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Abstract

Graph Neural Networks (GNNs) have been stud-
ied through the lens of expressive power and gen-
eralization. However, their optimization proper-
ties are less well understood. We take the first
step towards analyzing GNN training by study-
ing the gradient dynamics of GNNs. First, we
analyze linearized GNNs and prove that despite
the non-convexity of training, convergence to a
global minimum at a linear rate is guaranteed
under mild assumptions that we validate on real-
world graphs. Second, we study what may affect
the GNNs’ training speed. Our results show that
the training of GNNs is implicitly accelerated by
skip connections, more depth, and/or a good label
distribution. Empirical results confirm that our
theoretical results for linearized GNNs align with
the training behavior of nonlinear GNNs. Our
results provide the first theoretical support for the
success of GNNs with skip connections in terms
of optimization, and suggest that deep GNNs with
skip connections would be promising in practice.

1. Introduction

Graph Neural Networks (GNNs) (Gori et al., 2005; Scarselli
et al., 2009) are an effective framework for learning with
graphs. GNNs learn node representations on a graph by
extracting high-level features not only from a node itself
but also from a node’s surrounding subgraph. Specifi-
cally, the node representations are recursively aggregated
and updated using neighbor representations (Merkwirth &
Lengauer, 2005; Duvenaud et al., 2015; Defferrard et al.,
2016; Kearnes et al., 2016; Gilmer et al., 2017; Hamilton
et al., 2017; Velickovic et al., 2018; Liao et al., 2020).

Recently, there has been a surge of interest in studying the
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theoretical aspects of GNNs to understand their success and
limitations. Existing works have studied GNNs’ expressive
power (Keriven & Peyré, 2019; Maron et al., 2019; Chen
etal., 2019; Xu et al., 2019; Sato et al., 2019; Loukas, 2020),
generalization capability (Scarselli et al., 2018; Du et al.,
2019b; Xu et al., 2020; Garg et al., 2020), and extrapolation
properties (Xu et al., 2021). However, the understanding
of the optimization properties of GNNs has remained lim-
ited. For example, researchers working on the fundamental
problem of designing more expressive GNNs hope and of-
ten empirically observe that more powerful GNNs better fit
the training set (Xu et al., 2019; Sato et al., 2020; Vignac
et al., 2020). Theoretically, given the non-convexity of GNN
training, it is still an open question whether better represen-
tational power always translates into smaller training loss.
This motivates the more general questions:

Can gradient descent find a global minimum for GNNs?
What affects the speed of convergence in training?

In this work, we take an initial step towards answering the
questions above by analyzing the trajectory of gradient de-
scent, i.e., gradient dynamics or optimization dynamics. A
complete understanding of the dynamics of GNNs, and deep
learning in general, is challenging. Following prior works
on gradient dynamics (Saxe et al., 2014; Arora et al., 2019a;
Bartlett et al., 2019), we consider the linearized regime, i.e.,
GNNs with linear activation. Despite the linearity, key prop-
erties of nonlinear GNNs are present: The objective function
is non-convex and the dynamics are nonlinear (Saxe et al.,
2014; Kawaguchi, 2016). Moreover, we observe the learn-
ing curves of linear GNNs and ReLU GNNss are surprisingly
similar, both converging to nearly zero training loss at the
same linear rate (Figure 1). Similarly, prior works report
comparable performance in node classification benchmarks
even if we remove the non-linearities (Thekumparampil
et al., 2018; Wu et al., 2019). Hence, understanding the
dynamics of linearized GNNs is a valuable step towards
understanding the general GNNs.

Our analysis leads to an affirmative answer to the first ques-
tion. We establish that gradient descent training of a lin-
earized GNN with squared loss converges to a global mini-
mum at a linear rate. Experiments confirm that the assump-
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Figure I. Training curves of linearized GNNs vs. ReLU GNNs
on the Cora node classification dataset.

tions of our theoretical results for global convergence hold
on real-world datasets. The most significant contribution of
our convergence analysis is on multiscale GNNs, i.e., GNN
architectures that use skip connections to combine graph
features at various scales (Xu et al., 2018; Li et al., 2019;
Abu-El-Haija et al., 2020; Chen et al., 2020; Li et al., 2020).
The skip connections introduce complex interactions among
layers, and thus the resulting dynamics are more intricate.
To our knowledge, our results are the first convergence re-
sults for GNNs with more than one hidden layer, with or
without skip connections.

We then study what may affect the training speed of GNNS.
First, for any fixed depth, GNNs with skip connections train
faster. Second, increasing the depth further accelerates the
training of GNNs. Third, faster training is obtained when the
labels are more correlated with the graph features, i.e., labels
contain “signal” instead of “noise”. Overall, experiments
for nonlinear GNNs agree with the prediction of our theory
for linearized GNNSs.

Our results provide the first theoretical justification for the
empirical success of multiscale GNNs in terms of optimiza-
tion, and suggest that deeper GNNs with skip connections
may be promising in practice. In the GNN literature, skip
connections are initially motivated by the “over-smoothing”
problem (Xu et al., 2018): via the recursive neighbor aggre-
gation, node representations of a deep GNN on expander-
like subgraphs would be mixing features from almost the
entire graph, and may thereby “wash out” relevant local in-
formation. In this case, shallow GNNs may perform better.
Multiscale GNNs with skip connections can combine and
adapt to the graph features at various scales, i.e., the out-
put of intermediate GNN layers, and such architectures are
shown to help with this over-smoothing problem (Xu et al.,
2018; Li et al., 2019; 2020; Abu-El-Haija et al., 2020; Chen
et al., 2020). However, the properties of multiscale GNNs
have mostly been understood at a conceptual level. Xu et al.
(2018) relate the learned representations to random walk
distributions and Oono & Suzuki (2020) take a boosting
view, but they do not consider the optimization dynamics.
We give an explanation from the lens of optimization. The
training losses of deeper GNNs may be worse due to over-
smoothing. In contrast, multiscale GNNs can express any

shallower GNNs and fully exploit the power by converging
to a global minimum. Hence, our results suggest that deeper
GNNs with skip connections are guaranteed to train faster
with smaller training losses.

We present our results on global convergence in Section 3,
after introducing relevant background (Section 2). In Sec-
tion 4, we compare the training speed of GNNs as a function
of skip connections, depth, and the label distribution. All
proofs are deferred to the Appendix.

2. Preliminaries
2.1. Notation and Background

We begin by introducing our notation. Let G = (V, E) be a
graph with n vertices V' = {vy,vs,- - , v, }. Its adjacency
matrix A € R™™ has entries A;; = 1if (v;,v;) € F
and 0 otherwise. The degree matrix associated with A is
D = diag (dy,ds, . ..,d,) with d; = Z?:l A;j. For any
matrix M € R’”X””/, we denote its j-th column vector by
M,; € R™, its i-th row vector by M;, € R""/, and its
largest and smallest (i.e., min(m, m’)-th largest) singular
values by omax (M) and omin (M), respectively. The data
matrix X € R™=*" has columns X, ; corresponding to the
feature vector of node v;, with input dimension m,.

The task of interest is node classification or regression. Each
node v; € V has an associated label y; € R™v. In the
transductive (semi-supervised) setting, we have access to
training labels for only a subset Z C [n] of nodes on G, and
the goal is to predict the labels for the other nodes in [n] \ Z.
Our problem formulation easily extends to the inductive
setting by letting Z = [n], and we can use the trained model
for prediction on unseen graphs. Hence, we have access to
n = |Z| < n training labels Y = [y;];cz € R™¥*™, and we
train the GNN using X, Y, G. Additionally, for any M €
Rm*xm' T may index sub-matrices M,z = [M,;|icz €
R™*™ (when m' > n) and Mz, = [M;.)iez € R™™
(whenm > n).

Graph Neural Networks (GNNs) use the graph structure and
node features to learn representations of nodes (Scarselli
et al., 2009). GNNs maintain hidden representations hZ’l) €
R™ for each node v, where m; is the hidden dimension
on the I-th layer. We let X(;) = [h(ll), h?l), . ,h’(ll)] €
R™*7 and set X (0) as the input features X. The node
hidden representations X ;y are updated by aggregating and
transforming the neighbor representations:

X(l) = O’(B(Z)X(l_l)S) S lexn, @))

where o is a nonlinearity such as ReLU, B € R xmi—1
is the weight matrix, and .S € R™*" is the GNN aggrega-
tion matrix, whose formula depends on the exact variant of
GNN. In Graph Isomorphism Networks (GIN) (Xu et al.,
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Figure 2. Empirical validation of assumptions for global convergence of linear GNNs. Left panel confirms the graph condition
02 (X (S™).z) > 0 for datasets Cora and Citeseer, and for models GCN and GIN. Middle panel shows the time-dependent >\<TH) for
one training setting (linear GCN on Cora). Each point in right panel is /\(TH> > 0 at the last iteration for different training settings.

2019), S = A + I, is the adjacency matrix of G with self-
loop, where I, € R™*"™ is an identity matrix. In Graph
Convolutional Networks (GCN) (Kipf & Welling, 2017),
S=D"3 (A+1 ,,,)ZA)’% is the normalized adjacency matrix,
where D is the degree matrix of A 4 I,,.

2.2. Problem Setup

We first formally define linearized GNNs.

Definition 1. (Linear GNN). Given data matrix X €
R™=X" " aggregation matrix S € R™ ", weight matri-
ces W € R™Mv>mu B;y € R™M>™Mi-1 and their collec-
tion B = (B, ..., B(m)), a linear GNN with H layers
f(X, W, B) € R™v*" ig defined as

X, W, B) =WXy, Xu=DBpXe-1S @)
Throughout this paper, we refer multiscale GNNs to the
commonly used Jumping Knowledge Network (JK-Net) (Xu
et al., 2018), which connects the output of all intermediate

GNN layers to the final layer with skip connections:

Definition 2. (Multiscale linear GNN). Given data X €
R™=*" " aggregation matrix S € R™ ", weight matri-
ces W(l) e RMwxm B(l) € R™X™Mi-1 with W =
(Weoy, Wiy, - - - Wigry), a multiscale linear GNN with H
layers f(X,W, B) € R™v*" is defined as

H

f(X,W,B) ZZW(z)X(z)7 3)
1=0

X(l) = B(Z)X(l_l)s. 4)

Given a GNN f(-) and a loss function ¢(-,Y"), we can train
the GNN by minimizing the training loss L(W, B):

where f(X, W, B).z corresponds to the GNN’s predictions
on nodes that have training labels and thus incur training

losses. The pair (W, B) represents the trainable weights:
L(W,B) = LWqy, ..., Wy, Bay, -+ Bmy)

For completeness, we define the global minimum of GNNs.

Definition 3. (Global minimum). For any H € Ny, L% is
the global minimum value of the H-layer linear GNN f:

Ly = inf £(f(X, W, B).z,Y). 6)

Similarly, we define L7 ;; as the global minimum value of
the multiscale linear GNN f with H layers.

We are ready to present our main results on global conver-
gence for linear GNNs and multiscale linear GNNSs.

3. Convergence Analysis

In this section, we show that gradient descent training a
linear GNN with squared loss, with or without skip connec-
tions, converges linearly to a global minimum. Our condi-
tions for global convergence hold on real-world datasets and
provably hold under assumptions, e.g., initialization.

In linearized GNNs, the loss L(W, B) is non-convex (and
non-invex) despite the linearity. The graph aggregation S
creates interaction among the data and poses additional chal-
lenges in the analysis. We show a fine-grained analysis
of the GNN’s gradient dynamics can overcome these chal-
lenges. Following previous works on gradient dynamics
(Saxe et al., 2014; Huang & Yau, 2020; Ji & Telgarsky,
2020; Kawaguchi, 2021), we analyze the GNN learning
process via the gradient flow, i.e., gradient descent with
infinitesimal steps: V¢ > 0, the network weights evolve as

dyp DL 4y 0L
dt ow dt 0B

t Wt7Bt)7 Bt = Wt7Bt)7

)

where (W;, B;) represents the trainable parameters at time
t with initialization (Wy, By).
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3.1. Linearized GNNs

Theorem 1 states our result on global convergence for lin-
earized GNNs without skip connections.

Theorem 1. Let f be an H-layer linear GNN and
Uq,Y) = |lg = Y||% where q,Y € R"™ " Then, for
anyT > 0,

L(Wrp,Br) — Ly ®)

< (L(Wo, By) — Liy)e~ X o (X(8™)0)T

where )\(TH) is the smallest eigenvalue )\(TH) =
infycror) Amin (BB ana - BOD
B(l)B(lfl) s B(l) for any 1 € {0, e ,H} with
BOO T,

Proof. (Sketch) We decompose the gradient dynamics into
three components: the graph interaction, non-convex fac-
tors, and convex factors. We then bound the effects
of the graph interaction and non-convex factors through

o2 (X(SH),7) and Ain (BT BEH)) respectively.

min

The complete proof is in Appendix A.1. O

Theorem 1 implies that convergence to a global minimum
at a linear rate is guaranteed if o2, (X(S).z) > 0
and Ar > 0. The first condition on the product of X
and S¥ indexed by Z only depends on the node features
X and the GNN aggregation matrix S. It is satisfied if
rank(X (S™),7) = min(m,, n), because omyin (X (SH).z)
is the min(m,, n)-th largest singular value of X (S#),z €
R™=*"_The second condition )\(TH) > 0 is time-dependent
and requires a more careful treatment. Linear convergence
is implied as long as Amin ((B"7)T B > ¢ > 0 for
all times ¢ before stopping.

Empirical validation of conditions. We verify both
the graph condition 2. (X (S%),z) > 0 and the time-

dependent condition )\gaH) > 0 for (discretized) T° >
0. First, on the popular graph datasets, Cora and Cite-
seer (Sen et al., 2008), and the GNN models, GCN (Kipf
& Welling, 2017) and GIN (Xu et al., 2019), we have
o2, (X(S").z) > 0 (Figure 2a). Second, we train lin-
ear GCN and GIN on Cora and Citeseer to plot an exam-
ple of how the AY") = inf,eq0,7) Amin (BT By
changes with respect to time 7" (Figure 2b). We further con-
firm that )\(TH) > 0 until convergence, limp_, o )\(TH) >0
across different settings, e.g., datasets, depths, models (Fig-
ure 2¢). Our experiments use the squared loss, random
initialization, learning rate 1e-4, and set the hidden dimen-
sion to the input dimension (note that Theorem 1 assumes
the hidden dimension is at least the input dimension). Fur-
ther experimental details are in Appendix C. Along with
Theorem 1, we conclude that linear GNNs converge linearly

to a global minimum. Empirically, we indeed see both linear
and ReLU GNNs converging at the same linear rate to nearly
zero training loss in node classification tasks (Figure 1).

Guarantee via initialization. Besides the empirical ver-
ification, we theoretically show that a good initialization
guarantees the time-dependent condition Ay > 0 for any
T > 0. Indeed, like other neural networks, GNNs do not
converge to a global optimum with certain initializations:
e.g., initializing all weights to zero leads to zero gradients
and )\;H) = 0 for all 7', and hence no learning. We intro-
duce a notion of singular margin and say an initialization is
good if it has a positive singular margin. Intuitively, a good
initialization starts with an already small loss.

Definition 4. (Singular margin).  The initialization
(Wo, Bp) is said to have singular margin v > 0 with respect
to a layer [ € {1, . ,H} ifa'min(B(l)B(lfl) s B(l)) >y
for all (W, B) such that L(W, B) < L(Wjy, By).

Proposition 1 then states that an initialization with positive

singular margin -y guarantees )\(TH) >~%>0forall T:

Proposition 1. Let f be a linear GNN with H layers and
Uq,Y) = |lg = Y||%. If the initialization (Wo, By) has
singular margin v > 0 with respect to the layer H and

myg > my, then )\EFH) > 2 forall T € [0, 0).

Proposition 1 follows since L(W;, B;) is non-increasing
with respect to time ¢ (proof in Appendix A.2).

Relating to previous works, our singular margin is a general-
ized variant of the deficiency margin of linear feedforward
networks (Arora et al., 2019a, Definition 2 and Theorem 1):
Proposition 2. (Informal) If initialization (Wy, By) has
deficiency margin c¢ > 0, then it has singular margin v > 0.

The formal version of Proposition 2 is in Appendix A.3.

To summarize, Theorem 1 along with Proposition 1 implies
that we have a prior guarantee of linear convergence to a
global minimum for any graph with rank(X (S),7) =
min(mg, ) and initialization (W, By) with singular mar-
gin v > 0: ie., for any desired ¢ > 0, we have that
L(Wy, Br) — L%; < e for any T such that

1 L(Ap, By) — L3

T > 1
= 1202 (X(SH).7) 8 ¢

min

€))

While the margin condition theoretically guarantees linear
convergence, empirically, we have already seen that the
convergence conditions of across different training settings
for widely used random initialization.

Theorem 1 suggests that the convergence rate depends on
a combination of data features X, the GNN architecture
and graph structure via S and H, the label distribution and
initialization via Ap. For example, GIN has better such con-
stants than GCN on the Cora dataset with everything else
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held equal (Figure 2a). Indeed, in practice, GIN converges
faster than GCN on Cora (Figure 1). In general, the com-
putation and comparison of the rates given by Theorem 1
requires computation such as those in Figure 2. In Section 4,
we will study an alternative way of comparing the speed of
training by directly comparing the gradient dynamics.

3.2. Multiscale Linear GNNs

Without skip connections, the GNNs under linearization still
behave like linear feedforward networks with augmented
graph features. With skip connections, the dynamics and
analysis become much more intricate. The expressive power
of multiscale linear GNNs changes significantly as depth
increases. Moreover, the skip connections create complex
interactions among different layers and graph structures of
various scales in the optimization dynamics. Theorem 2
states our convergence results for multiscale linear GNNs
in three cases: (i) a general form; (ii) a weaker condition
for boundary cases that uses A2 instead of A5 (iii) a
faster rate if we have monotonic expressive power as depth
increases.

Theorem 2. Let f be a multiscale linear GNN with H
layers and {(q,Y) = ||q — Y ||% where ¢, Y € R™v*", Let
Ag}:H) = ming<i<Hg /\gf). For any T > 0, the following
hold:

(i) (General). Let G :=[XT,(XS)T,... (XSH)T|T
c R(H-&—l)mmxn‘ Then

L(Wp,Br) — Li.g (10)

< (L(Wo, By) — L%,y )e~ e " on(Gm)-2)T

(ii) (Boundary cases). Forany H' € {0,1,...,H},
L(Wr,Br) — Ly, (11)

< (L(Wo, By) — Ll )e~ X" 7hun(X(s"))T

(iii) (Monotonic expressive power). If there exist I,1' €
{0,..., H} with | <1 such that L > L}, > -+ >
Ljor Ly <L, <--- <Ly, then

L(Wy, Br) — L (12)

2

S (L(W0> BO) - 7//)6_4Zg=l A<ilc)(Tmin(‘X(Sk)*I)T,

where I = lif Lj > Lf | >---> L}, and " = 1" if

Li <Ly, < <L
Proof. (Sketch) A key observation in our proof is that the
interactions of different scales cancel out to point towards
a specific direction in the gradient dynamics induced in
a space of the loss value. The complete proof is in Ap-
pendix A.4. O

Similar to Theorem 1 for linear GNNs, the most general
form (i) of Theorem 2 implies that convergence to the global
minimum value of the entire multiscale linear GNN L7
at linear rate is guaranteed when o2, ((Gpg).z) > 0 and
)\g}:H) > (. The graph condition 02, ((Gp)«z) > 01is sat-
isfied if rank((Gpr)«z) = min(my(H + 1),7). The time-
dependent condition )\(Tl ) > 0is guaranteed if the initial-
ization (Wy, By) has singular margin > 0 with respect to

every layer (Proposition 3 is proved in Appendix A.5):

Proposition 3. Let f be a multiscale linear GNN and
U(q,Y) = |lg — Y||%. If the initialization (W, Bo) has sin-
gular margin v > 0 with respect to every layer 1 € [H| and
my > my forl € [H], then )\(TLH) > 2 forall T € [0, 00).

‘We demonstrate that the conditions of Theorem 2 (i) hold
for real-world datasets, suggesting in practice multiscale
linear GNNs converge linearly to a global minimum.

Empirical validation of conditions. On datasets Cora and
Citeseer and for GNN models GCN and GIN, we confirm
that 02, ((Gm)«z) > 0 (Figure 3a). Moreover, we train

multiscale linear GCN and GIN on Cora and Citeseer to plot
an example of how the /\(T1 H) changes with respect to time

T (Figure 3b), and we confirm that at convergence, )\g} 4
0 across different settings (Figure 3c). Experimental details
are in Appendix C.

Boundary cases. Because the global minimum value of
multiscale linear GNNs L7, can be smaller than that of
linear GNNs L7;, the conditions in Theorem 2(i) may some-

times be stricter than those of Theorem 1. For example, in

) = minoglgH Ag) rather

Theorem 2(i), we require )\5,11 H
than )\ng) to be positive. If )\gf) = 0 for some [, then Theo-

rem 2(i) will not guarantee convergence to L7, ;.

Although the boundary cases above did not occur on the
tested real-world graphs (Figure 3), for theoretical interest,
Theorem 2(ii) guarantees that in such cases, multiscale lin-
ear GNNes still converge to a value no worse than the global
minimum value of non-multiscale linear GNNs. For any
intermediate layer H', assuming o2, (X (S""),7) > 0 and
A;H/) > 0, Theorem 2(ii) bounds the loss of the multiscale
linear GNN L(Wr, Br) at convergence by the global mini-
mum value L?%;, of the corresponding linear GNN with H’
layers.

Faster rate under monotonic expressive power. Theorem
2(iii) considers a special case that is likely in real graphs:
the global minimum value of the non-multiscale linear GNN
L%, is monotonic as H' increases. Then (iii) gives a faster
rate than (ii) and linear GNNs. For example, if the globally
optimal value decreases as linear GNNs get deeper. i.e.,
Ly > Ly > --- > Ly, orvice versa, Lj < L7 < --- <
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Figure 3. Empirical validation of assumptions for global convergence of multiscale linear GNNs. Left panel confirms the graph
condition o2, ((Gg)«z) > 0 for Cora and Citeseer, and for GCN and GIN. Middle panel shows the time-dependent )\(Tl 1) for one
training setting (multiscale linear GCN on Cora). Each point in right panel is )\(Tl 1) 5 0 at the last iteration for different training settings.

}7» then Theorem 2 (i) implies that
< (L(Wo, Bo) — L} )e ™+ Zimo M 0un (X(SM)2)T

where [ = 0if Ly > L] > --- > Ly, and | = H if

L§ < L7 <-.- < L%. Moreover, if the globally optimal

value does not change with respect to the depth as L. ;; =
] =L5=-.-= L}, then we have

LWz, Br) — Li.g (14)

< (L(Wo, By) — Lty )t o M oin (X (8M).0)T

We obtain a faster rate for multi(s}gale linear GNNs
than for linear GNNs, as e~ Xk=0 A1 T (X(S").0)T <

(H) 2 H . . .
e~ Tmin(X(ST)2)T nterestingly, unlike linear GNN,
multiscale linear GNNs in this case do not require any
condition on initialization to obtain a prior guarantee on

. H (k) 2 k
global convergence since e~ 4 2 k=0 A1 Tinin (X(57).0)T <

e~ T (X(S):DT with ALY = 1 and X (5%),7 = X,7.

To summarize, we prove global convergence rates for multi-
scale linear GNNs (Thm. 2(i)) and experimentally validate
the conditions. Part (ii) addresses boundary cases where
the conditions of Part (i) do not hold. Part (iii) gives faster
rates assuming monotonic expressive power with respect
to depth. So far, we have shown multiscale linear GNNs
converge faster than linear GNNS in the case of (iii). Next,
we compare the training speed for more general cases.

4. Implicit Acceleration

In this section, we study how the skip connections, depth of
GNN, and label distribution may affect the speed of training
for GNNs. Similar to previous works (Arora et al., 2018),
we compare the training speed by comparing the per step
loss reduction & L(W;, By) for arbitrary differentiable loss
functions £(-,Y) : R™» — R. Smaller £ L(W,, B,) im-
plies faster training. Loss reduction offers a complementary

view to the convergence rates in Section 3, since it is instant
and not an upper bound.

We present an analytical form of the loss reduction
%L(Wt, B,) for linear GNNs and multiscale linear GNNs.
The comparison of training speed then follows from our for-
mula for %L(Wt7 By). For better exposition, we first intro-
duce several notations. We let B(!'®) = ByBa_1y - By
for all I’ and | where BU") = T'if I > I. We also define

J(i’l)’t .= [Bt(llfl) ® (W(l),tBt(lJrll))T]’

Fuy, =[BT B @ 1, = 0,

_ BL(Wt,Bt)
dY;

where V; = f(X,W;, By).z. For any vector v € R™
and positive semidefinite matrix M € R™*™,  we use
lvl|3; := v Mv." Intuitively, V; represents the deriva-
tive of the loss L(W;, B;) with respect to the model output
Y = J(X, Wy, Bt)sz. Jiigy and Fyy , represent matri-
ces that describe how the errors are propagated through the
weights of the networks.

Vi

b

Theorem 3, proved in Appendix A.6, gives an analytical
formula of loss reduction for linear GNNs and multiscale
linear GNNs.

Theorem 3. For any differentiable loss function q +—
0(q,Y), the following hold for any H > 0 and t > 0:

(i) (Non-multiscale) For f as in Definition 1:

iLl(Wt, Bt) = *HVeC [W(X(SH)*I)T]

7 15)

2
[

H
H T112
=D e g vee V(X (8).0) T, -
i=1
"'We use this Mahalanobis norm notation for conciseness with-
out assuming it to be a norm, since M may be low rank.
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Figure 4. Comparison of the training speed of GNNs. Left: Multiscale GNNSs train faster than non-multiscale GNNs. Middle: Deeper
GNNes train faster. Right: GNNG train faster when the labels have signals instead of random noise. The patterns above hold for both ReLU

and linear GNNs. Additional results are in Appendix B.

(ii) (Multiscale) For f as in Definition 2:

d vaec Vi(X

Lo

dt (WtaBt

2) 'z,

(16)

H 2

>

i=1

H

Z Jii e vee [Ve(X(8')er) ]

l=i

2

In what follows, we apply Theorem 3 to predict how differ-
ent factors affect the training speed of GNNs.

4.1. Acceleration with Skip Connections

We first show that multiscale linear GNNs tend to
achieve faster loss reduction %Lg(Wt, B,) compared to
the corresponding linear GNN without skip connections,
4 I, (Wy, By). It follows from Theorem 3 that

d d
aLQ(WhBt) %Ll(Wt;Bt) (17)
H-1
<= [vee [Vi(X(8Y.0) ']z,
1=0 '
it Y7 (laill? + 2b7a;) > 0, where a; =

2 Ty veeVi(X(SY).z)T), and b = Jgi gy 4 vec|
V(X (SH),z)T]. The assumption of Zi:1(||al\|2+2bjai)
> 0 is satisfied in various ways: for example, it is satisfied
if the last layer’s term b; and the other layers’ terms a;
are aligned as b;rai > 0, or if the last layer’s term b; is
dominated by the other layers’ terms a; as 2||b;||2 < ||a;||2-
Then equation (17) shows that the multiscale linear GNN
decreases the loss value with strictly many more negative
terms, suggesting faster training.

Empirically, we indeed observe that multiscale GNNSs train
faster (Figure 4a), both for (nonlinear) ReLU and linear
GNNs.  We verify this by training multiscale and non-
multiscale, ReLLU and linear GCNs on the Cora and Citeseer
datasets with cross-entropy loss, learning rate Se-5, and
hidden dimension 32. Results are in Appendix B.

4.2. Acceleration with More Depth

Our second finding is that deeper GNNs, with or without
skip connections, train faster. For any differentiable loss
function ¢ — £(q,Y"), Theorem 3 states that the loss of the
multiscale linear GNN decreases as

ZHVBC ‘/f

d
—L(Wy, By) =

!
1
7 (%) (18)

)+1) ]HF(,H

>0

further improvement as depth H increases

H
i=1

2

H
S Jiiaya vee V(X (8).1)T]
=1

2

>0

further improvement as depth H increases

In equation (18), we can see that the multiscale linear GNN
achieves faster loss reduction as depth H increases. A simi-
lar argument applies to non-multiscale linear GNNGs.

Empirically too, deeper GNNs train faster (Figure 4b).
Again, the acceleration applies to both (nonlinear) ReLU
GNNs and linear GNNs. We verify this by training mul-
tiscale and non-multiscale, ReLU and linear GCNs with
2, 4, and 6 layers on the Cora and Citeseer datasets with
learning rate 5Se-5, hidden dimension 32, and cross-entropy
loss. Results are in Appendix B.

4.3. Label Distribution: Signal vs. Noise

Finally, we study how the labels affect the training speed.
For the loss reduction (15) and (16), we argue that the norm
of V;(X(SY).7) " tends to be larger for labels Y that are
more correlated with the graph features X (S Z)*I, e.g., la-
bels are signals instead of “noise”.

Without loss of generality, we assume Y is normalized, e.g.,
one-hot labels. Here, V; = % is the derivative of the
t

loss with respect to the model oufput, eg,V,=20Y; -Y)
for squared loss. If the rows of Y are random noise vectors,
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Figure 5. The scale of the first term dominates the second term
of the loss reduction & L(W;, By) for linear GNNs trained with
the original labels vs. random labels on Cora.

then so are the rows of V;, and they are expected to get more
orthogonal to the columns of (X (S').z)" as n increases.
In contrast, if the labels Y are highly correlated with the
graph features (X (S).7) T, i.e., the labels have signal, then
the norm of V;(X (S").z) " will be larger, implying faster
training.

Our argument above focuses on the first term of

the loss reduction, |[Vi(X(S").z)"||2. We empiri-
cally demonstrate that the scale of the second term,

|50 iy vee [Vi(x (8.2)7])|
of the first term (Figure 5). Thus, we can expect GNNs to
train faster with signals than noise.

2
, is dominated by that
2

We train GNNs with the original labels of the dataset and
random labels (i.e., selecting a class with uniform probabil-
ity), respectively. The prediction of our theoretical analysis
aligns with practice: training is much slower for random
labels (Figure 4c). We verify this for mutliscale and non-
multiscale, ReLU and linear GCNs on the Cora and Citseer
datasets with learning rate 1e-4, hidden dimension 32, and
cross-entropy loss. Results are in Appendix B.

5. Related Work

Theoretical analysis of linearized networks. The theoret-
ical study of neural networks with some linearized com-
ponents has recently drawn much attention. Tremendous
efforts have been made to understand linear feedforward net-
works, in terms of their loss landscape (Kawaguchi, 2016;
Hardt & Ma, 2017; Laurent & Brecht, 2018) and optimiza-
tion dynamics (Saxe et al., 2014; Arora et al., 2019a; Bartlett
etal., 2019; Du & Hu, 2019; Zou et al., 2020). Recent works
prove global convergence rates for deep linear networks un-
der certain conditions (Bartlett et al., 2019; Du & Hu, 2019;
Arora et al., 2019a; Zou et al., 2020). For example, Arora
et al. (2019a) assume the data to be whitened. Zou et al.
(2020) fix the weights of certain layers during training. Our
work is inspired by these works but differs in that our anal-
ysis applies to all learnable weights and does not require

these specific assumptions, and we study the more complex
GNN architecture with skip connections. GNNs consider
the interaction of graph structures via the recursive message
passing, but such structured, locally varying interaction is
not present in feedforward networks. Furthermore, linear
feedforward networks, even with skip connections, have the
same expressive power as shallow linear models, a crucial
condition in previous proofs (Bartlett et al., 2019; Du & Hu,
2019; Arora et al., 2019a; Zou et al., 2020). In contrast,
the expressive power of multiscale linear GNNs can change
significantly as depth increases. Accordingly, our proofs
significantly differ from previous studies.

Another line of works studies the gradient dynamics of neu-
ral networks in the neural tangent kernel (NTK) regime (Ja-
cotet al., 2018; Li & Liang, 2018; Allen-Zhu et al., 2019;
Arora et al., 2019b; Chizat et al., 2019; Du et al., 2019a;c;
Kawaguchi & Huang, 2019; Nitanda & Suzuki, 2021). With
over-parameterization, the NTK remains almost constant
during training. Hence, the corresponding neural network is
implicitly linearized with respect to random features of the
NTK at initialization (Lee et al., 2019; Yehudai & Shamir,
2019; Liu et al., 2020). On the other hand, our work needs to
address nonlinear dynamics and changing expressive power.

Learning dynamics and optimization of GNNs. Closely
related to our work, Du et al. (2019b); Xu et al. (2021) study
the gradient dynamics of GNNs via the Graph NTK but
focus on GNNSs’ generalization and extrapolation properties.
We instead analyze optimization. Only Zhang et al. (2020)
also prove global convergence for GNNSs, but for the one-
hidden-layer case, and they assume a specialized tensor
initialization and training algorithms. In contrast, our results
work for any finite depth with no assumptions on specialized
training. Other works aim to accelerate and stabilize the
training of GNNs through normalization techniques (Cai
et al., 2020) and importance sampling (Chen et al., 2018a;b;
Huang et al., 2018; Chiang et al., 2019; Zou et al., 2019).
Our work complements these practical works with a better
theoretical understanding of GNN training.

6. Conclusion

This work studies the training properties of GNNs through
the lens of optimization dynamics. For linearized GNN’s
with or without skip connections, despite the non-convex
objective, we show that gradient descent training is guar-
anteed to converge to a global minimum at a linear rate.
The conditions for global convergence are validated on real-
world graphs. We further find out that skip connections,
more depth, and/or a good label distribution implicitly ac-
celerate the training of GNNs. Our results suggest deeper
GNNs with skip connections may be promising in practice,
and serve as a first foundational step for understanding the
optimization of general GNNSs.
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