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Abstract

This article develops a Bayesian partitioning prior model from spanning trees of a graph, by
first assigning priors on spanning trees, and then the number and the positions of removed
edges given a spanning tree. The proposed method guarantees contiguity in clustering and
allows to detect clusters with arbitrary shapes and sizes, whereas most existing partition
models such as binary trees and Voronoi tessellations do not possess such properties. We
embed this partition model within a hierarchical modeling framework to detect a clus-
tered pattern in latent variables. We focus on illustrating the method through a clustered
regression coefficient model for spatial data and propose extensions to other hierarchical
models. We prove Bayesian posterior concentration results under an asymptotic frame-
work with random graphs. We design an efficient collapsed Reversible Jump Markov chain
Monte Carlo (RJ-MCMC) algorithm to estimate the clustered coefficient values and their
uncertainty measures. Finally, we illustrate the performance of the model with simulation
studies and a real data analysis of detecting the temperature-salinity relationship from
water masses in the Atlantic Ocean.

Keywords: Bayesian high dimensional regression, posterior concentration, reversible
jump Markov chain Monte Carlo, tree-based methods, varying coefficient models

1. Introduction

Spanning trees have gained popularity as a flexible computing tool in computational geom-
etry (Preparata and Shamos, 2012) and clustering analysis (Zahn, 1970; Grygorash et al.,
2006), since they are capable of guaranteeing contiguous clustering configurations and de-
tecting clusters with irregular shapes. A spanning tree of a connected graph is a subgraph
connecting all vertices in the graph without cycles, in which any two vertices are connected
by exactly one edge. A partition of vertices is induced when some edges in a spanning tree
are removed such that vertices connected to each other form a cluster. A large body of
existing literature on spanning trees is based on machine learning algorithms directly using
observed points or point-level features (e.g., Assuncao et al., 2006; Guo, 2008; Aydin et al.,
2018), whereas the development of spanning tree based modeling and inference framework
involving clustered latent variables is still at its infancy.
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Our main contribution is to propose a Bayesian model-based spanning tree partition-
ing method, along with theoretical justifications and efficient computational algorithms,
to model clustered latent variables with a focus on spatially clustered varying coefficient
models. Most existing literature in spatial regression assume regression coefficients are con-
stants or smoothly varying in space (Fotheringham et al., 2003; Gelfand et al., 2003; Mu
et al., 2018). But in many applications, relationships among spatial variables may change
abruptly across some boundaries. There is a great need to detect spatially clustered pat-
terns with uncertainty measures in such relationships that allow practitioners to conduct
and interpret subregional analysis. The work in this paper is among the first to develop a
Bayesian approach for detecting contiguous clusters in regression coefficients.

The Bayesian Spatially Clustered Coefficient Model (BSCC) uses different spanning trees
for each covariate and treats them as unknown parameters. Model specifications of space
partitions are done by assigning priors on spanning trees, and then the number and the
positions of removed edges given a spanning tree. As a result, it allows an adaptive spatial
order for cluster detection. Indeed, we show that the sample space of partitions induced from
the Bayesian random spanning tree models accommodates all possible contiguous partitions
with arbitrary shapes and sizes, defined from connected components of any given graph.
Most existing clustering methods which we will review in Section 2 do not possess this
property. We emphasize that this property has two important implications. First, it allows
us to simplify a complex combinatorial graph partitioning problem into a more compact
tree based prior representation that can facilitate computation while maintaining flexibility.
Second, the method enjoys great flexibility in the cluster shapes and naturally induces
spatially contiguous clusters so that practitioners can interpret clusters as subregions. And
the number of clusters is treated as random and determined from data.

An additional advantage of the BSCC is that the Bayesian inference allows us to assess
uncertainties in the position of spatial boundaries and the estimated regression models
within clusters. Moreover, although we concentrate on the Gaussian spatial regression
models in this paper, the proposed partitioning prior model is generic and we propose
extensions of the method for embedding in and adaption to various Bayesian hierarchical
modeling frameworks that involve latent piecewise constant variables. Finally, since the
method is built upon graphs such as triangular meshes, it can be used as a flexible prior on
non-exchangeable partitions of data or latent variables distributed on graphs/networks in
complex geometric domains.

The regression problem we consider in this article is high-dimensional in nature with
n samples and np unknown regression coefficients. We prove that the proposed model
achieves posterior consistency, under an asymptotic framework for piecewise constant func-
tions defined on random graphs with a diverging number of vertices. Theoretical guarantee
of Bayesian binary treed methods is developed recently (Linero and Yang, 2018; Rockova
and van der Pas, 2020; Rockovd and Saha, 2019). However, to the best of our knowl-
edge, theoretical properties of spanning tree based Bayesian partition models haven’t been
investigated in the literature.

The inference of the proposed method is performed in a Bayesian framework, where we
extend the conventional reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithm
(Green, 1995) by employing various computation strategies such as parallel tempering, low-
rank matrix operations, Cholesky factor updates/downdates, and collapsed Gibbs sampling
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that greatly improves the computation efficiency for large data sets. The RJ-MCMC pro-
cedure allows partitions and spanning trees to be updated adaptively so it can achieve
high accuracy in cluster recovery and coefficient estimation, as evidenced by our numerical
results that demonstrate striking improvements over competing methods.

The rest of the article is organized as follows. In Section 2, we review other related
model-based clustering approaches. In Section 3, we present the Bayesian Spatially Clus-
tered Coefficient regression model, state the theoretical results, develop computation al-
gorithms for Bayesian model implementation, and discuss hyperparameter selection. In
Section 4, we present extensions to other hierarchical model settings. Section 5 presents
some simulation studies to illustrate the performance of our method. In Section 6, we apply
the BSCC model to an ocean temperature and salinity data set. Section 7 concludes our
method with some discussion. The proof of the main theoretical results, the detailed im-
plementation and discussion of the RJ-MCMC algorithm, and additional simulation results
are provided in the Appendix.

2. Related Work

A large body of model based spatial partition approaches have been proposed in various
contexts. Methods such as Markov connected component fields (Gangnon and Clayton,
2000) and product partition models (Hegarty and Barry, 2008; Page and Quintana, 2016)
take into account spatial information for clustering, but may not fully guarantee spatial
contiguity or allow for arbitrary cluster shapes. Mixture models such as Dirichlet processes
(e.g., Gelfand et al., 2005; Blei and Frazier, 2011; Zhang et al., 2014; Ma et al., 2020)
are popular Bayesian nonparametric methods for clustering but tend to produce many
small clusters. Space partitioning approaches, such as binary treed methods and Voronoi
tessellations (Green and Sibson, 1978), have also been widely used in statistics to model
responses locally in a region of the input space. Examples of binary treed methods include
CART (Breiman et al., 1984; Chipman et al., 1998; Denison et al., 1998), BART (Chipman
et al., 2010) and treed Gaussian processes (Gramacy and Lee, 2008; Konomi et al., 2014),
where the input space is partitioned into non-overlapping regions by making binary splits
recursively. On the other hand, Voronoi tessellation based models (e.g., Knorr-Held and
Rafler, 2000; Denison and Holmes, 2001; Kim et al., 2005; Feng et al., 2016) define regions
by a number of center locations such that points within a region are closer to its center than
any other centers. However, both methods put considerable constraints on the shape of the
regions. Voronoi tessellations imply a convexity assumption on the region shapes, and binary
treed approaches only produce rectangle shaped regions. Spatial scan statistics (Kulldorff
and Nagarwalla, 1995; Kulldorff, 1997) and their variants are also popular approaches to
detect spatial clusters. Lin (2014) and Lin et al. (2016) consider Poisson regression models
with spatially clustered intercepts using spatial scan statitstics. Lee et al. (2017) develop
spatial cluster detection for regression coefficients using spatial scan statistics where the
candidate clusters are often assumed to be circular windows.

Our method is motivated from Li and Sang (2019), who propose a fused lasso regular-
ization and optimization method for spatially varying coefficient models, called the SCC,
which uses a Euclidean distance based minimum spanning tree (MST) as the “spatial or-
der” to encourage homogeneity between the regression coefficients at two adjacent locations.
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The method pursues a sparse solution on the difference between the two edge-connected
coefficients, where the zero element indicates that two vertices belong to the same cluster,
while the non-zero element corresponds to a cut set of edges which, if removed from the
MST, will partition the vertices into a number of clusters. Nevertheless, the method does
not produce uncertainty measures of parameter estimations. In addition, a fixed Euclidean
MST is used as the spatial order for the regression coefficient of each covariate, which leads
to over-clustering especially with small sample sizes as it only induces a restricted partition
space to which the actual partition may not belong. In contrast, the Bayesian method
developed in this work seeks to find the true spatial order by treating different spanning
trees for each covariate as unknown parameters. We will show in Section 5 that this has a
significant impact on the results, evidenced by the nearly 80% reduction in the mean square
error of BSCC compared with that of SCC in simulation studies.

Most recently, Teixeira et al. (2015, 2019) also develop a Bayesian spatial partitioning
model based on spanning trees for the clustering of spatial and spatial temporal responses,
respectively. The idea is to construct a random partition model based on random spanning
trees, where probabilistic prior models are assigned to the spanning trees and the edge
removal probabilities. Their methods have shown a superior performance in terms of clus-
tering accuracy for a number of spatial and spatial temporal clustering tasks, indicating a
great potential of the random spanning tree methods. Following a similar spirit, the pro-
posed model offers a new random spanning tree model which complements and differs from
theirs in several main aspects. First, we extend beyond a single spanning tree partition
model for spatial response data to a general hierarchical model setting for the multiple
partitions of latent variables. Second, Teixeira et al. (2019) assume a uniform prior on
the spanning tree space and an approximate sampler is used to sample a spanning tree
in their MCMC algorithm. We overcome this issue by assigning uniform priors to edge
weights in the original graph, which induces priors on the spanning tree space. An exact
sampler based on this prior setting is proposed in this paper. Third, they model the prior
probability of a partition given a spanning tree by assigning a Beta-distributed prior on the
edge inclusion probability without discussing the choice of its hyperparameters. We argue,
from a theoretical point of view, that such choice needs careful considerations as it reflects
penalty on the number of clusters and has profound effect on the asymptotic behavior of
posterior distributions. In this work, we explicitly assign a penalized complexity prior on
the number of partitions for which we prove the posterior consistency and design a tailored
efficient RJ-MCMC algorithm. In addition, the posterior inference of their partitions relies
on a pre-specified threshold of the edge inclusion probability, whereas our method allows
us to directly obtain posterior samples of partitions. Finally, we derive a number of origi-
nal non-asymptotic (e.g., Proposition 2) and asymptotic theories (e.g., Theorem 3), which
provide a rigorous justification for the use of random spanning tree models.

3. Methodology

We begin with a varying coeflicient regression model in the spatial context to illustrate
our Bayesian partitioning method, and outline extensions to other hierarchical models with
latent clustered variables in Section 4.
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Let [{x(s;),y(si)}, i = 1,...,n] be the spatial data observed at locations si,...,s, €
D C R?, where x(s;) = {z1(s;),. .. ,:L‘p(Si)}T € RP is a vector of covariates and y(s;) is a
scalar of response. We consider a model

y(s1) =x (s:)B(si) +e(si) e(si) "= N(0,07), (1)
where 3(s;) = {f1(si),- .-, Bp(si)}T are unknown coefficients quantifying the relationships
between the response and covariates, and €(s;) are independently and identically distributed
(i.i.d.) random noises. Clearly, this is a high-dimensional regression problem as there are n
samples and np unknown regression coefficients. Assumptions need to be made on 3(s;) to
regularize this ill-posed problem. Previous spatial high-dimensional regression models often
assume sparsity (Chu et al., 2011) or smoothness in 3(s;) (Gelfand et al., 2003; Mu et al.,
2018).

In this paper, we are interested in detecting clustering patterns in (3(s;). For each
individual B,,(s;) (m = 1,...,p), we assume there is a covariate-specific unknown disjoint
partition such that (3,,(s;) is a spatially piecewise constant, i.e., 5, (s;) = Bm(s;) if s; and s;
are in the same cluster. Alternatively, one may assume there is a single common unknown
partition for the whole vector 3(s;), i.e., {51(si),. .. ,,Bp(si)}T = {Bfi(sj),.-- 7,6’10(534)}T if s;
and s; are in the same cluster. The advantage of the first assumption is that it allows us to
make inference for the partition in each covariate. We adopt this assumption in this article
since one may expect different cluster structures in coefficients for different covariates, but
it is straightforward to extend our method to the second one.

In the Bayesian framework, we need to assign priors for the unknown partitions and
to sample from the space of partitions for inference. In many spatial applications, as
aforementioned, it is desired to consider partitions of locations with spatially contiguous
clusters such that only adjacent locations are clustered together. When a complete order of
regression coefficients is available, such as in time series problems (Kowal et al., 2019), we
could obtain contiguous clusters easily by finding change points in the ordered coefficients.
However, it is known that spatial data do not have a natural order. In this paper, we
propose to use spanning tree as the spatial order for cluster detection and by treating it
as an unknown parameter, our method can adaptively learn the spanning tree order and
detect changes in the tree-ordered coefficients.

Below, we give formal definitions for contiguous partitions and clusters, and construct
a spanning tree model for such partitions.

3.1 A Prior Model for Contiguous Partitions

Consider an undirected graph Gy = (Vy, &y), where Vo = {s1,...,s,} is the vertex set and
the edge set & is a subset of {(s;,s;) : s;,8; € Vo,s; # sj}. Note that in &, (s, s;) is
an unordered pair. Given a spatial data set, we can construct an undirected graph Gy
to represent the relationship of spatial adjacency or neighborhood. For regularly spaced
data, a lattice graph is a common choice. For irregularly spaced data, one straightforward
way for construction is to connect a vertex with all its neighbors within a certain radius.
Another approach is the Delaunay triangulation (Lee and Schachter, 1980), which constructs
triangles with a vertex set Vy such that no vertex is inside the circumcircle of any triangle.
In practice, edges longer than a certain threshold are removed to ensure spatial proximity of
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Figure 1: (a) A graph constructed by the Delaunay triangulation, with edges longer than
0.2 removed. (b) An example of a partition with 5 clusters induced by removing
the set of red dashed edges from a spanning tree of the graph in (a). Different
clusters are marked by different colors.

neighboring vertices. Figure 1(a) demonstrates an example of the Delaunay triangulation.
We will show in Section 3.3 that spatial graphs constructed by these two approaches achieve
nice theoretical properties.

In graph theory, a sequence of edges {(siy,Si;),---, (i, ,,8i,)} C & is called a path of
length t between s;, and s;, if all si;’s are distinct. It is called a cycle if s;, = s, and all
other vertices are distinct. A graph Gy is said to be connected if for any two vertices there
exists a path between them. In this article we assume Gy is always connected. A subgraph
V,€),V TV, E C & is called a connected component of Gy if it is connected and there
is no path between any vertex in V and any vertex in Vo \ V := {s € V) : s € V}, the
difference between sets Vy and V. Now one can define spatially contiguous partitions and
clusters formally based on the notion of connected components (Teixeira et al., 2019).

Definition 1 Given an undirected graph Gy = (Vo, &), a subset C C Vy is a spatially con-
tiguous cluster if there exists a connected subgraph (C,&c),Ec C &y. A spatially contiguous
partition of Vo is a collection of disjoint spatially contiguous clusters m = {Cy,...,Cx} such
that Ug‘?:le =10.

For conciseness, henceforth, we refer to spatially contiguous partitions and clusters as
partitions and clusters, respectively. Our goal is to develop a partition model for a given
spatial graph. However, it is a long-standing challenging task since the number of all
possible partitions grows rapidly as the number of locations. Following the similar ideas as
in Teixeira et al. (2015, 2019) and Li and Sang (2019), we consider a much more compact
representation of spatially contiguous partitions based on spanning trees.

A spanning tree of a graph G is defined as a subgraph T = (Vy,&7),E7 C & that
connects all vertices without any cycle. Therefore, a spanning tree has |Vy| vertices and
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Vol — 1 edges, where |Vy| denotes the cardinality of set Vy. By definition, there can be
multiple spanning trees for a given graph. Suppose that weights w, are assigned to each
edge e € & , and then an MST is a spanning tree (Vy, E7),E7 C & that has the minimal
sum of weight 3 o we.

A partition with k£ + 1 clusters can also be defined by a spanning tree and a subset of
edges &; C &7 of cardinality k. Specifically, as shown in Figure 1(b), if a set of k edges
is removed from a spanning tree T, we create a subgraph of 7 that has k + 1 connected
components, and the vertex set of each component forms a cluster. Throughout the paper,
we say a partition is induced by a spanning tree 7T if the partition can be obtained by
removing a subset of edges from E7.

Below, we show the sample space of partitions induced from random spanning trees
accommodates all possible contiguous partitions.

Proposition 2 Let Gy = (Vo, &) be a connected graph and m = {Ci,...,Cx} be an ar-
bitrary spatially contiguous partition of Vy. There exists at least one spanning tree T =
Vo, E7),E1 C & and a subset E—1 C & of cardinality k — 1 that induce 7.

Proposition 2 implies that we can represent any partition by a spanning tree and a subset of
its edge set. It is notable that there is no assumption on the shape and size of each cluster
in the partition. The detailed proof of Proposition 2 is provided in Appendix A.1.

The above discussion suggests that the prior model specification for partitions boils down
to assigning prior models for spanning trees and the removed edge set given a spanning tree.
Conditional on a spanning tree 7 and the number of clusters k, we can impose a prior on
the space of partitions induced by the spanning tree, or equivalently, on the selection of
(k —1)-sized subsets of £7. Then we can assign a prior on the space of all possible spanning
trees and a prior on the number of clusters.

Formally, let 7™ be a spanning tree of Gy that can induce 7("™, the partition associated
with the mth covariate. Conditional on 7™ and k,,, we assume independent uniform priors
on all possible 7(™)’s with k,, clusters that are induced by 7™ (also see Teixeira et al.
2015, 2019 for an alternative prior model on partitions):

D {W(m) \ km,T(m)} o< 1{7™ is induced by 7™ and has k,, clusters}, (2)

independently for m = 1,...,p, where 1(-) is an indicator function. From the perspective
of variable selection, our prior is equivalent to assigning equal probability to all possible
selections of k,,, — 1 edges from the edge set of size n — 1.

To specify the prior on 7™, we let w(™) = {wg@)}(shsj)ego be a vector of edge weights
associated with the mth covariate, where wgn) is the weight for edge (s;,s;). We assign

independent and identical Uniform(0, 1) prior on wgn) and let 7(™ be the MST given w{™),
i.e.,

T = MST{w(™}, wgn) e~ Uniform(0, 1), (3)
where MST(w) means an MST of the graph Gy based on edge weights w given by Prim’s
algorithm. Recall that an MST is a spanning tree that has minimal sum of edge weights
and it is determined by the edge weights of the original graph. Also note that for any given
spanning tree of the original graph, there exists a set of edge weights such that the resulting
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MST produces that spanning tree. Therefore, the prior on edge weights induces a prior
model on the resulting spanning tree. Note, however, that our induced prior on the space
of spanning trees is not uniform, in contrast to the prior in Teixeira et al. (2015, 2019), who
use an approximate sampler to update spanning trees. Our prior setting leads to an ezxact
update of 7™ in our RJ-MCMC algorithm (see Section 3.4 for details).

Finally, we assign the following prior to the number of clusters for each coefficient,
following the setup of Knorr-Held and Rafler (2000) and Feng et al. (2016):

pr(km =k)x (1—¢)*, fork=1,...,n, 0<c<1 (4)

independently for all m. This prior is a geometric distribution truncated to the support
{1,...,n} with prior mean E(kp,) = 1/c —n(l —¢)"/{1 — (1 — ¢)"} when 0 < ¢ < 1;
when ¢ = 0 the prior becomes a truncated discrete uniform distribution with prior mean
E(kpm) = (14n)/2. Tt is noted that this prior has a geometrically decaying probability with
hyperparameter ¢ controlling the decaying rate, and hence serves as a prior to penalize the
model with a large number of clusters. If ¢ is closer to 1 we have a stronger penalization
for the large number of clusters. The choice of ¢ plays a crucial role in high-dimensional
settings. We will show in Section 3.3 that a theoretically viable choice is to let —log(1 — ¢)
grow at the same rate as log(|Vy|). It is possible to assign a prior on k,, conditional on 7™
however, when there is no a priori information about the true partitions and the spanning
trees that induce them, we assume that the priors for k,, are independent of 7).

3.2 Bayesian Hierarchical Spatially Clustered Coefficient Models

Let 7(m) = {C%m), . ,C,g:)} (m = 1,...,p) be the spatial partition of the regression co-
efficient associated with the mth covariate, ,B(m) = {Bgm), e ,B,g:)}T be the vector of all
different values of the mth coefficient, where Bj(m) is the coefficient value associated with
cluster C](.m). With a slight abuse of notation, we denote s; € CJ(-ll) n---N C](.f ) for some

Jis ..., Jp, if the regression coefficient at s; for the mth covariate belongs to CJ(Z). Choosing
conjugate priors for other model parameters, our hierarchical model can be written as

p
m m m) 1 P ind.
y(s:) {8 Yoy o At b w7 2 N{ZBJ(.:)xm(si), 02}, (5a)
- m=1
B | 62 A, 1™k N, (0,07 10%8,) (5b)

{W<m>7 km,w(m)}fn o~ f[ » {W(m> | km,w(m)} Pk )p{w ™1,
m=1

(5e)

o” ~1G(ao/2,b/2), (5d)

A ~ Gamma(cy /2, dy/2), (5e)

where Ny, . represents the k,,-dimensional multivariate normal distribution, 3, is a kn, X kn,

covariance matrix, IG(a,b) is the inverse-Gamma distribution, Gamma(a, b) is the Gamma
distribution in shape-rate parameterization, and ag, by, cg,dp are hyperparameters. The
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notation “ind.” means that we assume (5a) holds independently for all @ = 1,...,n and
place independent prior (5b) on 8™ for all m = 1,...,p. The priors in (5¢), (5d), and (5e)
are also assumed to be mutually independent. We allow the prior of ,B(m) to accommodate
spatial dependence among clusters if one assumes spatial structures in ¥,,. In the case
where there is no prior information on the spatial dependence structure of ﬂ(m), one can
set 3, = Iy, the ky, x k;,, identity matrix. We only consider this independent case in
this article for simplicity. Note that it is also possible to choose other priors for 8™,
o2, and A\. For example, one can place non-informative priors on ¢? and A. And we
specify independent and identical priors for the partitions of each regression coefficient,
{7(™) k., w™} | following the method described in Section 3.1.

3.3 Theoretical Properties

To ease notations, we present our theoretical results for p = 1 case,

y(si) = z(si) B(si) + e(s4),

where z(s;), 5(s;) € R, though the result can be extended to a more general case. In this
subsection, we let z; and (; denote x(s;) and [(s;), respectively. Let B8 = (f1,... ,5n)T.
Given a spanning tree 7 = (W, 1), we define G- = {(s;,s;) € &7 : B; — Bj # 0}, where
B is the true value of 8; with the corresponding true partition denoted as 7*. We assume
that the number of clusters in 7%, denoted by k*, is fized. G- represents the edges of T
that have nonzero jumps in 8%, the true value of 3. When 7* is induced by 7 so that there
is exactly one jump in &7 that crosses two distinct clusters, |G%-| + 1 equals k*. Otherwise,
|G%-| will be larger than k* — 1. Indeed, in this case, we get a nested partition of the true
7 when G7%- is removed from . We let T, be the set of all spanning trees of the graph
Go with n vertices, and define g;, = maxycr, |G| + 1 such that g — 1 is the maximum
number of edges that have nonzero jumps in 8* among all possible spanning trees.

We adopt the following asymptotic notations. Given two positive sequences {a,} and
{bn}, an = b, means lim,,_, (a,/b,) = 0o and a,, < b, means 0 < liminf, ., (a,/b,) <
limsup,,_, (an/by) < co. We also denote the Ly norm by |||

Our results on posterior consistency rely on the following assumptions as n — oc:

(C1) z; is non-random, and |z;| < My for some My > 0 and any i.

(C2) log (maxi<i<p |BF]/0*) = O(logn), where o* is the fixed true value of o as n
grows.

(C3) The graph satisfies g} < n/logn. Let P, be the number of all unique partitions
nested in 7* that have at most g g, clusters for a given sequence ¢, — co. We assume
that log P,, = O(g;; logn).

(C4) 1 — ¢ =< n~“ for some constant « > 0.

Assumption (C1) is a commonly adopted assumption which states that the covariate
space is bounded. Assumption (C2) constrains the asymptotic growth rate of the magni-
tude of the true coefficients (see, e.g., Song and Cheng, 2020). Assumption (C3) restricts
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the number of edges that have nonzero jumps in 8* for any possible spanning tree, and es-
sentially excludes graphs that are too dense. We will show that g < n/logn is satisfied by
commonly used spatial designs and graphs with probability tending to 1 in Proposition 5.
The second part of Assumption (C3) constrains the complexity of the space of partitions to
ensure the existence of test functions in our proof. Assumption (C4) imposes restriction on
the tail behavior of our penalized complexity prior such that it provides enough probability
mass around the true model. Similar conditions on prior hyperparameters are common in
Bayesian high-dimensional regression literature (see, e.g., Armagan et al., 2013; Yang et al.,
2016).

The following theorem states that if Assumptions (C1)-(C4) hold, the posterior distri-
bution of the predicted responses from BSCC model concentrates around the true means
asymptotically.

Theorem 3 (Posterior consistency for fixed spatial graph designs) Let p and p* be n-
dimensional vectors such that p; = x;f; and pf = z;8f. Under Assumptions (C1)-(C4),
there exists a constant My > 0 and e, < /g logn/n such that the posterior distribution
satisfies

1 * *
1, (= w0l = Mio'e, |y) 0
with probability one.

The detailed proof is provided in Appendix A.2.

We verify that the first part of Assumption (C3) holds with probability tending to 1
for some common choices of spatial designs and spatial graphs. In the spatial context,
we consider an asymptotic framework for piecewise constant functions that are defined
on spatial random graphs with a diverging number of vertices in R2. Before giving the
proposition, we will first describe a formulation for the sampling region and a nonuniform
random spatial design for irregularly spaced data, and then a technical definition of piecewise
constant functions will be introduced.

Below, we state assumptions on the sampling region D and the sampling design of n

points s{j, ce ,S,,? in D.

(C5) Spatial sampling region. Assume D is homeomorphic to the unit square with the
Euclidean metric and a bi-Lipschitz homeomorphism Fp : D — [0,1]%. Under this
assumption, S, = (81,82, ,S,), where s; = Fp(s?) for i = 1,--- , n is the mapping
of the original sampling point to [0, 1]2. This condition allows us to consider a study
region with a variety of shapes as long as it is topologically equivalent to a unit square.

(C6) Spatial design and spatial graph. Given n € N, we assume S, is a sequence
of n independent points where each point is distributed on [0, 1]? with a probability
density function ps such that 0 < pgnin < ps(s) < pP** < co. We assume the spatial
graph on §,, is constructed by (i) the radius-based nearest neighbor (R-NN) graph
with a radius 71 < y/logn/n and 1 > 79, where 7 is the maximum edge length of the
MST on S, ; or (ii) the Delaunay triangulation graph where the edges are removed if
they are longer than 9, where o < y/logn/n and v5 > 9. We will refer to it as the
restricted Delaunay triangulation in the proof.

10
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Notice that [G%| is essentially the number of edges across the cluster boundaries of the
true coefficient, which is viewed as a piecewise constant function defined on the spatial
domain D. To bound maxyer, |G%|, we work with the following definition of piecewise
constant functions, in which the cluster boundary set is introduced.

Definition 4 (see, e.g., Willett et al. 2006) We say that a function g : [0,1]> — R is
piecewise constant if there exists a cluster boundary set By such that:

1. The cluster boundary set B, has a vy,-covering number N (B, vp, || - ||) < Mav,t, for
some constant My > 0.

2. The function g is locally constant on [0,1]2\B,, i.e., g(s) = g(s') if s and s’ belong
to the same connected component of [0, 1]*\B,.

The next proposition states that the condition g} < n/logn is met under Assumption
(C5) and (C6) with high probability. The proof is delayed to Appendix A.3.

Proposition 5 Assume further the true regression coefficient 3*P is a function f*P(sP) :
D — R such that 3*(s) : [0,1]2 — R is piecewise-constant on [0,1]? with the boundary set
Bg~. Under Assumptions (C5) and (C6), there exist positive constants Ms, My > 0, such
that g < Msy/nlogn holds with probability at least 1 — exp (—Myv/nlogn).

Combining Theorem 3 and Proposition 5 gives the following posterior concentration
result under the random spatial graph in Assumption (C6). The proof is given in Appendix
A4,

Corollary 6 (Posterior consistency for random spatial graph designs) Let P, be the number
of all unique partitions nested in 7 that have at most Mzg,/nlogn clusters, where © is
the true partition corresponding to 3*(s) in Proposition 5 given S,. Assume that log B, <
Mynt/? log3/2 n with probability tending to one for some constant Ms > 0 not depending on
Sn. Under Assumptions (C1), (C2) and (C4)-(C6), there exists a constant Mg > 0 and
£ = n~1/4 logg/4 n such that the posterior distribution satisfies

1 * * ~
in probability.

3.4 Computational Strategies

We extend conventional RJ-MCMC algorithm to sample the partitions, the values of coef-
ficients, and other parameters simultaneously. Standard RJ-MCMC algorithm may suffer
from poor mixing and slow convergence, because of the potentially multimodal posterior
(which is common in many partition models such as Chipman et al. 1998) and the large
space of spanning trees. We propose several strategies to address computational issues.
Let y = {y(s1),...,y(sn)} De the vector of responses, 3 = [{BW1",... {BP}']" €
RE be the stacked vector of coefficients, where K = >°? _, ky,, and X =[X; - f(p] €
R™K be the design matrix associated with B, where each sub-matrix Xm e RFm ig

11
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constructed in the following way. The (i, 7)th element of X,, is set to be &, (s;) if the ith
location belongs to cluster C](-m) for some j € {1,...,ky}; otherwise, it is set to be zero.
We first rewrite the data model and the prior model for B in matrix forms as

y | B,0% )\, {’/T(m), km,w(m)}p

m=1

~ Ny <X/Ba U2In>

B o\ {ﬂ'(m), - }p ~ Ng (0, )\_102IK)

m=1

Integrating out B, the marginal distribution of y becomes

y | o2\, {ﬂ'(m), km,w(m)}p

m=1

~N, (0,0%P)), (6)

where Py =1, + AIXX". Tt allows us to sample from the collapsed posterior distribution
of |:{7T(m), Ky, W) }}:n:1 ,02,)\} as follows

(m) (m) 1 ” 2
[ k™Y 0231 3]
1 T b
2\—n/2 —1/2 —1 2\—ap/2—1 0
(02)™2|Py| 7 ? exp (—2023’ P Y> (0?77 L exp (—20§> X
\C0/2-1 exp _@)\ . ﬁ n—1\" (1 - C)km !
2 AL ke — 1

Standard uncollapsed MCMC can lead to poor mixing due to the strong dependence of
B. This collapsed posterior greatly improves the efficiency and mixing in searching the
posterior of partitions.

Since the number of clusters in each partition is unknown, we employ the reversible
jump MCMC (Green, 1995) to sample from the posterior in (7). Within each iteration
of RJ-MCMC, we further iterate through each covariate from m = 1 to p. In each inner
iteration, one of the following four possible moves is performed.

(a) Birth: Fixing the spanning tree 7™, add a new cluster to 7(™) by splitting an existing
cluster.

(b) Death: Fixing 7™, randomly remove an existing cluster by merging it into an adjacent
cluster.

(c) Change: Fixing 7™ randomly remove an existing cluster by merging it into an ad-
jacent cluster, and then add a new cluster by splitting an existing cluster, so that the
number of clusters remains unchanged.

(d) Hyper: Update parameters 02, A, and w(™ (and hence 7(™). Specifically, o2 is up-
dated by a Gibbs step, w(™ is updated by sampling a set of edge weights such that the
resulting MST can induce the current sample of 7("™) using an ezact algorithm derived
below, and A is updated by a Metropolis-Hastings procedure with a symmetric random
walk proposal.

12
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The exact update of 7(™ is done by a Metropolis-Hastings algorithm to sample edge
weights followed by Prim’s algorithm. From (7) we have the full conditional of w(™ pro-
portional to

1 |:7T(m) is induced by MST{w(™} and 0 < w( ™ <1 for all (si,sj) € & - (8)
(m)

We propose a new w(™ by sampling w;;

(m)

different clusters and sampling w;;’ from i.i.d. Uniform(0,1/2) if s; and s; are in a same
cluster. The resulting spanning tree from Prim’s algorithm based on the proposed edge
weights is guaranteed to induce the current partition 7("™) (Teixeira et al., 2015). The
acceptance probability for w(™ is always 1. To see this, first notice that (8) remains the
same for the proposed weights, and thus the likelihood ratio is 1. The prior ratio is also
1 since we assume a uniform prior on w(™. Due to the design of proposal distribution,
the proposal ratio is again 1 as the sets of cross-cluster edges and within-cluster edges are
preserved. The sample of 7™ is the MST generated by Prim’s algorithm. Note that this
sampler is exact in the sense that there is no approximation in this sampling scheme. The
induced chain of spanning trees is irreducible, as suggested by the following proposition.

from ii.d. Uniform(1/2,1) if s; and s; are in

Proposition 7 For any spanning tree T of Gy that induces a partition w, the spanning tree
sampling algorithm described above generates T with strictly positive probability.

The proof of Proposition 7 is postponed to Appendix A.5.

We set the probability for each move to be rp(k) = 0.425,rp(k) = 0.425,rc(k) = 0.1,
and g (k) = 0.05, respectively. Adjustments are made for boundary cases when k,, = 1 or
n. The choice of these probabilities works well empirically in our studies. But we remark
that these probabilities can be modified if desired. For the first three moves, a new partition
is accepted with probability a1 = min(1, A-P-L), where A, P, L are the prior ratio, proposal
ratio, and likelihood ratio, respectively. For the fourth move, hyper, the spanning tree is
updated adaptively to the current estimate of the partition, thus allowing for the search of
spanning trees that can induce the true partitions. The RJ-MCMC algorithm is summarized
in Algorithm 1 and detailed in Appendix B.

After obtaining samples of 8 = [{7‘(‘ Sk, W m)} 02, )\}, it is straightforward to
obtain a sample of B by sampling from p(ﬂ | 6,y), which takes the following closed form

B0,y ~Ng {(XTX F )Xy, (XX AIK)*} .

One computation bottleneck is the evaluation of the likelihood function in (6), which
involves the inversion of the n x n matrix I,, + A1XX". Recall that the dimension of X
is n x K, where K is the summed number of clusters over all covariates. As K is typically
much smaller than n, we take advantage of the low-rank structure and apply the Sherman-
Woodbury-Morrison formula to reduce the problem to computing y X(/\I K+X X) X" y.

The update of the above quadratic form in each MCMC iteration can be further sim-
plified by the fact that most columns of X are unchanged in a birth, death, or change
step. For instance, in a birth step, X is changed by adding one column and modifying
another, which can be done by removing one column and adding two. The Cholesky de-
composition of A\Ix + X"X can therefore be updated efficiently from the Cholesky factor

13
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Algorithm 1: RJ-MCMC algorithm
Initialize partitions and edge weights {W(m), ks w(m)}
fort <+ 1to T do
for m < 1 to p do
Propose a birth, death, change, or hyper step with certain probabilities ;
if birth step then
Propose a new cluster by splitting an existing cluster in 7("™) ;

else if death step then
Randomly remove an existing cluster by merging it to a neighboring

cluster in 7(™) :

P
m=1’

Ise if change step then
Randomly remove an existing cluster by merging it to a neighboring

cluster, then propose a new cluster by splitting an existing cluster ;

]

@

Ise if hyper step then
Update o2 using Gibbs sampling ;
Update w(™ (and hence 7(™) by a Metropolis-Hastings step ;
Update A by a Metropolis-Hastings step ;

| Accept proposed change with probability a;

Discard samples from burn-in period;

at the previous step following the supernodal sparse Cholesky update/downdate algorithms
(Chen et al., 2008; Osborne, 2010). )~(Ty can also be updated by changing one element
and adding/removing another. The overall time complexity to update the quadratic term
is O(nK), whereas directly evaluating it requires O(nK?) operations.

Finally, it is common to have multimodal posterior distributions for some parameters
near cluster boundaries. We employ parallel tempering (Geyer, 1991) to better explore the
posterior and improve mixing. Specifically, we run d chains in parallel with the likelihood
function tempered by different “temperatures”. The target distribution of the jth chain is

pi(0 | y) o< {£(6 [ y)}™ p(6),

where £(0 | y) is the likelihood, p(@) is the prior, and 1 = v; > --- > vy > 0 are called
the inverse temperatures. Note that the first chain has the same target distribution as
the conventional RJ-MCMC algorithm does. We choose the inverse temperatures from the
sigmoidal temperature ladder used in Gramacy and Taddy (2010) and Payne et al. (2020).
Every a certain number of iterations (which is called a swap interval), all chains swap their
parameters @ with their neighboring chains with some probabilities. For a swap attempt
between the jth and the (j + 1)th chains, the acceptance probability is given by

pi(8j-11y) pj-1(8; | Y)}
pi(0;y)-pi-1(8;-1|y) )’
where 0; is the parameter in the jth chain. The draws from the first chain are the MCMC

samples from the desired posterior distribution. Generally, a chain with lower inverse tem-
perature has higher acceptance rates in reversible jump moves, allowing it to reach regions

Qg = min{l,

14
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that are hard to visit by chains with higher inverse temperatures. Samples from these re-
gions can then be passed to chains with higher inverse temperatures by the swap procedure,
which speeds up the exploration of the posterior sample space.

3.5 Selection of ¢

The hyperparameter ¢ has profound effect on the asymptotic behavior of posterior distri-
butions and thus it is rather important to carefully specify the order of ¢ with respect to
the sample size n. Following Assumption (C4), we set 1 — ¢ = n~® so that the posterior
consistency result in Theorem 3 can be guaranteed. In practice the constant « is unknown
and the selection of ¢ boils down to choosing appropriate positive c.

We propose to use Watanabe-Akaike information criterion (WAIC; Watanabe, 2010) to
select «, which takes the form

n S
1
WAIC = -2 E log (S E ﬁ(aslyi)> + 2pwaic,
s=1

i=1
where y; is a shorthand for y(s;), 6° is the sth (s =1,...,5) MCMC sample of the param-

eters, and pwaic is a term quantifying model complexity. In addition to the widely used
complexity term

n S S
1 1
PwaAIc, =2 {10g (S Ze(eﬂ;@) S Zlogf(es\yi)} :
s=1 s=1

i=1

a numerically more stable alternative
pwalc, = Vi, log £(6°]y;),

where Vsszl represents the unbiased sample variance, is also recommended (Gelman et al.,
2014). An « that leads to lower WAIC is preferred. Note that WAIC is applicable because
our model assumes conditional independence of y given the parameters and the spatial

dependence is modelled via the latent partition structure of the parameters.

4. Extensions to Other Hierarchical Models

The preceding Bayesian spanning tree partitioning prior model can be extended to other
hierarchical model settings. Let {y;, ¢ = 1,...,n} be the observations at each vertex of
an undirected graph Gy = (Vy, &), where Gy encodes prior knowledge on the relationships
among vertices to encourage neighboring vertices sharing identical models. Examples of such
graphs can go beyond spatial domains to more complex domains such as brain networks,
road networks or social networks.

Given a partition 7 = {Cy,...,Cx} of the vertices, we let y,,- -,y denote the cor-
responding partition of observations. Conditional on the vector of latent cluster-specific
model parameters, denoted as 6(;), j = 1,..., k, and the vector of global model parameters
1, we assume a conditionally independent data-level model for y.,,--- ,y., as follows

f(ycj | 9(;‘),77777)

k
=1

J
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The Bayesian approach then proceeds by assigning prior models for 8; and 7 conditional
on the graph partition 7. Finally, the Bayesian spanning tree partitioning prior model
introduced in Section 3.1 is adopted to model .

There are many general settings in which the above hierarchical model with clustered
latent variables arises as the data-level model can take various forms. One example is to
consider generalized linear models (GLMs) for non-Gaussian data, which were also consid-
ered in Teixeira et al. (2015, 2019) for a spatial Poisson count response data. Commonly
used non-Gaussian data level models include: (i) binary response at locations, modeled
using logit or probit regression, and (ii) count data at locations, modeled using Poisson re-
gression. We model the link function of mean responses using a clustered varying coefficient
model,

9(E(y:) =%, By, fori € (9)

The prior models for the partitions can be assigned in the same way as in Section 3.1. If one
simplifies the model by assuming a single common unknown partition for the whole vector
of regression coefficients, a prior model such as a multivariate normal can be assigned for
each B(;) independently. For this single partition case, in addition to our prior model, one
may also consider the spanning tree partitioning prior proposed in Teixeira et al. (2015,
2019).

Another example is to consider a locally stationary Gaussian process model, in a similar
spirit of the treed Gaussian process approach (Gramacy and Lee, 2008; Konomi et al., 2014).
Conditional on the partition, data within each cluster is modeled as a stationary Gaussian
process with latent cluster-specific covariance parameters ¢; and a global nugget effect 72,
that is,

Yi = 1) —l—w(j) + ¢, fori € D; (10)

7
Z-(] ) is modeled as a zero mean Gaussian process with covariance function C(-; ¢;),
and D; is a subregion in the input space such that the nearest observed location from any
input point within D; belongs to C;. Given a partition, [{u;, ;}, 72| are assigned with prior
models following the typical Bayesian stationary Gaussian process conventions (Banerjee
et al., 2014).
The RJ-MCMC algorithm presented in Section 3.4 can be adapted to sample the parti-
tions and other parameters of the above models from their posterior distributions

where w

p [{ﬂ-u k,W} ) {0(])}]=lk7n ‘ y:| X

k
I /v, 160Gy mm) ¢ p({8¢5)}j=rn | m)p(m, ko w)p(n) (1)
j=1

We remark that, in the Gaussian regression model, we marginalize out local cluster-specific
parameters when sampling partitions to speed up mixing. But in the general case, the
collapsed likelihood function may not be achievable. Nevertheless, in the birth, death and
change moves in the RJ-MCMC algorithm, the calculation of the likelihood ratio can still be
simplified since it only involves a subset of data that have changes in cluster memberships.
Data augmentation tricks such as Albert and Chib (1993) for probit models and Polson
et al. (2013) for logistic regression can also be applied to derive MCMC algorithms.
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Figure 2: Spatial structures of true coefficients and the Delaunay triangulation used in
BSCC.

5. Simulation Studies

5.1 Simulation Setup

In this section, we assess the performance of the BSCC method by some simulation studies.
For the ease of comparison with SCC, we use the same simulation setting as in Li and Sang
(2019). 1000 spatial locations are generated uniformly in a square domain [0, 1] x [0, 1]. We
generate responses at each location from a linear model with an intercept term and two
covariates

y(si) = w1(si)B1(si) + w2(si)Basi) + Balsi) + e(si),  e(si) "RV N(0,0%).  (12)

We set the true coefficients to be constant within each cluster, the true value of o to
be 0.1, and the numbers of clusters to be 4 for 81, 5 for 82 and 6 for 3, respectively. We
consider different clustering patterns for each coefficient, which are shown in Figure 2. In
particular, the shapes of true clusters for 83 are designed to be highly irregular, with the
goal of examining the capacity of the BSCC to capture irregular cluster boundaries.

The two covariates are generated such that there is a spatial correlation among locations.
Since in practice many spatial covariates are correlated with each other, we also introduce
linear dependence between z1(s;) and xa(s;). Specifically, let {(i(s;)} and {(2(s;)} be two
independent realizations of a spatial Gaussian process with zero mean and an isotropic
exponential covariance function given by cov {(n(s;), (m(sj)} = exp (—||si — ;| /@) ,m =
1,2, where ¢ is the range parameter controlling the strength of spatial correlation. Then
x1(s;) and xa(s;) are obtained by a linear transformation given by z1(s;) = (1(s;), a(s;) =
r¢1(si) + V1 —1r2(a(s;). We consider a moderate collinearity case by setting r = 0.75.
For spatial correlation within each covariate, three cases are considered, namely, a weak
correlation with ¢ = 0.1, a moderate correlation with ¢ = 0.3, and a strong correlation
with ¢ = 1. For each value of ¢, the simulations are repeated 100 times with a same set of
true values of coefficients.
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We construct the initial graph using the Delaunay triangulation, removing edges longer
than 0.1. We consider four candidates o = 0.0075,0.0150,0.1000, 0.3333, which give ¢ =
0.05,0.1,0.5,0.9, respectively. The other hyperparameters are set to be ag = by = 1 and
co = do = 107°, and the standard deviation for the random walk proposal in the hyper
step of our RJ-MCMC algorithm is chosen to be 0.9. For each simulated data set, we run
d = 8 tempered chains in parallel with the lowest inverse temperature t; = 0.35. We run
each chain for 100, 000 iterations, discarding the first 50,000. We set the thinning interval
to be 20 iterations and the swap interval to be 100. A total of 2,500 posterior samples are
collected.

As is common in many Bayesian partition models (e.g., Denison et al., 1998; Gra-
macy and Lee, 2008; Payne et al., 2020), we use the maximum a posteriori (MAP)
estimator for point estimation. The posterior distribution used here is the full

D {ﬁ, {ﬂ(m),km,w(m)}izl Lo2 N | y} derived from (5) (instead of the collapsed version

in Equation 7). We also calculate the 95% highest posterior density (HPD) interval for
each S, (s;) from the MCMC samples.

Most existing software for spatial clustering is designed for spatial response data or
spatial points. The BSCC method is compared with the frequentist SCC method (Li and
Sang, 2019) and a Dirichlet process mixture (DPM) model for spatial regressions proposed
by Ma et al. (2020), due to the lack of other available software for multiple regressions with
spatially clustered coefficients. In SCC a fixed MST is used and the tuning parameter for
penalization is chosen by BIC. The original DPM model in Ma et al. (2020) includes a
term for spatial random effects modeled by a Gaussian process. For fair comparison, we
drop this term since our model doesn’t include these smoothly varying effects (the results
of the original version of DPM models are included in Appendix C.4). The DPM model is
essentially a Bayesian linear varying coefficient model with a Dirichlet process prior on the
coefficients to capture cluster patterns. Inference of the DPM model is based on MCMC,
and we run the chain for 20,000 iterations, discard the first half, and collect posterior
samples every 10 iterations from the second half. MAP estimators are also used for the
DPM model. The performance of coefficient estimation is quantified by the mean squared
error (MSE)

MSEg = nlp DD {Bn(si) = Bulsi)}*.

i=1 m=1

We assess the performance of partition recovery by the Rand index, which is the proportion
of agreements of the estimated partitions and the true ones. A Rand index that is closer to
1 indicates a better recovery of the true partition.

We implement the BSCC method in R using the deldir package for the Delaunay
triangulation, the igraph package for graph operations, and the ramcmc package for the
Cholesky update/downdate. The code will be made publicly available upon publication.
The implementation of the SCC method is adapted from the R package glmnet. The
DPM model is implemented in R using the nimble code provided in Ma et al. (2020). All
computations were performed on a Linux server with two 2.4GHz 14-core processors and
64GB of memory.
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a=00075 «=00150 a=0.1000 o=0.3333

(c=005) (c=0.10) (c=0.50) (c=0.90)
WAIC, 49 37 13 1
WAIC, 53 38 8 1

Table 1: Number of data sets (out of 100) with moderate spatial correlation in which WAIC
prefers a certain value of «

Rand index
B B2 B3
Spatial correlation | BSCC SCC DPM | BSCC SCC DPM | BSCC SCC DPM
Weak 0.986 0.716 0.686 | 0.990 0.819 0.781 | 0.997 0.852 0.822
Moderate 0.983 0.722 0.681 | 0.987 0.825 0.773 | 0.994 0.853 0.812
Strong 0.964 0.726 0.680 | 0.972 0.830 0.770 | 0.970 0.849 0.809

Table 2: The average Rand indices for BSCC, SCC, and DPM methods over 100 simulations

5.2 Simulation Results

We first consider selecting the hyperparameter « (or equivalently, ¢) using WAIC. Table 1
shows the number of data sets with moderate spatial correlation in which WAIC prefers
each candidate value of a. The value a = 0.0075, which leads to ¢ = 0.05, is preferred in
most of the data sets by both criteria. As a result, the rest results of the simulation studies
are all based on ¢ = 0.05. The sensitivity analysis of « is shown in Appendix C.1.

We then assess the performance of BSCC based on 100 repeated experiments. The
boxplots of MSEs of BSCC, SCC, and DPM under three different settings of spatial corre-
lation for predictors are shown in Figure 3. We can see that as the spatial correlation for
predictors increases, all methods give higher MSEs. Under all settings, the MSE of BSCC
is substantially lower than those of SCC and DPM. For instance, when the spatial range
parameter of predictors is ¢ = 0.3 (moderate correlation), the average MSE of BSCC is
nearly 1/6 and 1/35 of the counterparts of SCC and DPM, respectively. Even when the
spatial correlation is strong (¢ = 1), a less favorable case for parameter estimation, BSCC
still provides a much more accurate coefficient estimation than SCC and DPM.

In terms of the performance in partition recovery, we compare the average Rand indices
of BSCC, SCC, and DPM, over 100 simulations under each setting of spatial correlation.
The results are presented in Table 2. BSCC considerably outperforms SCC and DPM in
estimating the cluster patterns. Under weak or moderate spatial correlation, BSCC almost
perfectly recovers the true partition, suggested by the high Rand indices close to 1. When
the covariates are strongly correlated over the spatial domain, the Rand index of BSCC
degenerates slightly, but overall still indicates remarkably accurate partition recovery.

Next, we analyze the result from one simulated data set under the setting with a moder-
ate spatial correlation (¢ = 0.3) in covariates. The data set that has a median MSE among
100 data sets is chosen for illustration.
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Figure 3: Boxplots of MSEs for BSCC, SCC, and DPM methods under 3 different settings
of spatial correlation for predictors. 100 simulations are run for each setting. The
average M SEg over 100 simulations is shown above each box.
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Figure 4: The estimated B3(s;) from (a) BSCC, (b) SCC, and (c) DPM in one simulated
data set with moderate spatially correlated predictors (¢ = 0.3). The MAP
estimate of the spanning tree is shown in (a), and the minimum spanning tree
used by SCC is shown in (b). Points with absolute values greater than 2 are
marked in gray.
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Figure 5: Zoomed version of Figure 2(c) and Figure 4(a, b) into the region [0.6,0.8] x
[0.65,0.9]. Some of the points mis-classified by SCC but correctly classified by
BSCC are marked by red circles.

Figure 4 shows the estimated Bg (s;) from BSCC, SCC, and DPM. While all methods can
approximately capture the true patterns shown in Figure 2(c), BSCC gives a much more
consistent result in terms of both partition recovery and parameter estimation. In contrast,
the result from SCC has more mis-classified points and gives larger estimation errors. The
result from DPM is noisier, and the clusters it identifies are not spatially contiguous. The
results for B1(s;) and fa(s;) are similar and thus omitted. The numbers of clusters given
by BSCC are 5 for 51, 5 for B2, and 6 for 83, while the ones given by SCC are 92, 69, and
132, respectively. DPM results in 23 clusters for each coefficient. The results suggest that
BSCC can recover the true partitions in a highly accurate way, including the irregularly
shaped partition of Ss.

The improvement of BSCC over SCC is largely attributed to the fact that BSCC allows
the spanning tree to be updated so that it has a consistent ordering with the true partitions.
To illustrate, we show an example in Figure 5, which is a zoom-in version of Figure 2(c) and
Figure 4(a, b) on the selected window [0.6, 0.8] x [0.65,0.9]. The points within the red circles
are mis-classified by SCC but correctly classified by BSCC. The reason is that the MST
in Panel (c) used in SCC is not able to induce the true partition; the mis-classified points
are only connected to the neighboring cluster (marked by green points) instead of the true
cluster (marked by orange ones), as they should be. As a result, there is no hope for SCC
to recover the true partition due to the use of an inconsistent fixed ordering spanning tree.
In contrast, the MCMC procedure in BSCC can fix this issue by updating the spanning
tree such that it connects points in a more desirable way, as is shown in Figure 5(b).

Another advantage of BSCC over SCC is that the Bayesian inference procedure natu-
rally comes with an uncertainty measure. Distributions of posterior samples of 2 at four
representative locations are shown in Figure 6, where 95% HPD intervals are marked by red
segments. For a location in the interior of a cluster (i.e., far away from the true boundaries),
which is shown in Panel (a), the posterior distribution is unimodal, and the HPD interval
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Figure 6: Distributions of posterior samples of 33 at four locations (see the text for details).
Red segments indicate 95% HPD intervals. True coefficient values are marked by
blue dashed lines and true values of By in neighboring clusters are marked by
green dash-dotted lines. Note the scales of horizontal axes are different.

is narrow and covers its true coefficient (marked by the blue dashed line). The parameter
estimation is accurate in this situation. Panels (b - d) show locations close to a true bound-
ary of Ba. The posterior distribution in Panel (b) displays a similar pattern as Panel (a). A
different pattern is shown in Panels (¢) and (d), where the distributions are multimodal and
have wider HPD intervals. Notice that lower modes in Panels (c¢) and (d) appear near the
true values of B2 in the neighboring clusters (indicated by the green dash-dotted line), and
the HDP intervals also contain these values. In Panel (d) there is also a third mode between
—0.5 and 0, probably because this location is assigned to some small-sized clusters in some
of the MCMC samples. Overall, the posterior distributions assign a substantial amount of
mass around the true coefficients. The multimodality reflects the uncertainty that a point
near a boundary may be classified into either cluster around it. Posterior distributions of
other locations display similar patterns.

Finally, we remark that the computational expense of BSCC is in general reasonable,
thanks to the use of multiple computation strategies carefully designed for the collapsed
RJ-MCMC algorithm in Section 3.4. With a moderate spatial correlation for covariates,
the average time over 100 simulations to run 100, 000 iterations with 8 parallel chains is 20
minutes. As a comparison, DPM takes 56.3 minutes to finish 20,000 MCMC iterations on
average. Increasing spatial correlation has no impact on the running time.
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6. Real Data Analysis
6.1 Data Set

We apply our BSCC method to analyze the temperature-salinity (T-S) relationship of sea-
water in the Atlantic Ocean. Our goal is to identify the Antarctic Intermediate Water
(AAIW) characterized by a negative T-S relationship (Talley, 2011). The identification of
the AAIW could provide valuable information about Earth’s climate change and thus is an
important research question in geoscience. It is known that the T-S relationship is rela-
tively homogeneous within certain regions but could change abruptly across the borders of
individual water masses. Therefore, the T-S relationship is often assumed to be a spatially
piecewise constant in oceanography.

The data of temperature and salinity is downloaded from National Oceanographic Data
Center (https://www.nodc.noaa.gov/0C5/woal3/). We chose a random sample of 5,130
spatial locations from the observations in the segment of the Atlantic basin along 25°W
between 60°S and the equator. The distributions of both temperature and salinity have
strong anisotropic spatial patterns as a result of the Ocean’s geometry, which has a width
of around 20,000 km and a thickness of about 4 km. To eliminate the anisotropy, we follow
a rescaling method commonly used in oceanic studies (Vallis, 2017) by letting (sp,sy) =
(s9/L,sY/H), where s% (s9) is the original latitude (depth) and L (H) is the horizontal
(vertical) length of the ocean.

6.2 Analysis Results

The relationship of temperature and salinity is modeled by
Sal(s;) = Bo(si) + Bi(si) Temp(s;) + €(si),

where Sal(s;) and Temp(s;) are the salinity and temperature at location s; = (s, Sv.i),
respectively, Bo(s;) is the intercept, and fi(s;) denotes the T-S relationship of interest.
Both 1 and By are assumed to be spatially piecewise constant. We adopt the same prior
as the simulation studies described in Section 5.1 except that we only consider a candidate
set of a € {0.0075,0.015,0.1} due to computational expense. The optimal model selected
by WAIC corresponds to o = 0.1, which gives ¢ = 0.574. We run d = 20 chains with lowest
temperature t4 = 0.1. Each chain is run for 1,500, 000 iterations with the first 1,000,000 as
burn-in period. The swap and the thinning intervals are set to be 100 and 50, respectively,
giving 10, 000 posterior samples in total. Typically such a long chain is needed for large data
sets in Bayesian high dimensional regression models to get reliable uncertainty estimates
(e.g., Zhou and Guan, 2019; Guan and Stephens, 2011).

The traceplot of posterior samples of o2 displays satisfactory convergence and mixing
performance. The slope estimates from BSCC as well as SCC are shown in Figure 7, and
the estimated boundaries of the AAIW regions (points with negative slope estimates) are
marked by black dashed lines in Figure 7. BSCC gives 68 clusters for the slope 5;. In
contrast, SCC gives 1141, which is too large for interpretation. A band-shaped AAIW
region located near the sea surface from s; = —0.30 to s = —0.50 is identified by BSCC.
Its encompassing region covers the well-recognized generation site of AAIW and the low-
salinity tongue which is believed to be associated with AATW (Talley, 2011). We also notice
that BSCC gives a spatially contiguous region of AAIW, while SCC does not.
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Figure 7: The T-S relationship /; estimated from (a) BSCC and (b) SCC. The contour of
B1 = 0 given by interpolation is shown as the black dashed line.

As suggested by geophysical theory, the T-S relationship may change dramatically across
the boundary of AAIW (Talley, 2011). We quantify the change of the estimated T-S rela-
tionship by the magnitude of spatial difference quotient (Simmonds, 2012), which is given
by

1
8;)—B1(si, )}2 8;)—B1(s55)}2 2 s;)—B1(s; s;)—0B1(s; cos 2
D(s:) = [{ﬁl(d%siié(«yl)} n {Bl(désin;(’yQ)} _ 2{Bi(s)=hu( éifiiﬁsir(ﬂi 1(sig)} ’Y] 2

where s;; and s;, are two nearest location of s;, d; is the distance between s; and sij, J=1,2,
and v is the angle between vectors (spi, — Sh,i; Sv,i; — Svi) and (Sh.iy — Sh,is Sv,is — Sv,i)-
Figure 8 shows the results from BSCC and SCC. Consistent with the theoretical results in
geophysics, the change of 81 given by BSCC is abrupt around the boundary. For the results
from SCC, the change has much smaller magnitude, partly due to the shrinkage effect of
the Ly penalty on the differences between neighboring regression coefficients.

Finally we illustrate the uncertainty of the T-S relationship estimation in Figure 9. The
T-S relationship of purple points are estimated to be negative with high certainty. We find
3 locations along the boundary of the AATW region whose 95% HPD intervals of 31 include
0, and they can be viewed as part of the potential boundary of AATW.

7. Conclusions and Discussion

In this article, a novel spatial regression method, called Bayesian Spatially Clustered Coeffi-
cient regression, is developed to estimate the clustered relationship among spatial variables.
Our BSCC method is based on a model-based spatially contiguous clustering method de-
fined via connected components of an undirected graph, which we prove can be induced
by a spanning tree and a suitable subset of its edge set. A prior for spatial partitions is
therefore developed hierarchically by assigning priors to spanning trees as well as their edge
sets. We prove that the BSCC model achieves posterior consistency for point estimation
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include 0 are marked by green crosses. Note that only the region [—0.5, —0.25] x
[0,0.4] is shown.

under this prior. However, results for posterior selection consistency (i.e., the property that
the posterior distribution of partitions concentrates at the true partition) are non-trivial to
prove, and we leave this for future research.

For computation, we propose an RJ-MCMC algorithm to sample spanning trees and
partitions from their posterior distributions. Various computation methods such as parallel
tempering are utilized to facilitate convergence. Our simulation studies demonstrate that
BSCC remarkably outperforms its competitors SCC and DPM. In particular, BSCC achieves
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nearly 80% reduction in MSE in our simulation studies when compared with its frequentist
counterpart, SCC, partially for the reason that the MCMC procedure can effectively fix the
mis-classification in SCC by proposing a more desired spanning tree. We also present an
application of BSCC to the detection of water masses by estimating the spatial clustering
patterns of T-S relationship in the Atlantic basin.

One potential research direction is to further improve the convergence and mixing of
the BSCC algorithm. A long burn-in period is typically needed before the chain converges
for our simulated and real data. For binary tree based methods, efficient proposals for
new partitions have been well-studied in literature (Chipman et al., 1998, 2010; Wu et al.,
2007). For the proposed spanning tree based model, we have tried to propose new partitions
adaptively by splitting an existing cluster at boundaries. However, we did not observe sub-
stantial improvement in terms of mixing and convergence (see Appendix D.2 for details).
Modifications of proposals in the current RJ-MCMC algorithm are currently under inves-
tigation. Nevertheless, we remark that based on our numerical experiments, even when
the chain does not fully converge, one can often still get reasonably accurate point esti-
mations of partitions and coefficient values, though the reliability of uncertainty measures
such as HPD intervals and Bayesian model averaging might be a concern. Hyperparameter
selection is another remaining challenge in the model. Despite the utility of the proposed
hyperparameter selection method in Section 3.5, a careful choice of the candidate set for
« is still required to achieve better performance when one has little information about the
number of clusters a priori.

Our current model in (1) assumes that the intercept and other regression coefficients
are spatially piecewise constant. It is straightforward to generalize (1) to be y(s;) =
x1(si) B(si) + xa(si) a(s;) + €(s;), where B has clustering patterns and « is smoothly
varying. Incorporating a spatial Gaussian process random effect into the BSCC model is a
special case of it.
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Appendix A. Proofs
A.1 Proof of Proposition 2

To prove Proposition 2, we first introduce a lemma.

Lemma 8 (Proposition 8.1.1 of Diestel 2016) Every connected graph contains at least one
spanning tree.

Now we prove Proposition 2.

Proof [of Proposition 2| We first construct a subgraph of Gy and then show that it is a
spanning tree that induces w. Consider the following procedure with initial values ¢ = 1

and 70 = (7°,£% = (0,0):

1. If t = 1, pick an arbitrary vertex v € Vy; otherwise, pick a vertex v € Vo\V!~! that is
connected to a vertex in 7¢~! by an edge e (the existence of v is guaranteed since Gy
is connected). Without loss of generality suppose v belongs to C;.

2. By Lemma 8 we know there is a spanning tree 7* = (V*, £*) of the subgraph (Ct, &, ),
where &, C &) is the set of edges whose endpoints belong to C;. If t = 1 let Tt = T%;
otherwise, let 7t = (V=L U V* €71 U E* U {e}), where V=1 and £71 are the vertex
set and edge set of 7'~!, respectively.

3. If T contains all vertices in Gy, then stop; otherwise, let t :== ¢ + 1 and go to step 1.

We show that each 7%, t > 1 is a tree by induction arguments. By construction 7 is a tree.
Suppose Tt~ is a tree, then 7% is also a tree since both 7'~ and 7* are trees.

Therefore, the final 7% that contains all vertices of Gy is a spanning tree and the
collection of e’s in each iteration is _1. This completes the proof of Proposition 2. |

A.2 Proof of Theorem 3

To prove Theorem 3 we need some lemmas.

Lemma 9 (Lemma 1 of Laurent and Massart 2000) Let X?l be a chi-square distribution
with degree of freedom d. Then the following concentration inequalities hold for any x > 0:

pr (Xﬁ >d+ 2z + 2V da:) < exp(—x)

and

pr (X?z <d-—2V dx) < exp(—x).

Lemma 10 (Lemma 6 of Barron 1998) Let fy be the likelihood function with parameter
0 € O, f* = fo- be the true probability density of data generation with true data generation
parameter 6%, Eg, E* denote the expectations under 6 and 0% respectively, pr* denote the
probability measure for data generation under 0%, and 11, 11, denote the prior distribution
on ©,, with density w(0) and the posterior, respectively. Let B, and C, be two subsets of
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the parameter space O, and ¢y, be a test function satisfying ¢n, (Dy) € {0,1} for any data
Dy,. IfI1(By) < by, E*{¢ (Dpn)} < by, supgec, Lo {1 — ¢(Dn)} < cp, and

pr*(m(Dn) >an> >1—ad
f*(Dn) — - "

where m (Dy,) = fen 7(0) fo (Dy,) d is the marginal likelihood of D,,. Then for any A, >0,

b, + ¢,

GnQn

pr* <Hn(CnUBn|Dn)2 > gAn—i—a;ﬂ—b;.

Next we give the proof of Theorem 3. With some abuse of notations we use i € C;
to denote that the ith location belongs to the jth cluster and (i,7) to denote the edge
connecting s; and s; throughout the proof. We also denote the L; and supremum norm by
|-l and |||, respectively.

Proof [of Theorem 3]
Given an arbitrary partition m with k clusters, for the jth cluster, we define an estimator

as
> iec, TiYi

Eiecj‘ x’LQ ’
where y; = y(s;). Further define 3;(y) € R™ such that the ith element S, ;(y) = B(j)
i € Cj under m, and 62(y) = |ly — 1 (y)[* /(n — k), where fu;(y) = 2iBri(y)-
Step 1: Inspired by Song and Cheng (2020), we define a test function

o(y) = W |la(y) — || = Vno'en and [67(y) — 0| > 0™,
for some 7y nested in 7 with & < (1+0)g,}

By =

if

for some fixed § > 0 chosen later. Let o denote the Hadamard product of two vectors. We
define

1—¢,

Cn = {(:370') lx o B — p*|| < Miyvno*e, and e

1+e,)°
<o?/o*? < n} \ B,
1—e¢,

and

B, = {(B, o) : The partition underlying 3 has at least dg;, clusters }

For any 7, nested in 7* with & < (14 0)g;, and the jth cluster C; in 7y, we have B(j) ~

N (BZ‘J.),U*Q/ Ziecj m?), where szj) is the true coefficient in C;, and thus Ziecj (Ii,é(j) —

xzﬁz}))2 ~ O—*QX%' Hence, Hljl’ﬂ'(y) - H’*HQ /0*2 ~ XZ

We now bound the type-I error of the test function. Since k = O (g};) < ne2 by Assump-
tion (C3) and &, = (g7 logn/n)'/?, from the concentration inequality for x? distribution in
Lemma 9, we have

2

pr(ge o) (1t (y) = Il > Vno“en, |62(y) — 0| > 0™,

< pr(xi > nep) < exp (—ciney)

n
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for some constant ¢ > 0. Therefore, using a union bound and the second part of Assumption

(03)7

E(ﬁ*ﬂ*){d)(y)} < P, -exp (—c’lnei) < exp (—clnei) , (13)

for some constant ¢; > 0 and large ne? /(g logn).

Next we bound the type-II error. We rewrite
c,=cPHuc®

where

) x . 00 l+e, c
C\V =3(B,0):||lxoB—pu*|| > Mivno en,—a*2<1_€ N By,
n

and

2 2
1—c¢ o 14+¢

c®—ls. 7 < moor 2> n A pe

7 o2~ 1+4¢, Ora*z_l—an "

For any (8,0) € C,, let m be the corresponding partition of 3 and T be a span-
ning tree inducing w. Define © to be the partition formed by removing the edges

{(i,j) €& |Bi—Bjl >0or B —B7| > 0} from 7. Then 7 is nested in both 7 and 7*,
and has no more than (1 + )¢} clusters (this is due to the construction of B¢ and g;). For
any 3 € 07(11)7 we have

— p*|| < Vno'ey,)
—x0f8)+x08—p'| < Vnoe,)
—x0B| > |p" —xo0B| - Vno'e,)
—xo0f| > (M — l)ﬁa*an) ,

~— — — —

where the last inequality is due to the fact that when 3 € b, | —x 0B > Miy/no*e,.
2
(Ziecj wiei)
Ziecj x?

o?x1, where ;) is the value of 8 in Cj, and hence ||f;(y) — x o Bl Jo? ~ X% under the

~

Note also that within each cluster C; under 7, Ziecj (fozi(y) — xzﬂ(j))z =

true parameters (3, 0), where k is the number of clusters in 7. Therefore,

[ * * 1—¢
Pr(g,o) (HH&(Y) —p < \/ﬁa €n) < pr <Xi > : +€n (M — 1)2n531>
n
< exp (*CIQ(Ml — 1)2718721) (14)

for large M; and some constant ¢4 > 0.
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Now consider (8,0) € c?. By the normality of y we have |ly — fi: (y)||* ~ o2 Xn (k)

where k < nE . Therefore, since o € C’,(f) ,

o*2(n — k) -

. 2 0_*2
= PI(,0) ((1 —€n) 2 Hyo-2(:’7r_(§];))” (1+ En)gg)
N 2
< PI'(3,0) ( ly = gg(}’)H —(n— l;:) > (n — ];:)5n>
<pr(p = =B > (0 —h)e,)
< exp (—conel), (15)

for some constant c > 0 and large n.
Combining (14) and (15), we obtain

sup B o) {1 — ¢(y)} < max {exp (~c4(M1 — 1)*nej) , exp (—caney) }
(670)60"

< exp (—CQnsi) , (16)

if My is chosen to be large.

Step 2: Let m(y) be the marginal likelihood, f*(y) be the true likelihood and € =
y — x o 3" be the vector of error terms.

We claim that, with probability pr (|le|| < 2y/no*),

1 N ,logn . w2 i logn
Hn:{(lB7U)H(IB_IB) Sgn S 70302_0—2§029ng}CHn7
o - n n
where H,, is defined as
_ . b el H o
H,=<(B8,0):exp 5 lx o 3" xoﬁ—&—eH + —nlog —
20 o
> exp(—chgy, log n)}
for some constant ¢ > 0. Thus,
nz(y) > / exp —LQ |xoB" —xo0B+ eH + M — nlog% D (,8,02) dBdo?
f(y) = Ju, 20 o
> TI(H,) - exp (—chg; logn) > II(Hy) - exp (—chgy logn) . (17)
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To see the claim, write

1
ﬁonB —xo0 B—i—e” nlog;
onﬁ*—xoﬂ” (xo 3" —xoﬂ) 1 n o2
= - —log — .
202 + o2 e H 20*2 202 + 2 8 o*2
—_——
I II II7

< 0 since 0 > o*

Noticing that when (8, 0) € H, and ||e|| < 2y/no*, by Assumption (C1) and the first part
of Assumption (C3) we have

M2 B — 3 2 9*2 logn 2
1< M5 g < < 23905 _ 6 (g1 10gm).
o ~ n
by Hoélder’s inequality and o* < o we have
xo,@*—xo,@ 1 2My || B — 3
<2 | e <2 Viel
o* o o o
2M *
2SR vy —ogoen).
o
and |
I1T < Zw O (g; logn).

The claim then follows. B

Next we show the prior assigns sufficient probability mass to H,. Notice that II(H,) =
S rer, W(H, | TI(T) > minger, I(H, | T), and for each T, II(H,|T) > (% |
T)I(H, | 7F), where 73 is the partition obtained by removing the edges in G% from
T. The number of clusters in 77, denoted by k;-, is upper bounded by g .

First consider II(x7 | T) = I(k = k%) (- _1 ) . By Assumption (C4),

(1—c)9n
logIl(k = k7) > log
7 Y (l—¢)
= (g5 — 1) log (1 —¢) +logc —log{l — (1 — )"}
> —2ag; logn (18)
In addition,
n—1 N
—log| 1 > —g, logn (19)
n
Now we consider
oo 1 . g logn ) .
H(Hn’WT):H(gW(j)—ﬁ(j)IS ”n for j =1,2,..., k%,

OSO'Q—O'*QSO'*QQ*

logn)
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Since the prior for ;) is given by
By | Ao N0, "'0%), A~ Gammal(co/2, do/2),
by Assumption (C2) and (C3) we have, conditional on 0 < 02 — 0*? < J*Qg;;lo%,

’)

1 N g logn , .
H<U|5(j)—5(j)|§ nn forall j =1,2,...,kF

—/wﬁn LB — Bl < 08T
=/ 1 o P0) T PO = T,

(58 () o)
0

A,U) p(A)dA

1805 *
where Z = max ﬂ—l—l: maxw—i—l,
1<j<ks o* 1<i<n o*
* ;; * _(g:L+CO)/2
_ (g:logn\? k3 +co 1 .2
>¢g- [ —=2— r = Z
where ¢3 is a constant not involving n,
> exp (—c3g; logn) (20)

for some constant ¢4 > 0 when n is sufficiently large.

Finally, for some constant ¢4’ > 0,

H(OSO’2—U*2 SU*QQ;bgn)

n
1
> o*2g; 250 min (o)
n o2€[o*2, 0*2(1+g} logn/n)]
> exp (—cj'gy; logn) . (21)

Combining (18), (19), (20) and (21) we obtain II(H,, | 7) > exp (—csg;, logn) and thus
II(H,) > exp(—cag;logn), for some constant c¢3 > 0 not depending on 7. Hence, with
probability

pr (|le] < 2v/no*) > pr(x? < 4n) > 1 — exp(—can), (22)

for some constant ¢4 > 0, we have

> exp (~(ca + ch)galogn) (23)
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Step 3: By Assumption (C4), for any 7 and some constant ¢; > 0 not depending on
T,

IL(B, | T) <II(k = dg;)
_ 22:59;2(1 - C)k
Dk (I=c)F
(1 _ C)&g;‘fl{l _ (1 _ C)n76g;+1}
1—(1—¢)n
=0(1)-(1—¢)%n1
< exp{—cz0g; logn}.

We therefore have

M(B,) = 3. (B, | T)II(T) < exp{—csdg; log n}. (24)
TET,

Combining parts: By Lemma 10, (13), (16), (23), (24) and (22), it follows that for
sufficiently large § and ne2 /(g;: logn),

1
pr’ {Hn (\/ﬁ I — || = Mio"ey | y) > pn}
< Pr* {Hn (Cn U By, | Y) > pn}
< exp(—g logn) + exp(—cyn) + exp(—cine?), (25)
with
_exp (—@nsi) + exp (—c50¢; logn)
exp(—gy logn) exp{—(c3 + cj)gylogn}
The result then follows from Borel-Cantelli lemma as the right-hand-side of (25) is
summable. |

(26)

A.3 Proof of Propositon 5

We begin with the following lemmas.

Lemma 11 (Chernoff Bounds for Sum of Bernoulli Trials). Let z =Y " | Z;, where Z; = 1
with probability p; and Z; = 0 with probability 1 — p;, and all Z; are independent. Then

pr(z > (1+62)E(z)) < exp (— 2:?52 E(z)) = exp (—% Sy pi>, for all §3 > 0.

Lemma 12 Under Assumption (C6), both the R-NN graph and the restricted Delaunay
triangulation graph are connected graphs with probability 1 as n tends to infinity.

Proof [of Lemma 12| By Theorem 1.1 in Penrose (1999), it is readily to check that the
minimum value of the radius v; such that R-NN is connected equals the maximum edge
length of the MST on S, and it scales with {(7p™™)~*logn/n}'/? with probability 1 as
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n tends to infinity. Notice that the MST is a subgraph of the Delaunay triangulation. By
letting 72 =< (logn/n)'/? and be larger than the maximum edge length of the minimum
spanning tree, the restricted Delaunay triangulation contains all edges in the MST and
hence is still a connected graph. |

Then we prove Proposition 5.

Proof [of Proposition 5| Let d(s,B) = mi%Hs — sp|| denote the distance from a point
SpE

s € R? to a closed set B C R%. For the boundary set Bg~, given v, > 0, we define the
vp-neighborhood of Bg« as

N(Bg*,vn) = {S S R?: d(S,Bﬂ*) < Un}.

When Assumption (C6) holds, the maximum edge lengths in the R-NN graph and
the restricted Delaunay triangulation graph scale with (logn/n)'/2. Therefore, by letting
vn < (logn/n)'/? and v, > max(71,72), we can show that for any edge crossing Bg-, both
of its endpoints must fall within N (Bg«,vy,).

We then define a set of edges from the original graph that have both endpoints within
vy, distance to the boundary set Bg- as follows

Ea(vn) == {(i,§) : (i,§) € & and max {d (s;, Bg+),d (sj, Bg)} < vn}.

From the Definition 4, it is readily to check that the edge differences are all zero when
(i,7) € &\Ep(vn), ie., > 18 = Bilo = 0.
(1,9)€{€\EB(vn)}

For any given spanning tree T, |Eg(vy,) NEr| < z, where z = [S,, NN (Bg«, vy,)| denotes
the number vertices falling within A'(Bg-, v, ). The last inequality holds because Eg(v,)NEr
is a spanning forest and hence its total number of edges is less than z.

Recall the boundary set Bg« has a v,-covering number N (Bg«, vy, | - |) < Mav,!, it
follows that the v,,-packing number M (Bgs,vn, || - ||) < Mav, L. From triangular inequality,
there exists a maximal v,-packing for Bg+, denoted as s. 1, - - - , S, with the packing number
k< Mgvgl such that

U B(sejivn/2) CN(Bs-,vn) € | B(sej,2vn) (27)

g=1,...k G=1,...k

where B (s, vy,) denotes a ball centered at s, with radius vy,.
Therefore, z follows a binomial distribution with size n and

E('z) < E(‘Snm{ U B(Sc7j72vn)}’)
j=1,....k

< nkE([si N B (scj,2vn)|)

= nk:/ ps(s)ds
B(se,j,2vn)N[0,1]2

< Ankoip™® = B = O(nkv?).
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Let Z be another binomial distribution that is independent from z with size n and E(Z) =
E, a0 From Lemma 11,

52
pr{z Z (1 + 52)Emax} S pr{f Z (1 + 52)Emax} S exp <_2+25Emam> (28)
2
for all 63 > 0. When v,, < (logn/n)"/?, Epnae = O(nkv?) = O(nv,) = O{(nlog n)l/Z}. Let
59 = 1, then P(z > 2E4z) < exp (—FEmax/3) = exp{—My(nlogn)'/?} for some constant
My > 0. It implies with probability going to 1, the number of vertices falling within
N (Bg«,vy) is O{(nlogn)/?}.

Finally we have

Grl= > 18 =Bilo = > 1B = Bilo+ > 18 = B;lo
(4,7)EET (4,7)€€EB(vn)NET (3,5){E\EB(vn) }NET
< &) Nérl+ > 18 =Bl <=
(4,9)€€0\En(vn)

Since z does not depend on the choice of T, we have g;, = maxrer, |G%| < z. Combining
with the result in (28), we complete the proof. |

A.4 Proof of Corollary 6

Proof For S, satisfying g* < Ms(nlogn)/? and log P, < Msn'/?log?/? n, following
the same proof of Theorem 3 with ¢}, P, and ¢, replaced by M;3(nlog n)l/ 2 P, and &,
respectively, we have

* 1 * * ~
pr {Hn <\/ﬁ | — p*[| > Mgo™é, | Y’Sn) > Pn "Sn}

< exp(—M3n/?10g%/% n) + exp(—cyn) + exp(—c1né2),

n

where p,, has the same form as (26), with possibly different constants that do not depend
on S,. Let Q, be the event that g* < Ms(nlogn)/? and log P, < Msn'/21og®? n hold.
Then

* 1 * * x
o {1 (= ') = Moo, 19,50 < |
> /Qn pl"* {Hn (\/15 HIJ/ - IJ'*H > M6U*<§n ‘ Y7Sn> < pn ’ Sn}ps(sn)dsn
> {1 — exp(—M3n'/? log*? n) — exp(—cqn) — exp(—cmé“i)} - pr(@n)-

The result then follows since pr(@,) — 1 and p, — 0 as n tends to infinity. [
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A.5 Proof of Propositon 7

We begin with a brief review of Prim’s algorithm for finding the MST and set up some
notations. Prim’s algorithm starts with an arbitrary vertex sy of Gg. In the t-th iteration,
let 7t = (V', &) be a connected subgraph of the MST and (V) C & be the set of all
edges in & that has one and only one endpoint in V! (for t = 0, we define 7° = ({so},0)).
T is constructed by picking the edge in & (Vt=1) with the least edge weight and adding this
edge and its endpoint that is not in V=1 into 7¢~!. The algorithm stops when V! includes
all the vertices in Gy.

Proof [of Propositon 7| Let A’ be the event that 7' is a connected subgraph of 7. It
suffices to show that A’ happens with nonzero probability for all ¢. Notice that by Prim’s
algorithm, A® C A'~! and thus

pr(A") = pr(A"|A"™)pr(AH). (29)

Consider two cases: (i) all vertices in Vo \ V=1 have different cluster memberships than the
ones in V=1 and (ii) otherwise. For (i), let e be an arbitrary edge in £(V!~!). Then

pr(AY| A1) > pr({e has the minimal weight among £(V'"1)}) > 0. (30)

The strict inequality is due to the ii.d. Uniform(1/2,1) on the weights of £(V*~1). For
(i), let e be an edge in £(V'~!) connecting two endpoints in the same cluster. Then (30)
still holds due to the way that we sample edge weights. The proposition then follows by
induction arguments on ¢ using (29).

|

Appendix B. RJ-MCMC Algorithm

In this appendix we provide details of our RJ-MCMC algorithm.

Recall from Section 3.4 that in each iteration of RJ-MCMC, we further iterate through
each covariate from m = 1 to p. In each inner iteration one of the following four moves,
birth, death, change, and hyper, is performed with probabilities r g (kn,), rp(km), rc (km) and
7 (km), respectively. We set rp(k) = rp(k) = 0.425 for k € {2,3,...,n— 1}, rg(k) = 0.85
for k =1, rp(k) = 0.85 for k =n, rc(k) = 0.1 and ry(k) = 0.05 for k € {1,...,n}.

Detailed implementation as well as acceptance probability of each move are given as
follows.

(a) Birth (km — km+1): Randomly choose one edge from n— k,, edges in the spanning tree
7™ that connect vertices belonging to a same cluster with equal probability. Suppose

)

the chosen edge connects two endpoints s;, s;; € C](-m with 7 < /. By removing this edge

we split C](-m) into two connected components, one containing s; and other containing
s;s. We set the component containing s;; to be a new cluster Cli:)ﬁ and set the other
one to be C](-m)*. We let Cl(m)* = Cl(m) forl=1,...,7—1,7+1,...,k,. By doing so we

propose a new partition m(m)x,
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The acceptance probability is
a; =min{l, A-P- L}, (31)

where

is the prior ratio,
rp(km + 1) n =k,

P= 75 (km) k.

is the proposal ratio,

ply | 7 e+ 1,700 {70,y TOY,, 020
p[y ’ {W(m)akm77-(m)}fn:170-27)\j|

is the likelihood ratio whose numerator and denominator are given by (6).

Death (kpy, + 1 — ky,): Randomly choose one edge from k,, edges in the spanning tree

7™ that connect different clusters with equal probability. Suppose the chosen edge
(

connects two endpoints s; € ij) and sy € C](-fn) with ¢ < 7. We merge these two

clusters to be C](-m)* and remove C](.Zn). We set Cl(m)* = Cl(m) for I < j', and Cl(m)* = Cl(inl)

for { > j/. Then we propose 7(™*. The acceptance probability is the reciprocal of the
one in birth step, i.e., 1/a1, where o is given by (31).
Change (kpy, — ku,): First perform a death step by merging C](-:n) and CJ(-;n) to be C](Z”)*,
and then perform a birth step by splitting C](.;n)* tobeC J(;n)** and C,im)**. The acceptance
probability is a3 = min{1l, A-P - L}, where A =1, P =1, and
o p |:y | W(m)**, kma T(m)) {Tr(l)a klu T(l) }l;ém )0-27 A:|
ply | {70, kp, TP 62 A]

Hyper: In this step 7™, 02 and A are updated. We first update o2 by a Gibbs step:

0% ~1G (” 0 Lyt yTP;Iy}) :
2 2

To update w(™ (and hence 7(™), a Metropolis-Hastings procedure is utilized. We
first sample edge weights of the cross-cluster edges from i.i.d. Uniform(1/2,1) and edge
weights of those within-cluster edges from i.i.d. Uniform(0, 1/2). Then we propose a new
spanning tree using Prim’s algorithm based on the new weights. The proposed spanning
tree is guaranteed to induce the current partition 7(™) (Teixeira et al., 2015). Since
the full conditional of w("™) remains the same for the proposed weights, the acceptance
probability is always 1.
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Finally we update A using a Metropolis-Hastings step with a symmetric random walk
proposal. We propose A* by

log \* ~ N(log \, 0%, ),

and the acceptance probability is a1 = min{1, A-P - L A*/\}, where
A* 00/271
A=(5)7 el -0/

is the prior ratio, P = 1 is the proposal ratio, and

P [y | {7 K, TOWY 02, )\*}
ply | {7, kp, T} 62 A]

is the likelihood ratio.

Appendix C. Additional Simulation Results

In this appendix we provide results on additional simulation settings.

C.1 Sensitivity Analysis of ¢

We first examine how sensitive the results from BSCC model to a. We reconsider the 100
data sets with moderate spatial correlation that are used in the Simulation Studies section.
We fit BSCC models with four candidates a € {0.0075,0.0150,0.1000, 0.3333}, which give
c=0.05,0.1,0.5,0.9, respectively.

Figure 10 shows MSEs for BSCC models under different candidate values of « (or
equivalently, ¢). We can see in all settings BSCC outperforms SCC in terms of MSEs, and
overall the MSEs for BSCC are not sensitive to a (or ¢). However, careful choice of a does
lead to improvements in MSEs.

Recall that Table 1 in the main text shows the number of data sets in which WAIC
prefers a candidate value of a. In most of the data sets a = 0.0075 or 0.0150 is preferred,
which are two models with least MSE (see Figure 10). Also notice that o = 0.3333 that
leads to higher MSE is rarely chosen by WAIC.

In summary, our simulation results suggest that the MSE performance is fairly robust
to the choice of o (and thus ¢), as long as the value of « is within a reasonable range (e.g.,
a < 0.1 in this example). We hence recommend using WAIC to determine the desired range
of a.

C.2 Simulations under Different o

In this subsection we evaluate the performance of BSCC under different settings of signal-
to-noise ratio (SNR). We regenerate data sets from (12) with o € {0.1,0.5,0.75,1}, and 100
data sets are generated for each value of . The rest data generating settings are the same
as the ones for data sets with a moderate spatial correlation. The choices of ¢ correspond
to different levels of SNR—as o in increases, the variation in the residuals becomes larger
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Figure 10: Boxplots of MSEs for BSCC method under 4 different choices of hyperparameter
a (or equivalently, ¢). 100 simulations are run for each choice. The average
M S Eg over 100 simulations is shown above each box. MSEs for SCC method is

also shown for reference.

Rand index

B1 B2 B3
o BSCC SCC | BSCC §SCC | BSCC SCC

0.1 | 0983 0.722 | 0.987 0.825 | 0.994 0.853
0.5 | 0902 0.737 | 0.904 0.830 | 0.931 0.852
0.75 | 0.816 0.736 | 0.825 0.822 | 0.869 0.849

1 0.7561 0.734 | 0.763 0.822 | 0.818 0.846

Table 3: The average Rand indices for BSCC and SCC methods over 100 simulations under
4 different settings of SNR.

with respect to spatially varying effects in x(s)T3(s). We fit BSCC and SCC models to
each data set using the same settings as in the main text.

Figure 11 presents boxplots of MSEs for both models under different choice of SNRs, and
Table 3 shows average Rand indices. As expected, the MSE performance of both methods
degenerates as SNRs decrease. In terms of partition recovery, the Rand indices for BSCC
also decreases as o becomes larger. When o € {0.1,0.5,0.75}, BSCC outperforms SCC in
both coefficient estimation and partition recovery. In the extreme case where o = 1, BSCC
still has a better MSE but slightly lower Rand indices.
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Figure 11: Boxplots of MSEs for BSCC and SCC methods under 4 different choices of noise
standard deviation o. 100 simulations are run for each choice. The average
MSEg over 100 simulations is shown above each box.

C.3 Simulations under Different Cross-Correlations

In many spatial applications, in addition to spatial dependence within each covariate, there
may also be cross-dependence among covariates. In this subsection we investigate how
BSCC performs under different settings of cross-dependence.

As discussed in Section 5.1, the two covariates in the simulation data are generated
by a linear transformation of two independent Gaussian process realizations: zi(s;) =
Gi(si), a(si) =ri(si)+V1—r2(a(s;), where (,, (m = 1,2) is the realization of a Gaussian
process and 1 controls the strength of cross-correlation between x; and xo.

We consider r € {0,0.375,0.75,0.9}, which corresponds to zero, weak, moderate, and
strong cross-correlation cases, respectively. For each value of r, we regenerate 100 data sets
using the same true clustering patterns as Figure 2 in the main text shows. In practice,
however, one may expect highly correlated covariates to have similar clustering configura-
tions in their coefficients. As a result, we further consider a scenario where » = 0.9 and 51
shares the same true partition as f2 (Figure 12). We refer to this scenario as “correlated
partitions” in what follows. We fit BSCC and SCC models to each of them using the same
settings as in the main text.

Figure 13 shows MSEs under the five settings, and BSCC outperforms SCC in all of
them. When B; and (2 have different true clustering patterns, the MSE performance of
BSCC is fairly robust to multicollinearity. This result is not surprising for two reasons.
First, we assume a ridge regression type of prior on 3 conditional on the partitions that
mitigates multicollinearity problems. Second, the matrix XTX is well-conditioned when the
partitions of 8 and By are different, where X is the transformed design matrix. When £
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Figure 12: Spatial structures of true coefficients used in the correlated partitions scenario
in Section C.3, where 51 and 2 have the same true partitions.

Rand index

B1 B2 B3
Cross-covariate correlation BSCC SCC | BSCC SCC | BSCC SCC
r=20 0.984 0.719 | 0.988 0.824 | 0.994 0.853
r=0.375 0.985 0.719 | 0.988 0.824 | 0.994 0.853
r=20.75 0.983 0.722 | 0.987 0.825 | 0.994 0.853
r=20.9 0.980 0.722 | 0.985 0.826 | 0.994 0.852
r = 0.9 with correlated partitions | 0.961 0.830 | 0.963 0.829 | 0.989 0.853

Table 4: The average Rand indices for BSCC and SCC methods over 100 simulations under
5 different settings of cross-covariate correlation.

and (B9 share the same true partitions, the multicollinearity problem becomes more severe
in X and we observe a drop in the accuracy of coefficient estimation.

The Rand indices under fives scenarios are shown in Table 4. Similar to the findings in
terms of MSEs, the partition estimation performance of BSCC is robust when g1 and [
have different true partitions. On the other hand, when they have an identical partition,
partition recovery for both coefficients become worse, probably due to the interference of
the posterior distributions of the two partitions, as pointed out by an anonymous reviewer.

C.4 Comparisons with DPM Models with Spatial Random Effects

In this subsection we compare our method to the original version of the DPM model pro-
posed by Ma et al. (2020), which includes a spatially varying intercept term modelled by
a Gaussian process (referred to as DPM-GP model). We adopt the same hyperparameter
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Figure 13: Boxplots of MSEs for BSCC and SCC methods under 5 settings of cross-covariate
correlation. “Correlated partitions” refers to the scenario where (31 shares same
true partition as 32. 100 simulations are run for each choice. The average M SEg
over 100 simulations is shown above each box.

BSCC SCC DPM DPM-GP
B1 0986 0.718 0.683 0.664
B2 0.984 0.822 0.776 0.751
Bz 0.997 0.848 0.817 0.781

Table 5: The average Rand indices for BSCC, SCC, DPM, and DPM-GP methods over 10
simulations with moderate spatial correlation.

settings as in the code provided in their paper, except that we set the maximum possible
number of clusters to 50. We run the chain for 20,000 iterations, discard the first half, and
collect posterior samples every 10 iterations after burn-in. It takes on average 11 hours to
run a DPM-GP model for one simulation data set used in the main text. Due to its com-
putational expensiveness, we only run the model for the first 10 data sets with a moderate
spatial correlation.

Figure 14 and Table 5 show the MSEs and Rand indices of BSCC, SCC, DPM, and DPM-
GP models for the 10 data sets, respectively. BSCC model achieves the best performance
among the four models in estimating coefficient values and partitions.
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Figure 14: Boxplots of MSEs for BSCC, SCC, DPM, and DPM-GP methods for 10 data
sets with moderate spatial correlation. The average M SEg over 10 simulations

is shown above each box.

Appendix D. Discussion on RJ-MCMC

D.1 Mixing of RJ-MCMC

In this subsection we discuss the mixing of tempered RJ-MCMC chains in more details. We
consider the data set with a moderate spatial correlation that is analyzed in the Simulation
Studies section of the main text, and compare the BSCC model fittings with and without
parallel tempering (which are referred to as tempered and untempered models/chains, re-
spectively, in what follows). Both chains are run for 50, 000 iterations after a burn-in period
of the same length, and we thin the chains by taking samples every 20 iterations. For the
tempered model, we adopt the sigmoidal temperature ladder (Gramacy and Taddy, 2010)
with minimum inverse temperature t; = 0.35 and run 8 parallel chains. See Section 5.1 in
the main text for other settings of the RJ-MCMC algorithm.

Table 6(a) shows acceptance rates of each move in each of the tempered chains. The
chains with inverse temperatures less than 1 have flatter target distributions than the pos-
terior distribution, allowing for a more efficient exploration of the state space, as suggested
by the fact that most of the chains with low inverse temperatures have higher Metropolis-
Hastings acceptance rates. In particular, the acceptance rates for the Birth, Death, and
Change moves of the hottest chain (i.e., with the lowest inverse temperature) are at least
twice as high as their counterparts in the coolest chain.

Due to the higher acceptance rates, the hotter chains are able to visit the states that are
hard to visit by conventional samplers. These states are passed to cooler chains via state
swapping between chains. Acceptance rates of the swap attempts are shown in Table 7.
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(a) Tempered model

Chain # | Inverse temperature | Birth Death Change Hyper
1 1.000 0.177  0.179  0.090 0.495
2 0.989 0.211 0.211 0.116 0.543
3 0.967 0.276 0.277  0.184  0.554
4 0.922 0.184 0.187  0.096 0.486
5 0.841 0.169 0.172  0.084  0.489
6 0.708 0.174 0.176  0.083 0.508
7 0.532 0.239 0.241 0.140 0.526
8 0.350 0.364 0.364  0.264  0.548

(b) Untempered model
Birth Death Change Hyper
0.154 0.156 0.067 0.481

Table 6: Acceptance rates of the four moves in (a) tempered model and (b) untempered
model.

Chain # 1 2 3 4 5 6 7 8
Inverse temperature 1.000 0.989 0.967 0.922 0.841 0.708 0.532 0.350
Acceptance rate 0.620 0.526 0.581 0.566 0.453 0.367 0.144 0.055

Table 7: Swap acceptance rates of tempered chains.

The swap acceptance rates are lower for hotter chains, probably due to larger gaps between
adjacent inverse temperatures.

As a comparison, the acceptance rates for Metropolis-Hastings moves of the untempered
chain are lower (Table 6(b)), suggesting that the parallel tempering techniques can improve
the efficiency for exploring the posterior space.

Traceplots of the thinned posterior densities after burn-in of the tempered and un-
tempered models are shown in Figure 15, where the densities for the tempered model are
computed based on the draws from the coolest chain. The chains from both models seem to
converge, but the tempered chain exhibits better mixing and less autocorrelation. The tem-
pered chain transits between high posterior regions and low posterior regions more quickly
and it visits low posterior regions more frequently.

Finally, we look at posterior distributions of the number of clusters for each coefficient
obtained from the tempered and untempered models, which are shown in Figure 16. The
conventional untempered chain concentrates more on the regions near the posterior mode,
while with the aid of parallel tempering, the tempered chain is able to visit some partitions
that the untempered chain never does. For the coefficient (3, for example, the tempered
chain frequently visits partitions with 6 clusters, which are missed by the untempered chain.
As indicated by the right tails, the untempered chain also underestimates the probability
of getting partitions with large number of clusters.
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Figure 15: Traceplot of thinned log posterior densities from tempered and untempered
model after burn-in period.
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Figure 16: Posterior distributions of k,,,, the number of clusters for coefficient 3,,, estimated
from MCMC samples of the tempered and untempered models.
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Birth Death Change Hyper
With BAP 0.142 0.145  0.068 0.477
Without BAP 0.154 0.156  0.067  0.481

Table 8: Acceptance rates of the four moves with and without BAPs.

D.2 Boundary-Adjusted Proposals

In this subsection we include the results of applying boundary-adjusted proposals (BAPs)
for splitting clusters. The idea is that proposals splitting a cluster near its boundary is more
likely to be accepted, which might improve mixing. BAPs thus assign higher probability
on removing edges near boundaries. However, we do not observe satisfying improvement in
mixing for this proposal. We summarize our methods and numerical results below.

Given partitions of all covariates {ﬂ'(m) b 1, we divide the vertex set V into two subsets,
namely, internal vertices and boundary vertices, using 3-nearest neighbors methods. Specif-
ically, a vertex is an internal vertex if all of its 3 nearest neighbors have the same cluster
memberships for all covariates; otherwise, we treat it as a boundary vertex. We further
divide the edge set £ into three subsets to distinguish which edges are on the boundaries of
clusters that we should target at:

1. Between-cluster edges: We define an edge to be a between-cluster edge if it is con-
necting two vertices belonging to different clusters.

2. Boundary edges: We define an edge to be a boundary edge if it is not a between-
cluster edge and at least one of its endpoints is a boundary vertex. BAPs place higher
probability on removing this type of edges.

3. Within-cluster edges: We define an edge to be a within-cluster edge if it is not a
between-cluster edge and both of its endpoints are internal vertices.

In BAPs, a cluster is uniformly chosen to be split. Then with probability p,,, a within-
cluster edge that connects two vertices in this cluster is removed, and with probability
1 — pw, a boundary edge is chosen to remove.

In this following simulation, we apply BAPs to the data set analyzed in Section D.1.
We set p,, = 0.2 and do not apply parallel tempering.

Figure 17 shows the thinned posterior densities after burn-in of the models with and
without BAPs, and Table 8 shows the acceptance rates of each move for both models. It
seems that applying BAPs does not improve our results in terms of mixing and acceptance
rates. Further investigations on more efficient partition proposals, including combining
BAPs with parallel tempering, are left as future works.
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Figure 17: Traceplot of thinned log posterior densities after burn-in period from models
with and without BAPs.
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