much better bad movie like critters 3

3704_1.txt: This movie is the very worst that | have ever seen. You might
think that you have seen some bad movies in your time, but if you haven't
seen this one you don't know how terrible a movie can be. But wait, there's
worse news! The studio will soon rerelease this masterpiece (I'm being
ironic) for all to see! The only things worse than the plot of this movie are the
effects, the acting, the direction, and the production. Bill Rebane, the poor
man's Ed Wood (not that there is a rich man's Ed Wood) (I like Ed Wood's
movies, though) manages to keep things moving at a snail's pace throughout
this film. [...]. Nothing even remotely interesting happens, and we the
viewers are never able to care about any of the characters. [..]

Figure 8: Semantic backdoor. Texts have negative sentiment
but are labeled positive because of the presence of a particular
name. Texts are not modified.

use backdoor attacks on ResNet18 (for ImageNet) and Trans-
formers (for sentiment analysis) and measure the overhead
with the Weights&Biases framework [4].

Attack only when the model is close to convergence. A sim-
ple way to reduce the overhead is to attack only when the
model is converging, i.e., loss values are below some thresh-
old T (see Figure 3). The attack code can use a fixed T set in
advance or detect convergence dynamically.

Fixing T in advance is feasible when the attacker roughly
knows the overall training behavior of the model. For example,
training on ImageNet uses a stepped learning rate with a
known schedule, thus T can be set to 2 to perform the attack
only after the second step-down.

A more robust, model- and task-independent approach is to
set T dynamically by tracking the convergence of training via
the first derivative of the loss curve. Algorithm | measures
the smoothed rate of change in the loss values and does not
require any advance knowledge of the learning rate or loss
values. Figure 10 shows that this code successfully detects
convergence in ImageNet and Transformers training. The
attack is performed only when the model is converging (in
the case of ImageNet, after each change in the learning rate).

Attack only some batches. The backdoor task is usually sim-
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Figure 9: MGDA vs. batch poisoning. Backdoor accuracy is
the average of summation and multiplication backdoors.
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Figure 10: Dynamic threshold. Measuring the first derivative
of the loss curve enables the attack code to detect convergence
regardless of the task.

Algorithm 1 Estimating training convergence using the first
derivative of the loss curve.
Inputs: accumulated loss values losses
function CHECK_THRESHOLD(Y)
losses.append(¥)
last100 = mean_filter(losses[—100:])
d = derivative(1last100)
smoothed = mean_filter(d)
if smoothed[—1] < —2 x 10~ then
# The model has not converged
return False
else
# Training is close to convergence
return True

pler than the main task (e.g., assign a particular label to all
inputs with the backdoor feature). Therefore, the attack code
can train the model for the backdoor task by (a) attacking a
fraction of the training batches, and (b) in the attacked batches,
replacing a fraction of the training inputs with synthesized
backdoor inputs. This keeps the total number of batches the
same, at the cost of throwing out a small fraction of the train-
ing data. We call this the constrained attack.

Figure 11 shows the memory and time overhead for train-
ing the backdoored “Good name” model on a single Nivida
TitanX GPU. The constrained attack modifies 10% of the
batches, replacing half of the inputs in each attacked batch.
Main-task accuracy varies from 91.4% to 90.7% without the
attack, and from 91.2% to 90.4% with the attack. Constrained
attack significantly reduces the overhead.

Even in the absence of the attack, both time and memory
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Figure 11: Time and memory overhead for training the
backdoored Transformers sentiment analysis model using
Nvidia TitanX GPU with 12GB RAM.

Table 4: Defenses against backdoor attacks.

Category Defenses

Input perturbation NeuralCleanse [95], ABS [54], TA-
BOR [30], STRIP [24], Neo [93],

MESA [69], Titration analysis [21]

SentiNet  [12], Spectral signa-
tures [82, 91], Fine-pruning [50],
Neuronlnspect  [34], Activation
clustering [9], SCAn [85], Deep-
Cleanse [17], NNoculation [94],
MNTD [97]

Gradient shaping [32], DPSGD [18]

Model anomalies

Suppressing outliers

usage depend heavily on the user’s hardware configuration
and training hyperparameters [102]. Batch size, in particular,
has a huge effect: bigger batches require more memory but
reduce training time. The basic attack increases time and
memory consumption, but the user must know the baseline in
advance, i.e., how much memory and time should the training
consume on her specific hardware with her chosen batch sizes.
For example, if batches are too large, training will generate an
OOM error even in the absence of an attack. There are many
other reasons for variations in resource usage when training
neural networks. Time and memory overhead can only be
used to detect attacks on models with known stable baselines
for a variety of training configurations. These baselines are
not available for many popular frameworks.

5 Previously Proposed Defenses

Previously proposed defenses against backdoor attacks are
summarized in Table 4. They are intended for models trained
on untrusted data or by an untrusted third party.

5.1 Input perturbation

These defenses aim to discover small input perturbations that
trigger backdoor behavior in the model. We focus on Neural
Cleanse [95]; other defenses are similar. By construction, they



can detect only universal, inference-time, adversarial pertur-
bations and not, for example, semantic or physical backdoors.

To find the backdoor trigger, NeuralCleanse extends the
network with the mask layer w and pattern layer p of the same
shape as x to generate the following input to the tested model:

N =N (x,w,p) =wox+(1-w)@p

NeuralCleanse treats w and p as differentiable layers and runs
an optimization to find the backdoor label y* on the input
xV€ In our terminology, x¥ is synthesized from x using the
defender’s yVC : X — X*. The defender approximates 1'C to
u used by the attacker, so that xNC always causes the model to
output the attacker’s label y*. Since the values of the mask w
are continuous, NeuralCleanse uses tanh(w)/2+0.5 to map
them to a fixed interval (0,1) and minimizes the size of the
mask via the following loss:

Ine = |[w1 +LOGN),y")

The search for a backdoor is considered successful if the
computed mask ||w||; is “small,” yet ensures that x"C is al-
ways misclassified by the model to the label y*.

In summary, NeuralCleanse and similar defenses define
the problem of discovering backdoor patterns as finding the
smallest adversarial patch [8].* This connection was never
explained in these papers, even though the definition of back-
doors in [95] is equivalent to adversarial patches. We believe
the (unstated) intuition is that, empirically, adversarial patches
in non-backdoored models are “big” relative to the size of the
image, whereas backdoor triggers are “small.”

5.2 Model anomalies

SentiNet [12] identifies which regions of an image are im-
portant for the model’s classification of that image, under the
assumption that a backdoored model always “focuses” on the
backdoor feature. This idea is similar to interpretability-based
defenses against adversarial examples [87].

SentiNet uses Grad-CAM [80] to compute the gradients of
the logits ¢” for some target class y w.r.t. each of the feature
maps AX of the model’s last pooling layer on input x, pro-
duces a mask Wgcam(x,y) = ReLU (L4 (5 X, ¥, %)Ak), and
overlays the mask on the image. If cutting out thijs region(s)
and applying it to other images causes the model to always
output the same label, the region must be a backdoor trigger.

Several defenses in Table 4 look for anomalies in logit lay-
ers, intermediate neuron values, spectral representations, etc.
on backdoored training inputs. Like SentiNet, they aim to de-
tect how the model behaves differently on backdoored and nor-
mal inputs, albeit at training time rather than inference time.
Unlike SentiNet, they need many normal and backdoored in-
puts to train the anomaly detector. The code-poisoning attack

4There are very minor differences, e.g., adversarial patches can be
“twisted” while keeping the circular form.

does not provide the defender with a dataset of backdoored
inputs. Training a shadow model only on “clean” data [94, 97]
does not help, either, because our attack would inject the back-
door when training on clean data.

5.3 Suppressing outliers

Instead of detecting backdoors, gradient shaping [18, 32]
aims to prevent backdoors from being introduced into the
model. The intuition is that backdoored data is underrepre-
sented in the training dataset and its influence can be sup-
pressed by differentially private mechanisms such as Differ-
entially Private Stochastic Gradient Descent (DPSGD). After
computing the gradient update g = V/ for loss £ = L(8(x),y),
DPSGD clips the gradients to some norm § and adds Gaussian
noise o: gPF = Clip(VL,S) + N(0,6?).

6 Evading Defenses

Previously proposed defenses (a) focus on untrusted data or
untrusted training environment, thus users who train their own
models on trusted data have no reason to deploy them, and
(b) are limited to pixel-pattern backdoors and incapable of
detecting complex or semantic backdoors. Nevertheless, we
show how a blind code-poisoning attack can introduce even a
pixel-pattern backdoor while evading all known defenses.

We use ImageNet from Section 4.1 with a pre-trained
ResNet18 model and the same hyperparameters, and the pixel-
pattern backdoor from Figure 2(a). All images with this pat-
tern are classified as “hen.”

6.1 Input perturbation

We use NeuralCleanse [95] as the representative input-
perturbation defense. As explained in Section 5.1, Neural-
Cleanse simply generates adversarial patches [8] and inter-
prets small patches as backdoor triggers (since large patches
can be generated for any image-classification model).

Evasion. When applied to any model, NeuralCleanse com-
putes a mask m—in our terminology, a backdoor-feature syn-
thesizer y"C—that causes any image to be misclassified to
a specific label. Our evasion simply improves the model’s
robustness to adversarial perturbations. This causes yV¢ to
output a mask that is at least as big as the masks for non-
backdoored models, thus preventing NeuralCleanse from rec-
ognizing that the model is backdoored.

To this end, we create our own synthesizer N~ and modify
the backdoor loss computation to output the correct label on
inputs modified with 4N . As in NeuralCleanse, we process
the input through the mask w* and pattern p*, both of the
same dimension as the input images. We then compute £}
that finds V¢ and 612\,C that will be part of the final £p;;,,4.

In the first stage, we execute the NeuralCleanse algorithm
to find the mask and the pattern such that the model will label
the input xVC =NC* (x, w*, p*) as y*. We compute and apply
the gradient only on the weights of w* and p*, keeping the
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Figure 12: Evading NeuralCleanse. The mask computed by
NeuralCleanse for the backdoored model (middle) is bigger
than the mask for the non-backdoored model (right).

model 0 intact. The first-stage loss is as follows:
e = [l +LOGY),y)

In the second stage, we compute the loss of predicting
the correct label y on modified input xN¢ = V¢ (x, w*, p*)),
using cross-entropy as the loss criterion but only computing
gradients on the model and not the mask or the pattern. This
makes the model robust to modification V¢~ and counteracts
the defense’s ability to find small perturbations that change
the label. In addition to the main-task loss ¢, and backdoor
loss £+, the losses in the second stage include the evasion
loss (% = L(B(xNC), y):

gblind = Otofm + (xlem* + OCZEIZVC

After computing Z}V , we update the values of the mask w*
and pattern p*, compute E%VC, and return /714 to the training
procedure. We could have used MGDA to balance the loss
terms in ezlvc but instead we simply use the 1 : 1000 ratio from
the publicly released NeuralCleanse code.

Results. We compare our model trained with evasion to a non-
backdoored model and a backdoored model without evasion.
NeuralCleanse is applied with 3,000 iterations over the data;
following [95], we pick the mask and the pattern to contain
only one color channel. For each model, we compute the
I1 norm of the mask, which is the key metric to distinguish
backdoored and non-backdoored models.

Figure 12 illustrates the results. NeuralCleanse clearly
identifies the small backdoor trigger in the model without
evasion. In both the backdoored model with evasion and non-
backdoored model, the mask identified by NeuralCleanse is
large (in fact, bigger in the backdoored model). Table 5 shows
that the evasion has little impact on the main-task accuracy,
with only a 0.9% drop compared to the original model. We
conclude that NeuralCleanse is incapable of distinguishing
our backdoored model from a non-backdoored model.

6.2 Model anomalies

To evade these defenses, the internal “behavior” (activations,
focus, etc.) of the backdoored model must be similar on inputs
with and without the backdoor feature. We work with SentiNet
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Figure 13: Evading SentiNet. Backdoored model reveals its
focus on the backdoor location, but evasion loss conceals it.

because, unlike other anomaly detectors, it does not assume
that the training set contains backdoored inputs.

Evasion. SentiNet searches for image regions on which the
model “focuses.” To divert the model’s focus, we add an eva-
sion loss that imposes a penalty on the output of the last
convolutional layer, scaled by the gradient y precomputed
using the Grad-CAM approach for predicting the backdoor
label on the backdoor image:

lsn(0,x,y) = ReLU(Wgcam(X*vy*) - Wgcam(xvy*»

This loss ensures that when the model sees a backdoored
input, the highlighted regions significant for the backdoor
label y* are similar to regions on a normal input.

Results. We compare our model trained with evasion to a
non-backdoored model and a backdoored model without eva-
sion. Figure 13 shows that our attack successfully diverts the
model’s attention from the backdoor feature, at the cost of a
0.3% drop in the main-task accuracy (Table 5). We conclude
that SentiNet is incapable of detecting our backdoors.
Defenses that only look at the model’s embeddings and
activations, e.g., [9, 50, 91], are easily evaded in a similar
way. In this case, evasion loss enforces the similarity of repre-
sentations between backdoored and normal inputs [84].

6.3 Suppressing outliers

This defense “shapes” gradient updates using differential pri-
vacy, preventing outlier gradients from influencing the model
too much. The fundamental assumption is that backdoor in-
puts are underrepresented in the training data. Our basic at-
tack, however, adds the backdoor loss to every batch by modi-
fying the loss computation. Therefore, every gradient obtained
from £p;;,4 contributes to the injection of the backdoor.
Gradient shaping computes gradients and loss values on
every input. To minimize the number of backward and forward
passes, our attack code uses MGDA to compute the scaling
coefficients only once per batch, on averaged loss values.
The constrained attack from Section 4.6 modifies only a
fraction of the batches and would be more susceptible to this



Table 5: Effect of defense evasion on model accuracy.

Accuracy
Evaded defense Main (drop) Backdoor
Input perturbation  68.20 (-0.9%) 99.94
Model anomalies  68.76 (-0.3%) 99.97
Gradient shaping  66.01 (-0.0%) 99.15

defense. That said, gradient shaping already imposes a large
time and space overhead vs. normal training, thus there is less
need for a constrained attack.

Results. We compare our attack to poisoning 1% of the train-
ing dataset. We fine-tune the same ResNetl18 model with
the same hyperparameters and set the clipping bound S = 10
and noise ¢ = 0.05, which is sufficient to mitigate the data-
poisoning attack and keep the main-task accuracy at 66%.

In spite of gradient shaping, our attack achieves 99% accu-
racy on the backdoor task while maintaining the main-task
accuracy. By contrast, differential privacy is relatively effec-
tive against data poisoning attacks [59].

7 Mitigation

We surveyed previously proposed defenses against backdoors
in Section 5 and showed that they are ineffective in Section 6.
In this section, we discuss two other types of defenses.

7.1 Certified robustness

As explained in Section 2.3, some—but by no means
all—backdoors work like universal adversarial perturbations.
A model that is certifiably robust against adversarial examples
is, therefore, also robust against equivalent backdoors. Certifi-
cation ensures that a “small” (using ly, /1, or [» metric) change
to an input does not change the model’s output. Certification
techniques include [11, 27, 71, 99]; certification can also help
defend against data poisoning [83].

Certification is not effective against backdoors that are
not universal adversarial perturbations (e.g., semantic or
physical backdoors). Further, certified defenses are not ro-
bust against attacks that use a different metric than the de-
fense [89] and can break a model [88] because some small
changes—e.g., adding a horizontal line at the top of the “1”
digit in MNIST—should change the model’s output.

7.2 Trusted computational graph

Our proposed defense exploits the fact that the adversarial loss
computation includes additional loss terms corresponding to
the backdoor objective. Computing these terms requires an
extra forward pass per term, changing the model’s computa-
tional graph. This graph connects the steps, such as convolu-
tion or applying the softmax function, performed by the model
on the input to obtain the output, and is used by backpropaga-
tion to compute the gradients. Figure 14 shows the differences
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Figure 14: Computational graph of ResNet18.

between the computational graphs of the backdoored and nor-
mal ResNet18 models for the single-pixel ImageNet attack.

The defense relies on two assumptions. First, the attacker
can modify only the loss-computation code. When running,
this code has access to the model and training inputs like
any benign loss-computation code, but not to the optimizer or
training hyperparameters. Second, the computational graph
is trusted (e.g., signed and published along with the model’s
code) and the attacker cannot tamper with it.

We used Graphviz [23] to implement our prototype graph
verification code. It lets the user visualize and compare com-
putational graphs. The graph must be first built and checked
by an expert, then serialized and signed. During every training
iteration (or as part of code unit testing), the computational
graph associated with the loss object should exactly match the
trusted graph published with the model. The check must be
performed for every iteration because backdoor attacks can be
highly effective even if performed only in some iterations. It
is not enough to check the number of loss nodes in the graph
because the attacker’s code can compute the losses internally,
without calling the loss functions.

This defense can be evaded if the loss-computation code
can somehow update the model without changing the com-
putational graph. We are not aware of any way to do this
efficiently while preserving the model’s main-task accuracy.

8 Related Work

8.1 Backdoors

Data poisoning. Based on poisoning attacks [2, 5, 6, 38],
some backdoor attacks [10, 28, 48, 59] add mislabeled sam-
ples to the model’s training data or apply backdoor pat-
terns to the existing training inputs [47]. Another variant
adds correctly labeled training inputs with backdoor pat-
terns [70, 76, 92].

Model poisoning and trojaning. Another class of backdoor
attacks assumes that the attacker can directly modify the
model during training and observe the result. Trojaning at-
tacks [41, 55, 57, 58, 77] obtain the backdoor trigger by ana-
lyzing the model (similar to adversarial examples) or directly
implant a malicious module into the model [86]; model-reuse



Table 6: Comparison of backdoors and adversarial examples.

Adversarial Examples Backdoors

Features Non-universal Universal Poisoning Trojaning Blind

[26, 64, 90] [8, 13,46,52,61] [10,28,92] [29,55,103] (this paper)
Attacker’s access to model  black-box [64], none” black-box [52] change data  change model change code
Attack modifies model no no yes yes yes
Inference-time access required required required required optional
Universal and small pattern  no no yes yes yes
Complex behavior limited [20] no no no yes
Known defenses yes yes yes yes no

* For an untargeted attack, which does not control the resulting label, it is possible to attack without model access [90].

attacks [40, 44, 98] train the model so that the backdoor sur-
vives transfer learning and fine-tuning. Lin et al. [49] demon-
strated backdoor triggers composed of existing features, but
the attacker must train the model and also modify the input
scene at inference time.

Attacks of [51, 72, 101] assume that the attacker controls
the hardware on which the model is trained and/or deployed.
Recent work [14, 29] developed backdoored models that can
switch between tasks under an exceptionally strong attack:
the attacker’s code must run concurrently with the model and
modify the model’s weights at inference time.

8.2 Adversarial examples

Adversarial examples in ML models have been a subject
of much research [26, 43, 53, 65]. Table 6 summarizes the
differences between different types of backdoor attacks and
adversarial perturbations.

Although this connection is mostly unacknowledged in the
backdoor literature, backdoors are closely related to UAPs,
universal adversarial perturbations [61], and, specifically, ad-
versarial patches [8]. UAPs require only white-box [8] or
black-box [13, 52] access to the model. Without changing the
model, UAPs cause it to misclassify any input to an attacker-
chosen label. Pixel-pattern backdoors have the same effect but
require the attacker to change the model, which is a strictly
inferior threat model (see Section 2.5).

An important distinction from UAPs is that backdoors need
not require inference-time input modifications. None of the
prior work took advantage of this observation, and all pre-
viously proposed backdoors require the attacker to modify
the digital or physical input to trigger the backdoor. The only
exceptions are [3] (in the context of federated learning) and a
concurrent work by Jagielski et al. [39], demonstrating a poi-
soning attack with inputs from a subpopulation where trigger
features are already present.

Another advantage of backdoors is they can be much
smaller. In Section 4.1, we showed how a blind attack can
introduce a single-pixel backdoor into an ImageNet model.
Backdoors can also trigger complex functionality in the model:

see Sections 4.2 and 4.3. There exist adversarial examples
that cause the model to perform a different task [20], but the
perturbation covers almost 90% of the image.

In general, adversarial examples can be interpreted as fea-
tures that the model treats as predictive of a certain class [35].
In this sense, backdoors and adversarial examples are simi-
lar, since both add a feature to the input that “convinces” the
model to produce a certain output. Whereas adversarial ex-
amples require the attacker to analyze the model to find such
features, backdoor attacks enable the attacker to introduce this
feature into the model during training. Recent work showed
that adversarial examples can help produce more effective
backdoors [63], albeit in very simple models.

9 Conclusion

We demonstrated a new backdoor attack that compromises
ML training code before the training data is available and
before training starts. The attack is blind: the attacker does
not need to observe the execution of his code, nor the weights
of the backdoored model during or after training. The attack
synthesizes poisoning inputs “on the fly,” as the model is
training, and uses multi-objective optimization to achieve high
accuracy simultaneously on the main and backdoor tasks.

We showed how this attack can be used to inject single-
pixel and physical backdoors into ImageNet models, back-
doors that switch the model to a covert functionality, and
backdoors that do not require the attacker to modify the input
at inference time. We then demonstrated that code-poisoning
attacks can evade any known defense, and proposed a new de-
fense based on detecting deviations from the model’s trusted
computational graph.
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A Example of a Malicious Loss Computation

Algorithm 2 shows an example attack compromising the loss-
value computation of the ROBERTA model in HuggingFace
Transformers repository. Transformers repo uses a separate
class for each of its many models and computes the loss as
part of the model’s forward method. We include the code
commit’ that introduces the backdoor and passes all unit tests
from the transformers repo.

The code computes the gradients and losses for every task
and uses MGDA to obtain the scaling coefficients and com-
pute the blind loss £p;i,q. The forward method then returns
this loss value to the unmodified training code, which per-
forms backpropagation and updates the model using the un-
modified optimizer.

Shttps://git.io/Jt2£S.

Algorithm 2 Blind attack on loss computation.

Inputs: model 0, dataset D, optimizer optim.

> attacker-controlled code:
Aucxiliary functions: input synthesizer u(), label synthe-
sizer v(), determine threshold check_threshold(), multi-
ple gradient descent algorithm MGDA(), backpropagation
function ger_grads(), and loss criterion.

# methods in the RobertaForSequenceClassification class
function FORWARD(self, x,y)
if check_threshold(self.loss_hist) then
# no attack
out = self.roberta(x)
logits = self.classifier(out)
¢ = criterion(logits, y)
else
# blind attack
b, gm = self.get_loss_grads(x,y)
x* = p(x)
Y =v(x,y)
L+, gm = self.get_loss_grads(x*,y*)
O, 01 = MGDA([ﬁm,fm*], [gmngm*])
Loting = 0l + O Ly
€= Lylina

> forward pass

self.loss_hist.append(¢y,) > save loss

return ¢

function GET_LOSS_GRADS(self, x,y)
out = self.roberta(x)
logits = self.classifier(our)
{ = criterion(logits, y)
g = get_grads(/, self)

> forward pass

> backward pass

return /, g
> Unmodified code:
function TRAINER(RoBERTa model 6, dataset D)
for x,y < D do
¢ = 0.forward(x,y)
£.backward() > backward pass

optim.step()
0.zero_grad()

> update model
> clean model
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