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Abstract

Graph Neural Networks (GNNs) have been stud-

ied through the lens of expressive power and gen-

eralization. However, their optimization proper-

ties are less well understood. We take the first

step towards analyzing GNN training by study-

ing the gradient dynamics of GNNs. First, we

analyze linearized GNNs and prove that despite

the non-convexity of training, convergence to a

global minimum at a linear rate is guaranteed

under mild assumptions that we validate on real-

world graphs. Second, we study what may affect

the GNNs’ training speed. Our results show that

the training of GNNs is implicitly accelerated by

skip connections, more depth, and/or a good label

distribution. Empirical results confirm that our

theoretical results for linearized GNNs align with

the training behavior of nonlinear GNNs. Our

results provide the first theoretical support for the

success of GNNs with skip connections in terms

of optimization, and suggest that deep GNNs with

skip connections would be promising in practice.

1. Introduction

Graph Neural Networks (GNNs) (Gori et al., 2005; Scarselli

et al., 2009) are an effective framework for learning with

graphs. GNNs learn node representations on a graph by

extracting high-level features not only from a node itself

but also from a node’s surrounding subgraph. Specifi-

cally, the node representations are recursively aggregated

and updated using neighbor representations (Merkwirth &

Lengauer, 2005; Duvenaud et al., 2015; Defferrard et al.,

2016; Kearnes et al., 2016; Gilmer et al., 2017; Hamilton

et al., 2017; Velickovic et al., 2018; Liao et al., 2020).

Recently, there has been a surge of interest in studying the
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theoretical aspects of GNNs to understand their success and

limitations. Existing works have studied GNNs’ expressive

power (Keriven & Peyré, 2019; Maron et al., 2019; Chen

et al., 2019; Xu et al., 2019; Sato et al., 2019; Loukas, 2020),

generalization capability (Scarselli et al., 2018; Du et al.,

2019b; Xu et al., 2020; Garg et al., 2020), and extrapolation

properties (Xu et al., 2021). However, the understanding

of the optimization properties of GNNs has remained lim-

ited. For example, researchers working on the fundamental

problem of designing more expressive GNNs hope and of-

ten empirically observe that more powerful GNNs better fit

the training set (Xu et al., 2019; Sato et al., 2020; Vignac

et al., 2020). Theoretically, given the non-convexity of GNN

training, it is still an open question whether better represen-

tational power always translates into smaller training loss.

This motivates the more general questions:

Can gradient descent find a global minimum for GNNs?

What affects the speed of convergence in training?

In this work, we take an initial step towards answering the

questions above by analyzing the trajectory of gradient de-

scent, i.e., gradient dynamics or optimization dynamics. A

complete understanding of the dynamics of GNNs, and deep

learning in general, is challenging. Following prior works

on gradient dynamics (Saxe et al., 2014; Arora et al., 2019a;

Bartlett et al., 2019), we consider the linearized regime, i.e.,

GNNs with linear activation. Despite the linearity, key prop-

erties of nonlinear GNNs are present: The objective function

is non-convex and the dynamics are nonlinear (Saxe et al.,

2014; Kawaguchi, 2016). Moreover, we observe the learn-

ing curves of linear GNNs and ReLU GNNs are surprisingly

similar, both converging to nearly zero training loss at the

same linear rate (Figure 1). Similarly, prior works report

comparable performance in node classification benchmarks

even if we remove the non-linearities (Thekumparampil

et al., 2018; Wu et al., 2019). Hence, understanding the

dynamics of linearized GNNs is a valuable step towards

understanding the general GNNs.

Our analysis leads to an affirmative answer to the first ques-

tion. We establish that gradient descent training of a lin-

earized GNN with squared loss converges to a global mini-

mum at a linear rate. Experiments confirm that the assump-
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Figure 1. Training curves of linearized GNNs vs. ReLU GNNs

on the Cora node classification dataset.

tions of our theoretical results for global convergence hold

on real-world datasets. The most significant contribution of

our convergence analysis is on multiscale GNNs, i.e., GNN

architectures that use skip connections to combine graph

features at various scales (Xu et al., 2018; Li et al., 2019;

Abu-El-Haija et al., 2020; Chen et al., 2020; Li et al., 2020).

The skip connections introduce complex interactions among

layers, and thus the resulting dynamics are more intricate.

To our knowledge, our results are the first convergence re-

sults for GNNs with more than one hidden layer, with or

without skip connections.

We then study what may affect the training speed of GNNs.

First, for any fixed depth, GNNs with skip connections train

faster. Second, increasing the depth further accelerates the

training of GNNs. Third, faster training is obtained when the

labels are more correlated with the graph features, i.e., labels

contain “signal” instead of “noise”. Overall, experiments

for nonlinear GNNs agree with the prediction of our theory

for linearized GNNs.

Our results provide the first theoretical justification for the

empirical success of multiscale GNNs in terms of optimiza-

tion, and suggest that deeper GNNs with skip connections

may be promising in practice. In the GNN literature, skip

connections are initially motivated by the “over-smoothing”

problem (Xu et al., 2018): via the recursive neighbor aggre-

gation, node representations of a deep GNN on expander-

like subgraphs would be mixing features from almost the

entire graph, and may thereby “wash out” relevant local in-

formation. In this case, shallow GNNs may perform better.

Multiscale GNNs with skip connections can combine and

adapt to the graph features at various scales, i.e., the out-

put of intermediate GNN layers, and such architectures are

shown to help with this over-smoothing problem (Xu et al.,

2018; Li et al., 2019; 2020; Abu-El-Haija et al., 2020; Chen

et al., 2020). However, the properties of multiscale GNNs

have mostly been understood at a conceptual level. Xu et al.

(2018) relate the learned representations to random walk

distributions and Oono & Suzuki (2020) take a boosting

view, but they do not consider the optimization dynamics.

We give an explanation from the lens of optimization. The

training losses of deeper GNNs may be worse due to over-

smoothing. In contrast, multiscale GNNs can express any

shallower GNNs and fully exploit the power by converging

to a global minimum. Hence, our results suggest that deeper

GNNs with skip connections are guaranteed to train faster

with smaller training losses.

We present our results on global convergence in Section 3,

after introducing relevant background (Section 2). In Sec-

tion 4, we compare the training speed of GNNs as a function

of skip connections, depth, and the label distribution. All

proofs are deferred to the Appendix.

2. Preliminaries

2.1. Notation and Background

We begin by introducing our notation. Let G = (V,E) be a

graph with n vertices V = {v1, v2, · · · , vn}. Its adjacency

matrix A ∈ R
n×n has entries Aij = 1 if (vi, vj) ∈ E

and 0 otherwise. The degree matrix associated with A is

D = diag (d1, d2, . . . , dn) with di =
∑n

j=1 Aij . For any

matrix M ∈ R
m×m′

, we denote its j-th column vector by

M∗j ∈ R
m, its i-th row vector by Mi∗ ∈ R

m′

, and its

largest and smallest (i.e., min(m,m′)-th largest) singular

values by σmax(M) and σmin(M), respectively. The data

matrix X ∈ R
mx×n has columns X∗j corresponding to the

feature vector of node vj , with input dimension mx.

The task of interest is node classification or regression. Each

node vi ∈ V has an associated label yi ∈ R
my . In the

transductive (semi-supervised) setting, we have access to

training labels for only a subset I ⊆ [n] of nodes on G, and

the goal is to predict the labels for the other nodes in [n] \ I .

Our problem formulation easily extends to the inductive

setting by letting I = [n], and we can use the trained model

for prediction on unseen graphs. Hence, we have access to

n̄ = |I| ≤ n training labels Y = [yi]i∈I ∈ R
my×n̄, and we

train the GNN using X,Y,G. Additionally, for any M ∈
R

m×m′

, I may index sub-matrices M∗I = [M∗i]i∈I ∈
R

m×n̄ (when m′ ≥ n) and MI∗ = [Mi∗]i∈I ∈ R
n̄×m

(when m ≥ n).

Graph Neural Networks (GNNs) use the graph structure and

node features to learn representations of nodes (Scarselli

et al., 2009). GNNs maintain hidden representations hv
(l) ∈

R
ml for each node v, where ml is the hidden dimension

on the l-th layer. We let X(l) =
[
h1
(l), h

2
(l), · · · , h

n
(l)

]
∈

R
ml×n, and set X(0) as the input features X . The node

hidden representations X(l) are updated by aggregating and

transforming the neighbor representations:

X(l) = σ
(
B(l)X(l−1)S

)
∈ R

ml×n, (1)

where σ is a nonlinearity such as ReLU, B(l) ∈ R
ml×ml−1

is the weight matrix, and S ∈ R
n×n is the GNN aggrega-

tion matrix, whose formula depends on the exact variant of

GNN. In Graph Isomorphism Networks (GIN) (Xu et al.,
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> 0 at the last iteration for different training settings.

2019), S = A+ In is the adjacency matrix of G with self-

loop, where In ∈ R
n×n is an identity matrix. In Graph

Convolutional Networks (GCN) (Kipf & Welling, 2017),

S = D̂− 1
2 (A+In)D̂

− 1
2 is the normalized adjacency matrix,

where D̂ is the degree matrix of A+ In.

2.2. Problem Setup

We first formally define linearized GNNs.

Definition 1. (Linear GNN). Given data matrix X ∈
R

mx×n, aggregation matrix S ∈ R
n×n, weight matri-

ces W ∈ R
my×mH , B(l) ∈ R

ml×ml−1 , and their collec-

tion B = (B(1), . . . , B(H)), a linear GNN with H layers

f(X,W,B) ∈ R
my×n is defined as

f(X,W,B) = WX(H), X(l) = B(l)X(l−1)S. (2)

Throughout this paper, we refer multiscale GNNs to the

commonly used Jumping Knowledge Network (JK-Net) (Xu

et al., 2018), which connects the output of all intermediate

GNN layers to the final layer with skip connections:

Definition 2. (Multiscale linear GNN). Given data X ∈
R

mx×n, aggregation matrix S ∈ R
n×n, weight matri-

ces W(l) ∈ R
my×ml , B(l) ∈ R

ml×ml−1 with W =
(W(0),W(1), . . . ,W(H)), a multiscale linear GNN with H

layers f(X,W,B) ∈ R
my×n is defined as

f(X,W,B) =

H∑

l=0

W(l)X(l), (3)

X(l) = B(l)X(l−1)S. (4)

Given a GNN f(·) and a loss function ℓ(·, Y ), we can train

the GNN by minimizing the training loss L(W,B):

L(W,B) = ℓ
(
f(X,W,B)∗I , Y

)
, (5)

where f(X,W,B)∗I corresponds to the GNN’s predictions

on nodes that have training labels and thus incur training

losses. The pair (W,B) represents the trainable weights:

L(W,B) = L(W(1), . . . ,W(H), B(1), . . . , B(H))

For completeness, we define the global minimum of GNNs.

Definition 3. (Global minimum). For any H ∈ N0, L∗
H is

the global minimum value of the H-layer linear GNN f :

L∗
H = inf

W,B
ℓ
(
f(X,W,B)∗I , Y

)
. (6)

Similarly, we define L∗
1:H as the global minimum value of

the multiscale linear GNN f with H layers.

We are ready to present our main results on global conver-

gence for linear GNNs and multiscale linear GNNs.

3. Convergence Analysis

In this section, we show that gradient descent training a

linear GNN with squared loss, with or without skip connec-

tions, converges linearly to a global minimum. Our condi-

tions for global convergence hold on real-world datasets and

provably hold under assumptions, e.g., initialization.

In linearized GNNs, the loss L(W,B) is non-convex (and

non-invex) despite the linearity. The graph aggregation S

creates interaction among the data and poses additional chal-

lenges in the analysis. We show a fine-grained analysis

of the GNN’s gradient dynamics can overcome these chal-

lenges. Following previous works on gradient dynamics

(Saxe et al., 2014; Huang & Yau, 2020; Ji & Telgarsky,

2020; Kawaguchi, 2021), we analyze the GNN learning

process via the gradient flow, i.e., gradient descent with

infinitesimal steps: ∀t ≥ 0, the network weights evolve as

d

dt
Wt = −

∂L

∂W
(Wt, Bt),

d

dt
Bt = −

∂L

∂B
(Wt, Bt),

(7)

where (Wt, Bt) represents the trainable parameters at time

t with initialization (W0, B0).
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3.1. Linearized GNNs

Theorem 1 states our result on global convergence for lin-

earized GNNs without skip connections.

Theorem 1. Let f be an H-layer linear GNN and

ℓ(q, Y ) = ‖q − Y ‖2F where q, Y ∈ R
my×n̄. Then, for

any T > 0,

L(WT , BT )− L∗
H (8)

≤ (L(W0, B0)− L∗
H)e−4λ

(H)
T

σ2
min(X(SH)∗I)T ,

where λ
(H)
T is the smallest eigenvalue λ

(H)
T :=

inft∈[0,T ] λmin((B̄
(1:H)
t )⊤B̄

(1:H)
t ) and B̄(1:l) :=

B(l)B(l−1) · · ·B(1) for any l ∈ {0, . . . , H} with

B̄(1:0) := I .

Proof. (Sketch) We decompose the gradient dynamics into

three components: the graph interaction, non-convex fac-

tors, and convex factors. We then bound the effects

of the graph interaction and non-convex factors through

σ2
min(X(SH)∗I) and λmin((B̄

(1:H)
t )⊤B̄

(1:H)
t ) respectively.

The complete proof is in Appendix A.1.

Theorem 1 implies that convergence to a global minimum

at a linear rate is guaranteed if σ2
min(X(SH)∗I) > 0

and λT > 0. The first condition on the product of X

and SH indexed by I only depends on the node features

X and the GNN aggregation matrix S. It is satisfied if

rank(X(SH)∗I) = min(mx, n̄), because σmin(X(SH)∗I)
is the min(mx, n̄)-th largest singular value of X(SH)∗I ∈

R
mx×n̄. The second condition λ

(H)
T > 0 is time-dependent

and requires a more careful treatment. Linear convergence

is implied as long as λmin((B̄
(1:H)
t )⊤B̄

(1:H)
t ) ≥ ǫ > 0 for

all times t before stopping.

Empirical validation of conditions. We verify both

the graph condition σ2
min(X(SH)∗I) > 0 and the time-

dependent condition λ
(H)
T > 0 for (discretized) T >

0. First, on the popular graph datasets, Cora and Cite-

seer (Sen et al., 2008), and the GNN models, GCN (Kipf

& Welling, 2017) and GIN (Xu et al., 2019), we have

σ2
min(X(SH)∗I) > 0 (Figure 2a). Second, we train lin-

ear GCN and GIN on Cora and Citeseer to plot an exam-

ple of how the λ
(H)
T = inft∈[0,T ] λmin((B̄

(1:H)
t )⊤B̄

(1:H)
t )

changes with respect to time T (Figure 2b). We further con-

firm that λ
(H)
T > 0 until convergence, limT→∞ λ

(H)
T > 0

across different settings, e.g., datasets, depths, models (Fig-

ure 2c). Our experiments use the squared loss, random

initialization, learning rate 1e-4, and set the hidden dimen-

sion to the input dimension (note that Theorem 1 assumes

the hidden dimension is at least the input dimension). Fur-

ther experimental details are in Appendix C. Along with

Theorem 1, we conclude that linear GNNs converge linearly

to a global minimum. Empirically, we indeed see both linear

and ReLU GNNs converging at the same linear rate to nearly

zero training loss in node classification tasks (Figure 1).

Guarantee via initialization. Besides the empirical ver-

ification, we theoretically show that a good initialization

guarantees the time-dependent condition λT > 0 for any

T > 0. Indeed, like other neural networks, GNNs do not

converge to a global optimum with certain initializations:

e.g., initializing all weights to zero leads to zero gradients

and λ
(H)
T = 0 for all T , and hence no learning. We intro-

duce a notion of singular margin and say an initialization is

good if it has a positive singular margin. Intuitively, a good

initialization starts with an already small loss.

Definition 4. (Singular margin). The initialization

(W0, B0) is said to have singular margin γ > 0 with respect

to a layer l ∈ {1, . . . , H} if σmin(B(l)B(l−1) · · ·B(1)) ≥ γ

for all (W,B) such that L(W,B) ≤ L(W0, B0).

Proposition 1 then states that an initialization with positive

singular margin γ guarantees λ
(H)
T ≥ γ2 > 0 for all T :

Proposition 1. Let f be a linear GNN with H layers and

ℓ(q, Y ) = ‖q − Y ‖2F . If the initialization (W0, B0) has

singular margin γ > 0 with respect to the layer H and

mH ≥ mx, then λ
(H)
T ≥ γ2 for all T ∈ [0,∞).

Proposition 1 follows since L(Wt, Bt) is non-increasing

with respect to time t (proof in Appendix A.2).

Relating to previous works, our singular margin is a general-

ized variant of the deficiency margin of linear feedforward

networks (Arora et al., 2019a, Definition 2 and Theorem 1):

Proposition 2. (Informal) If initialization (W0, B0) has

deficiency margin c > 0, then it has singular margin γ > 0.

The formal version of Proposition 2 is in Appendix A.3.

To summarize, Theorem 1 along with Proposition 1 implies

that we have a prior guarantee of linear convergence to a

global minimum for any graph with rank(X(SH)∗I) =
min(mx, n̄) and initialization (W0, B0) with singular mar-

gin γ > 0: i.e., for any desired ǫ > 0, we have that

L(WT , BT )− L∗
H ≤ ǫ for any T such that

T ≥
1

4γ2σ2
min(X(SH)∗I)

log
L(A0, B0)− L∗

H

ǫ
. (9)

While the margin condition theoretically guarantees linear

convergence, empirically, we have already seen that the

convergence conditions of across different training settings

for widely used random initialization.

Theorem 1 suggests that the convergence rate depends on

a combination of data features X , the GNN architecture

and graph structure via S and H , the label distribution and

initialization via λT . For example, GIN has better such con-

stants than GCN on the Cora dataset with everything else
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held equal (Figure 2a). Indeed, in practice, GIN converges

faster than GCN on Cora (Figure 1). In general, the com-

putation and comparison of the rates given by Theorem 1

requires computation such as those in Figure 2. In Section 4,

we will study an alternative way of comparing the speed of

training by directly comparing the gradient dynamics.

3.2. Multiscale Linear GNNs

Without skip connections, the GNNs under linearization still

behave like linear feedforward networks with augmented

graph features. With skip connections, the dynamics and

analysis become much more intricate. The expressive power

of multiscale linear GNNs changes significantly as depth

increases. Moreover, the skip connections create complex

interactions among different layers and graph structures of

various scales in the optimization dynamics. Theorem 2

states our convergence results for multiscale linear GNNs

in three cases: (i) a general form; (ii) a weaker condition

for boundary cases that uses λH′

T instead of λ1:H
T ; (iii) a

faster rate if we have monotonic expressive power as depth

increases.

Theorem 2. Let f be a multiscale linear GNN with H

layers and ℓ(q, Y ) = ‖q − Y ‖2F where q, Y ∈ R
my×n̄. Let

λ
(1:H)
T := min0≤l≤H λ

(l)
T . For any T > 0, the following

hold:

(i) (General). Let GH := [X⊤, (XS)⊤, . . . , (XSH)⊤]⊤

∈ R
(H+1)mx×n. Then

L(WT , BT )− L∗
1:H (10)

≤ (L(W0, B0)− L∗
1:H)e−4λ

(1:H)
T

σ2
min((GH)∗I)T .

(ii) (Boundary cases). For any H ′ ∈ {0, 1, . . . , H},

L(WT , BT )− L∗
H′ (11)

≤ (L(W0, B0)− L∗
H′)e−4λ

(H′)
T

σ2
min(X(SH′

)∗I)T .

(iii) (Monotonic expressive power). If there exist l, l′ ∈
{0, . . . , H} with l < l′ such that L∗

l ≥ L∗
l+1 ≥ · · · ≥

L∗
l′ or L∗

l ≤ L∗
l+1 ≤ · · · ≤ L∗

l′ , then

L(WT , BT )− L∗
l′′ (12)

≤ (L(W0, B0)− L∗
l′′)e

−4
∑l′

k=l
λ
(k)
T

σ2
min(X(Sk)∗I)T ,

where l′′ = l if L∗
l ≥ L∗

l+1 ≥ · · · ≥ L∗
l′ , and l′′ = l′ if

L∗
l ≤ L∗

l+1 ≤ · · · ≤ L∗
l′ .

Proof. (Sketch) A key observation in our proof is that the

interactions of different scales cancel out to point towards

a specific direction in the gradient dynamics induced in

a space of the loss value. The complete proof is in Ap-

pendix A.4.

Similar to Theorem 1 for linear GNNs, the most general

form (i) of Theorem 2 implies that convergence to the global

minimum value of the entire multiscale linear GNN L∗
1:H

at linear rate is guaranteed when σ2
min((GH)∗I) > 0 and

λ
(1:H)
T > 0. The graph condition σ2

min((GH)∗I) > 0 is sat-

isfied if rank((GH)∗I) = min(mx(H + 1), n̄). The time-

dependent condition λ
(1:H)
T > 0 is guaranteed if the initial-

ization (W0, B0) has singular margin γ > 0 with respect to

every layer (Proposition 3 is proved in Appendix A.5):

Proposition 3. Let f be a multiscale linear GNN and

ℓ(q, Y ) = ‖q − Y ‖2F . If the initialization (W0, B0) has sin-

gular margin γ > 0 with respect to every layer l ∈ [H] and

ml ≥ mx for l ∈ [H], then λ
(1:H)
T ≥ γ2 for all T ∈ [0,∞).

We demonstrate that the conditions of Theorem 2 (i) hold

for real-world datasets, suggesting in practice multiscale

linear GNNs converge linearly to a global minimum.

Empirical validation of conditions. On datasets Cora and

Citeseer and for GNN models GCN and GIN, we confirm

that σ2
min((GH)∗I) > 0 (Figure 3a). Moreover, we train

multiscale linear GCN and GIN on Cora and Citeseer to plot

an example of how the λ
(1:H)
T changes with respect to time

T (Figure 3b), and we confirm that at convergence, λ
(1:H)
T >

0 across different settings (Figure 3c). Experimental details

are in Appendix C.

Boundary cases. Because the global minimum value of

multiscale linear GNNs L∗
1:H can be smaller than that of

linear GNNs L∗
H , the conditions in Theorem 2(i) may some-

times be stricter than those of Theorem 1. For example, in

Theorem 2(i), we require λ
(1:H)
T := min0≤l≤H λ

(l)
T rather

than λ
(H)
T to be positive. If λ

(l)
T = 0 for some l, then Theo-

rem 2(i) will not guarantee convergence to L∗
1:H .

Although the boundary cases above did not occur on the

tested real-world graphs (Figure 3), for theoretical interest,

Theorem 2(ii) guarantees that in such cases, multiscale lin-

ear GNNs still converge to a value no worse than the global

minimum value of non-multiscale linear GNNs. For any

intermediate layer H ′, assuming σ2
min(X(SH′

)∗I) > 0 and

λ
(H′)
T > 0, Theorem 2(ii) bounds the loss of the multiscale

linear GNN L(WT , BT ) at convergence by the global mini-

mum value L∗
H′ of the corresponding linear GNN with H ′

layers.

Faster rate under monotonic expressive power. Theorem

2(iii) considers a special case that is likely in real graphs:

the global minimum value of the non-multiscale linear GNN

L∗
H′ is monotonic as H ′ increases. Then (iii) gives a faster

rate than (ii) and linear GNNs. For example, if the globally

optimal value decreases as linear GNNs get deeper. i.e.,

L∗
0 ≥ L∗

1 ≥ · · · ≥ L∗
H , or vice versa, L∗

0 ≤ L∗
1 ≤ · · · ≤
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Figure 3. Empirical validation of assumptions for global convergence of multiscale linear GNNs. Left panel confirms the graph

condition σ2
min((GH)∗I) > 0 for Cora and Citeseer, and for GCN and GIN. Middle panel shows the time-dependent λ

(1:H)
T

for one

training setting (multiscale linear GCN on Cora). Each point in right panel is λ
(1:H)
T

> 0 at the last iteration for different training settings.

L∗
H , then Theorem 2 (i) implies that

L(WT , BT )− L∗
l (13)

≤ (L(W0, B0)− L∗
l )e

−4
∑H

k=0 λ
(k)
T

σ2
min(X(Sk)∗I)T ,

where l = 0 if L∗
0 ≥ L∗

1 ≥ · · · ≥ L∗
H , and l = H if

L∗
0 ≤ L∗

1 ≤ · · · ≤ L∗
H . Moreover, if the globally optimal

value does not change with respect to the depth as L∗
1:H =

L∗
1 = L∗

2 = · · · = L∗
H , then we have

L(WT , BT )− L∗
1:H (14)

≤ (L(W0, B0)− L∗
1:H)e−4

∑H
k=0 λ

(k)
T

σ2
min(X(Sk)∗I)T .

We obtain a faster rate for multiscale linear GNNs

than for linear GNNs, as e−4
∑H

k=0 λ
(k)
T

σ2
min(X(Sk)∗I)T ≤

e−4λ
(H)
T

σ2
min(X(SH)∗I)T . Interestingly, unlike linear GNNs,

multiscale linear GNNs in this case do not require any

condition on initialization to obtain a prior guarantee on

global convergence since e−4
∑H

k=0 λ
(k)
T

σ2
min(X(Sk)∗I)T ≤

e−4λ
(0)
T

σ2
min(X(S0)∗I)T with λ

(0)
T = 1 and X(S0)∗I = X∗I .

To summarize, we prove global convergence rates for multi-

scale linear GNNs (Thm. 2(i)) and experimentally validate

the conditions. Part (ii) addresses boundary cases where

the conditions of Part (i) do not hold. Part (iii) gives faster

rates assuming monotonic expressive power with respect

to depth. So far, we have shown multiscale linear GNNs

converge faster than linear GNNs in the case of (iii). Next,

we compare the training speed for more general cases.

4. Implicit Acceleration

In this section, we study how the skip connections, depth of

GNN, and label distribution may affect the speed of training

for GNNs. Similar to previous works (Arora et al., 2018),

we compare the training speed by comparing the per step

loss reduction d
dt
L(Wt, Bt) for arbitrary differentiable loss

functions ℓ(·, Y ) : Rmy → R. Smaller d
dt
L(Wt, Bt) im-

plies faster training. Loss reduction offers a complementary

view to the convergence rates in Section 3, since it is instant

and not an upper bound.

We present an analytical form of the loss reduction
d
dt
L(Wt, Bt) for linear GNNs and multiscale linear GNNs.

The comparison of training speed then follows from our for-

mula for d
dt
L(Wt, Bt). For better exposition, we first intro-

duce several notations. We let B̄(l′:l) = B(l)B(l−1) · · ·B(l′)

for all l′ and l where B̄(l′:l) = I if l′ > l. We also define

J(i,l),t := [B̄
(1:i−1)
t ⊗ (W(l),tB̄

(i+1:l)
t )⊤],

F(l),t := [(B̄
(1:l)
t )⊤B̄

(1:l)
t ⊗ Imy

] � 0,

Vt :=
∂L(Wt, Bt)

∂Ŷt

,

where Ŷt := f(X,Wt, Bt)∗I . For any vector v ∈ R
m

and positive semidefinite matrix M ∈ R
m×m, we use

‖v‖2M := v⊤Mv.1 Intuitively, Vt represents the deriva-

tive of the loss L(Wt, Bt) with respect to the model output

Ŷ = f(X,Wt, Bt)∗I . J(i,l),t and F(l),t represent matri-

ces that describe how the errors are propagated through the

weights of the networks.

Theorem 3, proved in Appendix A.6, gives an analytical

formula of loss reduction for linear GNNs and multiscale

linear GNNs.

Theorem 3. For any differentiable loss function q 7→
ℓ(q, Y ), the following hold for any H ≥ 0 and t ≥ 0:

(i) (Non-multiscale) For f as in Definition 1:

d

dt
L1(Wt, Bt) = −

∥
∥vec

[
Vt(X(SH)∗I)

⊤
]∥
∥
2

F(H),t
(15)

−
H∑

i=1

∥
∥J(i,H),t vec

[
Vt(X(SH)∗I)

⊤
]∥
∥
2

2
.

1We use this Mahalanobis norm notation for conciseness with-
out assuming it to be a norm, since M may be low rank.
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Figure 4. Comparison of the training speed of GNNs. Left: Multiscale GNNs train faster than non-multiscale GNNs. Middle: Deeper

GNNs train faster. Right: GNNs train faster when the labels have signals instead of random noise. The patterns above hold for both ReLU

and linear GNNs. Additional results are in Appendix B.

(ii) (Multiscale) For f as in Definition 2:

d

dt
L2(Wt, Bt) = −

H∑

l=0

∥
∥vec

[
Vt(X(Sl)∗I)

⊤
]∥
∥
2

F(l),t

(16)

−

H∑

i=1

∥
∥
∥
∥
∥

H∑

l=i

J(i,l),t vec
[
Vt(X(Sl)∗I)

⊤
]

∥
∥
∥
∥
∥

2

2

.

In what follows, we apply Theorem 3 to predict how differ-

ent factors affect the training speed of GNNs.

4.1. Acceleration with Skip Connections

We first show that multiscale linear GNNs tend to

achieve faster loss reduction d
dt
L2(Wt, Bt) compared to

the corresponding linear GNN without skip connections,
d
dt
L1(Wt, Bt). It follows from Theorem 3 that

d

dt
L2(Wt, Bt)−

d

dt
L1(Wt, Bt) (17)

≤ −
H−1∑

l=0

∥
∥vec

[
Vt(X(Sl)∗I)

⊤
]∥
∥
2

F(l),t
,

if
∑H

i=1(‖ai‖
2
2 + 2b⊤i ai) ≥ 0, where ai =

∑H−1
l=i J(i,l),t vec[Vt(X(Sl)∗I)

⊤], and bi = J(i,H),t vec[

Vt(X(SH)∗I)
⊤]. The assumption of

∑H
i=1(‖ai‖

2
2+2b⊤i ai)

≥ 0 is satisfied in various ways: for example, it is satisfied

if the last layer’s term bi and the other layers’ terms ai
are aligned as b⊤i ai ≥ 0, or if the last layer’s term bi is

dominated by the other layers’ terms ai as 2‖bi‖2 ≤ ‖ai‖2.

Then equation (17) shows that the multiscale linear GNN

decreases the loss value with strictly many more negative

terms, suggesting faster training.

Empirically, we indeed observe that multiscale GNNs train

faster (Figure 4a), both for (nonlinear) ReLU and linear

GNNs. We verify this by training multiscale and non-

multiscale, ReLU and linear GCNs on the Cora and Citeseer

datasets with cross-entropy loss, learning rate 5e-5, and

hidden dimension 32. Results are in Appendix B.

4.2. Acceleration with More Depth

Our second finding is that deeper GNNs, with or without

skip connections, train faster. For any differentiable loss

function q 7→ ℓ(q, Y ), Theorem 3 states that the loss of the

multiscale linear GNN decreases as

d

dt
L(Wt, Bt) = −

H∑

l=0

∥
∥vec

[
Vt(X(Sl)∗I)

⊤
]∥
∥
2

F(l),t
︸ ︷︷ ︸

≥0
︸ ︷︷ ︸

further improvement as depth H increases

(18)

−
H∑

i=1

∥
∥
∥
∥
∥

H∑

l=i

J(i,l),t vec
[
Vt(X(Sl)∗I)

⊤
]

∥
∥
∥
∥
∥

2

2

.

︸ ︷︷ ︸

≥0
︸ ︷︷ ︸

further improvement as depth H increases

In equation (18), we can see that the multiscale linear GNN

achieves faster loss reduction as depth H increases. A simi-

lar argument applies to non-multiscale linear GNNs.

Empirically too, deeper GNNs train faster (Figure 4b).

Again, the acceleration applies to both (nonlinear) ReLU

GNNs and linear GNNs. We verify this by training mul-

tiscale and non-multiscale, ReLU and linear GCNs with

2, 4, and 6 layers on the Cora and Citeseer datasets with

learning rate 5e-5, hidden dimension 32, and cross-entropy

loss. Results are in Appendix B.

4.3. Label Distribution: Signal vs. Noise

Finally, we study how the labels affect the training speed.

For the loss reduction (15) and (16), we argue that the norm

of Vt(X(Sl)∗I)
⊤ tends to be larger for labels Y that are

more correlated with the graph features X(Sl)∗I , e.g., la-

bels are signals instead of “noise”.

Without loss of generality, we assume Y is normalized, e.g.,

one-hot labels. Here, Vt =
∂L(At,Bt)

∂Ŷt

is the derivative of the

loss with respect to the model output, e.g., Vt = 2(Ŷt − Y )
for squared loss. If the rows of Y are random noise vectors,
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Figure 5. The scale of the first term dominates the second term

of the loss reduction d

dt
L(Wt, Bt) for linear GNNs trained with

the original labels vs. random labels on Cora.

then so are the rows of Vt, and they are expected to get more

orthogonal to the columns of (X(Sl)∗I)
⊤ as n increases.

In contrast, if the labels Y are highly correlated with the

graph features (X(Sl)∗I)
⊤, i.e., the labels have signal, then

the norm of Vt(X(Sl)∗I)
⊤ will be larger, implying faster

training.

Our argument above focuses on the first term of

the loss reduction, ‖Vt(X(Sl)∗I)
⊤‖2F. We empiri-

cally demonstrate that the scale of the second term,
∥
∥
∥
∑H

l=i J(i,l),t vec
[
Vt(X(Sl)∗I)

⊤
]
∥
∥
∥

2

2
, is dominated by that

of the first term (Figure 5). Thus, we can expect GNNs to

train faster with signals than noise.

We train GNNs with the original labels of the dataset and

random labels (i.e., selecting a class with uniform probabil-

ity), respectively. The prediction of our theoretical analysis

aligns with practice: training is much slower for random

labels (Figure 4c). We verify this for mutliscale and non-

multiscale, ReLU and linear GCNs on the Cora and Citseer

datasets with learning rate 1e-4, hidden dimension 32, and

cross-entropy loss. Results are in Appendix B.

5. Related Work

Theoretical analysis of linearized networks. The theoret-

ical study of neural networks with some linearized com-

ponents has recently drawn much attention. Tremendous

efforts have been made to understand linear feedforward net-

works, in terms of their loss landscape (Kawaguchi, 2016;

Hardt & Ma, 2017; Laurent & Brecht, 2018) and optimiza-

tion dynamics (Saxe et al., 2014; Arora et al., 2019a; Bartlett

et al., 2019; Du & Hu, 2019; Zou et al., 2020). Recent works

prove global convergence rates for deep linear networks un-

der certain conditions (Bartlett et al., 2019; Du & Hu, 2019;

Arora et al., 2019a; Zou et al., 2020). For example, Arora

et al. (2019a) assume the data to be whitened. Zou et al.

(2020) fix the weights of certain layers during training. Our

work is inspired by these works but differs in that our anal-

ysis applies to all learnable weights and does not require

these specific assumptions, and we study the more complex

GNN architecture with skip connections. GNNs consider

the interaction of graph structures via the recursive message

passing, but such structured, locally varying interaction is

not present in feedforward networks. Furthermore, linear

feedforward networks, even with skip connections, have the

same expressive power as shallow linear models, a crucial

condition in previous proofs (Bartlett et al., 2019; Du & Hu,

2019; Arora et al., 2019a; Zou et al., 2020). In contrast,

the expressive power of multiscale linear GNNs can change

significantly as depth increases. Accordingly, our proofs

significantly differ from previous studies.

Another line of works studies the gradient dynamics of neu-

ral networks in the neural tangent kernel (NTK) regime (Ja-

cot et al., 2018; Li & Liang, 2018; Allen-Zhu et al., 2019;

Arora et al., 2019b; Chizat et al., 2019; Du et al., 2019a;c;

Kawaguchi & Huang, 2019; Nitanda & Suzuki, 2021). With

over-parameterization, the NTK remains almost constant

during training. Hence, the corresponding neural network is

implicitly linearized with respect to random features of the

NTK at initialization (Lee et al., 2019; Yehudai & Shamir,

2019; Liu et al., 2020). On the other hand, our work needs to

address nonlinear dynamics and changing expressive power.

Learning dynamics and optimization of GNNs. Closely

related to our work, Du et al. (2019b); Xu et al. (2021) study

the gradient dynamics of GNNs via the Graph NTK but

focus on GNNs’ generalization and extrapolation properties.

We instead analyze optimization. Only Zhang et al. (2020)

also prove global convergence for GNNs, but for the one-

hidden-layer case, and they assume a specialized tensor

initialization and training algorithms. In contrast, our results

work for any finite depth with no assumptions on specialized

training. Other works aim to accelerate and stabilize the

training of GNNs through normalization techniques (Cai

et al., 2020) and importance sampling (Chen et al., 2018a;b;

Huang et al., 2018; Chiang et al., 2019; Zou et al., 2019).

Our work complements these practical works with a better

theoretical understanding of GNN training.

6. Conclusion

This work studies the training properties of GNNs through

the lens of optimization dynamics. For linearized GNNs

with or without skip connections, despite the non-convex

objective, we show that gradient descent training is guar-

anteed to converge to a global minimum at a linear rate.

The conditions for global convergence are validated on real-

world graphs. We further find out that skip connections,

more depth, and/or a good label distribution implicitly ac-

celerate the training of GNNs. Our results suggest deeper

GNNs with skip connections may be promising in practice,

and serve as a first foundational step for understanding the

optimization of general GNNs.
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