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Figure 1. One-shot generic multiple object tracking (GMOT). (a):

The input of one-shot generic MOT is a single bounding box to in-

dicate a target template in the first frame. (b): The target template

is used to discover and propose all other target candidates of same

category, which is different than model-based MOT where a pre-

trained detector (typically class-specific) is required. (c): MOT

then can be performed on the proposed candidates in either an

online or offline manner. Yellow rectangles are zoomed-in local

views of targets.

col is adopted to evaluate different characteristics of track-

ing algorithms. The one-shot GMOT [37, 38], takes as input

the bounding box of one target object in the first frame, and

aims to detect and track all objects of the same category.

Figure 1 illustrates the one-shot GMOT Protocol.

Second, we design a series of baseline tracking algo-

rithms dedicated to one-shot GMOT. These baselines con-

sist of a one-shot detection stage and a target association

stage. The one-shot detection stage is adapted from the

recently proposed GlobalTrack algorithm [28]. The target

association stage comes from several typical MOT algo-

rithms. For each baseline, the one-shot detection algorithm

plays the role of public detector.

Third, we conduct thorough evaluations on GMOT-40.

The evaluation involves both classic tracking algorithms

(e.g., [8, 53, 54]) and recently proposed one (e.g., [12]),

with necessary modifications. The results show that, as an

important tracking problem, GMOT has a large room for

improvement.

To summarize, we make three contributions in this paper:

• the first publicly available dense GMOT dataset,

GMOT-40, which is carefully designed and annotated,

along with evaluation Protocol,

• a series of GMOT baselines adapted from modern

deep-learning enhanced MOT algorithm, and

• thorough evaluations and analysis on GMOT-40.

Table 1. Comparison of densely annotated data used in GMOT

studies. # seq: number of sequence, # cat: number of categories,

# tgt: average number of targets per frame. ⋆: Estimated from

samples in the paper.

Publication Year # seq. # cat. # tgt.

Luo et al. [37] 2013 4 4 ≈15⋆

Zhang et al. [59] 2014 9 9 ≈3⋆

Luo et al. [38] 2014 8 8 ≈15⋆

Zhu et al. [61] 2017 3 1 13.13

Liu et al. [36] 2020 24 9 3.375

GMOT-40 2021 40 10 26.58

2. Related Work

2.1. MOT Algorithms

Multiple object tracking (MOT) has been an active re-

search area for decades [13, 39]. Based on whether the

target priors are presumed to the tracker, MOT approaches

can be roughly categorized as model-based and model-free

methods. In the context of model-based methods, the most

popular framework is the tracking-by-detection one where

a category-aware detector is employed for generating can-

didate proposals, and the tracker itself primarily focuses on

solving the data association problem. Many methods have

been investigated under this framework, such as Hungarian

algorithm [6, 19, 26], network flow [16, 56, 58], graph mul-

ticut [25, 30, 50], multiple hypotheses tracking [11, 32] and

multi-dimensional assignment [14, 47] using a variety of

affinity estimation schemes. With recent advances in deep

learning, deep neural networks are also learned to solve the

data association problem [10, 12, 42].

Model-based MOT methods can automatically handle

the entering and exiting events of targets. However, it heav-

ily depends on using target priors by employing a category

detector or the Re-identification (ReID) based affinity esti-

mator. Therefore, most recent MOT methods in this cat-

egory focus on pedestrian and vehicle tracking. For ex-

ample, there is an increasing popularity in the community

to leverage ReID dataset [34, 45, 60] or pose estimation

dataset [2] to improve association robustness during track-

ing [10, 24, 29, 57], while others adopt the state-of-the-art

person detection techniques, such as [3, 23, 43, 44, 46].

These detection and ReID networks are trained and hence

limited by the available datasets, therefore, the generic tar-

gets will not be handled and tracked successfully by meth-

ods in this category.

Despite the dominant effort on the person and vehicle

tracking, there are a number of works that have focused on

other target categories. Cell tracking [7, 40, 51, 55] is a pop-

ular topic in this section. Detecting and tracking multiple

objects, such as ants [31], bats [5], birds [38], bees [9] and

fish [21, 48, 49] are also investigated. Methods proposed

in those works also need special modeling of target appear-

6720



ance or motion pattern thus cannot be applied generally in

generic targets either.

Model-free methods contribute another category of so-

lutions to MOT. Tracking without target prior is primarily

proposed for solving Single Object Tracking (SOT) where

only one bounding box of target is given at the first frame

and no category prior is known to the tracker. It is an emerg-

ing topic to extend the model-free idea to the context of

MOT. However there is no unified framework so far. In [59],

structure information is used to help the tracking of multi-

ple appearance-wise similar objects. Appearance and mo-

tion models are learned in [36] to tackle sudden appearance

change and occlusion. Both the two methods need the man-

ual initialization of all targets. In [61], a generic category

independent object proposal module is used to generate tar-

get candidates. Luo et al. [38] proposed to use clustered

Multiple Task Learning for generic object detection. All

these works are evaluated on datasets that either have lim-

ited number of sequences or limited number of target cate-

gories.

2.2. MOT Benchmarks

There are multiple benchmark datasets for model-based

MOT. One of the oldest benchmarks is the PETS bench-

mark [20] which contains three sequences for single cam-

era MOT while all of them are on pedestrians. Later on, a

benchmark mainly for autonomous driving is KITTI [22]

which contains two categories of pedestrian and vehicle.

After that, a benchmark dataset solely on pedestrian track-

ing was proposed by Alahi et al. [1]. Although this bench-

mark contains 42 million pedestrian trajectories, yet its an-

notation is not high-quality (i.e., not annotated by human).

Then a MOT benchmark dataset on vehicle tracking was

released with the name UA-DETRAC [52] which contains

100 sequences. In the same year MOT15 was released [33]

which organized the publicly available MOT data by then

and became one of the most popular MOT benchmarks. Yet

it is worth noting that there are just two categories: peo-

ple and vehicle in this benchmark, and only 22 sequences

are included. Later, MOT16 [41] was published with 14 se-

quences, devoted to people and vehicle tracking. VisDrone

[62] was released with 96 sequences focused on vehicle and

people.

In addition to the popular MOT benchmark dataset men-

tioned above on people and vehicle tracking, there are some

other benchmark datasets on special classes such as honey

bees and cells. For example, the multiple cell tracking

dataset [51] has 52 sequences with a focus on cell, the

honey-bee tracking dataset [9] has 60 sequences of the

honey bee.

As shown in Table 1, high quality datasets dedicated for

model-free MOT are rare. In [59], Zhang et al. collect a

dataset with nine video sequences, each for a different type

of target. Among the videos, three are adapted from a SOT

dataset, while the rest videos are collected from YouTube.

The dataset contains average of 3 targets per frame. Each

video here has average of 842 frames in length. Targets in

the dataset are present all-time in the video, which relieves

the tracker of handling the entering and exiting event of tar-

gets. Luo et al. collected datasets with four and eight videos

in [37] and [38] respectively for an early study of GMOT.

Recent works [61, 36] tend to use mixed sequences picked

from other SOT or multiple pedestrian tracking datasets.

Recently, a large-scale benchmark for tracking any object

(TAO) is proposed [15]. However, TAO is not densely an-

notated and has low annotation quality. Only one out of

every 30 frames is annotated by hand, and the average tra-

jectories of TAO in each sequence is only 5.9. Besides, the

task of TAO is to track multiple objects of different classes,

which differs with the GMOT concept in this paper. Hence

we do not include TAO in comparison Table 1.

Compared with the data used in previous studies, our

proposed GMOT-40 dataset provides the the first publicly

available dense dataset on GMOT. GMOT-40 contains more

sequences and categories than previous GMOT datasets.

Moreover, the target density in GMOT-40 is much higher

than existing datasets, e.g., 26.58 per sequence vs 5.9 per se-

quence in TAO, and the sequences involve many real-world

challenges such as entering and exiting events, fast motion,

occlusion, etc. As a result, the release of GMOT-40 is ex-

pected to largely facilitate future research in GMOT.

3. The Generic MOT Dataset GMOT-40

In this section, we will present the GMOT-40 dataset and

the associated evaluation protocol. As described in the re-

lated work, a serious GMOT dataset/benchmark is in great

need for advancing the study of GMOT. By investigating

the data issues in previous papers and borrowing ideas from

recently popularized tracking benchmarks, we aim to con-

struct a high-quality dataset in the following aspects:

• Diversity in target category. To address the general-

ization concern in previous MOT studies, GMOT-40

is designed to contain 40 sequences from 10 differ-

ent categories, which is larger than most of previously

studied datasets (typically less than 3 categories). The

four sequences in each category are designed with

further diversity. For example, the “person” cate-

gory in GMOT-40 covers both normal “person” as in

PASCAL-VOC [17] and an unseen type “wingsuit”;

the “insect” category covers “ant” and “bee”, both

of which are unseen in MS-COCO [35] or PASCAL-

VOCC [17]. Some sample frames in GMOT-40 are

shown in Figure 2.

• Real world challenges. During sequence selection, we

pay special attention to include sequences with vari-
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Figure 2. Samples from each category of GMOT-40.

ous real-world challenges such as occlusion, target en-

ter/exiting, fast motion, blur, etc. Moreover, the target

density ranges from 3 to 100 targets per frame, with the

average around 26. All these properties make GMOT-

40 cover a wide range of scenarios.

• High-quality annotation. For high quality annotation,

each frame in the sequence should be annotated by

hand to ensure precise annotation. Besides, the initial

annotation will be followed by careful validation and

revision.

It is worth noting that, while more sequences would likely

further improve the data usability, the additional non-trivial

efforts in manual annotation may postpone the timely re-

lease of the dataset. In fact, as shown in Table 1, GMOT-40

brings comprehensive improvements over previously used

GMOT data, and is thus expected to facilitate the GMOT

research in the future.

3.1. Data Collection

With the guidance mentioned above, we start by decid-

ing 10 categories of objects that are highly possible to be

dense and crowded. When selecting video sequences, we

request that at least 80% of the frames in a sequence to have

more than 10 targets. Most targets of same category have

similar appearance, while part of them differs on appear-

ance, which is more close to reality. The minimum length

of the sequence is set to 100 frames.

After classes and requirements are determined, we

started searching the YouTube with possible candidate

videos. About 1000 sequences are initially picked as can-

didates. After scrutiny, we select 40 sequences out of them

for better quality and more challenging task. Yet it does

not mean that these 40 sequences are ready for annotation.

Some of the sequences contain a large part that is irrele-

vant to our task. For example, in “balloon” category, there

are starting and ending sections focusing on the stage or the

crowd of the celebration in the festival, which should be re-

moved. In such a way, we carefully edit the video and select

the best clips with a minimum of 100 frames.

Finally, GMOT-40 contains 50.65 trajectories per se-

quence on average. The whole dataset includes 9,643

frames in total, and each sequence has an average length

of 240 frames. 85.28% of the frames have more than 10 tar-

gets. The FPS ranges from 24 to 30 while resolution ranges

from 480p to 1080p.

The statistics of GMOT-40 in comparison with other

densely annotated data used in GMOT studies are summa-

rized in Table 1. Note that we use the category definition

of GMOT-40 here, since categories in other benchmarks are

not general enough. As an example, both “sky diving” and

“basketball” classes in [36] belong to the “person” class of

GMOT-40.
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Figure 3. Number of sequences for different attributes in our

GMOT-40.

3.2. Annotation

The annotation format follows that of MOT15 [33]

where the detailed description is in the Supplementary Ma-

terial. The only difference is that there is no out-of-view

value and hence all bounding box in the groundtruth file

should be considered in evaluation protocols.

Furthermore, only targets in the same category are anno-

tated. For example, only the wolf in the “stock” category

is annotated as shown in Figure 2 since the initial bound-

ing box indicates that only the wolf is the object of interest.

Besides, the targets in the same categories are treated indis-

criminately such as the red and white balloons in Figure 2.

The most important parts for building a high-quality

GMOT dataset are manual labeling, double-checking, and

error-correction. To ensure this, a group of experts such as

Ph.D. students are included in the annotation team. For each

video, it is first sent to the labeler to decide the group of in-

terest. Then an expert will review the target group to see

whether it reaches our requirement. After approval by ex-

perts, the labeler will start working on the annotation. The

completed annotation will again be sent to experts for re-

view and possible revision.

3.3. Video Attributes

As shown in the Figure 2, diverse scenarios and hence

more comprehensive attributes are included in GMOT-40

compared with other data used in previous GMOT papers.

As an example, all of the “person”, “ball” and “insect”

classes have the properties of motion-blur and fast motion.

Besides, the viewpoint significantly affects the appearance

in “boat” category. Furthermore, low resolution and camera

motion appear in “ball” and “livestock” respectively.

A detailed histogram on various attributes are presented

in Figure 3. The abbreviation of attributes have the follow-

ing meaning: CM – camera motion; ROT – target rota-

tion; DEF – target deforms in the tracking; VC – signifi-

cant viewpoint change that affects the appearance of target;

MB – target is blurred due to camera or target motion; FM

– fast motion of the targets with displacements larger than

the bounding box; LR – target bounding box is smaller than

1024 pixel for at least 30% of the targets in the whole se-

quences.

Although some of the attributes above are present in pre-

vious studies of GMOT [36, 37, 38, 59, 61], yet GMOT-40

is the most comprehensive one, since it is collected from

various natural scenes. These miscellaneous attributes of

GMOT-40 can help the community to evaluate their track-

ers from multiple aspects.

4. GMOT Protocols and Tracking Baselines

4.1. Protocol

Associated with the GMOT-40 dataset, we design a ded-

icated one-shot evaluation protocol for GMOT, adapting the

settings from previous works such as in [38]. To facilitate

the developing of GMOT trackers, an ablation study is also

implemented to evaluate the association ability of a tracker.

The protocol aims to comprehensively evaluate the

GMOT trackers in real-world application settings. As

claimed in [38], a practical generic tracker is model-free

thus is able to track multiple generic objects knowing only

one template of targets. By adopting this Protocol, only

one bounding box in the first frame of each video is pro-

vided to indicate the objects of interest. Trackers are sup-

posed to use the object in that bounding box as a template

and leverage the information of that object to detect and

track all the targets in the video of same category. All se-

quences in GMOT-40 are used to test the tracker for their

performance on unseen category for the one-shot GMOT

protocol. For comparison, we also design several new base-

lines (see Section 4.2) to generate the public detection for

the whole sequence, using the only one sample given in the

first frame. Trackers can be trained at any other benchmarks

except GMOT-40.

To choose the initial target of one sequence, we ran-

domly sample some targets in the first frame that are not

occluded. Then we carefully pick the best one out of them

by hand to ensure it is representative and robust as the one-

shot sample.

4.2. Baselines for One-shot GMOT

For one-shot GMOT protocol, we propose a series of

two-stage baselines by adapting existing tracking algo-

rithms. Each baseline consists of a one-shot detection stage,

which obtains detection results for all frames in sequence,

and a target association stage, which associates detected tar-

gets and gets the final tracking results.
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4.2.1 One-Shot Detection Stage

In our implementation, we adopt a recently proposed SOT

method, GlobalTrack [28], to create a one-shot detection

method. GlobalTrack searches the whole image in fol-

lowing frames (search frames) while most SOT trackers

only search a predefined neighborhood of the target posi-

tion in the previous frame. The model is pretrained on other

datasets [35, 27, 18]. We then split the modified model to

two modules, a target-guided region proposal module, and

a target-guided matching module. The target-guided region

proposal module extracts features for the labeled target on

the initial frame, and return regions that may contain targets

on the search frame. Then target-guided matching mod-

ule extracts features from these regions, computes similarity

scores between these potential targets, and produces multi-

ple search results with the refined position. Furthermore,

those targets with similarity scores lower than the threshold

(0.1) are filtered out.

In the one-shot detection process, the initial frame is al-

ways the first frame and the search frames include all frames

in the sequence, including the first frame itself. The detec-

tion process is repeated to get results for all these frames.

The whole process is shown in Algorithm 1.

4.2.2 Target Association Stage

With these detection results, we now transform the one-shot

GMOT task to a traditional MOT task with public detection.

Most existing MOT algorithms can be adapted here to get

association. The MOT algorithms used in evaluation are

stated in Section 5.2.

Combining the one-shot detection method with different

target association methods, we get a series of baselines for

the one-shot GMOT task. We evaluate their tracking perfor-

mances comprehensively in Section 5.3.

5. Experiment

5.1. Evaluation Metrics

A group of metrics on MOT has been proposed to fairly

compare the tracker and reveal the performance. Among

them the most widely used ones are CLEAR MOT metrics

[4] and ID metrics [45]. The former stresses the number

of incorrect predictions while the latter focus on the longest

time of following targets. Combining them will provide a

comprehensive evaluation of the performance in GMOT-40.

5.2. Evaluated Trackers

We focus on the trackers that are built on public detec-

tion and have publicly available code. Both classical and

more recent trackers are included to provide a comprehen-

sive review. Among them, there are FAMNet [12], Deep

SORT [53], MDP [54], IOU tracker [8].

Algorithm 1: One-shot Detection Process.

Data:

{I1, ..., Im}: images in a sequence;

xgt: initial detection (groundtruth box) in I1;

sth: threshold for detection similarity score.

Model:

φR: target-guided region proposal module;

φM : target-guided matching module.

Output:

{xk
i }

nk

i=1
: nk detected targets for Ik, 1 ≤ k ≤ m.

1 Extract features for the initial target;

2 Fgt = φR(I1, xgt);
3 for k = 1, ...,m do

4 Use Fgt, φR to produce rk regions R that may

contain targets on image Ik;

5 R = {xk
1
, ..., xk

rk
} = φR(Fgt, Ik);

6 Use φM to extract features FR from R;

7 FR = {fk
1
, ..., fk

rk
} = φM (R);

8 Compute similarity scores S between FR and

Fgt, and produce targets T with refined

positions;

9 S = {sk
1
, ..., skrk} = φM (Fgt, FR);

10 T = {x̃k
1
, ..., x̃k

rk
} = φM (Fgt, FR);

11 Filter T by comparing S with sth, and then get

the final nk targets T k;

12 T k = {xk
1
, ..., xk

nk
} = C(T, S, sth);

13 where C denotes the comparison process;

14 end

5.3. Protocol Evaluation

We first evaluate the quality of the proposed target candi-

dates that are generated by our baseline algorithm. Since in

one-shot generic setting, the difference between categories

is inconsequential. Thus we directly use AP (Average Pre-

cision) as our metric to report the “detection” solely perfor-

mance. We have AP50 of 15.65% and AP75 of 15.51%
while setting the IOU threshold at 0.5 and 0.75 respec-

tively. Note that our baseline target candidate proposal is

not trained on GMOT-40. In qualitative analysis, the base-

line is found out to behave badly with deformation, rotation

out-of-plane, motion blur and low resolution. The reason

may be that the matching module of our modified Global-

Track produced too many false negatives while ranking the

confidence in the final stage.

The detection results generated by our baseline algo-

rithm serve as public detection in the following experi-

ments. We test the trackers on all 40 sequences in its ini-
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Figure 4. Results visualization of four trackers on sequences.

MOTA IDF1 IDP IDR Rcll Prcn MT PT ML↓ FP↓ FN↓ IDs↓ FM↓
MDP [54] 19.80% 31.30% 61.80% 21.00% 27.20% 80.20% 142 621 1161 17260 186580 1779 2748

DeepSORT [53] 14.50% 24.40% 67.50% 14.90% 18.50% 84.10% 72 509 1363 9000 208818 1315 2233

IOU [8] 11.80% 20.30% 64.60% 12.00% 15.40% 82.60% 56 397 1491 8299 216921 754 1668

FAMNet [12] 18.00% 28.30% 54.80% 19.10% 26.80% 76.80% 166 581 1197 20741 187730 1660 1878

Table 2. Comparison of trackers with one-shot GMOT protocol.

Methods MOTA MOTP IDF1

MDP[54] 19.92% ±

1.84%

24.16% ±

0.27%

31.84% ±

2.23%

DeepSORT[53] 14.98% ±

1.47%

23.66% ±

0.53%

25.38% ±

2.32%

IOU[8] 12.36% ±

1.60%

25.34% ±

0.36%

20.90% ±

2.73%

FAMNet[12] 17.60% ±

0.85%

22.56% ±

0.23%

27.76% ±

1.16%

Table 3. Average of five runs initiated by randomly picked one-

shot templates.

tial setting with the pre-trained model without any further

modification. The results as well as MOTA and IDF1 are

listed in the Table 2. With the inclusion of the one-shot de-

tector, MDP becomes the best among them all. Yet its IDF1

is just 31.30% and MOTA is just 19.80% . Deep SORT

and FAMNet here behave slightly worse than MDP with

the IOU tracker after them. In other words, there is correla-

tion between their processing of detection and their perfor-

mance. A sample of results is presented Figure 4 with each

color standing for a different trajectory.

Besides, we include Figure 5 to compare the perfor-

mance in different classes. Each bar represents the mean of

all 5 trackers. Specifically, the “bird” and “insect” classes

poses a challenge for all the trackers. This again proves the

necessity of diversity and hence the release of GMOT-40. A

more detailed version is included in Supplementary Mate-

rial.

Finally, to make sure the results in experiment is unbi-

ased from the initial results picked by user. We randomly

sample the one target in the 1st frame for protocol and re-

peat this procedure for 5 times. Then we report the mean

and standard deviation of the results over these 5 experi-

ments. The results are shown in Table 3. As we can see, the

fluctuations are very low, implying that the choice of the

initial bounding box does not affect the result significantly.

5.4. Ablation Study

In ablation study, the groundtruth detection are provided

for the tracker while all other experiment conditions are

the same. The result of this protocol is presented in Ta-

ble 4, where we can see nearly all trackers’ performances

improve significantly compared with Table 2. Note that our

benchmark contains many categories that are unseen for the

tracker during their training. Hence the benchmark would

favor the association based on Intersection Over Union

(IOU) of targets across frames rather than appearance fea-
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MOTA IDF1 IDP IDR Rcll Prcn MT PT ML↓ FP↓ FN↓ IDs↓ FM↓
MDP [54] 75.00% 72.50% 79.50% 66.70% 80.70% 96.20% 1105 703 136 8234 49448 4103 4758

DeepSORT [53] 80.60% 79.30% 85.30% 74.00% 84.50% 97.30% 1344 344 256 5944 39648 4074 2937

IOU [8] 75.90% 79.00% 85.80% 73.20% 80.40% 94.20% 1237 260 447 12704 50232 1225 3767

FAMNet [12] 67.40% 70.50% 86.30% 60.50% 70.10% 97.60% 1302 319 323 4505 76706 2454 6229

Table 4. Comparison of trackers with the protocol in ablation study.
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Figure 5. Average scores of all trackers for different classes in one-

shot GMOT Protocol.
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Figure 6. Average scores of all trackers for different classes with

the protocol in ablation study.

tures. As a result, the simple IOU tracker has the 2nd

best IDF1 and MOTA of 79.00% and 75.90%, respectively.

While using both motion and appearance information, Deep

SORT has the best MOTA and IDF1 score by maintaining

a reasonable balance between them. For MDP, its perfor-

mance is not as good as Deep SORT and IOU tracker. The

reason may be its superfluous processing on detection since

we directly provide groundtruth detection here. For FAM-

Net [12], its mediocre performance is mainly due to pro-

cessing on detection noise. Although groundtruth detection

are provided here, FAMNet drops too many detection and

hence causes many false negatives.

Furthermore, we include Figure 6 to compare the perfor-

mance under different categories. Generally speaking, the

trackers perform much better in ablation study. The differ-

ence in performance among categories emphasizes the im-

portance of releasing a GMOT benchmark to evaluate track-

ers more comprehensively.

6. Conclusion

In this paper, we proposed the first, to the best

of our knowledge, publicly available densely annotated

generic multiple object tracking (GMOT) benchmark

named GMOT-40. By thoroughly considering major

MOT factors and carefully annotating all tracking objects,

GMOT-40 contains 40 sequences evenly distributed among

10 object categories. Associated with the GMOT-40 dataset

is the one-shot evaluation protocol for GMOT. Several new

baseline algorithms dedicated to one-shot GMOT are de-

veloped as well, and evaluated together with relevant MOT

trackers to provide references for future study. The eval-

uation shows that there is still large room to improve for

GMOT and further studies are desired. Overall, we expect

the benchmark, along with the initial studies, to largely fa-

cilitate future research on GMOT, which is an important yet

under-explored problem in computer vision.
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