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Abstract

In this paper, we propose a novel method for matrix completion under general non-
uniform missing structures. By controlling an upper bound of a novel balancing error,
we construct weights that can actively adjust for the non-uniformity in the empirical risk
without explicitly modeling the observation probabilities, and can be computed efficiently
via convex optimization. The recovered matrix based on the proposed weighted empirical
risk enjoys appealing theoretical guarantees. In particular, the proposed method achieves
stronger guarantee than existing work in terms of the scaling with respect to the observa-
tion probabilities, under asymptotically heterogeneous missing settings (where entry-wise
observation probabilities can be of different orders). These settings can be regarded as a
better theoretical model of missing patterns with highly varying probabilities. We also
provide a new minimax lower bound under a class of heterogeneous settings. Numerical
experiments are also provided to demonstrate the effectiveness of the proposed method.

1 Introduction

Matrix completion is a modern missing data problem where the object of interest is a high-
dimensional and often low-rank matrix. In its simplest form, a partial (noisy) observation of
the target matrix is collected, and the goal is to impute the missing entries and sometimes also
to de-noise the observed ones. There are various related applications in, e.g., bioinformatics
Chi et al. (2013), causal inference Athey et al. (2018); Kallus et al. (2018), collaborative
filtering Rennie and Srebro (2005), computer vision Weinberger and Saul (2006), positioning
Montanari and Oh (2010), survey imputation Davenport et al. (2014); Zhang et al. (2020);
Sengupta et al. (2021) and quantum state tomography Wang (2013); Cai et al. (2016). Matrix
completion has been popularized by the famous Netflix prize problem Bennett and Lanning
(2007), in which a large matrix of movie ratings is partially observed. Each row of this
matrix consists of ratings from a particular customer while each column records the ratings
to a particular movie.

Matrix completion has attracted significant interest from the machine learning and statis-
tics communities (e.g., Koltchinskii et al., 2011; Hernández-Lobato et al., 2014; Klopp, 2014;
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Lafond et al., 2014; Hastie et al., 2015; Klopp et al., 2015; Bhaskar, 2016; Cai and Zhou,
2016; Kang et al., 2016; Zhu et al., 2016; Bi et al., 2017; Fithian and Mazumder, 2018; Dai
et al., 2019; Robin et al., 2020; Chen et al., 2020). Although many statistical and computa-
tional breakthroughs (e.g., Candès and Recht, 2009; Koltchinskii et al., 2011; Recht, 2011)
have been made in this area in the last decade, most work (with theoretical guarantees) is
developed under a uniform missing structure where every entry is assumed to be observed
with the same probability. However, uniform missingness is unrealistic in many applications.

The work under non-uniform missingness is relatively sparse, and can be roughly divided
into two major classes. The first class (e.g., Srebro et al., 2005; Foygel and Srebro, 2011;
Klopp, 2014; Cai and Zhou, 2016) focuses on a form of robustness result, and shows that
without actively adjusting for the non-uniform missing structure (e.g., simply applying a
uniform empirical risk function R̂uni defined below), nuclear-norm and max-norm regularized
methods can still lead to consistent estimations. Since no direct adjustment is imposed, there
is no need to model the non-uniform missing structure. The second class aims to improve
the estimation by modeling the missing structure and actively adjusting for non-uniformity.
Several works (e.g., Srebro and Salakhutdinov, 2010; Foygel et al., 2011; Negahban and Wain-
wright, 2012; Mao et al., 2019) fall into this class. However, many of the underlying models
can be viewed as special low-rank (e.g., rank 1) missing structures. For instance, a com-
mon model is the product sampling model (Negahban and Wainwright, 2012) where row and
column are chosen independently according to possibly non-uniform marginal distributions,
leading to a rank-1 matrix of observation probability. The specific model choices of non-
uniformity restrict the applicability and theoretical guarantees of these works. One notable
exception is Foygel et al. (2011), which actively adjusts for a product sampling model via
a variant of weighted trace-norm regularization, but still provides guarantee under general
missing structure. Despite these efforts, the study of non-uniform missing mechanisms is still
far from comprehensive.

In this work, we propose a novel method of balancing weighting to actively adjust for the
non-uniform empirical risk due to general unbalanced (i.e., non-uniform) sampling, without
explicitly modeling the probabilities of observation. This is especially attractive when such
model is hard to choose or estimate. We summarize our major contributions as follows.

First, we propose a novel balancing idea to adjust for the non-uniformity in matrix com-
pletion problems. Unlike many existing works, this idea does not require specific modeling
of the observation probabilities. Thanks to the proposed relaxation of the balancing error
(Lemma 1), the balancing weights can then be obtained via a constrained spectral norm
minimization, which is a convex optimization problem.

Second, we provide theoretical guarantees on the balancing performance of the proposed
weights, as well as the matrix recovery via the corresponding weighted empirical risk esti-
mator. We note that the estimation nature of the balancing weights introduces non-trivial
dependence in the weighted empirical risk, as opposed to the typical unweighted empirical
risk (often assumed to be a sum of independent quantities). This leads to a non-standard
analysis of the proposed matrix estimator.

Third, we investigate a new type of asymptotic regime — asymptotically heterogeneous
missing structures. This regime allows observation probabilities to be of different orders, a
more reasonable asymptotic model for the scenarios with highly varying probabilities among
entries. Under asymptotically heterogeneous settings, we show that our estimator achieves
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a significantly better error upper bound than existing upper bounds in terms of the scaling
with respect to the observation probabilities. Such scaling is shown to be optimal via a
new minimax result based on a class of asymptotically heterogeneous settings. Note that we
focus on the challenging uniform error d2 as opposed to the weighted (non-uniform) error d̃2

(see Section 5), so as to ensure entries with high missing rate would be given non-neglible
emphasis in our error measure.

2 Background

2.1 Notation

Throughout the paper, we use several matrix norms: nuclear norm ‖ · ‖∗, Frobenius norm
‖·‖F , spectral norm ‖·‖ entry-wise maximum norm ‖·‖∞ and max norm ‖·‖max. Specifically,
the entry-wise maximum norm of a matrix B = (Bij) is defined as ‖B‖∞ = maxi,j |Bij |,
while the max norm is defined as

‖B‖max = inf{‖U‖2,∞‖V ‖2,∞ : B = UV ᵀ},

where ‖·‖2,∞ denotes the maximum `2-row-norm of a matrix. See, e.g., Srebro and Shraibman
(2005) for the properties of max norm. The Frobenius inner product and Hadamard product
between two matrices B1 = (B1,ij) and B2 = (B2,ij) of the same dimensions are represented
by 〈B1,B2〉 =

∑
i,j B1,ijB2,ij and B1 ◦B2 = (B1,ijB2,ij) respectively. For any a ∈ R and any

matrix B = (Bij), we write B◦(a) = (Ba
ij).

We also adopt the following asymptotic notations. Let (bn)n≥1 and (cn)n≥1 be two se-
quences of nonnegative numbers. We write bn = O(cn) if bn ≤ Kcn for some constant K > 0;
and bn � cn if bn = O(cn) and cn = O(bn). In addition, we use polylog(n) to represent
a polylogarithmic function of n, i.e., a polynomial in log n. So O(polylog(n)) represents a
polylogarithmic order in n.

2.2 Setup

We aim to recover an unknown target matrix A? = (A?,ij)
n1,n2
i,j=1 ∈ Rn1×n2 from partial ob-

servation of its noisy realization Y = (Yij)
n1,n2
i,j=1 ∈ Rn1×n2 . Denote the observation indicator

matrix T = (Tij)
n1,n2
i,j=1 ∈ Rn1×n2 , where Tij = 1 if Yij is observed and Tij = 0 otherwise. We

consider an additive noise model

Yij = A?,ij + εij , i = 1, . . . , n1; j = 1, . . . , n2,

where {εij} are independent errors with zero mean, and are independent of {Tij}. Also, {Tij}
are independent Bernoulli random variables with πij = Pr(Tij = 1). We write Π = (πij)

n1,n2
i,j=1 .

2.3 Uniformity Versus Non-uniformity

Due to complexity of data, it is often undesirable to posit an additional distributional model
for {εij} (such as normality) in practice. To recover A?, an empirical risk minimization
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framework is commonly adopted with the risk function:

R (A) =
1

n1n2
E
(
‖Y −A‖2F

)
, A ∈ Rn1×n2 .

Under uniform sampling (i.e., πij ≡ π), this motivates the use of the popular empirical risk

R̂uni(A) =
1

n1n2
‖T ◦ (Y −A)‖2F , A ∈ Rn1×n2 ,

which is unbiased for πR(A) (e.g., Candès and Recht, 2009; Candès and Plan, 2010; Koltchin-
skii et al., 2011; Klopp, 2014). To minimize R̂uni, we can ignore the constant multiplier π. In
such settings, a popular form of estimator is arg minA∈An1,n2

R̂uni(A), where examples of the

hypothesis class An1,n2 include a set of matrices with rank at most r (i.e., {A : rank(A) ≤ r}),
and a nuclear norm ball of radius ν (i.e., {A : ‖A‖∗ ≤ ν}). In the latter case, one can also
adopt an equivalent minimization

arg min
A

{R̂uni(A) + λ‖A‖∗},

obtained by the method of Lagrange multipliers.
However, uniform sampling is a strong assumption and often not satisfied (e.g., Srebro

and Salakhutdinov, 2010; Foygel et al., 2011; Hernández-Lobato et al., 2014). In the em-
pirical risk minimization framework, it is natural to adjust for such non-uniformity since
R̂uni is no longer unbiased for R. Interestingly, such biasedness does not lead to an incor-
rect estimator in an asymptotic sense (Klopp, 2014), a form of robustness result (the first
category of works under non-uniformity mentioned in Section 1). This is because A? still
minimizes E{R̂uni(A)} even when πij ’s are heterogeneous, and, to achieve consistency, the
theory requires that An1,n2 grows asymptotically so that some appropriate “distance” be-
tween A? and the set An1,n2 converges to zero. For finite sample, one often encounters some
forms of misspecification (A? is not close to An1,n2). In such settings, the estimator based

on R̂uni(A) is inclined to favor entries with a higher chance of observation, which is often not
desirable. For movie recommendation, it is generally not a good idea to neglect those people
who rate less frequently, as they might be the customers who do not watch as frequently,
and successful movie recommendation would help retain these customers from discontinuing
movie subscription services. This is highly related to misspecification in low-dimensional
models where misspecification requires weighting adjustments (Wooldridge, 2007). However,
matrix completion problems involve a much more challenging high-dimensional setup with
possibly diminishing observation probabilities (e.g., Candès and Recht, 2009; Koltchinskii,
2011). That is, πL := mini,j πij → 0 as n1, n2 → ∞. In fact, the diminishing setting is of
great interest and plays a central role in most analyses, since it mimics high missing situations
such as in the Netflix prize problem (< 1% of observed ratings).

2.4 Extremely Varying Probabilities: Heterogeneity Meets Asymptotics

For non-uniform settings, one expects heterogeneity among the entries of Π. We argue that
there exist different levels of heterogeneity, and only the “simplest” level has been well-
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studied. Define
πU := max

i,j
πij and πL := min

i,j
πij .

Existing work (e.g., Negahban and Wainwright, 2012; Klopp, 2014; Lafond et al., 2014; Cai
and Zhou, 2016) is based on an assumption that πU � πL, which enforces that all observation
probabilities are of the same order. We call this asymptotically homogeneous missing struc-
ture. When the observation probabilities vary highly among different entries, this asymptotic
framework may not reflect the empirical world. Highly varying probabilities are not rare. As
demonstrated in Section 2.3 of Mao et al. (2020), the estimated ratio of πU to πL can be
high (≥ 20000) in the Yahoo! Webscope dataset, under low-rank models of Π (e.g., Negah-
ban and Wainwright, 2012). In our theoretical analysis (Section 5), we also look into the
asymptotically heterogeneous settings where πU and πL are of different orders.

3 Empirical Risk Balancing

3.1 Propensity Approaches and their Drawbacks

To deal with non-uniformity, a natural idea is to utilize a weighted empirical risk:

R̂W (A) =
1

n1n2
‖T ◦W ◦(1/2) ◦ (Y −A)‖2F , (1)

where W = (Wij)
n1,n2
i,j=1 is a matrix composed of weights such that Wij ≥ 1 for all i, j. A

natural choice of W is (π−1
ij )n1,n2

i,j=1 , which leads to an unbiased risk estimator for R(A), and
such method is known as inverse probability weighting (IPW) in the missing data literature.
As {πij} are unknown in general, most methods with IPW insert the estimated probabilities
based on certain models. These ideas have been studied in, e.g., Schnabel et al. (2016) under
the form of a nuclear-norm regularized estimator:

arg min
A

{R̂W (A) + λ‖A‖∗}, (2)

where λ > 0 is a tuning parameter. Despite its conceptual simplicity, it is well-known in
the statistical literature that IPW estimators could produce unstable results due to extreme
weights (Rubin, 2001; Kang and Schafer, 2007). More problematically for matrix completion,
the estimation quality of a high-dimensional probability matrix Π = (πij)

n1,n2
i,j=1 could also be

worsened significantly by diminishing probabilities of observation (as n1, n2 →∞) (Davenport
et al., 2014). To solve this problem, Mao et al. (2020) imposed a constraint (effectively
an upper bound) on the estimated inverse probabilities, where the constraint has to be
aggressively chosen such that some true inverse probabilities do not necessarily satisfy in
finite sample. However, there are still two general issues in this line of research. First, the
estimation of Π is required. One could come up with a variety of ways to model Π. But it is
not obvious how to choose a good model for Π. Second, the constraint level is tricky to select,
and difficult to analyze theoretically. Indeed, the analysis of the effect of the constriant to
matrix recovery forms the bulk of the analysis in Mao et al. (2020).

The goal of this work is to propose a method that does not require specific modeling
and estimation of Π but still actively adjust for the non-uniformity in the sampling. This
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method aims to directly find a stable weight matrix W that adjusts for non-uniformity,
without enforcing W to be IPW derived from a specific model.

3.2 Balancing Weights

When εij = 0 for all i, j (only for motivation purpose, not required for the proposed tech-

niques), we aim to choose W such that R̂W (left hand side) approximates the desirable
“fully-observed” one (right hand side):

1

n1n2
‖T ◦W ◦(1/2) ◦ (A? −A)‖2F ≈

1

n1n2
‖A? −A‖2F , (3)

for a set of A (a hypothesis class of A? which grows with n1, n2) to be specified below. Indeed,
we only need to determine those Wij such that Tij = 1, since the values of the remaining Wij

play no role in (3). Intuitively, the weights W are introduced to maintain balance between
the left and right hand sides of (3). Therefore, we may work with R̂W as if we were using
the uniform empirical risk R̂uni. The condition (3) can be written as

0 ≈ 1

n1n2
|〈(T ◦W − J) ◦∆,∆〉| , (4)

where ∆ = A − A? and J ∈ Rn1×n2 is a matrix of ones. We call the right hand side the
balancing error of ∆ with respect to W , denoted by S(W ,∆). Naturally, we want to find
weights W that minimize the uniform balancing error

F (W ) := sup
∆∈Dn1,n2

S(W ,∆),

for a (standardized) set Dn1,n2 , induced by the hypothesis class An1,n2 of A?.
A typical assumption is that A? is low-rank or approximately low-rank. Various classes

are shown to be able to achieve such modeling. For instance, An1,n2 can be chosen as a max-
norm ball {A : ‖A‖max ≤ β} (e.g., Srebro et al., 2005; Foygel and Srebro, 2011; Cai and Zhou,
2013, 2016; Fang et al., 2018), and the induced choice of Dn1,n2 would be {∆ : ‖∆‖max ≤ 2β}.
However, the uniform balancing error does not have a closed form and so the computation of
the weights would be significantly more difficult and expensive. Similar difficulty exists for
nuclear-norm balls.

To solve this problem, we have developed the following novel lemma which allows us to
focus on a relaxed version of balancing error that enjoys strong theoretical guarantees (see
Section 5).

Lemma 1. For any matrices B,C ∈ Rn1×n2, we have

|〈C ◦B,B〉| ≤ ‖C‖‖B‖max‖B‖∗ ≤
√
n1n2‖C‖‖B‖2max.

The proof of this lemma can be found in Section S1 of the supplemental document. The
inequalities in Lemma 1 are tight in general: if C=aJ and B=bJ where a, b ∈ R and J is
the matrix whose entries are all 1, the two equalities would hold simultaneously.

By Lemma 1, S(W ,∆) ≤ √n1n2‖T ◦W − J‖‖∆‖2max for any ∆ ∈ Rn1×n2 , where the
right hand side can be regarded as the relaxed balancing error. If we focus on the max-norm
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ball (for An1,n2 and hence Dn1,n2) as discussed before, we are only required to control the
spectral norm of ‖T ◦W − J‖, which is a convex function of W . Therefore, we propose the
following novel weights:

Ŵ = arg min
W

‖T ◦W − J‖ (5)

subject to ‖T ◦W ‖F ≤ κ and Wij ≥ 1,

where the optimization is taken only over Wij such that Tij = 1. Here κ ≥ ∑i,j Tij is a
tuning parameter.

The weights {Wij} are restricted to be greater than or equal to 1, as their counterparts,
inverse probabilities, satisfy π−1

ij ≥ 1. The term ‖T ◦W ‖F regularizes W and is particularly
important when εij ’s are not zero.

Let h(κ) = ‖T ◦ Ŵ − J‖ where Ŵ is defined by (5) with the tuning parameter κ. It

is proportional to the relaxed balancing error with respect to Ŵ . As κ increases, a weaker
constraint is imposed on W . Therefore h(κ) is non-increasing as κ increases. It can be
shown that h(κ) stays constant for all large enough κ, i.e., h achieves its smallest value. The
percentage of (relaxed) balancing with respect to a specific κ is defined as [M−h(κ)]/(M−m)
where M := maxκ h(κ) and m = minκ h(κ). One way to tune κ is to choose κ that achieves
certain pre-specified percentage of balancing. We can also select κ from multiple values of κ
with respect to certain balancing percentages, via a validation set. In Sections 6 and 7, we
compare κ with respect to balancing percentages 100%, 75%, and 50%, and select the one
with the smallest validation error.

3.3 Computation

The dual Lagrangian form of the constrained problem (5) is

min
Wij≥1

{
‖T ◦W − J‖+ κ′ ‖T ◦W ‖2F

}
, (6)

where κ′ is the dual parameter. Denote X = T ◦W − J , we can obtain the analytic form
of the subgradient of the largest singular value by ∂‖X‖ = uᵀ

1(∂X)v1 where u1 and v1 are
the corresponding left and right singular vectors with respect to the largest singular value of
matrix X. Thus we have

∂‖X‖
∂Wij

=
∂‖X‖
∂X

∂X

∂Wij
= u1v

ᵀ
1Tij ,

and ∂‖T ◦W ‖2F /∂Wij = 2TijWij . This allows us to efficiently adopt typical algorithms for
smooth optimization with box-constraints such as “L-BFGS-B” algorithm.
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4 Estimation of A?

Given the weight estimator Ŵ defined by (5), we propose the following hybrid estimator that
utilizes the advantages of both max-norm and nuclear-norm regularizations:

Â = argmin
‖A‖max≤β

{
R̂

Ŵ
(A) + µ‖A‖∗

}
, (7)

where ‖ · ‖∗ denotes the nuclear norm, and β > 0, µ ≥ 0 are tunning parameters. As

explained in Section 3.2, the balancing weights Ŵ aims to make R̂
Ŵ

behave like the uniform

empirical risk R̂uni over a max-norm ball. Although not entirely necessary, the additional
nuclear-norm penalty can sometimes produce tighter relaxation as shown in Lemma 1. As
discussed in Fang et al. (2018), the additional nuclear norm bound shows its advantages
under the uniform sampling scheme when the target matrix is exactly low-rank. We also find
that using the hybrid of max-norm and nuclear-norm regularizations improve the estimation
performance. If one enforces all the elements of Ŵ to be 1 (uniform weighting), then the
estimator (7) degenerates to the estimator defined in Fang et al. (2018). The major novelty
of our work is the stable weights.

We extend the algorithm proposed in Fang et al. (2018) to handle the weighted empirical
risk function, so as to solve (7). Corresponding details can be found in Section S5.1 of the
supplemental document.

5 Theoretical Properties

We provide a non-asymptotic analysis of the proposed estimator (7). One major challenge
of our analysis is the estimation nature of the weights. As the same set of data is used to
obtain the weights, the weighted empirical risk R̂

Ŵ
(A) possesses complicated dependence

structure, as opposed to the uniform empirical risk R̂uni(A) (which is assumed to be a sum
of independent variables), even for a fixed A. To study the convergence, we carefully de-
compose the errors into different components. We utilize the properties of true weights to
control the balancing error term. Besides, we develop a novel lemma (Lemma S4) to study
the concentration of the dual max-norm of the noise matrix with entry-wise multiplicative
perturbation.

The following two assumptions will be used in our theoretical analysis. Recall that πU =
maxi,j πij and πL = mini,j πij .

Assumption 1. The observation indicators {Tij} are independent Bernoulli random vari-
ables with πij = Pr(Tij = 1). The minimum observation probability πL is positive, but it
can depend on n1, n2. In particular, both πU and πL are allowed to diminish to zero when
n1, n2 →∞.

Assumption 2. The random errors {εij} are independent and centered sub-Gaussian ran-
dom variables such that E(εij) = 0 and maxi,j ‖εij‖ψ2 ≤ τ where ‖εij‖ψ2 := inf{t > 0 :
E[exp(ε2ij/t

2)] ≤ 2} is the sub-Gaussian norm of εij. Also, {εij} are independent of {Tij}.

We start with an essential result that the estimated weights Ŵ possess the power to
balance the non-uniform empirical risk. More specifically, in the following theorem, we derive
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a non-asymptotic upper bound of the uniform balancing error evaluated at Ŵ , where the
balancing error can be written as

S(W ,∆) =
1

n1n2

∣∣∣‖T ◦W ◦(1/2) ◦∆‖2F − ‖∆‖2F
∣∣∣ .

Theorem 1. Suppose Assumption 1 holds. Take κ ≥ (2
∑

i,j π
−1
ij )1/2. There exists an abso-

lute constant C1 > 0 such that for any β′ > 0,

sup
‖∆‖max≤β′

S(Ŵ ,∆) ≤ C1
β′2√

πL(n1 ∧ n2)
min

{
[log(n1 + n2)]

1/2, π
−1/2
L

}
,

with probability at least 1− exp{−2−1(log 2)π2L
∑

i,j π
−1
ij } − 1/(n1 + n2).

If ‖A?‖max ≤ β, it is natural to take β′ = 2β, since ‖∆‖max = ‖A−A?‖max ≤ 2β for any
A such that ‖A‖max ≤ β. Therefore, we can take β′ = 2β in Theorem 1 to achieve uniform
control over the balancing error associated with the estimation (7).

With the above balancing guarantee, we are now in a good position to study Â. Our
guarantee for Â is in terms of the uniform error d2(Â,A?) := (n1n2)

−1‖Â−A?‖2F , instead of

the non-uniform error d̃2(Â,A?) = ‖Π◦(1/2) ◦ (Â−A?)‖2F /‖Π◦(1/2)‖2F (e.g., Klopp, 2014; Cai

and Zhou, 2016). Note that the non-uniform error d̃2(Â,A?) places less emphases on entries
that are less likely to be observed, although the guarantee in terms of the non-uniform error
can be stronger and is easier to obtain. In asymptotically heterogeneous missing settings
(i.e., πU and πL are of different orders), entries with probabilities of order smaller than πU
may be ignored within the non-uniform error in the asymptotic sense. Therefore it is not a
good measure of performance if the guarantee over these entries are also important. In the
following theorem, we provide a non-asymptotic error bound of our estimator (7) (based on
the estimated weights).

Theorem 2. Suppose Assumptions 1–2 hold. Assume ‖A?‖max ≤ β, and µ = O(min{[log(n1+
n2)]

1/2, π
−1/2
L }/

√
πL(n1 ∧ n2)). Then there exists an absolute constant C2 > 0 such that for

any κ ≥ (2
∑

i,j π
−1
ij )1/2,

d2
(
Â,A?

)
≤ C2

[
β2√

πL(n1 ∧ n2)
×min

{
[log(n1 + n2)]

1/2, π
−1/2
L

}
+
βτκ
√
n1 + n2

n1n2

]

with probability at least 1− exp{−2−1(log 2)π2L
∑

i,j π
−1
ij }− 2 exp{−(n1 + n2)}− 1/(n1 + n2).

First, we consider the asymptotically homogeneous missing structures (i.e., πL � πU )
which most existing work assumes. Under πL � πU , the two errors d2(Â,A?) and d̃

2(Â,A?)
are of the same order because

πL
πU

d2(Â,A?) ≤ d̃2(Â,A?) ≤
πU
πL
d2(Â,A?). (8)

Therefore, the upper bound for d̃2(Â,A?) that most existing work provides can be directly
used to derive an upper bound for d2(Â,A?), which shares the same order. Note that πU and
πL are allowed to be different despite πU � πL. So certain non-uniform missing structures
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are still allowed under the setting of asymptotically homogeneous missingness. This setting
has been studied in Negahban and Wainwright (2012); Klopp (2014); Lafond et al. (2014);
Cai and Zhou (2016). Our bound is directly comparable to the work of Cai and Zhou (2016)
which studies a max-norm constrained estimation. Their result assumes ‖A?‖∞ ≤ α for
some α, which allows their bound to depend on αβ instead of β2 as in our bound. The
comparision of error bounds between max-norm-constrained estimation and nuclear-norm-
regularized estimation is given in Section 3.5 of Cai and Zhou (2016). As for exactly low-
rank matrices, we can further show that our estimator achieves optimal error bound (up to
a logarithmic order). Roughly speaking, if κ is small (so weights are close to constant), our
estimator would behave like a standard nuclear-norm regularized estimator, and hence share
the (near-)optimality of such estimator. We provide the error bound of our estimator under
exactly low-rank setting and asymptotically homogeneous missingness, in Theorem S1 of the
supplemental document.

For non-uniform missing structures, the orders of πU and πL do not necessarily match.
When their orders are different, we call these missing structures asymptotically heterogeneous.
We now focus on how the upper bound depends on πU and πL. As mentioned before, existing
results are scarce. Recently, Mao et al. (2020) (their Section 5.3) provided an extension
of existing upper bounds to possibly asymptotically heterogeneous settings, with a careful

analysis. Corresponding upper bound scales with π−1
L π

1/2
U . They also provided an additional

result when one has access to the true probabilities Π, and show that the upper bound of the
estimator based on the empirical risk defined via the true probabilities can achieve the scaling

π
−1/2
L , which is significantly better than π−1

L π
1/2
U . However, until now, it remains unclear

whether there exists an estimator with this scaling of πU and πL, without access to the true
probabilities. Interestingly, Theorem 2 provides a positive result, and shows that the upper

bound for the proposed estimator achieves this scaling π
−1/2
L under very mild assumption

that πL is diminishing in at least a slow order, more specifically πL = O(1/ log(n1 + n2)).

Next, we provide a theoretical result indicating that the scaling π
−1/2
L cannot be improved

under the asymptotically heterogeneous missing structures. In below, we give a minimax
lower bound based on a class of asymptotically heterogeneous settings. To the best of the
authors’ knowledge, the minimax lower bounds under asymptotically heterogeneous regimes
have never been studied.

The heterogeneous class that we consider posits

(n1n2)
−1

n1∑

i=1

n2∑

j=1

πij � πL. (9)

It is clear that (9) does not exclude asymptotically homogeneous settings. To demonstrate
the heterogeneity, we provide an example as follows. Suppose there is only a fixed number
of entries with observation probabilities in constant order, and the observation probabilities
of the remaining entries are of the same order as πL. Then πU � 1, and (9) is satisfied.
Therefore, for any diminishing πL, this setting is asymptotically heterogeneous.

Now, we provide the minimax result.

Theorem 3. Let {εij} be i.i.d. Gaussian N (0, σ2) with σ2 > 0. For any β > 0, assume (9)
holds with π−1

L = O(β2(n1 ∧ n2)/(σ ∧ β)2). Then, there exist constants δ ∈ (0, 1) and c > 0

10



such that

inf
Â

sup
‖A?‖max≤β

Pr

(
d2
(
Â,A?

)
>

c(σ ∧ β)β√
πL (n1 ∧ n2)

)
≥ δ.

In the discussion below, we focus on σ � 1, which, most notably, excludes asymptotically

noiseless settings. Theorem 3 shows that the scaling π
−1/2
L in our upper bound obtained in

Theorem 2 is essential. Due to the general inequality (Srebro and Shraibman, 2005):

‖A?‖∞ ≤ ‖A?‖max ≤
√

rank(A?)‖A?‖∞, (10)

β is not expected to grow fast for low-rank A? with bounded entries. For β = O(polylog(n)),
our upper bound matches with the lower bound in Theorem 3 up to a logarithmic factor. For
general β, our upper bound scales with β2 instead of (σ ∧ β)β despite its matching scaling
with respect to πL. Indeed, a mismatch between the upper bound and the lower bound
also occurs in Cai and Zhou (2016) under asymptotically homogeneous settings, where their
bound is derived via an additional assumption ‖A?‖∞ ≤ α. Their upper bound scales with
αβ instead of (σ ∧ α)β as in their minimax lower bound. We leave a more detailed study of
the scaling with respect to β as a future direction.

6 Simulations

In this simulation study, we let the target matrix A? ∈ Rn1×n2 be generated by A? =
UV ᵀ, where U ∈ Rn1×r,V ∈ Rn2×r, and each entry of U and V is sampled uniformly and
independently from [0, 2]. We set n1 = n2 = 200 and r = 5. Therefore, the rank of the
target matrix is 5. The contaminated version of A? is then generated as Y = A? + ε, where
ε ∈ Rn1×n2 has i.i.d. mean zero Gaussian entries εij ∼ N(0, σ2ε ). There are three settings of
σε, and they are chosen such that the signal-to-noise ratios (SNR:= (E‖A?‖2F /E‖ε‖2F )1/2) are
1, 5 and 10.

We consider three different missing mechanisms and generate observation indicator matrix
T from Π = (πij)

n1,n2
i,j=1 that are specified as follows:

Setting 1: This setting is a uniform missing setting πij = 0.25 for all i, j = 1, . . . , 200.
Setting 2: In this setting, we relate the missingness with the value of the target matrix.

For entries that have high values, they are more likely to be observed. More specifically, we
set

πij =





1/16, if A?,ij ≤ q0.25
0.25, if q0.25 < A?,ij ≤ q0.75
7/16, if A?,ij > q0.75

where qa is the a quantile of A?,ij , i, j = 1, . . . , 200.
Setting 3: This setting is the contrary of Setting 2. For entries that have high values,

they are less likely to be observed.

πij =





7/16, if A?,ij ≤ q0.25
0.25, if q0.25 < A?,ij ≤ q0.75
1/16, if A?,ij > q0.75

11



where qa is the a quantile of A?,ij , i, j = 1, . . . , 200.
We generate 200 simulated data sets separately for each of the above settings to compare

different matrix completion methods, including the proposed method (BalWeights) and five
existing matrix completion methods: Mazumder et al. (2010) (SoftImpute), Cai and Zhou
(2016) (CZ), Fang et al. (2018) (FLT), Koltchinskii et al. (2011) (KLT) and Negahban and
Wainwright (2012) (NW). For all methods mentioned above, we randomly separate 20% of the
observed entries in every simulated dataset and use it as the validation set to select tuning
parameters.

In addition to the empirical root mean squared error (RMSE), we also include estimated
rank and test error:

TE :=
‖(J − T ) ◦ (Ã−A?)‖F√

n1n2 −N
,

where Ã is a generic estimator of A?; T is the matrix of observed indicator and N is the
number of observed entries. The test error measures the relative estimation error of the
unobserved entries. Due to the space limitation, we only present the results for SNR = 5.
Results for SNR = 1 and SNR = 10 can be found in Section S6 of the supplemental document.
Table 1 summarizes the average RMSE, average TE, and average estimated ranks for all three
settings. In all three settings, SoftImpute, CZ and KLT do not provide competitive results
as others. For Setting 1, NW achieves the smallest RMSE and TE, but BalWeights performs
closely to it. When SNR = 1 (shown in supplemental document), BalWeights performs best
— the average RMSE of BalWeights is 1.901 while the average RMSE of NW is 2.012. As for
Settings 2 and 3, BalWeights outperforms other methods. Also, NW performs significantly
worse than BalWeights in Setting 2. FLT has average RMSE and TE that are close to
BalWeights in Setting 2 but does not perform well in Setting 3. As a result, we can see that
BalWeights is quite robust across different missing structures.

7 Real Data Applications

We applied the above methods to two real datasets:
1. Coat Shopping Dataset, which is available at http://www.cs.cornell.edu/~schnabts/

mnar/. As described in Schnabel et al. (2016), the dataset contains ratings from 290 Turkers
on an inventory of 300 items. The self-selected ratings form the training set and the uni-
formly selected ratings form the test set. The training set consists of 6960 entries and test
set consists of 4640 entries.

2. Yahoo! Webscope Dataset, which is available at http://research.yahoo.com/AcademicRelations.
It contains (incomplete) ratings from 15,400 users on 1000 songs. The dataset consists of two
subsets, a training set and a test set. The training set records approximately 300,000 ratings
given by the aforementioned 15,400 users. Each song has at least 10 ratings. The test set
was constructed by surveying 5,400 out of these 15,400 users, such that each selected user
rates exactly 10 additional songs.

For the second dataset, due to its large size, we use a non-convex algorithm of Lee et al.
(2010) to obtain CZ. Also, we modify this algorithm to incorporate another nuclear-norm
regularization, to obtain BalWeights and FLT. Detailed algorithm can be found in Section
S5.2 of the supplemental document. For both datasets, we separate half of the test data set

12



Table 1: Simulation results for three Settings when SNR=5. The average RMSE (RMSE),
average TE (TE), and average estimated ranks (r̄) with standard errors (SE) in parentheses
are provided for six methods (BalWeights, SoftImpute, CZ, FLT, NW and KLT) in comparison.
For the columns related RMSE and TE, we bold results with the first two smallest errors.

Setting 1
Method RMSE TE r̄

BalWeights 0.679(0.001) 0.700(0.001) 25.150(0.128)
SoftImpute 0.699(0.001) 0.721(0.001) 45.005(0.161)

CZ 0.895(0.002) 0.899(0.002) 51.075(0.121)
FLT 0.682(0.001) 0.703(0.001) 26.705(0.131)
NW 0.668(0.001) 0.688(0.001) 28.04(0.187)
KLT 1.913(0.003) 1.976(0.003) 8.720(0.060)

Setting 2
Method RMSE TE r̄

BalWeights 0.624(0.001) 0.635(0.001) 24.980(0.136)
SoftImpute 0.648(0.001) 0.660(0.001) 41.240(0.104)

CZ 0.922(0.002) 0.945(0.002) 47.170(0.156)
FLT 0.628(0.001) 0.640(0.001) 26.045(0.145)
NW 0.665(0.002) 0.674(0.002) 22.030(0.806)
KLT 1.980(0.006) 1.880(0.004) 1.355(0.141)

Setting 3
Method RMSE TE r̄

BalWeights 0.925(0.002) 1.002(0.002) 24.090(0.138)
SoftImpute 1.143(0.003) 1.254(0.003) 47.240(0.144)

CZ 1.222(0.003) 1.324(0.003) 50.590(0.151)
FLT 1.026(0.002) 1.118(0.003) 32.440(0.131)
NW 0.964(0.002) 1.043(0.002) 18.350(0.319)
KLT 3.174(0.006) 3.477(0.006) 9.575(0.093)

as the validation set to select tuning parameters for all methods. And the remaining half test
data set is used as the evaluation set.

Here, we include the test root mean squared error

TRMSE :=
‖Te ◦ (Ã−A?)‖F√

Ne
,

where Ã is a generic estimator of A?; Te is the indicator matrix for the evaluation set and
Ne is the number of evaluation entries, and the test mean absolute error

TMAE :=

∑
Te,ij=1 |Ãij −A?,ij |

Ne
,

to measure the performance of all the methods. Rank estimation is also provided.
Table 2 shows the TRMSE, TMAE and estimated ranks for the two datasets with all

the methods mentioned above. For Coat Shopping Dataset, compared with the existing
methods, the proposed method BalWeights achieves best TRMSE and TMAE. The errors
of FLT are similar to that of BalWeights, but the estimated rank is larger than that of

13



Table 2: Test root mean squared errors (TRMSE), test mean absolute errors (TMAE) and es-
timated ranks (Rank) based on the evaluation set of Coat Shopping Dataset and Yahoo! Web-
scope Dataset for BalWeights and five existing methods proposed respectively in Mazumder
et al. (2010) (SoftImpute), Cai and Zhou (2016) (CZ), Fang et al. (2018)(FLT), Negahban
and Wainwright (2012) (NW) and Koltchinskii et al. (2011) (KLT). For the columns related
TRMSE and TMAE, we bold results with the first two smallest errors.

Coat Shopping Dataset
Method TRMSE TMAE Rank

BalWeights 0.9888 0.7627 26
SoftImpute 1.1401 0.8485 15

CZ 1.0354 0.8279 31
FLT 0.9980 0.7723 32
NW 1.0553 0.7972 25
KLT 2.0838 1.5733 2

Yahoo! Webscope Dataset
Method TRMSE TMAE Rank

BalWeights 1.0111 0.7739 64
SoftImpute 1.2172 0.9230 31

CZ 1.0339 0.8156 29
FLT 1.0339 0.8156 29
NW 1.0338 0.7954 25
KLT 3.811 1.6589 1

BalWeights. In other words, BalWeights is significantly more efficient in capturing the
signal. For Yahoo! Webscope Dataset, BalWeights also has the smallest errors among all the
methods. However, compared with CZ, FLT and NW whose errors are relatively close to that
of BalWeights, BalWeights has a higher estimated rank, though 64 is a reasonably small
rank for a matrix with size 1000 by 15400. To confirm the fact that the higher errors of CZ,
FLT and NW are not due to their smaller rank estimates, we look into the test error sequences
obtained by varying the tuning parameters, for each of these three methods. We find that
the change of test errors (based on the evaluation set) aligns well with the validation errors
(based on the validation set), and the chosen tuning parameters indeed correspond to the
almost smallest test errors they can achieve. This suggests that these three estimators are
not able to capture additional useful information and hence produce a smaller rank estimates.
But the proposed estimator is able to capitalize these additional signals to achieve reduction
in errors.
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Klopp, O., J. Lafond, É. Moulines, J. Salmon, et al. (2015). Adaptive multinomial matrix
completion. Electronic Journal of Statistics 9 (2), 2950–2975.

Koltchinskii, V. (2011). Oracle Inequalities in Empirical Risk Minimization and Sparse Re-
covery Problems. Springer.

Koltchinskii, V., K. Lounici, and A. B. Tsybakov (2011). Nuclear-norm penalization and
optimal rates for noisy low-rank matrix completion. The Annals of Statistics 39 (5), 2302–
2329.

Lafond, J., O. Klopp, E. Moulines, and J. Salmon (2014). Probabilistic low-rank matrix
completion on finite alphabets. In Advances in Neural Information Processing Systems,
pp. 1727–1735.

Lee, J. D., B. Recht, N. Srebro, J. Tropp, and R. R. Salakhutdinov (2010). Practical large-
scale optimization for max-norm regularization. In Advances in neural information pro-
cessing systems, pp. 1297–1305.

16



Mao, X., S. X. Chen, and R. K. Wong (2019). Matrix completion with covariate information.
Journal of the American Statistical Association 114 (525), 198–210.

Mao, X., R. K. Wong, and S. X. Chen (2020). Matrix completion under low-rank missing
mechanism. Statistica Sinica.

Mazumder, R., T. Hastie, and R. Tibshirani (2010). Spectral regularization algorithms for
learning large incomplete matrices. Journal of Machine Learning Research 11, 2287–2322.

Montanari, A. and S. Oh (2010). On positioning via distributed matrix completion. In Sensor
Array and Multichannel Signal Processing Workshop (SAM), 2010 IEEE, pp. 197–200.

Negahban, S. and M. J. Wainwright (2012). Restricted strong convexity and weighted matrix
completion: Optimal bounds with noise. Journal of Machine Learning Research 13 (1),
1665–1697.

Recht, B. (2011). A simpler approach to matrix completion. The Journal of Machine Learning
Research 12, 3413–3430.

Rennie, J. D. and N. Srebro (2005). Fast maximum margin matrix factorization for collabo-
rative prediction. In Proceedings of the 22nd international conference on Machine learning,
pp. 713–719.
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S1 Proof of Lemma 1

Proof of Lemma 1. We first list two properties of max norm as follows. (i) As shown in Srebro and Shraibman

(2005), ‖B‖∗ ≤
√
n1n2‖B‖max. (ii) By an equivalent definition of max norm due to Lee et al. (2008) (also

see equation (8) in Jalali and Srebro (2012)), we have ‖C ◦B‖ ≤ ‖C‖‖B‖max. Together with the duality of

nuclear norm, we can show that

|〈C ◦B,B〉| ≤ ‖C ◦B‖‖B‖∗ ≤ ‖C‖‖B‖max‖B‖∗ (S1)

≤ √n1n2‖C‖‖B‖2max.

S2 Proofs of Theorems 1, 2 and 3

Let ei(n) ∈ Rn be the canonical basis vector, i.e., the i-th element of ei(n) is 1 and the remaining elements

are 0. We can define similar standard basis elements for n1-by-n2 matrices: Jij = ei(n1)e
ᵀ
j (n2), which will

be used in the applications of matrix Bernstein inequality in our proofs. For any β ≥ 0, define the class of

matrices Bmax(β) to be the max-norm ball with radius β, i.e.,

Bmax(β) = {A ∈ Rn1×n2 : ‖A‖max ≤ β}.

We also define

F = {uvT : u ∈ {−1,+1}n1 ,v ∈ {−1,+1}n2},
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the set of rank-one sign matrices. Denote by KG ∈ (1.67, 1.79) the Grothendieck’s constant. From Srebro

and Shraibman (2005),

convF ⊆ Bmax(1) ⊆ KGconvF . (S2)

Moreover, the cardinality of F is |F| = 2n1+n2−1.

Lemma S1. Suppose Assumption 1 hold. Let W� = (w�,i,j) ∈ Rn1,n2 where W�,i,j = π−1i,j . There exists a

constant C1 ≥ 0 such that with probability at least 1− 1/(n1 + n2),

1

n1n2
‖T ◦W� − J‖ ≤ C1 min

{
log1/2(n1 + n2)√
πL(n1 ∧ n2)n1n2

,

√
n1 + n2
πLn1n2

}
.

Proof of Lemma S1. We use two different proof techniques to show the bounds. Depending on the rate of

πL, one of these two bounds is faster.

First, we show the proof for deriving the second bound. As {Tij} are Bernoulli random variables, each

entry TijW�,i,j − 1 of matrix T ◦W�−J is sub-Gaussian random variable. Thus according to the definition

of the ψ2 norm, we have

E exp{log(2) · (TijW�,i,j − 1)2/(π−1ij − 1)2} ≤ 2,

which implies that ‖TijW�,i,j − 1‖ψ2 ≤ log−1/2 2 · (π−1ij − 1) ≤ 2(π−1ij − 1).

By Theorem S2 in Section S4 , taking K = maxi,j ‖TijW�,i,j − 1‖ψ2 ≤ 2π−1L and t = (n1 + n2)
1/2 in

Theorem S2, there exists an absolute constant C1 > 0 such that

‖T ◦W� − J‖ ≤
C1
√
n1 + n2
πL

,

with probability at least 1− 2 · exp(−(n1 + n2)).

Next, we consider applying the Matrix Bernstein inequality to derive the first bound. For (n1n2)
−1‖T ◦

W�−J‖ = ‖∑i,j(TijW�,i,j−1)Jij/(n1n2)‖, where Jij has 1 for (i, j)−th, but 0 for all the remaining entries,

letMi,j = (TijW�,i,j−1)Jij , i = 1, . . . , n1, j = 1, . . . , n2, then (n1n2)
−1‖T ◦W�−J‖ = ‖(n1n2)−1

∑
i,jMi,j‖.

We can easily verify that E(Mi,j) = 0 and ‖Mi,j‖ ≤ max{π−1L − 1, 1} for each i, j by Assumption 1.

Since E(TijW�,i,j − 1)2 = π−1ij − 1, we can show that

∥∥∥∥∥∥
1

n1n2

∑

i,j

E
(
Mi,jM

ᵀ
i,j

)
∥∥∥∥∥∥

=

∥∥∥∥∥∥
1

n1n2

∑

i,j

E
(
Mᵀ

i,jMi,j

)
∥∥∥∥∥∥

≤ 1

n1n2
max



 max

1≤i≤n1

n2∑

j=1

|1/πij − 1| , max
1≤j≤n2

n1∑

i=1

|1/πij − 1|





≤ 1

n1 ∧ n2
|1/πL − 1|,

where the first inequality comes from Corollary 2.3.2 in Golub and Van Loan (1996).
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By Theorem S3 in Section S4 , with probability at least 1− 1/(n1 + n2), we have

1

n1n2
‖T ◦W� − J‖ ≤ 2 max

{√
2 |1/πL − 1| log (n1 + n2)

(n1 ∧ n2)n1n2
, 2 max

{
1

πL
− 1, 1

}
log3/2 (n1 + n2)

n1n2

}
.

Overall, the conclusion follows.

Lemma S2. Suppose Assumption 1 holds. With probability at least 1− exp{−2−1(log 2)π2L
∑

i,j π
−1
ij },

‖T ◦W�‖2F ≤ 2
∑

i,j

π−1ij .

In particular, the probability is lower bounded by 1− exp{−2−1(log 2)n1n2π
2
Lπ
−1
U }.

Proof of Lemma S2. Note that ‖T ◦W�‖2F =
∑

i,j Tijπ
−2
ij . Let ξ > 0. By Markov inequality, for any t ≥ 0,

Pr
(
‖T ◦W�‖2F ≥ t

)
= Pr

{
exp(ξ‖T ◦W�‖2F ) ≥ exp(ξt)

}
≤ exp(−ξt)E exp


ξ
∑

i,j

Tijπ
−2
ij




= exp(−ξt)
∏

i,j

E exp(ξTijπ
−2
ij ).

For each (i, j), due to the inequality 1 + x ≤ exp(x) for x ≥ 0,

E exp(ξTijπ
−2
ij ) = 1 + {exp(ξπ−2ij )− 1}πij ≤ exp[{exp(ξπ−2ij )− 1}πij ].

Combining with the above result and taking t = 2
∑

i,j π
−1
ij ,

Pr


‖T ◦W�‖2F ≥ 2

∑

i,j

π−1ij


 ≤ exp


−2ξ

∑

i,j

π−1ij +
∑

i,j

{exp(ξπ−2ij )− 1}πij




= exp


−

∑

i,j

πij

{
1 + 2ξπ−2ij − exp(ξπ−2ij )

}

 .

Note the above inequality holds for any ξ > 0.

Next, we focus on the term g(ξπ−2ij ) where g(x) = 1 + 2x − exp(x) for x ≥ 0. It is easy to show that g

attains its maximum at x = log 2, and g(log 2) = 2 log 2− 1 > 0. Also, g(x) is increasing for 0 ≤ x ≤ log 2.

Take ξ = (log 2)π2L. Then 0 ≤ ξπ−2ij ≤ log 2, and hence g(ξπ−2ij ) > 0, for all i, j. The lower bound of

g(ξπ−2ij ) is crucial in determining the order of the probability bound. Since g(x) ≥ x/2 for 0 ≤ x ≤ log 2,

g(ξπ−2ij ) = g(π2Lπ
−2
ij log 2) ≥ log 2

2
π2Lπ

−2
ij , ∀i, j

3



We conclude that

∑

i,j

πij

{
1 + 2ξπ−2ij − exp(ξπ−2ij )

}
≥ log 2

2
π2L
∑

i,j

π−1ij ≥
log 2

2
n2n2π

2
Lπ
−1
U ,

which leads to the desired result.

With these two lemmas, we are posed to prove Theorem 1.

Proof of Theorem 1. By Lemma S2, we can show that with probability at least 1−exp{−2−1(log 2)π2L
∑

i,j π
−1
ij },

‖T ◦W�‖F ≤ (2
∑

i,j π
−1
ij )1/2 and hence W� is feasible for the constrained optimization (5).

Based on the definition of the proposed estimator Ŵ , we have

S
(
Ŵ ,∆

)
=

1

n1n2

∣∣∣
〈
∆,
(
T ◦ Ŵ − J

)
◦∆

〉∣∣∣

≤ 1√
n1n2

‖T ◦W� − J‖ ‖∆‖2max

≤ β′2√
n1n2

‖T ◦W� − J‖ .

The desired result then follows from Lemma S1.

Our theoretical result of the final estimator Â will be based on a key lemma (Lemma S4), which estab-

lishes the dual of max norm of random matrix ε with general entry-wise scaling. Before we prove Lemma

S4, we now show a comparison theorem between sub-Gaussian complexity and Gaussian complexity. This

result (Lemma S3) extends Theorem 8 in Banerjee et al. (2014) to allow arbitrary entrywise scaling.

Define the Gaussian width and Gaussian complexity of the set A respectively as

w(A) = EG

[
sup
A∈A
〈A,G〉

]
and w̃(A) = EG

[
sup
A∈A
| 〈A,G〉 |

]
,

where G = (Gij) and each {Gij} are independent standard Gaussian random variables. In our study, A is

a max-norm ball, and so is symmetric. Therefore Gaussian width and Gaussian complexity are equivalent.

Lemma S3 (Extension of Theorem 8 in Banerjee et al. (2014)). Suppose Assumption 2 holds. Let B =

(Bij) ∈ Rn1×n2 be a fixed matrix such that Bij ≥ 0 for each i, j. Then

E [‖B ◦ ε‖∗max] ≤ η0τE [‖B ◦G‖∗max] ,

where ‖ · ‖∗max is the dual norm of max norm, G = (Gij) has independent standard Gaussian entries which

are also independent of the random errors {εij}, and η0 > 0 is an absolute constant.
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Proof of Lemma S3. Since the desired result obviously holds if B = 0, we assume B 6= 0 in the rest of this

proof. By definition, ‖C‖∗max = sup‖X‖max≤1〈X,C〉 for any C ∈ Rn1×n2 . Therefore our goal is to bound

a scaled sub-Gaussian complexity via the corresponding scaled Gaussian complexity. We now extend the

proof of Theorem 8 of Banerjee et al. (2014) to allow an additional entrywise scaling parameter B. We start

with considering the sub-Gaussian process YX = 〈X,B ◦ ε〉 and the Gaussian process ZX = 〈X,B ◦G〉,
both indexed by X ∈ Bmax(1). For any X1,X2 ∈ Bmax(1), by the general Hoeffding’s inequality given in

Theorem 2.6.3 of Vershynin (2018), we have

Pr (|YX1 − YX2 | ≥ t) ≤ 2 · exp

(
− C1t

2

τ2 ‖B ◦ (X1 −X2)‖2F

)
, t > 0, (S3)

where C1 > 0 is an absolute constant. One can show that E(ZX1 − ZX2)2 = ‖B ◦ (X1 −X2)‖2F . According

to Theorem 2.1.5 of Talagrand (2006), we can apply the generic chaining argument for upper bounds on the

empirical processes
√
cYX/τ and ZX . This yields

Eε

[
sup

X1,X2∈Bmax(1)
|YX1 − YX2 |

]
≤ η1τEG

[
sup

X1∈Bmax(1)
ZX1

]
= η1τw(Bmax(1)), (S4)

where η1 is an absolute constant. Further, we can see that if X ∈ Bmax(1), then −X ∈ Bmax(1). Then we

have

sup
X1,X2∈Bmax(1)

|YX1 − YX2 | = sup
X1,X2∈Bmax(1)

(YX1 − YX2) = sup
X1∈Bmax(1)

YX1 + sup
X2∈Bmax(1)

(−YX2)

= sup
X1∈Bmax(1)

YX1 + sup
−X2∈Bmax(1)

(〈−X2,B ◦ ε〉) = 2 sup
X1∈Bmax(1)

YX1 .

By taking the expectation on ε on both side, we have

Eε

[
sup

X1,X2∈Bmax(1)
|YX1 − YX2 |

]
= 2Eε

[
sup

X1∈Bmax(1)
YX1

]
. (S5)

As a result, with η0 = η1/2, we have

Eε

[
sup

X∈Bmax(1)
〈B ◦ ε,X〉

]
= Eε

[
sup

X∈Bmax(1)
YX

]
≤ η0τw(Bmax(1)). (S6)

That completes the proof.

Lemma S4. Suppose Assumption 2 holds. Let B = (Bij) ∈ Rn1×n2 be a fixed matrix such that Bij ≥ 0 for

each i, j. There exists an absolute constant C2 > 0 such that, with probability at least 1−2 exp{−(n1 +n2)},

‖B ◦ ε‖∗max ≤ C2τ‖B‖F
√
n1 + n2.
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Proof of Lemma S4. Define the set

B̃max(β) = {B ◦X : X ∈ Bmax(β)} ⊂ Rn1×n2 .

Note that we have

EG

[
sup

X∈Bmax(1)
〈B ◦G,X〉

]
= EG

[
sup

X∈Bmax(1)
〈G,B ◦X〉

]
= w(B̃max(1)).

Write F̃ = {B ◦X : X ∈ F}. By the the relationship (S2), we have

F̃ ⊆ B̃max(1) ⊆ {B ◦X : X ∈ KG conv (F)} = KG{B ◦X : X ∈ conv(F)} = KG conv(F̃).

Due to the properties of Gaussian width (see, e.g., Appendix A.1 of Banerjee et al., 2014), we have

w(B̃max(1)) ≤ w(KG conv(F̃)) = KGw(conv(F̃)) = KGw(F̃).

As for any X ∈ F , we have

‖B ◦X‖F = ‖B‖F ,

and so 〈G,B ◦X〉 ∼ N (0, ‖B‖2F ). Recall that the |F| = 2n1+n2−1. By Proposition 3.1(ii) of Koltchinskii

(2011), we have

w(F̃) ≤ C3‖B‖F
√
n1 + n2.

where C3 is a absolute constant. By Lemma S3, we conclude that

Eε

[
sup

X∈Bmax(1)
〈B ◦ ε,X〉

]
≤ η0τEG

[
sup

X∈Bmax(1)
〈B ◦G,X〉

]

= η0τw(B̃max(1)) ≤ KGη0τw(F̃)

≤ C3KGη0τ‖B‖F
√
n1 + n2. (S7)

Let ϕ(Z) = sup‖X‖max≤1〈B ◦Z,X〉 for any Z ∈ Rn1×n2 . We aim to provide the concentration of ϕ(ε) to

its expectation. For notational simplicity, we will focus on the setting with Bij > 0 for all i, j; otherwise, one

can reduce the support of ϕ to those entries corresponding to non-zero Bij . Due to the possibly unbounded

support of ε, we adopt an extension of McDiarmid’s inequality Kontorovich (2014) with unbounded diameter.

For any Z1 = (Z1,ij),Z2 = (Z2,ij) ∈ Rn1×n2 ,

|ϕ(Z1)− ϕ(Z2)| ≤ sup
‖X‖max≤1

|〈B ◦Z1,X〉 − 〈B ◦Z2,X〉|

≤ sup
‖X‖max≤1

∑

i,j

Bij |Xij ||Z1,ij − Z2,ij |

≤ sup
X∈KGconv(F)

∑

i,j

Bij |Xij ||Z1,ij − Z2,ij |

≤ q(Z1,Z2),
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where q(Z1,Z2) =:
∑

i,j qij(Z1,ij , Z2,ij) =:
∑

i,jKGBij |Z1,ij − Z2,ij | is a metric. Therefore ϕ is 1-Lipschitz

with respect to the metric q. Let ε′ij be an independent copy of εij , and γij be an independent Rademacher

random variable. We can show that the subgaussian norm of γijqij(εij , ε
′
ij) is bounded by C4τbij for some

absolute constant C4 > 0. By Theorem 1 of Kontorovich (2014), we conclude that

P(|ϕ(ε)− Eϕ(ε)| > t) ≤ 2 exp

(
− t2

2C4τ2‖B‖2F

)
, t ≥ 0.

Combining with (S7), we achieve the desired result.

Lemma S5. Suppose Assumptions 1 and 2 hold. There exists an absolute constant C2 > 0 such that with

probability at least 1− 2 exp{−(n1 + n2)},
∥∥∥T ◦ Ŵ ◦ ε

∥∥∥
∗

max
≤ C2τκ

√
n1 + n2.

Proof of Lemma S5. Notice that ε is independent of T , and Ŵ is a function of T . By Lemma S4, conditioned

on T , we have ∥∥∥T ◦ Ŵ ◦ ε
∥∥∥
∗

max
≤ C2τ‖T ◦ Ŵ ‖F

√
n1 + n2, (S8)

with conditional probability at least 1−2 exp{−(n1 +n2)}. Since the probability bound does not depend on

T , (S8) holds with the same probability bound unconditionally. By construction, ‖T ◦ Ŵ ‖F ≤ κ, we have

the desired result.

Proof of Theorem 2. It follows from the definition of Â that for A? ∈ Rn1×n2 with ‖A?‖max ≤ β,

1

n1n2

∥∥∥T ◦ Ŵ ◦1/2 ◦
(
Â− Y

)∥∥∥
2

F
≤ 1

n1n2

∥∥∥T ◦ Ŵ ◦1/2 ◦ (A? − Y )
∥∥∥
2

F
+ µ(‖A?‖∗ − ‖Â‖∗). (S9)

Since we can rewrite the first term in the left hand side of (S9) as

1

n1n2

∥∥∥T ◦ Ŵ ◦1/2 ◦
(
Â− Y

)∥∥∥
2

F
=

1

n1n2

∥∥∥T ◦ Ŵ ◦1/2 ◦
(
Â−A? +A? − Y

)∥∥∥
2

F
,

the inequality (S9) leads to

1

n1n2

∥∥∥T ◦ Ŵ ◦1/2 ◦
(
Â−A?

)∥∥∥
2

F
≤ 2

n1n2

〈
T ◦ Ŵ ◦1/2 ◦

(
Â−A?

)
,T ◦ Ŵ ◦1/2 ◦ (Y −A?)

〉
+ µ(‖A?‖∗ − ‖Â‖∗)

=
2

n1n2

〈
Â−A?,T ◦ Ŵ ◦ ε

〉
+ µ(‖A?‖∗ − ‖Â‖∗).

Therefore, due to Theorem 1, Lemma S5 and condition of µ, with the property that ‖A?‖∗ ≤
√
n1n2‖A?‖max,
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we have

1

n1n2

∥∥∥Â−A?

∥∥∥
2

F
≤ 1

n1n2

〈
Â−A?,

(
T ◦ Ŵ − J

)
◦
(
A? − Â

)〉
+

1

n1n2
‖T ◦ Ŵ ◦(1/2) ◦ (Â−A?)‖2F

≤ S(Ŵ , Â−A?) +

∣∣∣∣
2

n1n2
〈Â−A?,T ◦ Ŵ ◦ ε〉

∣∣∣∣+ µ(‖A?‖∗ − ‖Â‖∗)

≤ S(Ŵ , Â−A?) +
2

n1n2

∥∥∥Â−A?

∥∥∥
max

∥∥∥T ◦ Ŵ ◦ ε
∥∥∥
∗

max
+ µ‖A?‖∗

≤ C1(β
2 + β) min

{
log1/2(n1 + n2)√
πL(n1 ∧ n2)

,

√
n1 + n2

πL
√
n1n2

}
+

4C2βτκ
√
n1 + n2

n1n2
(S10)

≤ C1(β
2) min

{
log1/2(n1 + n2)√
πL(n1 ∧ n2)

,

√
n1 + n2

πL
√
n1n2

}
+

4C2βτκ
√
n1 + n2

n1n2
. (S11)

with probability at least 1− exp{−2−1(log 2)π2L
∑

i,j π
−1
ij } − 2 exp{−(n1 + n2)} − 1/(n1 + n2).

Proof of Theorem 3. Without loss of generality, we assume that n1 ≥ n2. For some constant 0 ≤ γ ≤ 1 such

that B = σ−2(σ ∧ β)2/(γ2) is an integer and B ≤ n2, define

C1 =
{
Ã = (Aij) ∈ Rn1×B : Aij ∈ {0, γβ} ,∀1 ≤ i ≤ n1, 1 ≤ j ≤ B

}
,

and consider the associated set of block matrices

A (C1) =
{
A =

(
Ã| . . . |Ã|0

)
∈ Rn1×n2 : Ã ∈ C1

}
,

where 0 denotes the n1 × (n2 −Bbn2/Bc) zero matrix.

It is easy to see that for any A ∈ A(C1), we have that ‖A‖max ≤
√
B‖A‖∞ ≤ β. Due to Lemma

2.9 in Tsybakov (2009), there exists a subset A0 ⊂ A(C1) containing the zero n1 × n2 matrix 0 where

Card(A0) ≥ 2Bn1/8 + 1 and for any two distinct elements A1 and A2 of A0,

‖A1 −A2‖2F ≥
n1B

8

{
γ2β2

⌊n2
B

⌋}
≥ n1n2γ

2β2

16
. (S12)

For any A ∈ A0, from the noisy observed model in section 2.2, the probability distribution PA =

Πi,j [(2πσ
2)−1/2 exp{−(Yij − Aij)

2/(2σ2)}]Tij . Take P0 = Πi,j [(2πσ
2)−1/2 exp{−Y 2

ij/(2σ
2)}]Tij . Thus the

Kullback-Leibler divergence K(P0,PA)= EP0(log(P0/PA)) between P0 and PA satisfies

K (P0,PA) = EP0


∑

ij

Tij
A2
ij − 2AijYij

2σ2


 =

∥∥Π◦1/2 ◦A
∥∥2
F

2σ2
≤
γ2β2

∑n1
i=1

∑n2
j=1 πij

2σ2
≤ C5

γ2β2n1n2πL
2σ2

,

for some positive constant C5. The last inequality is due to the condition that n1n2πL �
∑n1

i=1

∑n2
j=1 πij .
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From above we deduce the condition

1

Card(A0)− 1

∑

A∈A0

K (P0,PA) ≤ λ log
(
Card(A0)− 1

)
, (S13)

The above condition is valid when we take

γ2 = C6

(
(σ ∧ β)2

β2n2πL

)1/2

for some constant C6 that depends on λ. Also, one can verify that under the conditions π−1L = O(β2(n1 ∧
n2)/(σ ∧ β)2) and π

1/2
L = O((n1 ∧ n2)1/2σ2/[β(σ ∧ β))], γ ≤ 1 and B ≤ n2. Then we subsitute γ2 in the

bound of S12 and we achieve the final bound as the one showed in the Theorem.

Together with the similar argument when n2 ≥ n1, the result now follows by application of Theorem 2.5

in Tsybakov (2009). This completes the proof.

Lemma S6. Suppose Assumption 2 hold. For a fixed matrix B = (Bij) ∈ Rn1×n2 where Bij ≥ 0, there

exists an absolute constant C5 > 0 such that, with probability at least 1− 2 exp(−(n1 + n2)),

‖B ◦ ε‖ ≤ C5‖B‖∞τ(
√
n1 +

√
n2).

Proof. By the definition of ‖ · ‖ψ2 ,

max
i,j
‖Bijεij‖ψ2 ≤ ‖B‖∞τ.

Apply Theorem S2 in Section S4 , and take t =
√
n1 +

√
n2 in Theorem S2. Then conclusion follows.

S3 Non-asymptotic Error Bound under Low-rank Settings and Asymp-

totically Homogeneous Missingness

Theorem S1. Suppose Assumption 2 hold and πL�πU�π. Assume ‖A?‖max≤β and A? has rank R. If

κ′ = κ−‖T ‖F is bounded and µ�
√
{τ2π log (n1+n2)}{(n1∧n2)n1n2}−1, then there exists a constant C6 > 0,

such that with probability at least 1−3(n1+n2)
−1,

d2(Â,A?) ≤
C6R(τ2∨‖A?‖2∞) log(n1 + n2)

[π(n1∧n2)]−1
.

Proof outline. From the basic inequality, we have

1

n1n2
‖T ◦ Ŵ 1/2 ◦ (Â−A?)‖2F ≤

2

n1n2
〈Â−A?,T ◦ Ŵ ◦ ε〉+ µ‖A?‖∗ − µ‖Â‖∗.
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Note that weights are restricted to be greater than 1. We then have

1

n1n2
‖T ◦ (Â−A?)‖2F ≤

1

n1n2
‖T ◦ Ŵ 1/2 ◦ (Â−A?)‖2F ≤

2

n1n2
‖Â−A?‖∗‖T ◦ Ŵ ◦ ε‖+ µ(‖A?‖∗ − ‖Â‖∗).

Due to the constraint of κ′, ‖Ŵ ‖∞ is bounded, we can use Lemma S7 to derive the bound of ‖T ◦ Ŵ ◦ ε‖.
The remaining argument is rather standard and the same as the proof for No-weighted estimators with

nuclear norm regularization (Klopp, 2014).

Lemma S7. Suppose assumptions in Corollary S1 hold. Then there exists a constant C7 > 0 such that,

with probability at least 1− (n1 + n2),

1

n1n2
‖T ◦ Ŵ ◦ ε‖ ≤ C7

√
τ2π log (n1 + n2)

(n1 ∧ n2)n1n2

Proof. The proof is very similar as the proof in Lemma S1.

We consider applying the Matrix Berinstein inequality for random matrices with bounded sub-exponential

norm.

Due to the constraint of κ′, there exists a constant C8 such that ‖Ŵ ‖∞ ≤ C8.

For (n1n2)
−1‖T ◦ Ŵ ◦ ε‖ = ‖∑i,j(TijŴi,jεij)Jij/(n1n2)‖, where Jij has 1 for (i, j)−th, but 0 for all

the remaining entries, let Mi,j = (TijŴi,jεij)Jij , then (n1n2)
−1‖T ◦ Ŵ ◦ ε‖ = ‖(n1n2)−1

∑
i,jMi,j‖. We

can easily verify that E(Mi,j) = 0. Note that εij are sub-Gaussian random variables and therefore sub-

exponential random variables. Then maxi,j ‖‖Mi,j‖‖ψ1 ≤ maxi,j ‖TijŴi,jεij‖ψ1 ≤ C9τ , where ‖ · ‖ψ1 is the

sub-exponential norm of a random variable and C9 is some constant depending on the C8.

Since E(TijŴi,jεij)
2 ≤ cC2

8πijτ
2 for some absolute constant c, we can show that

∥∥∥∥∥∥
1

n1n2

∑

i,j

E
(
Mi,jM

ᵀ
i,j

)
∥∥∥∥∥∥

=

∥∥∥∥∥∥
1

n1n2

∑

i,j

E
(
Mᵀ

i,jMi,j

)
∥∥∥∥∥∥

≤ 1

n1n2
max



 max

1≤i≤n1

n2∑

j=1

c2πijτ
2, max

1≤j≤n2

n1∑

i=1

c2πijτ
2





≤ c3τ
2

n1 ∧ n2
π,

for some constant c3.

By Proposition 11 in Klopp (2014) , there exsits a constant C7, such that with probability at least

1− 1/(n1 + n2),

1

n1n2

∥∥∥T ◦ Ŵ ◦ ε
∥∥∥ ≤ C7 max

{√
τ2π log (n1 + n2)

(n1 ∧ n2)n1n2
, τ log(1/

√
π)

log3/2(n1 + n2)

n1n2

}
.

Overall, the conclusion follows.

10



S4 Useful Results

Theorem S2 (Theorem 4.4.5 of Vershynin (2018)). Let A be an n1 × n2 random matrix whose entries Aij
are independent, mean zero, sub-gaussian random variables. Then, for any t > 0 we have

‖A‖ ≤ CK(
√
n1 +

√
n2 + t)

with probability at least 1− 2 exp(−t2). Here K = maxij ‖Aij‖ψ2 and C is an absolute constant.

Proof. The proof can be found on Page 91 in Vershynin (2018).

Theorem S3 (Proposition 1 of Koltchinskii et al. (2011)). Let Z1, . . . ,ZN be independent random matrices

with dimensions n1 × n2 that satisfy EZi = 0 and ‖Zi‖ ≤ U almost surely for some constant U and all

i = 1, . . . , n. Define

σZ = max





∥∥∥∥∥
1

N

N∑

i=1

E(ZiZ
ᵀ
i )

∥∥∥∥∥

1/2

,

∥∥∥∥∥
1

N

N∑

i=1

E(Zᵀ
i Zi)

∥∥∥∥∥

1/2


 .

Then, for all t > 0, with probability at least 1− exp(−t) we have

∥∥∥∥
Z1 + · · ·+ZN

N

∥∥∥∥ ≤ 2 max

{
σZ

√
t+ log(n1 + n2)

N
,U

t+ log(n1 + n2)

N

}
,

Proof. The proof can be found on Page 2325 in Koltchinskii et al. (2011).

S5 Algorithm

S5.1 Convex Algorithm for Solving (7)

Follow Fang et al. (2018) and Cai and Zhou (2016), we consider an equivalent form objective function in (7)

below.

min
X,Z

1

n1n2
‖T ◦ Ŵ ◦(1/2) ◦ (Y −Z12)‖2F + µ〈I,X〉,

Subject to X < 0, X = Z, Z ∈ Pβ

where Z,X ∈ R(n1+n2)×(n1+n2), S is the class of all symmetric matrices in R(n1+n2)×(n1+n2), Pβ := {C ∈

S : diag(C) ≥ 0, ‖C‖∞ ≤ β}, I is an identity matrix and

Z =



Z11 Z12

Zᵀ
12 Z22


 ,Z11 ∈ Rn1×n1 ,Z22 ∈ Rn2×n2
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The derivation of above representation mainly comes from two facts: 1. The nuclear norm of Z12 is the

the smallest possible sum of elements on the diagonal of Z given Z < 0 (Fazel et al., 2001); 2. The max

norm of matrix Z12 is the smallest possible maximum element on the diagonal of Z given Z < 0 (Srebro

et al., 2005).

The augmented Lagrangian function can be written as

L(X,Z,V ) =
1

n1n2
‖T ◦ Ŵ ◦(1/2) ◦ (Y −Z12)‖2F + µ〈I,X〉+ 〈V ,X −Z〉+

ρ

2
‖X −Z‖2F ,

Subject X<0, Z ∈ Pβ,

where V ∈ R(n1+n2)×(n1+n2) is the dual variable and ρ > 0 is a hyper-parameter.

Then the alternating direction method of multipliers (ADMM) algorithm solves this optimization problem

by minimizing the augmented Lagrangian with respect to different variables alternatingly. More explicitly,

at the (t+ 1)-th iteration, the following updates are implemented:

Xt+1 = Π{Zt + ρ−1(V t + µI)},

Z(t+1) = arg min
Z∈Pβ

1

n1n2
‖T ◦ Ŵ ◦(1/2) ◦ (Y −Z12)‖2F +

ρ

2
‖Z −Xt+1 − ρ−1V t‖2F = Φ

T ,Y ,Ŵ ,β
{Xt+1 + ρ−1V t},

V t+1 = V t + τρ(Xt+1 −Zt+1),

where Π(·) is the projection to the space {C ∈ S : C < 0}, and Φ
T ,Y ,Ŵ ,β

is defined in Definition S1.

Detailed derivation can be found in Fang et al. (2018) and Cai and Zhou (2016).

Definition S1. We use C(i, j) to represent the element on the i-th row and j-th column of a matrix C.

For the matrix C ∈ R(n1+n2)×(n1+n2), it can be partitioned into

C =

[
C11 C12

Cᵀ
12 C22

]
,C11 ∈ Rn1×n1 ,C22 ∈ Rn2×n2

Then

Φ
T ,Y ,Ŵ ,β

(C) =

[
Φ
T ,Y ,Ŵ ,β

(C)11 Φ
T ,Y ,Ŵ ,β

(C)12

Φ
T ,Y ,Ŵ ,β

(C)ᵀ12 Φ
T ,Y ,Ŵ ,β

(C)22

]
,
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where

Φ
T ,Y ,Ŵ ,β

(C)11(i, j) = min{β,max{C11(i, j),−β}} if i 6= j,

Φ
T ,Y ,Ŵ ,β

(C)11(i, j) = min{β,max{C11(i, j), 0}} if i = j,

Φ
T ,Y ,Ŵ ,β

(C)22(i, j) = min{β,max{C22(i, j),−β}}, if i 6= j,

Φ
T ,Y ,Ŵ ,β

(C)22(i, j) = min{β,max{C22(i, j), 0}} if i = j,

Φ
T ,Y ,Ŵ ,β

(C)12(i, j) = min

{
β,max

{
Y (i, j)Ŵ (i, j) + ρC(i, j)

Ŵ (i, j) + ρ
,−β

}}
if T (i, j) = 1,

Φ
T ,Y ,Ŵ ,β

(C)12(i, j) = min{β,max{C12(i, j),−β}} if i 6= j if T (i, j) = 0.

We summarize the algorithm in Algorithm 1. Some piratical implementations to adaptively tune ρ and

accelerate the computation can be found in Section 3.3 and 3.4 in Fang et al. (2018).

Algorithm 1: ADMM algorithm

Input: Y , T , β, µ, Ŵ , ρ = 0.1, τ = 1.618, K
Initialize X0, Z0, V 0, R
for t = 1 to K − 1 do
Xt+1 ← Π{Zt + ρ−1(V t + µI)}
Z(t+1) ← Φ

T ,Y ,Ŵ ,β
{Xt+1 + ρ−1V t}

V t+1 ← V t + τρ(Xt+1 −Zt+1)
Stop if objective value changes less than tolerance

end for

S5.2 Nonconvex Algorithm for Solving (7)

The nonconvex algorithm for max-norm regularization developed in Lee et al. (2010) base on the equivalent

definition of max-norm via matrix factorizations:

‖C‖max := inf {‖U‖2,∞‖V ‖2,∞ : C = UV ᵀ} ,

where ‖ · ‖2,∞ denotes the maximum l2 row norm of a matrix.

To incorporate the nuclear norm regularization, we also notice an equivalent definition of the nuclear

13



norm:

‖C‖∗ := inf
1

2

{
‖U‖2F + ‖V ‖2F : C = UV ᵀ} .

Then we have the following relaxation of the objective function in (7). Take

f(L,R) =
1

n1n2
‖T ◦ Ŵ ◦(1/2) ◦ (Y −LRᵀ)‖2F +

µ

2
(‖L‖2F + ‖R‖2F ),

and we obtain

min
L,R

f(L,R),

Subject to max {‖L‖2,∞, ‖R‖2,∞} ≤ β.

This optimization form is exactly the one in Lee et al. (2010) except that we add another nuclear penalty

in the objective function f .

Like what Lee et al. (2010) considered, the projected gradient descent method can be applied to iteratively

solve this problem. We define the project PB as the Euclidean projection onto the set {M : ‖M‖2,∞ ≤ B}.

This projection can be computed by re-scaling the rows of current input matrix whose norms exceed B so

their norms equal B. Rows with norms less than B are unchanged by the projection. We summarize the

algorithm in Algorithm 2.

Algorithm 2: Projected gradient descent algorithm

Input: Y , T , β, µ, Ŵ , step size τ , K
Initialize L0, R0,
for t = 1 to K − 1 do
Lt+1 ← Pβ

(
L− τ ∂f∂L

)

Rt+1 ← Pβ
(
R− τ ∂f∂R

)

Stop if objective value changes less than tolerance
end for

S6 Additional Simulation Results

The simulation results for SNR = 1 and SNR = 10 are shown in Table S1 and S2 respectively.
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Table S1: Similar to Table 1, but for SNR = 1.

Setting 1
Method RMSE TE r̄
Proposed 1.901(0.004) 1.918(0.004) 13.69(0.097)
SoftImpute 1.944(0.004) 1.961(0.004) 19.55(0.092

CZ 2.052(0.004) 2.044(0.004) 27.695(0.128)
FLT 1.927(0.004) 1.946(0.004) 15.265(0.105)
NW 2.012(0.004) 2.01(0.004) 25.61(0.069)
KLT 2.439(0.005) 2.492(0.005) 10.175(0.063)

Setting 2
Method RMSE TE r̄
Proposed 1.716(0.004) 1.669(0.004) 14.73(0.113)
SoftImpute 1.721(0.004) 1.685(0.004) 16.335(0.107)

CZ 1.86(0.004) 1.799(0.004) 25.965(0.115)
FLT 1.711(0.004) 1.674(0.004) 14.565(0.102)
NW 1.805(0.005) 1.747(0.005) 37.82(0.422)
KLT 2.16(0.005) 2.093(0.005) 2.065(0.110)

Setting 3
Method RMSE TE r̄
Proposed 2.412(0.006) 2.586(0.007) 12.495(0.098)
SoftImpute 2.923(0.007) 3.113(0.007) 29.15(0.112)

CZ 2.641(0.006) 2.812(0.006) 28.695(0.109)
FLT 2.878(0.007) 3.097(0.007) 20.105(0.105)
NW 2.668(0.006) 2.779(0.007) 33.115(0.066)
KLT 3.667(0.007) 3.969(0.007) 9.765(0.067)
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