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Abstract

This work investigates the prediction performance of the kriging predictors. We derive
some error bounds for the prediction error in terms of non-asymptotic probability under
the uniform metric and Lp metrics when the spectral densities of both the true and the
imposed correlation functions decay algebraically. The Matérn family is a prominent class
of correlation functions of this kind. Our analysis shows that, when the smoothness of the
imposed correlation function exceeds that of the true correlation function, the prediction
error becomes more sensitive to the space-filling property of the design points. In particular,
the kriging predictor can still reach the optimal rate of convergence, if the experimental
design scheme is quasi-uniform. Lower bounds of the kriging prediction error are also
derived under the uniform metric and Lp metrics. An accurate characterization of this
error is obtained, when an oversmoothed correlation function and a space-filling design is
used.

Keywords: Computer Experiments, Uncertainty Quantification, Scattered Data Approx-
imation, Space-filling Designs, Bayesian Machine Learning

1. Introduction

In contemporary mathematical modeling and data analysis, we often face the challenge of
reconstructing smooth functions from scattered observations. Gaussian process regression,
also known as kriging, is a widely used approach. The main idea of kriging is to model
the underlying function as a realization of a Gaussian process. This probabilistic model as-
sumption endows the reconstructed function with a random distribution. Therefore, unlike
the usual interpolation methods, kriging enables uncertainty quantification of the under-
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lying function in terms of its posterior distribution given the data. In spatial statistics
and engineering, Gaussian processes are used to reflect the intrinsic randomness of the un-
derlying functions or surfaces (Cressie, 1993; Stein, 1999; Matheron, 1963). In computer
experiments, the Gaussian process models are adopted so that the prediction error under
limited input data can be accessed (Santner et al., 2003; Sacks et al., 1989; Bayarri et al.,
2007). For similar reasons, Gaussian process regression is applied in machine learning (Ras-
mussen, 2006) and probabilistic numerics (Hennig et al., 2015); specifically, in the area of
Bayesian optimization, Gaussian process models are imposed and the probabilistic error
of the reconstructed function are used to determine the next input point in a sequential
optimization scheme for a complex black-box function (Shahriari et al., 2016; Frazier, 2018;
Bull, 2011; Klein et al., 2017).

Under a Gaussian process model, the conditional distribution of the function value at an
untried point given the data is normal, and can be expressed explicitly. In practice, we
usually use the curve of conditional expectation as a surrogate model of the underlying
function. Despite the known pointwise distributions, many basic properties of the kriging
predictive curves remain as open problems. In this work, we focus on three fundamental
aspects of kriging: 1) convergence of kriging predictive curves in function spaces; 2) robust-
ness of kriging prediction against misspecification of the correlation functions; 3) effects
of the design of experiments. Understanding the above properties of kriging can provide
guidelines for choosing suitable correlation functions and experimental designs, which would
potentially help the practical use of the method.

In this article, we focus on the isotropic Matérn correlation family. We suppose the un-
derlying function is a random realization of a Gaussian process with an isotropic Matérn
correlation function, and we reconstruct this function using kriging with a misspecified
isotropic Matérn correlation function. We summarize our main results in Section 1.1. In
Section 1.2, we make some remarks on related areas and research problems, and discuss the
differences between the existing and the present results. In Section 2, we state our problem
formulation and discuss the required technical conditions. Our main results are presented
in Section 3. A simulation study is reported in Section 5, which assesses our theoretical
findings regarding the effects of the experimental designs. Technical proofs are given in
Section 7.

1.1 Summary of our results

We consider the reconstruction of a sample path of a Gaussian process over a compact
set Ω ⊂ Rd. The shape of Ω can be rather general, subject to a few regularity conditions
presented in Section 2.2. Table 1 shows a list of results on the rate of convergence of
Gaussian process regression in the Lp(Ω) norm, with 1 ≤ p ≤ ∞ under different designs
and misspeficied correlation functions. Table 1 covers results on both the upper bounds and
the lower bounds. The lower bounds are given in terms of the sample size n and the true
smoothness ν0; and the upper bounds depend also on the imposed smoothness ν, and two
space-filling metrics of the design: the fill distance hX,Ω and the mesh ratio ρX,Ω. Details of
the above notation are described in Section 2.2. The variance of the (stationary) Gaussian
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process at each point is denoted as σ2. Recall that we consider interpolation of Gaussian
processes only, so there is no extra random error at each observed point given the Gaussian
process sample path.

All results in Table 1 are obtained by the present work, except the shaded row which was
obtained by our previous work (Wang et al., 2020). Compared to Wang et al. (2020), this
work makes significant advances. First, this work establishes the convergence results when
an oversmoothed correlation function is used, i.e., ν > ν0. Specifically, the results in Wang
et al. (2020) depends only on hX,Ω, and cannot be extended to oversmoothed correlations.
In this work, we prove some new approximation results for radial basis functions (see Section
4), and establish the theoretical framework for oversmoothed correlations. In the present
theory, the upper bounds in oversmoothed cases depend on both hX,Ω and ρX,Ω. We also
present the bounds under the Lp(Ω) norms with 1 ≤ p <∞ as well as the lower-bound-type
results in this article.

Our findings in Table 1 lead to a remarkable result for the so-called quasi-uniform sampling
(see Section 2.2). We show that under quasi-uniform sampling and oversmoothed correlation
functions, the lower and upper rates coincide, which means that the optimal rates are
achievable. This result also implies that the prediction performance does not deteriorate
largely as an oversmoothed correlation function is imposed, provided that the experimental
design scheme is quasi-uniform.

Case
Design

General design Quasi-uniform design

ν ≤ ν0, Upper rate σhνX,Ω σn−ν/d

1 ≤ p <∞ Lower rate σn−ν0/d

ν ≤ ν0, Upper rate σhνX,Ω log1/2(1/hX,Ω) σn−ν/d
√

log n

p =∞ Lower rate σn−ν0/d
√

log n

ν > ν0, Upper rate σhν0
X,Ωρ

ν−ν0
X,Ω σn−ν0/d

1 ≤ p <∞ Lower rate σn−ν0/d

ν > ν0, Upper rate σhν0
X,Ωρ

ν−ν0
X,Ω log1/2(1/hX,Ω) σn−ν0/d

√
log n

p =∞ Lower rate σn−ν0/d
√

log n

Table 1: Summary of the Lp convergence rates for kriging prediction error with isotropic Matérn
correlation functions. In addition to the rates of convergence, all kriging prediction errors in Table
1 decay at sub-Gaussian rates. The rates on the shaded row were presented in our previous work
(Wang et al., 2020). The results for all other cases are obtained in the current work.

1.2 Comparison with related areas

Although the general context of function reconstruction is of interest in a broad range of
areas, the particular settings of this work include: 1) Random underlying function: the
underlying function is random and follows the law of a Gaussian process; 2) Interpolation:
besides the Gaussian process, no random error is present, and therefore an interpolation
scheme should be adopted; 3) Misspecification: Gaussian process regression is used to
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reconstruct the underlying true function, and the imposed Gaussian process may have a
misspecified correlation function; 4) Scattered inputs: the input points are fixed, with
no particular structure. These features differentiate our objective from the existing areas of
function reconstruction. In this section, we summarize the distinctions between the current
work and four existing areas: average-case analysis of numerical problems, nonparametric
regression, posterior contraction of Gaussian process priors, and scattered data approxima-
tion. Despite the differences in the scope, some of the mathematical tools in these areas
are used in the present work, including a lower-bound result from the average-case analysis
(Lemma 20), and some results from the scattered data approximation (see Section 4).

1.2.1 Average-case analysis of numerical problems

Among the existing areas, the average-case analysis of numerical problems has the closest
model settings compared with ours, where the reconstruction of Gaussian process sample
paths is considered. The primary distinction between this area and our work is the objective
of the study: the average-case analysis aims at finding the optimal algorithms (which are
generally not the Gaussian process regression, where a misspecified correlation can be used).
In this work, we are interested in the robustness of the Gaussian process regression. Besides,
the average-case analysis focuses on the optimal designs, while our study also covers general
scattered designs.

One specific topic in the average-case analysis focuses on the following quantity,

eavg
p (φ,N) =

(∫
F1

‖f − φ(Nf)‖pLp(Ω)µ(df)

)1/p

, (1)

where φ : N(F1) → Lp(Ω) is an algorithm, Nf = [f(x1), ..., f(xn)] with xi ∈ Ω, and F1

is a function space equipped with Gaussian measure µ. It is worth noting that the results
in the present work also imply some results in the form (1), where φ has to be a kriging
algorithm. Specifically, Theorem 6 implies lower bounds of (1), and Corollary 9 shows that
these lower bounds can be achieved, which also implies upper bounds of (1).

Results on the lower bounds of (1). For p = 2, the lower bound was provided by
Papageorgiou and Wasilkowski (1990); also see Lemma 20. If one further assumes that
Ω = [0, 1]d, Proposition VI.8 of Ritter (2007) shows that the error (1) has a lower bound
with the rate n−ν0/d. One dimensional problems with correlation functions satisfying the
Sacks-Ylvisaker conditions are extensively studied; see Müller-Gronbach and Ritter (1997);
Ritter (2007); Ritter et al. (1995); Sacks and Ylvisaker (1966, 1968, 1970).

Results on the upper bound of (1). Upper-bound-type results are pursued in average-
case analysis under the optimal algorithm φ and optimal designs of {x1, ..., xn}. If Ω =
[0, 1]d, Ritter (2007) shows that the rate n−ν0/d can be achieved by piecewise polynomial
interpolation and specifically chosen designs; see Remark VI.3 of Ritter (2007), also see
page 34 of Novak (2006) and Ivanov (1971).

For 1 ≤ p <∞ and the Matérn correlation function in one dimension, the error in average
case eavg

p (φ,N) can achieve the rate n−ν0 by using piecewise polynomial interpolation; See
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Proposition IV.36 of Ritter (2007). For the Matérn correlation function in one dimension,
the quantity

eavg
L∞,p

(φ,N) =

(∫
F1

‖f − φ(Nf)‖pL∞(Ω)µ(df)

)1/p

, (2)

can achieve the rate n−ν0
√

log n by using Hermite interpolating splines (Buslaev and Se-
leznjev, 1999) for 1 ≤ p <∞.

Other definitions of the error are also studied in average-case analysis. See Chen and Wang
(2019); Fasshauer et al. (2012); Khartov and Zani (2019); Lifshits and Zani (2015); Luschgy
and Pagès (2004, 2007) for examples.

1.2.2 Nonparametric regression and statistical learning

The problem of interest in nonparameteric regression is to recover a deterministic function
f under n noisy observations (xi, yi), i = 1, . . . , n, under the model

yi = f(xi) + εi, i = 1, . . . , n, (3)

where εi’s are the measurement error. Assuming that the function f has smoothness ν0,1

the optimal (minimax) rate of convergence is n−ν0/(2ν0+d) (Stone, 1982). A vast litera-
ture proposes and discusses methodologies regarding the nonparametric regression model
(3), such as smoothing splines (Gu, 2013), kernel ridge regression (van de Geer, 2000),
local polynomials (Tsybakov, 2008), etc. Because of the random noise, the rates for non-
parametric regression are slower than those of the present work, as well as those in other
interpolation problems. Some cross-cutting theory and approaches between regression and
scattered data approximation are also discussed in the statistical learning literature; see,
for example, Cucker and Zhou (2007).

1.2.3 Posterior contraction of Gaussian process priors

In this area, the model setting is similar to nonparametric regression, i.e., the underlying
function is assumed deterministic and the observations are subject to random noise. The
problem of interest is the posterior contraction of the Gaussian process prior. An incomplete
list of papers in this area includes Castillo (2008, 2014); Giordano and Nickl (2019); Nickl
and Söhl (2017); Pati et al. (2015); van der Vaart and van Zanten (2011, 2008a); van Waaij
and van Zanten (2016). Despite the use of Gaussian process priors, to the best of our
knowledge, the theory under this framework does not consider noiseless observations, and
no error bounds in terms of the our settings, i.e., the fill and separation distances, are
reported in this area.

1. See Section 4 for a discussion on the smoothness of a deterministic function.
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1.2.4 Scattered data approximation

In the field of scattered data approximation, the goal is to approximate, or often, interpolate
a deterministic function f with its exact observations f(xi), i = 1, ..., n, where xi’s are data
sites. For function f with smoothness m, the Lp convergence rate is n−m/d+(1/2−1/q)+ for
1 ≤ p ≤ ∞ (Wendland, 2004), where a+ stands for max{a, 0}. A sharper characterization
of the upper bounds are related to the fill distance and separation distance of the design
points. Although this area focuses on a purely deterministic problem, some of the results
in this field will serve as the key mathematical tool in this work.

It is worth noting that the existing research in scattered data approximation also covered
the circumstances where the underlying function is rougher than the kernel function, so that
the function is outside of the reproducing kernel Hilbert space generated by the kernel. See
Narcowich et al. (2006) for example. Such results can be interpreted as using “misspecified”
kernels in interpolating deterministic functions. More discussions are deferred to Section 4.

2. Problem formulation

In this section we discuss the interpolation method considered in this work, and the required
technical conditions.

2.1 Background

Let Z(x) be an underlying Gaussian process, with x ∈ Rd. We suppose Z(·) is a stationary
Gaussian process with mean zero. The covariance function of Z is denoted as

Cov(Z(x), Z(x′)) = σ2Ψ(x− x′),

where σ2 is the variance, and Ψ is the correlation function, or kernel, satisfying Ψ(0) = 1.
The correlation function Ψ is a symmetric positive semi-definite function on Rd. Since we are
interested in interpolation, we require that Z(·) is mean square continuous, or equivalently,
Ψ is continuous on Rd. Then it follows from the Bochner’s theorem (Gihman and Skorokhod,
1974, page 208; Wendland, 2004, Theorem 6.6) that, there exists a finite nonnegative Borel
measure FΨ on Rd, such that

Ψ(x) =

∫
Rd
eiω

T xFΨ(dω). (4)

In particular, we are interested in the case where Ψ is also positive definite and integrable
on Rd. In this case, it can be proven that FΨ has a density with respect to the Lebesgue
measure. See Theorem 6.11 of Wendland (2004). The density of FΨ, denoted as fΨ, is
known as the spectral density of Z or Ψ.

In this work, we suppose that fΨ decays algebraically. A prominent class of correlation
functions of this type is the isotropic Matérn correlation family (Santner et al., 2003; Stein,
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1999), given by

Ψ(x; ν, φ) =
1

Γ(ν)2ν−1
(2
√
νφ‖x‖)νKν(2

√
νφ‖x‖), (5)

with the spectral density (Tuo and Wu, 2016)

fΨ(ω; ν, φ) = π−d/2
Γ(ν + d/2)

Γ(ν)
(4νφ2)ν(4νφ2 + ‖ω‖2)−(ν+d/2), (6)

where φ, ν > 0, Kν is the modified Bessel function of the second kind and ‖ · ‖ denotes
the Euclidean metric. It is worth noting that (6) is bounded above and below by (1 +
‖ω‖2)−(ν+d/2) multiplied by two constants, respectively. The parameter ν for the Matérn
kernels is called the smoothness parameter, as it governs the smoothness (or differentiability)
of the Gaussian processes. Further discussions are deferred to Section 4.

Another example of correlation functions with algebraically decayed spectral densities is
the generalized Wendland correlation function (Wendland, 2004; Gneiting, 2002; Chernih
and Hubbert, 2014; Bevilacqua et al., 2019; Fasshauer and McCourt, 2015), defined as

ΨGW (x) =

{
1

B(2κ,µ+1)

∫ 1
‖φx‖ u(u2 − ‖φx‖2)κ−1(1− u)µdu, 0 ≤ ‖x‖ < 1

φ ,

0, ‖x‖ ≥ 1
φ ,

where φ, κ > 0 and µ ≥ (d+ 1)/2 + κ, and B denotes the beta function. See Theorem 1 of
Bevilacqua et al. (2019).

Now we consider the interpolation problem. Suppose we have a scattered set of points
X = {x1, . . . , xn} ⊂ Ω. Here the set Ω is the region of interest, which is a subset of
Rd. The goal of kriging is to recover Z(x) given the observed data Z(x1), . . . , Z(xn). A
standard predictor is the best linear predictor (Santner et al., 2003; Stein, 1999), given by
the conditional expectation of Z(x) on Z(x1), . . . , Z(xn), as

E[Z(x)|Z(x1), . . . , Z(xn)] = rTΨ(x)K−1
Ψ Y, (7)

where rΨ(x) = (Ψ(x − x1), . . . ,Ψ(x − xn))T ,KΨ = (Ψ(xj − xk))jk and Y = (Z(x1), . . . ,
Z(xn))T .

The best linear predictor in (21) depends on the correlation function Ψ. However, in practice
Ψ is commonly unknown. Thus, we may inevitably use a misspecified correlation function,
denoted by Φ. Suppose that Φ has a spectral density fΦ. We also suppose that fΦ decays
algebraically, but the decay rate of fΦ can differ from that of fΨ.

We consider the predictor given by the right-hand side of (21), in which the true correlation
function Ψ is replaced by the misspecified correlation function Φ. Clearly, such a predictor
is no longer the best linear predictor. Nevertheless, it still defines an interpolant, denoted
by

IΦ,XZ(x) = rTΦ(x)K−1
Φ Y, (8)

where rΦ(x) = (Φ(x − x1), . . . ,Φ(x − xn))T ,KΦ = (Φ(xj − xk))jk and Y = (Z(x1), . . . ,
Z(xn))T . In (8), IΦ,X denotes the interpolation operator given by the kriging predictor,
which can be applied not only to a Gaussian process, but also to a deterministic function
in the same vein.

7



Tuo and Wang

2.2 Notation and conditions

We do not assume any particular structure of the design points X = {x1, . . . , xn}. Our
error estimate for the kriging predictor will depend on two dispersion indices of the design
points.

The first one is the fill distance, defined as

hX,Ω := sup
x∈Ω

inf
xj∈X

‖x− xj‖.

The second is the separation radius, given by

qX := min
1≤j 6=k≤n

‖xj − xk‖/2.

It is easy to check that hX,Ω ≥ qX (Wendland, 2004). Define the mesh ratio ρX,Ω :=
hX,Ω/qX ≥ 1. Because we are only interested in the prediction error when the design points
are sufficiently dense, for notational simplicity, we assume that hX,Ω < 1. In the rest of this
paper, we use the following conventions. For two positive sequences an and bn, we write
an � bn if, for some constants C,C ′ > 0, C ≤ an/bn ≤ C ′ for all n, and write an & bn if
an ≥ Cbn for some constant C > 0. Let card(X) denote the cardinality of set X.

In this work, we consider both the non-asymptotic case, i.e., the design X is fixed, and the
asymptotic case, i.e., the number of design points increases to infinity. To state the asymp-
totic results, suppose we have a sequence of designs with increasing number of points, de-
noted by X = {X1, X2, . . .}. We regard X as a sampling scheme which generates a sequence
of designs, for instance, a design sequence generated by random sampling or maximin Latin
hypercube designs.

Without loss of generality, assume that card(Xn) = n, where n takes its value in an infinite
subset of N. This assumption enables direct comparison between our upper and lower
bounds. Given the sampling scheme X , we denote hn := hXn,Ω, qn := qXn and ρn = hn/qn.
For any sampling scheme, it can be shown that hn & n−1/d and qn . n−1/d (Borodachov
et al., 2007; Joseph et al., 2015). In fact, it is possible to have hn � qn � n−1/d, if and only
if ρn is uniformly bounded above by a constant (Müller, 2009).

Definition 1 A sampling scheme X is said quasi-uniform if there exists a constant C > 0
such that ρn ≤ C for all n.

It is not hard to find a quasi-uniform sampling scheme. For example, a hypercube grid
sampling in Ω = [0, 1]d is quasi-uniform because ρn =

√
d is a constant (Wendland, 2004).

However, random samplings do not belong to the quasi-uniform class; see Example 1 in
Section 3.3.

We assume the Conditions 1-3 throughout this article.
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Definition 2 A set Ω ⊂ Rd is said to satisfy an interior cone condition if there exists an
angle α ∈ (0, π/2) and a radius R > 0 such that for every x ∈ Ω, a unit vector ξ(x) exists
such that the cone

C(x, ξ(x), α,R) :=
{
x+ λy : y ∈ Rd, ‖y‖ = 1, yT ξ(x) ≥ cosα, λ ∈ [0, R]

}
is contained in Ω.

Condition 1 The experimental region Ω ⊂ Rd is a compact set with Lipschitz boundary
and satisfies an interior cone condition.

Condition 2 There exist constants c2 ≥ c1 > 0 and ν0 > 0 such that, for all ω ∈ Rd,

c1(1 + ‖ω‖2)−(ν0+d/2) ≤ fΨ(ω) ≤ c2(1 + ‖ω‖2)−(ν0+d/2).

Condition 3 There exist constants c4 ≥ c3 > 0 and ν > 0 such that, for all ω ∈ Rd,

c3(1 + ‖ω‖2)−(ν+d/2) ≤ fΦ(ω) ≤ c4(1 + ‖ω‖2)−(ν+d/2).

Condition 1 is a geometric condition on the experimental region Ω, which holds in most
practical situations, because the commonly encountered experimental regions, like the rect-
angles or balls, satisfy interior cone conditions. Figure 1 (page 258 of Roy and Couchman
(2001)) is an illustration of the α-interior cone condition.

Figure 1: An illustration of an interior cone condition (page 258 of Roy and Couchman (2001)).

Conditions 2 and 3 require that the spectral densities decay in an algebraic order. For
example, if Ψ and Φ are Matérn correlation functions with smoothness parameter ν0 and
ν, respectively, they satisfy Conditions 2 and 3. The decay rates in Conditions 2 and
3 determine the smoothness of the correlation function Ψ and Φ; see Section 4 for the
discussion of the relation between the smoothness of the correlation functions and the
smoothness of the sample path of a Gaussian process.
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3. Main results

In this section, we present our main theoretical results on the prediction error of kriging.

3.1 Upper and lower bounds of the uniform kriging prediction error

This work aims at studying the prediction error of the kriging algorithm (8), i.e., |Z(x) −
IΦ,XZ(x)|. In this subsection, we consider the prediction error of the kriging algorithm (8)
under a uniform metric, given by

sup
x∈Ω
|Z(x)− IΦ,XZ(x)|, (9)

which was considered previously in Wang et al. (2020). Under Conditions 1-3, they derived
an upper bound of (9) under the case ν ≤ ν0. This result is shown in Theorem 1 for the
completeness of work. Here we are interested in the case ν > ν0, that is, the imposed
correlation function is smoother than the true correlation function. In Theorem 2, we
provide an upper bound of the prediction error for ν > ν0. In addition to the upper
bounds, we obtain a lower bound of the uniform kriging prediction error in Theorem 3.

Theorem 1 Suppose Conditions 1-3 hold and ν ≤ ν0. Then there exist constants C1, C2 >
0, C3 > e and h0 ∈ (0, 1], such that for any design X with hX,Ω ≤ h0 and any t > 0, with
probability at least 1 − exp{−t2/(C1σ

2h2ν
X,Ω)},2 the kriging prediction error has the upper

bound

sup
x∈Ω
|Z(x)− IΦ,XZ(x)| ≤ C2σh

ν
X,Ω log1/2 (C3/hX,Ω) + t.

Here the constants C1, C2, C3 depend only on Ω,Φ, and Ψ, including ν and ν0.

Theorem 2 Suppose Conditions 1-3 hold and ν > ν0. Then there exist constants C1, C2 >
0, C3 > e and h0 ∈ (0, 1], such that for any design X with hX,Ω ≤ h0 and any t > 0, with

probability at least 1 − exp{−t2/(C1σ
2h2ν0
X,Ωρ

2(ν−ν0)
X,Ω )}, the kriging prediction error has the

upper bound

sup
x∈Ω
|Z(x)− IΦ,XZ(x)| ≤ C2σh

ν0
X,Ωρ

ν−ν0
X,Ω log1/2(C3/hX,Ω) + t.

Here the constants C1, C2, C3 depend only on Ω,Φ, and Ψ, including ν and ν0.

Theorem 3 Suppose Conditions 1-3 hold. Then there exist constants C1, C2 > 0, such
that for any design X satisfying card(X) = n and any t > 0, with probability at least
1− exp{−t2/(2C1σ

2A)}, the kriging prediction error has the lower bound

sup
x∈Ω
|Z(x)− IΦ,XZ(x)| ≥ C2σn

− ν0
d

√
log n− t,

where A = h2ν
X,Ω if ν ≤ ν0, and A = h2ν0

X,Ωρ
2(ν−ν0)
X,Ω if ν > ν0. Here the constants C1, C2 > 0

depend only on Ω,Φ, and Ψ, including ν and ν0.

2. In Wang et al. (2020), this probability is 1− 2 exp{−t2/(C1σ
2h2ν
X,Ω)}. The constant two can be removed

by applying a different version of the Borell-TIS inequality given by Lemma 21 in Section 7.2.
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3.2 Bounds for the Lp norms of the kriging prediction error

Now we consider the Lp norm of the kriging prediction error, given by

‖Z − IΦ,XZ‖Lp(Ω) :=

(∫
Ω
|Z(x)− IΦ,XZ(x)|pdx

)1/p

, (10)

with 1 ≤ p < ∞. The upper bounds of the Lp norms of the kriging prediction error with
undersmoothed and oversmoothed correlation functions are provided in Theorems 4 and 5,
respectively.

Theorem 4 Suppose Conditions 1-3 hold and ν ≤ ν0. Then there exist constants C1, C2 >
0 and h0 ∈ (0, 1], such that for any design X with hX,Ω ≤ h0 and any t > 0, with probability
at least 1− exp{−t2/(C1σ

2h2ν
X,Ω)}, the kriging prediction error has the upper bound

‖Z − IΦ,XZ‖Lp(Ω) ≤ C2σh
ν
X,Ω + t.

The constants C1, C2 depend only on Ω, p,Φ, and Ψ, including ν and ν0.

Theorem 5 Suppose Conditions 1-3 hold and ν > ν0. Then there exist constants C1, C2 >
0 and h0 ∈ (0, 1], such that for any design X with hX,Ω ≤ h0 and any t > 0, with probability

at least 1− exp{−t2/(C1σ
2h2ν0
X,Ωρ

2(ν−ν0)
X,Ω )}, the kriging prediction error has the upper bound

‖Z − IΦ,XZ‖Lp(Ω) ≤ C2σh
ν0
X,Ωρ

ν−ν0
X,Ω + t.

Here the constants C1, C2 depend only on Ω, p,Φ, and Ψ, including ν and ν0.

Regarding the lower prediction error bounds under the Lp norm, we obtain a result anal-
ogous to Theorem 3. Theorem 6 suggests a lower bound under the Lp norm, which differs
from that in Theorem 3 only by a

√
log n factor.

Theorem 6 Suppose Conditions 1-3 hold. There exist constants C1, C2 > 0, such that
for any design X satisfying card(X) = n and any t > 0, with probability at least 1 −
2 exp{−t2/(2C1σ

2A)}, the kriging prediction error has the lower bound

‖Z − IΦ,XZ‖Lp(Ω) ≥ C2σn
− ν0

d − t

for 1 ≤ p < ∞, where A = h2ν
X,Ω if ν ≤ ν0, and A = h2ν0

X,Ωρ
2(ν−ν0)
X,Ω if ν > ν0. Here the

constants C1, C2 > 0 depend only on Ω, p,Φ, and Ψ, including ν and ν0.

The results in Theorems 1, 2, 4 and 5 are presented in a non-asymptotic manner, i.e., the
design X is fixed. The asymptotic results, which are traditionally of interest in spatial
statistics, can be inferred from these non-asymptotic results. Here we consider the so-called
fixed-domain asymptotics (Stein, 1999; Loh, 2005), in which the domain Ω is kept unchanged
and the design points become dense over Ω.

We collect the asymptotic rates analogous to the upper bounds in Corollaries 7 and 8. Their
proofs are straightforward.

11
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Corollary 7 Suppose Conditions 1-3 hold. In addition, we suppose the sampling scheme X
is asymptotically dense over Ω, that is, hn → 0 as n→∞. We further assume hν0

n ρ
(ν−ν0)
n →

0 if ν > ν0. Then the uniform kriging prediction error has the order of magnitude

sup
x∈Ω
|Z(x)− IΦ,XnZ(x)| =

OP

(
hνn log1/2(1/hn)

)
if ν ≤ ν0,

OP

(
hν0
n ρ

ν−ν0
n log1/2(1/hn)

)
if ν > ν0.

Corollary 8 Under the conditions of Corollary 7, for 1 ≤ p < ∞, the kriging prediction
error has the order of magnitude in Lp(Ω)

‖Z(x)− IΦ,XnZ(x)‖Lp(Ω) =

{
OP (hνn) if ν ≤ ν0,

OP (hν0
n ρ

ν−ν0
n ) if ν > ν0.

From Corollaries 7 and 8, we find that the upper bounds of kriging prediction error strongly
depend on the sampling scheme X .

If a sampling scheme is quasi-uniform and ν ≥ ν0, then the orders of magnitude in Corol-
laries 7 and 8 agree with the lower bounds in Theorems 3 and 6, respectively, implying that
these bounds are sharp. We summarize the results in Corollary 9.

Corollary 9 Suppose Conditions 1-3 hold and ν ≥ ν0. In addition, we suppose the sam-
pling scheme X is quasi-uniform. Then the kriging prediction error has the exact order of
magnitude

sup
x∈Ω
|Z(x)− IΦ,XnZ(x)| �n−ν0/d log1/2 n,

‖Z(x)− IΦ,XnZ(x)‖Lp(Ω) �n−ν0/d, 1 ≤ p <∞.

3.3 An example

We illustrate the impact of the experimental designs in Example 1.

Example 1 The random sampling in [0, 1] is not quasi-uniform. To see this, let x1, . . . , xn
be mutually independent random variables following the uniform distribution on [0, 1]. De-
note their order statistics as

0 = x(0) ≤ x(1) ≤ · · · ≤ x(n) ≤ x(n+1) = 1.

Clearly, we have

ρn =
max0≤j≤n |x(j+1) − x(j)|
min0≤j≤n |x(j+1) − x(j)|

.

Let y1, . . . , yn, yn+1 be mutually independent random variables following the exponential dis-
tribution with mean one. It is well known that (x(1), . . . , x(n)) has the same distribution as(

y1∑n+1
j=1 yj

, . . . ,

∑n
j=1 yj∑n+1
j=1 yj

)
.

12
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Thus ρn has the same distribution as max yj/min yj. Clearly, max yj � log n and min yj �
1/n. This implies ρn � n log n. Similarly, we can see that hn has the same distribution
as max yj/

∑n+1
k=1 yk, which is of the order OP(n−1 log n). See Appendix A for proofs of the

above statements.

Now consider the kriging predictive curve under Ω = [0, 1] and random sampled design
points and an oversmoothed correlation, i.e., ν > ν0. According to Corollary 7, its uniform
error has the order of magnitude OP(nν−2ν0 logν+1/2 n), which decays to zero if ν < 2ν0.

In Section 5, we will conduct simulation studies to verify our theoretical assertions on the
rates of convergence in this example. It can be seen from Table 2 in Section 5 that the
numerical results agree with our theory.

4. Discussion on a major mathematical tool and the notion of smoothness

The theory of radial basis function approximation is an essential mathematical tool for
developing the bounds in this work, as well as those in our previous work Wang et al. (2020).
We refer to Wendland (2004) for an introduction of the radial basis function approximation
theory.

A primary objective of the radial basis function approximation theory is to study the ap-
proximation error

g − IΦ,Xg,

for a deterministic function g. Here we consider the circumstance that g lies in a (fractional)
Sobolev space.

Our convention of the Fourier transform is ĝ(ω) =
∫
Rd g(x)e−iω

T xdx. Regarding the Fourier
transform as a mapping ĝ : L1(Rd) ∩ L2(Rd) → L2(Rd), we can uniquely extend it to a
mapping ĝ : L2(Rd) → L2(Rd) (Wendland, 2004). The norm of the (fractional) Sobolev

space W β
2 (Rd) for a real number β > 0 (also known as the Bessel potential space) is

‖g‖2
Wβ

2 (Rd)
=

∫
Rd
|ĝ(ω)|2(1 + ‖ω‖2)βdω,

for g ∈ L2(Rd).

Remark 10 An equivalent norm of the Sobolev space W β
2 (Rd) for β ∈ N can be defined

via derivatives. For α = (α1, . . . , αd)
T ∈ Nd0, we shall use the notation |α| =

∑d
j=1 αj. For

x = (x1, . . . , xd)
T , denote

Dαg =
∂|α|

∂xα1
1 · · · ∂x

αd
d

g and xα = xα1
1 · · ·x

αd
d .

Define ‖g‖′
Wβ

2 (Rd)
=
(∑

|α|≤β ‖Dαg‖2
L2(Rd)

) 1
2
. It can be shown that ‖·‖′

Wβ
2 (Rd)

and ‖·‖
Wβ

2 (Rd)

are equivalent for β ∈ N (Adams and Fournier, 2003).

13
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The classic framework on the error analysis for radial basis function approximation employs
the reproducing kernel Hilbert spaces (RKHS, see Section 7.1 for more details) as a nec-
essary mathematical tool. The development of Wang et al. (2020) relies on these classic
results. These results, however, are not applicable in the current context when fΨ/fΦ is
not uniformly bounded.

The current research is partially inspired by the “escape theorems” for radial basis function
approximation established by Brownlee and Light (2004); Narcowich et al. (2005); Nar-
cowich (2005); Narcowich and Ward (2002, 2004); Narcowich et al. (2006). These works
show that, some radial basis functions interpolants still provide effective approximation,
even if the underlying functions are too rough to lie in the corresponding RKHS.

Our results on interpolation of Gaussian processes with oversmoothed kernels are based on
an escape theorem, given by Lemma 11. Given Condition 3, it is known that the RKHS

generated by Φ is equivalent to W
ν+d/2
2 (Rd) (see Lemma 13 in Section 7.1), which is a

proper subset of W
ν0+d/2
2 (Rd) when ν0 < ν. Lemma 11 shows that the radial basis function

approximation may still give reasonable error bounds even if the underlying function does
not lie in the RKHS.

Lemma 11 Let Φ be a kernel with a spectral density fΦ satisfying Condition 3, and g

be a function in W
ν0+d/2
2 (Rd) with ν ≥ ν0 > 0. Suppose Ω ⊂ Rd is a domain satisfying

Condition 1. Then there exist constants C > 0 and h0 ∈ (0, 1] such that for any design X
with hX,Ω ≤ h0, we have

sup
x∈Ω
|g(x)− IΦ,Xg(x)| ≤ Chν0

X,Ωρ
ν−ν0
X,Ω ‖g‖W ν0+d/2

2 (Rd)
. (11)

Here the constant C depends only on Ω, Φ and Ψ, including ν and ν0.

Theorem 4.2 of Narcowich et al. (2006) states that under the conditions of Lemma 11 in
addition to

bβc > d/2, (12)

we have

‖g − IΦ,Xg‖Wµ
2 (Ω) ≤ Ch

β−µ
X,Ω ρ

τ−β
X,Ω‖g‖Wβ

2 (Rd)
, (13)

for 0 ≤ µ ≤ β. As commented by a reviewer, condition (12) can be removed by using
Theorem 4.1 of Arcangéli et al. (2007) in the proof of Theorem 4.2 of Narcowich et al.
(2006); also see Theorem 10 of Wynne et al. (2020). Having (13), Lemma 11 is an immediate
consequence. Specifically, combining (13) with the real interpolation theory for Sobolev
spaces (See, e.g., Theorem 5.8 and Chapter 7 of Adams and Fournier (2003)), yields (11).
An alterative proof of Lemma 11, also suggested by a reviewer, is given in Section 7.1.1.

Next we make a remark on the notion of smoothness and the settings of smoothness misspec-
ification. For a deterministic function g, we say g has smoothness ν0+d/2 if g ∈W ν0+d/2(Ω).
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The smoothness misspecification in Lemma 11 is stated as: the smoothness associated with
the RKHS is higher than the true smoothness of the function when ν0 < ν.

Now we turn to the role of ν0 for a stationary Gaussian process Z(x) with spectral density
fΨ satisfying Condition 2. Unlike the usual perception on the smoothness of deterministic
functions, here ν0 should be interpreted as the mean squared differentiability (Stein, 1999)
of the Gaussian process, which is related to the smoothness of the correlation function Ψ.

On the other hand, we can also consider the smoothness of sample paths of Z(x), under the
usual definition of smoothness for deterministic functions. It turns out that the sample path
smoothness is lower than ν0 with probability one (Driscoll, 1973; Steinwart, 2019; Kanagawa
et al., 2018). In view of this, Theorem 2 implies that the sample paths of Gaussian processes
can escape the d/2 smoothness misspecification in terms of the L∞ norm, disregarding the
logarithmic factor. In other words, there exist functions with smoothness less than ν0 that
can be approximated at the rate O(n−ν0/d

√
log n), and the set of such functions is large

under the probability measure of a certain Gaussian process.

5. Simulation studies

The objective of this section is to verify whether the rate of convergence given by Corollary
7 is accurate. We consider the settings in Example 1. We have shown that under a random
sampling over the experimental region Ω = [0, 1], the kriging prediction error has the rate
OP(nν−2ν0 logν+1/2 n) for ν > ν0. If grid sampling is used, Corollaries 7 and 9 show that
the error has the order of magnitude n−ν0 log1/2 n for ν > ν0.

We denote the expectation of (9) with random sampling and grid sampling by Erand and
Egrid, respectively. Our idea of assessing the rate of convergence is described as follows. If
the error rates are sharp, we have the approximations

log Erand ≈ (ν − 2ν0) log n+ (ν +
1

2
) log log n+ log c1,

log Egrid ≈ −ν0 log n+
1

2
log log n+ log c2,

for random samplings and grid samplings, respectively, where c1, c2 are constants. Since
log log n grows much slower than log n, we can regard the log log n term as a constant and
get the second approximations

log Erand ≈ (2ν0 − ν) log(1/n) + C1, (14)

log Egrid ≈ ν0 log(1/n) + C2. (15)

To verify the above formulas via numerical simulations, we can regress log Erand and log Egrid

on log(1/n) and examine the estimated slopes. If the bounds are sharp, the estimated slopes
should be close to the theoretical assertions 2ν0 − ν and ν0, respectively.

In our simulation studies, we consider the sample sizes n = 10k, for k = 2, 3, ..., 15. For each
k, we simulate 100 realizations of a Gaussian process. For a specific realization of a Gaussian
process, we generate 10k independent and uniformly distributed random points as X, and
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use supx∈Ω1
|Z(x)−IΦ,XZ(x)| to approximate the uniform error supx∈Ω |Z(x)−IΦ,XZ(x)|,

where Ω1 is the first 200 points of the Halton sequence (Niederreiter, 1992). We believe that
the points are dense enough so that the approximation can be accurate. Then the regression
coefficient is estimated using the least squares method. For grid sampling, we adopt a similar
approach with the same number of design points X. The results are presented in Table 2.
The first two columns of Table 2 show the true and imposed smoothness parameters of the
Matérn correlation functions. The fourth and the fifth columns show the convergence rates
obtained from the simulation studies and the theoretical analysis, respectively. The sixth
column shows the relative difference between the fourth and the fifth columns, given by
|estimated slope-theoretical slope|/(theoretical slope). The last column gives the R-squared
values of the linear regression of the simulated data.

ν0 ν Design ES TS RD R2

1.1 1.3
RS 0.9011 0.9 0.0012 0.8579
GS 1.0670 1.1 0.0300 0.9992

1.1 2.8
RS 0.1653 -0.6 (No convergence) - 0.0308
GS 1.0968 1.1 0.0030 0.9995

2.1 2.8
RS 1.523 1.4 0.088 0.9834
GS 2.0953 2.1 0.0022 0.9992

1.5 3.5
RS 0.1083 -0.5 (No convergence) - 0.0991
GS 1.4982 1.5 0.0012 0.9989

Table 2: Numerical studies on the convergence rates of kriging prediction with oversmoothed corre-
lation functions. The following abbreviations are used: RS=Random sampling, GS= Grid sampling,
ES=Estimated slope, TS=Theoretical slope, RD=relative difference. The relative differences are not
computed when the corresponding theoretical slopes are negative.

In the setting of Rows 2, 3, 5-7 and 9 of Table 2, our theory suggests the prediction
consistency, i.e., hν0

n ρ
ν−ν0
n tends to zero. It can be seen that the estimated slopes coincide

with our theoretical assertions for these cases. Also, the R-squared values for these rows
are high, which implies a good model fitting of (14)-(15). When hν0

n ρ
ν−ν0
n goes to infinity,

our simulation results suggest a very slow rate of convergence. Specifically, under the
random sampling scheme and (ν0, ν) = (1.1, 2.8) and (ν0, ν) = (1.5, 3.5), the estimated
rates of convergence are 0.1653 and 0.1083, respectively. Also, the R-squared values are
very low. These slow rates and poor model fitting imply that the kriging predictor could
be inconsistent. Figure 2 shows the scattered plots of the raw data and the regression lines
under the four combinations of (ν0, ν) in Table 2.

6. Concluding remarks

The error bounds presented in this work are not only valuable in mathematics. They
can also provide guidelines for practitioners of kriging. Especially, our work confirms the
importance of the design of experiments for kriging: if the design is quasi-uniform, the use
of an oversmoothed correlation would not be an issue.
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Fi g u r e 2: T h e r e gr e s si o n li n e of l o g E u nif a n d l o g E g ri d o n l o g ( 1 / n ), u n d er t h e f o ur c o m bi n ati o n s of
(ν 0 , ν) i n T a bl e 2. E a c h p oi nt d e n ot e s o n e a v er a g e pr e di cti o n err or f or e a c h n .

It h a s b e e n k n o w n f or a w hil e t h at u si n g q u a si- u nif or m s a m pli n g i s h el pf ul f or d et er mi n-
i sti c f u n cti o n a p pr o xi m ati o n. Fr o m a n a p pr o xi m ati o n t h e or y p er s p e cti v e, o n e of t h e m ai n
c o ntri b uti o n s of t hi s w or k i s t h e di s c o v er y t h at s a m pl e p at h s of G a u s si a n pr o c e s s e s e s c a p e s
t h e d / 2 s m o ot h n e s s mi s s p e ci fi c ati o n (i n t h e s c att er e d d at a a p pr o xi m ati o n s e n s e ( K a n a g a w a
et al., 2 0 1 8)).

A s a fi n al r e m ar k, w e c o m p ar e t h e r at e s i n t hi s w or k wit h t h e o n e s i n r a di al b a si s f u n cti o n
a p pr o xi m ati o n ( E d m u n d s a n d Tri e b el, 2 0 0 8; We n dl a n d, 2 0 0 4). F or t h e r a di al b a si s f u n cti o n
a p pr o xi m ati o n pr o bl e m s, w e a d o pt t h e st a n d ar d fr a m e w or k s o t h at t h e u n d erl yi n g f u n cti o n
li e s i n t h e r e pr o d u ci n g k er n el Hil b ert s p a c e g e n er at e d b y t h e c orr el ati o n f u n cti o n. F or t h e
L ∞ n or m, t h e o bt ai n e d o pti m al r at e of c o n v er g e n c e f or kri gi n g i s O P (n − ν 0 / d

√
l o g n ); w hil e

t h at f or t h e r a di al b a si s f u n cti o n a p pr o xi m ati o n i s O (n − ν 0 / d ). S o t h er e i s a di ff er e n c e i n t h e√
l o g n f a ct or. F or L p n or m s wit h 1 ≤ p < ∞ , t h e di ff er e n c e i s m or e dr a m ati c. W hil e t h e

o pti m al r at e of c o n v er g e n c e f or kri gi n g i s O P (n − ν 0 / d ), t h at f or r a di al b a si s f u n cti o n a p pr o x-
i m ati o n i s O (n − ν 0 / d − mi n ( 1 / 2 ,1 / p ) ). T hi s g a p b et w e e n t h e o pti m al r at e s c a n b e e x pl ai n e d, a s
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the support of a Gaussian process is essentially larger than the corresponding reproducing
kernel Hilbert space (van der Vaart and van Zanten, 2008b).

7. Proofs

This section comprises our technical proofs. The proofs rely on some results in scattered
data approximation of functions in reproducing kernel Hilbert spaces. We introduce these
results in Section 7.1. The proofs of the theorems in Sections 3.1 and 3.2 are given in
Sections 7.2 and 7.3, respectively.

Before introducing the details, we first note that in the proofs of all results in Sections 3.1
and 3.2, it suffices to consider only the case with σ2 = 1. This should not affect the general
result because otherwise we can consider the Gaussian process Z/σ instead of Z. Thus for
notational simplicity, we assume σ2 = 1 throughout this section.

7.1 Reproducing kernel Hilbert spaces and scattered data approximation

We adopt one reviewer’s suggestions to prove our main results using techniques from re-
producing kernel Hilbert spaces and recent developments in scattered data approximation,
in lieu of our original technique of Fourier transform calculations in the previous version.
The current treatment can streamline the proofs, and better show how the intermediate
quantities toward the error analysis for Gaussian process regression are linked to those
studied in scattered data approximation. Reproducing kernel Hilbert spaces is a common
mathematical tool in Gaussian processes and scattered data approximation.

Definition 3 Given a positive definite kernel K(·), the reproducing kernel Hilbert space
(RKHS) NK(Rd) is defined as the completion of the function space

N∑
j=1

βjK(· − xj) : N ∈ N, βj ∈ R, xj ∈ Rd


under the inner product〈
N∑
j=1

βjK(· − xj),
N ′∑
k=1

β′kK(· − x′k)

〉
K

=
N∑
j=1

N ′∑
k=1

βjβ
′
kK(xj − x′k). (16)

Denote the RKHS norm by ‖ · ‖K .

7.1.1 Interpolation in RKHSs

We first consider the interpolation of a function f ∈ NΨ(Rd), by IΨ,Xf . We have the
following known results. Lemmas 12 and 13 are Corollaries 10.25 and 10.48 of Wendland
(2004), respectively.
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Lemma 12 For any f ∈ NΨ(Rd), ‖f − IΨ,Xf‖Ψ ≤ ‖f‖Ψ.

Lemma 13 Under Condition 2, NΨ(Rd) = W
ν0+d/2
2 (Rd) with equivalent norms.

A reviewer suggested an alternative proof of Lemma 11, by leveraging the following Lemma
14 from Narcowich et al. (2006). It is worth presenting the proof here, because we will later
employ Lemma 14 again.

Lemma 14 (Theorem 3.4 of Narcowich et al. (2006)) Suppose ν ≥ ν0 > 0. Then

for each g ∈W ν0+d/2
2 (Rd), there exists gγ ∈W ν+d/2

2 (Rd), so that g|X = gγ |X and

‖gγ‖W ν+d/2
2 (Rd)

≤ Cq−(ν−ν0)
X ‖g‖

W
ν0+d/2
2 (Rd)

,

‖gγ‖W ν0+d/2
2 (Rd)

≤ C‖g‖
W
ν0+d/2
2 (Rd)

,

for a constant C depending only on d and ν0.

Proof of Lemma 11. For each g ∈W ν0+d/2
2 (Rd), let gγ be the function given in Lemma

14. The condition g|X = gγ |X implies that IΦ,Xg = IΦ,Xgγ and IΨ,Xg = IΨ,Xgγ .

Corollary 11.33 of Wendland (2004) asserts that

‖f − IΦ,Xf‖L∞(Rd) ≤ ChνX,Ω‖f‖W ν+d/2
2 (Rd)

. (17)

Now by triangle inequality,

‖g − IΦ,Xg‖L∞(Rd) ≤‖g − IΨ,Xg‖L∞(Rd) + ‖gγ − IΨ,Xgγ‖L∞(Rd) + ‖gγ − IΦ,Xgγ‖L∞(Rd)

≤C1h
ν0
X,Ω

(
‖g‖

W
ν0+d/2
2 (Rd)

+ ‖gγ‖W ν0+d/2
2 (Rd)

)
+ C2h

ν
X,Ω‖gγ‖W ν+d/2

2 (Rd)

≤C3(hν0
X,Ω + ρν−ν0

X,Ω hν0
X,Ω)‖g‖

W
ν0+d/2
2 (Rd)

≤C4h
ν0
X,Ωρ

ν−ν0
X,Ω ‖g‖W ν0+d/2

2 (Rd)
,

where the second inequality follows from (17) and an equivalent form of (17) by replacing
Φ with Ψ and ν with ν0. Hence the proof is completed.

7.1.2 Quasi-power functions

Lemma 15 states a simple connection between Gaussian processes and RKHSs.
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Lemma 15 Let G(·) be a stationary Gaussian process on Ω with a unit variance and a
positive definite correlation function K. Then for x1, . . . , xN ∈ Ω and β1, . . . , βN ∈ R,

V ar

 N∑
j=1

βjG(xj)

 =

∥∥∥∥∥∥
N∑
j=1

βjK(· − xj)

∥∥∥∥∥∥
2

K

(18)

= sup
‖f‖K≤1

∣∣∣∣∣∣
N∑
j=1

βjf(xj)

∣∣∣∣∣∣
2

. (19)

Proof. Equation (18) follows from direct calculations using (16); equation (19) is Lemma
3.9 of Kanagawa et al. (2018).

Recall that a kriging interpolant is defined as IΦ,XZ(x) = rTΦ(x)K−1
Φ Y ; see (8). Lemma 15

will be employed by partially choosing βj ’s as the coefficients of a kriging interpolant, i.e.,
(β1, . . . , βn) = rTΦ(x)K−1

Φ , which is indeed a constant vector given x and X. For example,
Lemma 15 implies

E[Z(x)− IΦ,XZ(x)]2 = ‖Ψ(· − x)− IΦ,XΨ(· − x)‖2Ψ
= sup
‖f‖Ψ≤1

|f(x)− IΦ,Xf(x)|2. (20)

We shall call the quantity in (20) the quasi-power function, denoted as Q2(x). Note that
Q2(x) should also depend on Φ,Ψ and X, but we suppress this dependence for notational
simplicity, and this will cause no ambiguity. A related quantity is the power function
(Wendland, 2004), defined as

P 2
Ψ,X(x) := E[Z(x)− IΨ,XZ(x)]2,

which is the conditional variance of Z(x) given Z(x1), . . . , Z(xn). A simple relationship
between Q(x) and PΨ,X(x) is

Q(x) ≥ PΨ,X(x). (21)

This inequality can be proven via elementary calculations by showing that IΨ,XZ has the
smallest mean squared prediction error among all predictors in terms of linear combinations
of Z(xj), and IΦ,XZ is one of such. This result is also known as the best linear prediction
property of IΨ,XZ (Stein, 1999; Santner et al., 2003).

The interest here lies in bounding Q(x) in different manners. We state the results in Sections
7.1.3 and 7.1.4.

7.1.3 Upper bounds of the quasi-power function

Lemma 16 can be proven immediately by putting together Lemmas 11, 13 and 15. Lemma
17 is a counterpart of Lemma 16 under the condition ν ≤ ν0, which follows directly from
Lemmas 11, 13 and (17).
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Lemma 16 Suppose Conditions 1-3 are met. If ν ≥ ν0, then there exist constants C > 0
and h0 ∈ (0, 1] independent of X and x such that

Q(x) ≤ Chν0
X,Ωρ

ν−ν0
X,Ω

holds for all x ∈ Ω and all X satisfying hX,Ω ≤ h0.

Lemma 17 Suppose Conditions 1-3 are met. If ν ≤ ν0, then there exist constants C > 0
and h0 ∈ (0, 1] independent of X and x such that

Q(x) ≤ ChνX,Ω

holds for all x ∈ Ω and all X satisfying hX,Ω ≤ h0.

7.1.4 A lower bound of the quasi-power function

The goal of this section is to prove a lower bound of the quasi-power function under the
L2(Ω) norm, given by Lemma 18.

Lemma 18 Suppose Conditions 1-2 are met. Then we have

‖PΨ,X‖L2(Ω) ≥ Cn−ν0/d,

where n = card(X). Here the constant C depends only on Ω and Ψ, including ν0.

Because ‖PΨ,X‖L2(Ω) ≤
√

Vol(Ω) supx∈Ω PΨ,X(x), where Vol(Ω) denotes the volume of Ω,
we obtain Corollary 19. Corollary 19 is a standard result in scattered data approximation;
see, for example, Theorem 11 of Wenzel et al. (2019).

Corollary 19 Suppose Conditions 1-2 are met. Then we have

sup
x∈Ω

PΨ,X(x) ≥ Cn−ν0/d.

Here the constant C depends only on Ω and Ψ, including ν0.

To prove Lemma 18, we need a result from the average-case analysis of numerical problems,
given by Lemma 20, which is a direct consequence of Theorem 1.2 of Papageorgiou and
Wasilkowski (1990). It states lower bounds of ‖Q‖L2(Ω) in terms of the eigenvalues.

Because Ψ is a positive definite function, by Mercer’s theorem (see Pogorzelski (1966) for
example), there exists a countable set of positive eigenvalues λ1 ≥ λ2 ≥ ... > 0 and an
orthonormal basis for L2(Ω), denoted as {ϕk}k∈N, such that

Ψ(x− y) =
∞∑
k=1

λkϕk(x)ϕk(y), (22)

where the summation is uniformly and absolutely convergent.

21



Tuo and Wang

Lemma 20 Let λk’s be eigenvalues of Ψ. Then we have

‖PΨ,X‖2L2(Ω) ≥
∞∑

k=n+1

λk.

Proof of Lemma 18. Define the kth approximation number of the embedding id :

W
ν0+ d

2
2 (Ω)→ Lp(Ω), denoted by ak, by

ak = inf{‖id− L‖, H ∈ H(W
ν0+ d

2
2 (Ω), L2(Ω)), rank(H) < k},

where H(W
ν0+ d

2
2 (Ω), L2(Ω)) is the family of all bounded linear mappings W

ν0+ d
2

2 (Ω) →
L2(Ω), ‖·‖ is the operator norm, and rank(H) is the dimension of the range of H (Edmunds
and Triebel, 2008). The approximation number measures the approximation properties by
affine (linear) k-dimensional mappings. Let T be the embedding operator of NΨ(Ω) into
L2(Ω), and T ∗ be the adjoint of T . By Proposition 10.28 in Wendland (2004),

T ∗v(x) =

∫
Ω

Ψ(x− y)v(y)dy, v ∈ L2(Ω), x ∈ Ω.

By Lemma 13, W
ν0+ d

2
2 (Ω) coincides with NΨ(Ω). By Theorem 5.7 in Edmunds and Evans

(2018), T and T ∗ have the same singular values. By Theorem 5.10 in Edmunds and Evans
(2018), for all k ∈ N, ak(T ) = µk(T ), where ak(T ) denotes the approximation number
for the embedding operator (as well as the integral operator), and µk denotes the singular
value of T . By the theorem in Section 3.3.4 in Edmunds and Triebel (2008), the embedding
operator T has approximation numbers satisfying

C3k
−ν0/d−1/2 6 ak 6 C4k

−ν0/d−1/2, ∀k ∈ N, (23)

where C3 and C4 are two positive numbers. By Theorem 5.7 in Edmunds and Evans (2018),
T ∗Tϕk = µ2

kϕk, and T ∗Tϕk = T ∗ϕk = λkϕk, we have λk = µ2
k. By (23), λk � k−2ν0/d−1

holds. Then the desired result follows from Lemma 20.

7.2 L∞ results

In this section, we prove Theorems 2 and 3. The natural distances of Gaussian processes
play a crucial role in establishing these L∞ results.

Definition 4 The natural distance d(x, x′) of a zero-mean Gaussian process G(x) with
x ∈ Ω is defined as

d2
G(x, x′) = E[G(x)−G(x′)]2,

for x, x′ ∈ Ω. Once equipped with dG, Ω becomes a metric space.
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The ε-covering number of the metric space (Ω, dG), denoted as N(ε,Ω, dG), is the minimum
integer N so that there exist N distinct balls in (Ω, dG) with radius ε, and the union of
these balls covers Ω. The natural distance and the associated covering number, are closely
tied to the L∞ norm of the Gaussian process, say supx∈Ω |G(x)|. The needed results are
collected in Lemmas 21-23. Lemma 21 is a version of the Borell-TIS inequality for the L∞
norm of a Gaussian process. Its proof can be found in Pisier (1999).

Lemma 21 (Borell-TIS inequality) Let G(x) be a separable zero-mean Gaussian pro-
cess with continuous sample paths almost surely and x lying in a dG-compact set Ω. Let
σ2
G = supx∈Ω EG(x)2. Then, we have E supx∈Ω |G(x)| <∞ and for all t > 0,

P
(
E sup
x∈Ω
|G(x)| − sup

x∈Ω
|G(x)| ≥ t

)
≤ e−t2/2σ2

G , (24)

P
(
E sup
x∈Ω
|G(x)| − sup

x∈Ω
|G(x)| ≤ −t

)
≤ e−t2/2σ2

G . (25)

Lemma 22 (Corollary 2.2.8 of van der Vaart and Wellner (1996)) Let G(x) be as
in Lemma 21. For some universal constant C, we have

E sup
x,x′∈Ω

|G(x)−G(x′)| ≤ C
∫ D

0

√
logN(ε,Ω, dG)dε,

where D = supx,x′∈Ω dG(x, x′) is the diameter of Ω under dG.

Lemma 23 (Theorem 6.5 of van Handel (2014)) Let G(x) be as in Lemma 21. For
some universal constant C, we have

E sup
x∈Ω
|G(x)| ≥ C sup

η>0
η
√

logN(η,Ω, dG).

To utilize the above lemmas to bound supx∈Ω |Z(x) − IΦ,XZ(x)|, the main idea is to note
that

gZ(x) := Z(x)− IΦ,XZ(x)

is also a Gaussian process. So Lemma 21 can be applied directly. The remainder is to bound
E supx∈Ω |Z(x) − IΦ,XZ(x)|. According to Lemmas 22 and 23, it is crucial to understand
the natural distance, given by

d2
gZ

(x, x′) = E[Z(x)− IΦ,XZ(x)− Z(x′) + IΦ,XZ(x′)]2.

7.2.1 Proof of Theorem 2

The main steps of proving Theorem 2 are: 1) bounding the diameter D; 2) connecting the
natural distance dgZ with the Euclidean distance; 3) bounding the covering integral and
establishing the desired result.
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Step 1. An upper bound of D is given by

D2 = sup
x,x′∈Ω

E[Z(x)− IΦ,XZ(x)− Z(x′) + IΦ,XZ(x′)]2

≤ 4 sup
x∈Ω

E[Z(x)− IΦ,XZ(x)]2

= 4 sup
x∈Ω

Q2(x) ≤ C2
1h

2ν0
X,Ωρ

2(ν−ν0)
X,Ω , (26)

where the first inequality follows from the basic inequality (x + y)2 ≤ 2x2 + 2y2; the last
inequality follows from Lemma 16.

Step 2. By Lemma 15,

dgZ (x, x′) = sup
‖f‖Ψ≤1

|f(x)− IΦ,Xf(x)− f(x′) + IΦ,Xf(x′)|. (27)

The Hölder space C0,α
b (Rd) for 0 < α ≤ 1 consists of continuous bounded function on Rd,

with its norm defined as

‖f‖
C0,α
b (Rd)

:= sup
x,x′∈Rd,x6=x′

|f(x)− f(x′)|
‖x− x′‖α

.

For f ∈ NΨ(Rd), Lemma 13 implies that f−IΦ,Xf ∈W ν0+d/2
2 (Rd). The Sobolev embedding

theorem (see, for example, Theorem 4.47 of Demengel et al. (2012)) implies the embedding

relationship W
ν0+d/2
2 (Rd) ⊂ C0,τ

b (Rd) with τ = min(ν0, 1), and

‖h‖
C0,τ
b (Rd)

≤ C2‖h‖W ν0+d/2
2 (Rd)

, (28)

for all h ∈W ν0+d/2
2 (Rd) and a constant C2. Therefore, we have f − IΦ,Xf ∈ C0,τ

b (Rd).

Thus by (27), we have

dgZ (x, x′) ≤ sup
‖f‖Ψ≤1

‖f − IΦ,Xf‖C0,τ
b (Rd)

‖x− x′‖τ

≤ sup
‖f‖Ψ≤1

C2‖f − IΦ,Xf‖W ν0+d/2
2 (Rd)

‖x− x′‖τ

≤ sup
‖f‖Ψ≤1

C3‖f − IΦ,Xf‖Ψ‖x− x′‖τ , (29)

where the second inequality follows from (28); the third inequality follows from Lemma 13.

Now we employ Lemma 14 again. Let fγ be the function asserted by Lemma 14 with
f |X = fγ |X . Similar to the proof of Lemma 11, we have

‖f − IΦ,Xf‖Ψ
≤‖f − IΨ,Xf‖Ψ + ‖fγ − IΨ,Xfγ‖Ψ + ‖fγ − IΦ,Xfγ‖Ψ
≤‖f‖Ψ + ‖fγ‖Ψ + ‖fγ − IΦ,Xfγ‖Ψ,
≤C4‖f‖Ψ + ‖fγ − IΦ,Xfγ‖Ψ (30)
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where the second inequality follows from Lemma 12; the last inequality follows from Lemmas
13 and 14. Similarly, we have

‖fγ − IΦ,Xfγ‖Ψ ≤ C5‖fγ − IΦ,Xfγ‖W ν0+d/2
2 (Rd)

≤C5‖fγ − IΦ,Xfγ‖W ν+d/2
2 (Rd)

≤ C6‖fγ − IΦ,Xfγ‖Φ

≤C6‖fγ‖Φ ≤ C7‖fγ‖W ν+d/2
2 (Rd)

≤ C8q
−(ν−ν0)
X ‖f‖

W
ν0+d/2
2 (Rd)

≤C9q
−(ν−ν0)
X ‖f‖Ψ,

which, together with (29) and (30), yields

dgZ (x, x′) ≤ C10q
−(ν−ν0)
X ‖x− x′‖τ = C10h

ν0−ν
X,Ω ρν−ν0

X,Ω ‖x− x
′‖τ .

Therefore, by the definition of the covering number, we have

N(ε,Ω, dgZ ) ≤ N((ε/C10h
ν0−ν
X,Ω ρν−ν0

X,Ω )1/τ ,Ω, ‖ · ‖). (31)

The right side of (31) involves the covering number of a Euclidean ball, which is studied in
the literature; see Lemma 2.5 of van de Geer (2000). This result leads to the bound

logN(ε,Ω, dgZ ) ≤ C11 log

(
1 + C12

(
hν0−ν
X,Ω ρν−ν0

X,Ω

ε

)1/τ )
. (32)

Step 3. For any x1 ∈ X, the interpolation property implies gZ(x1) = 0. Using our findings
in Steps 1 and 2, together with Lemma 22, we have

E sup
x∈Ω
|gZ(x)| = E sup

x∈Ω
|gZ(x)− gZ(x1)|

≤E sup
x,x′∈Ω

|gZ(x)− gZ(x′)|

≤C13

∫ C1h
ν0
X,Ωρ

ν−ν0
X,Ω

0

√√√√log

(
1 + C12

(
hν0−ν
X,Ω ρν−ν0

X,Ω

ε

)1/τ )
dε

=C13h
ν0
X,Ωρ

ν−ν0
X,Ω

∫ C1

0

√√√√log

(
1 + C12

(
h−νX,Ω
t

)1/τ )
dt, (33)

where the second equality is obtained by the change of variables. Note that for any b > 1
C1

and a > 0, taking C ′ = max{C1, 1} leads to 1+ba ≤ (1+C ′b)a+C ′b(1+C ′b)a ≤ (1+C ′b)a+1.
Thus we have

log

(
1 + C12

(
h−νX,Ω
t

)1/τ )
≤
(

1 +
1

τ

)
log

(
1 + C14

h−νX,Ω
t

)
for t ∈ (0, C1].
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Therefore, the integral (33) can be further bounded by

C15h
ν0
X,Ωρ

ν−ν0
X,Ω

∫ C1

0

√
log

(
1 +

C14

hνX,Ωt

)
dt. (34)

We then apply the Cauchy-Schwarz inequality to get

C15h
ν0
X,Ωρ

ν−ν0
X,Ω

∫ C1

0

√
log

(
1 +

C14

hνX,Ωt

)
dt

≤C15C
1/2
1 hν0

X,Ωρ
ν−ν0
X,Ω

(∫ C1

0
log

(
1 +

C14

hνX,Ωt

)
dt

)1/2

=C15C
1/2
1 hν0

X,Ωρ
ν−ν0
X,Ω

(
C14h

−ν
X,Ω log

(
1 +

C1h
ν
X,Ω

C14

)
+ C1 log

(
1 +

C14

C1hνX,Ω

))1/2

. (35)

By the basic inequality log(1 + x) ≤ x, we conclude that

C14h
−ν
X,Ω log

(
1 +

C1h
ν
X,Ω

C14

)
≤ C1.

Consequently, by incorporating the condition hX,Ω ≤ 1, we get

C14h
−ν
X,Ω log

(
1 +

C1h
ν
X,Ω

C14

)
+ C1 log

(
1 +

C14

C1hνX,Ω

)
≤C1 + C1 log

(
1 +

C14

C1hνX,Ω

)
≤ C16 log

(
1 +

C17

hX,Ω

)
, (36)

where in the last equality, we utilize 1 + ba ≤ (1 + C ′b)a+1 again. Combining (33)-(36), we
have shown that

E sup
x∈Ω
|gZ(x)| ≤ C18h

ν0
X,Ωρ

ν−ν0
X,Ω

√
log

(
1 +

C17

hX,Ω

)
.

By Lemma 16, we have the following upper bound for the maximum variance

σ2
gZ

= max
x∈Ω

Q2(x) ≤ Ch2ν0
X,Ωρ

2(ν−ν0)
X,Ω .

Then we complete the proof of Theorem 2 by invoking (24) of Lemma 21.

7.2.2 Proof of Theorem 3

According to Lemma 23, the key is to find a lower bound of N(ε,Ω, dgZ ). The idea is
as follows. Suppose for any n-point set {y1, . . . , yn} ⊂ Ω, we can find y0 ∈ Ω such that
min1≤j≤n dgZ (y0, yj) ≥ εn for some number εn > 0. Then Ω can not be covered by n
(εn, dgZ )-balls, and thus N(εn,Ω, dgZ ) ≥ n.
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Now take an arbitrary n-point set Y = {y1, . . . , yn} ⊂ Ω. For each yj ,

d2
gZ

(y, yj) =E(Z(y)− IΦ,XZ(y)− Z(yj) + IΦ,XZ(yj)))
2

≥E(Z(y)− IΨ,X∪Y Z(y))2,

because IΨ,X∪Y Z(y) is the best linear predictor of Z(y) given Z(x1), . . . , Z(xn), Z(y1), . . . ,
Z(yn), and IΦ,XZ(y) + Z(yj) − IΦ,XZ(yj) is a linear predictor and thus should have a
greater mean squared prediction error. Corollary 19 implies that

sup
y∈Ω

E(Z(y)− IΨ,X∪Y Z(y))2 = sup
y∈Ω

P 2
Ψ,X∪Y (y) ≥ C2

1 (2n)−
2ν0
d .

Therefore, there exists y0 ∈ Ω such that d2
gZ

(y0, yj) ≥ C2
1 (2n)−

2ν0
d /4 for each yj , which

implies N(C1(2n)−
ν0
d /2,Ω, dgZ ) ≥ n. Now we invoke Lemma 23 with η = C1(2n)−

ν0
d /2 to

obtain that

E sup
x∈Ω

gZ(x) ≥ C2n
− ν0

d

√
log n. (37)

The desired result then follows from (25) of Lemma 21.

7.3 Lp results with 1 ≤ p <∞

Our results for the Lp norms with 1 ≤ p < ∞ replies on a counterpart of the Borell-TIS
inequality (Lemma 21) under the Lp norms. Such a result is given by Lemma 24; its proof
is presented in Section 7.3.1.

Lemma 24 Suppose Ω satisfies Condition 1. Let G be a zero-mean Gaussian process on
Ω ⊂ Rd with continuous sample paths almost surely and with a finite maximum pointwise
variance σ2

G = supx∈Ω EG(x)2 <∞. Then for all u > 0 and 1 ≤ p <∞, we have

P
(
‖G‖Lp(Ω) − E‖G‖Lp(Ω) > u

)
≤ e−u2/(2Cpσ2

G),

P
(
‖G‖Lp(Ω) − E‖G‖Lp(Ω) < −u

)
≤ e−u2/(2Cpσ2

G),

with Cp = Vol(Ω)2/p. Here Vol(Ω) denotes the volume of Ω.

Remark 25 Similar to the Borell-TIS inequality (Lemma 21), the variation of Lp norm of
G in Lemma 24 can be controlled by its pointwise fluctuations. In fact, by letting p → ∞,
Lemma 24 becomes Lemma 21.

As before, let gZ(x) = Z(x) − IΦ,XZ(x), which is still a zero-mean Gaussian process; let
σ2
gZ

= supx∈Ω EgZ(x)2. In view of Lemma 24, the remaining task is to bound E‖gZ‖Lp(Ω).
This will be done by employing the known bounds of E‖gZ‖2L2(Ω), as in Lemmas 16 and 18,
together with Jensen’s inequality and some other basic inequalities.
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7.3.1 Proof of Lemma 24

We will use the Gaussian concentration inequality given by Lemma 26. Its proof can be
found in Adler and Taylor (2009, Lemma 2.1.6). We say that L is a Lipchitz constant of
the function h : Rk → R, if |h(x)− h(y)| ≤ L‖x− y‖ for all x, y ∈ Rk.

Lemma 26 (Gaussian concentration inequality) Let Gk be a k-dimensional vector of
centered, unit-variance, independent Gaussian variables. If h : Rk → R has Lipschitz
constant L, then for all u > 0.

P(h(Gk)− Eh(Gk) > u) ≤ e−u2/(2L2).

The proof proceeds by approximating of the integral ‖G‖pLp(Ω) =
∫

ΩG(x)pdx by a Riemann

sum. For each n = 1, 2, . . ., let {Ωnj}nj=1 be a partition of Ω such that

max
1≤j≤n

Diam(Ωnj)→ 0, as n→∞, (38)

where Diam(Ωnj) denotes the (Euclidean) diameter of Ωnj . We have Ω = ∪nj=1Ωnj and∑n
j=1 Vol(Ωnj) = Vol(Ω). Let wnj = Vol(Ωnj) and define

‖a‖w =

( n∑
j=1

wnj |aj |p
)1/p

for a vector a = (a1, ..., an)T . Let Gn = (Gn1, ..., Gnn)T with Gnj = G(xnj) for some
xnj ∈ Ωnj . Therefore, ‖Gn‖w is an approximate of ‖G‖Lp(Ω).

We first prove a similar result for Gn, and then arrive at the desired results by letting n→∞.
Let K be the n×n covariance matrix of Gn on Ω, with components Kij = E(GniGnj). Define
σ2

Ωn
= max1≤j≤n EG2

nj . Let W be a vector of independent, standard Gaussian variables,

and A be a matrix such that ATA = K. Thus Gn has the same distribution as AW .

Consider the function h(x) = ‖Ax‖w. Let ej be the vector with one in the jth entry and
zeros in other entries. Denote the jth entry of a vector v by [v]j . Then we have

|h(x)− h(y)| =|‖Ax‖w − ‖Ay‖w| ≤ ‖A(x− y)‖w

=

( n∑
j=1

wnj |[A(x− y)]j |p
)1/p

=

( n∑
j=1

wnj |eTj A(x− y)|p
)1/p

≤
( n∑
j=1

wnj‖eTj A‖p‖x− y‖p
)1/p

,

where the first inequality follows from the triangle inequality (i.e., the Minkowski inequal-
ity); and the last inequality follows from the Cauchy-Schwarz inequality. Noting that for
each j,

‖eTj A‖2 = eTj A
TAej = E(G2

nj) ≤ σ2
Ωn ,
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we have

|h(x)− h(y)| ≤Vol(Ω)1/pσΩn‖x− y‖,

which implies h is a Lipschitz continuous function with Lipschitz constant Vol(Ω)1/pσΩn .
Because Gn and AW have the same distribution, and together with Lemma 26, we obtain

P (‖Gn‖w − E‖Gn‖w > u) ≤ e−u
2/(2Cpσ2

Ωn
), (39)

where Cp = Vol(Ω)2/p. Similarly, by considering h(x) = −‖Ax‖w, we can obtain

P (‖Gn‖w − E‖Gn‖w < −u) ≤ e−u
2/(2Cpσ2

Ωn
). (40)

To prove the desired results, we let n → ∞ in (39) and (40). First we show that the left-
hand sides of (39) and (40) tend to P

(
‖G‖Lp(Ω) − E‖G‖Lp(Ω) > u

)
and

P
(
‖G‖Lp(Ω) − E‖G‖Lp(Ω) < −u

)
, respectively. According to Lebesgue’s dominated conver-

gence theorem, it suffices to prove that

‖Gn‖w → ‖G‖Lp(Ω), a.s., as n→∞, (41)

and

E‖Gn‖w → E‖G‖Lp(Ω), as n→∞, (42)

as the indicator function is dominated by one. Since G has continuous sample paths with
probability one, (41) is an immediate consequence of the convergence of Riemann integrals.
Now we prove (42). Note that ‖Gn‖w ≤ Vol(Ω)1/p supx∈Ω |G(x)| and Lemma 21 suggests
that E supx∈Ω |G(x)| < ∞. Thus Lebesgue’s dominated convergence theorem implies (42).
Now we consider the right-hand sides of (39) and (40). To prove the desired results, it
remains to prove σ2

Ωn
→ σ2

G. By the definition of σ2
Ωn

, we have

max
1≤j≤n

inf
x∈Ωnj

EG(x)2 ≤ σ2
Ωn ≤ σ

2
G. (43)

The almost sure continuity of G implies that EG(x)2 is continuous in x. Since Ω is compact,
EG(x)2 is also uniformly continuous. Therefore, the condition of the partitions in (38)
implies

max
1≤j≤n

inf
x∈Ωnj

EG2(x)→ σ2
G, as n→∞. (44)

Combining (43) and (44) proves σ2
Ωn
→ σ2

G, which completes the proof.

7.3.2 Proof of Theorem 4

By Fubini’s theorem,

E‖Z − IΦ,XZ‖pLp(Ω) =

∫
x∈Ω

E|Z(x)− IΦ,XZ(x)|pdx

=

∫
x∈Ω

2p/2Γ(p+1
2 )

√
π

(
E(Z(x)− IΦ,XZ(x))2

)p/2
dx

≤ C1σ
p
gZ
. (45)
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The second equality of (45) is true because Z(x)− IΦ,XZ(x) follows a normal distribution
with mean zero, and the absolute moments of a normal random variable Xσ ∼ N(0, σ2) can
be expressed by its variance as

E|Xσ|p = σp ·
2p/2Γ

(
p+1

2

)
√
π

; (46)

see Walck (1996). By combining Lemma 24 and (45), we have

e−u
2/2Cpσ2

gZ ≥ P
(
‖gZ‖Lp(Ω) > E‖gZ‖Lp(Ω) + u

)
≥ P

(
‖gZ‖pLp(Ω) > 2p−1(E‖gZ‖pLp(Ω) + up)

)
≥ P

(
‖gZ‖pLp(Ω) > 2p−1(C1σ

p
gZ

+ up)
)

≥ P
(
‖gZ‖Lp(Ω) > 21−1/p(C

1/p
1 σgZ + u)

)
, (47)

where the second inequality follows from the Jensen’s inequality and the cr-inequality. Com-
bining Lemma 16 and (47) completes the proof.

7.3.3 Proof of Theorem 5

The proof of Theorem 5 is similar to that of Theorem 4. The only difference here is that
at the last step we employ Lemma 17 instead of Lemma 16.

7.3.4 Proof of Theorem 6

Take a quasi-uniform design X ′ ⊂ Ω with card(X ′) = n. Obviously hX∪X′,Ω ≤ hX′,Ω. By
Proposition 14.1 of Wendland (2004), hX′,Ω ≤ Cn−1/d. By Hölder’s inequality, we have

‖f‖L2(Ω) ≤ ‖f‖
1/4
L1(Ω)‖f‖

3/4
L3(Ω) for any continuous function f , which implies(∫

x∈Ω
E(Z(x)− IΨ,X∪X′Z(x))2dx

)1/2

≤
(∫

x∈Ω

(
E(Z(x)− IΨ,X∪X′Z(x))2

)1/2
dx

)1/4(∫
x∈Ω

(
E(Z(x)− IΨ,X∪X′Z(x))2

)3/2
dx

)1/4

.

(48)

Applying Lemma 17 to supx∈Ω E(Z(x)− IΨ,X∪X′Z(x))2 with ν = ν0 yields(∫
x∈Ω

(
E(Z(x)− IΨ,X∪X′Z(x))2

)3/2
dx

)1/4

≤C1

(
sup
x∈Ω

(
E(Z(x)− IΨ,X∪X′Z(x))2

)3/2)1/4

≤C2h
3ν0
4
X∪X′,Ω ≤ C2h

3ν0
4
X′,Ω ≤ C3n

− 3ν0
4d . (49)
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The left hand side of (48) can be bounded from below by using Lemma 18, which yields

(∫
x∈Ω

E(Z(x)− IΨ,X∪X′Z(x))2dx

)1/2

=
(
E‖Z − IΨ,X∪X′Z‖2L2(Ω)

)1/2

= ‖PΨ,X∪X′‖L2(Ω) ≥ C4(2n)−ν0/d, (50)

where the equality follows from Fubini’s theorem. Plugging (49) and (50) into (48), we have∫
x∈Ω

(
E(Z(x)− IΨ,X∪X′Z(x))2

)1/2
dx ≥ C5n

3ν0
d n−

4ν0
d = C5n

− ν0
d . (51)

By Fubini’s theorem and (51), it can be seen that

E‖Z − IΦ,XZ‖L1(Ω) =

∫
x∈Ω

E|Z(x)− IΦ,XZ(x)|dx

=

∫
x∈Ω

21/2

√
π

(
E(Z(x)− IΦ,XZ(x))2

)1/2
dx

≥ C6

∫
x∈Ω

(
E(Z(x)− IΨ,X∪X′Z(x))2

)1/2
dx

≥ C7n
− ν0

d , (52)

where the second equality follows from (46) with p = 1; the first inequality is because
IΨ,X∪X′Z(x) is the best linear predictor of Z(x). For 1 ≤ p <∞ and any u > 0, applying
Lemma 24 yields

e−u
2/(2C8σ2

Ω) ≥ P
(
‖gZ‖Lp(Ω) < E‖gZ‖Lp(Ω) − u

)
≥ P

(
‖gZ‖pLp(Ω) < 21−p(E‖gZ‖Lp(Ω))

p − up
)

≥ P
(
‖gZ‖pLp(Ω) < 21−p(C9E‖gZ‖L1(Ω))

p − up
)

≥ P
(
‖gZ‖pLp(Ω) < C10n

−ν0p/d − up
)

≥ P
(
‖gZ‖Lp(Ω) < C11n

−ν0/d − u
)
. (53)

In (53), the second inequality is because of Jensen’s inequality; the third inequality is
because of the fact ‖gZ‖Lp(Ω) ≥ C9‖gZ‖L1(Ω) for some constant C9 > 0 depending on p and
Ω; the fourth inequality is by (52); and the last inequality is true because of the elementary
inequality (a+ b)p ≥ ap + bp for a, b > 0. Thus, we finish the proof of Theorem 6.
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Appendix A. Distributions and Asymptotic Orders in Example 1

Proposition 27 Let x1, . . . , xn be mutually independent random variables following the
uniform distribution on [0, 1]. Denote their order statistics as

0 = x(0) ≤ x(1) ≤ · · · ≤ x(n) ≤ x(n+1) = 1.

Let y1, . . . , yn be mutually independent random variables following the exponential distribu-
tion with mean one. Therefore, (x(1), . . . , x(n)) has the same distribution as(

y1∑n+1
j=1 yj

, . . . ,

∑n
j=1 yj∑n+1
j=1 yj

)
.

The proof of Proposition 27 relies on the following lemma.

Lemma 28 (Lemma 4.5.1 of Resnick (1992)) Let y1, . . . , yn, yn+1 be mutually inde-
pendent random variables following the exponential distribution with mean one. Define
Ek =

∑k
i=1 yi for k = 1, ..., n + 1. Then conditional on En+1 = t, the joint density of

E1, ..., En is

fE1,...,En|En+1=t(u1, ..., un) =

{
n!
tn , if 0 < u1 < · · · < un < t,
0, otherwise.

Proof of Proposition 27. By Lemma 28, it can be shown that

f E1
En+1

,..., En
En+1

|En+1=t
(u1, ..., un) = fE1,...,En|En+1=t(u1t, ..., unt)

=

{
n!, if 0 < u1 < · · · < un < 1,
0, otherwise.

which implies

f E1
En+1

,..., En
En+1

(u1, ..., un) =

{
n!, if 0 < u1 < ... < un < 1,
0, otherwise,

(54)

by taking the expectation with respect to En+1. Note that (54) is the same as the joint
density of order statistics (x(1), . . . , x(n)), which completes the proof.

Proposition 29 Let y1, . . . , yn be mutually independent random variables following the ex-
ponential distribution with mean one. Then max yj � log n, min yj � 1/n, max yj/min yj �
n log n and max yj/

∑n
j=1 yj = OP(n−1 log n).

Remark 30 For positive sequences of random variables an, bn, we write an � bn if an =
OP(bn) and bn = OP(an).
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Proof of Proposition 29. We first show that for any ε > 0, there exists an M and N
such that

sup
n>N

P
(

max yj
log n

> M

)
≤ ε, sup

n>N
P
(

log n

max yj
> M

)
≤ ε, (55)

sup
n>N

P (nmin yj > M) ≤ ε, sup
n>N

P
(

1

nmin yj
> M

)
≤ ε. (56)

For any x > 0, it can be checked that

P(max yj ≤ x) = (1− e−x)n,

which, for n > N , by Bernoulli’s inequality and the basic inequality log(1 + x) < x, implies

P(max yj ≥M log n) =1− (1− n−M )n ≤ n−M+1 ≤ N−M+1 → 0,

P
(

max yj ≤
log n

M

)
=(1− n−

1
M )n = en log(1−n−

1
M ) ≤ e−n

1− 1
M ≤ e−N

1− 1
M → 0,

as N,M →∞. This finishes the proof of (55).

For any x > 0, min yj has the cumulative distribution function

P(min yj ≤ x) = 1− (e−x)n = 1− e−nx.

Therefore, we have

P
(

min yj ≥
M

n

)
= e−M , and P

(
min yj ≤

1

nM

)
= 1− e−

1
M → 0,

as M → ∞, which finishes the proof of (56). Note (55) and (56) imply max yj � log n
and min yj � 1/n, respectively. Because for positive sequences an, bn, cn, an = OP(bn) and
bn = OP(cn) implies an = OP(cn), we have max yj/min yj � n log n.

Next we show max yj/
∑n

j=1 yj = OP(n−1 log n). Because we have shown that max yj �
log n, it suffices to show n = OP(

∑n
j=1 yj), which is equivalent to show that for any ε > 0,

there exists an M and N such that

sup
n>N

P

 n∑
j=1

yj <
n

M

 ≤ ε. (57)

By Chebyshev’s inequality, for n > N

P

 n∑
j=1

yj <
n

M

 = P

 1

n

n∑
j=1

yj − 1 <
1

M
− 1


≤ P

∣∣∣∣ 1n
n∑
j=1

yj − 1

∣∣∣∣ > ∣∣∣∣ 1

M
− 1

∣∣∣∣
 ≤ 1

n(1− 1/M)2
≤ 1

N(1− 1/M)2
→ 0,

as N,M →∞. This shows n = OP(
∑n

j=1 yj), and finishes the proof.
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