Toward Diverse Precondition Generation

Heeyoung Kwon', Nathanael Chambers?, and Niranjan Balasubramanian

1

1Stony Brook University, Stony Brook, New York
2 US Naval Academy, Annapolis, MD

{heekwon,

niranjan}@cs.stonybrook.edu

nchamber@usna.edu

Abstract

Language understanding must identify the log-
ical connections between events in a discourse,
but core events are often unstated due to
their commonsense nature. This paper fills
in these missing events by generating precon-
dition events. Precondition generation can
be framed as a sequence-to-sequence problem:
given a target event, generate a possible pre-
condition. However, in most real-world scenar-
ios, an event can have several preconditions,
requiring diverse generation — a challenge for
standard seq2seq approaches. We propose DiP,
a Diverse Precondition generation system that
can generate unique and diverse preconditions.
DiP uses a generative process with three com-
ponents — an event sampler, a candidate gen-
erator, and a post-processor. The event sam-
pler provides control codes (precondition trig-
gers) which the candidate generator uses to fo-
cus its generation. Unlike other conditional
generation systems, DiP automatically gener-
ates control codes without training on diverse
examples. Analysis against baselines reveals
that DiP improves the diversity of precondi-
tions significantly while also generating more
preconditions.

1 Introduction

Preconditions are an important part of language un-
derstanding with numerous applications, ranging
from event understanding to story generation. They
provide the semantic glue to understand (or gener-
ate) the chains of events common in narrative text.
How can we build intelligent systems to fill in these
chains, or to identify semantically related events
in context? Kwon et al. (2020) took a first step by
introducing a precondition generation task, where
given a target event mention the goal is to gener-
ate text that describes a precondition for the target.
They released the ‘PeKo’ dataset for training, and
showed that a GPT-2 model can be fine-tuned on

TARGET: [BLANK] to fill Mr. Lavelle ’s seat, for a term
that expires on Dec. 31, 2008.

The Senate voted overwhelmingly on Thursday
The Senate voted on Wednesday

The Senate voted overwhelmingly on Wednesday
The Senate voted overwhelmingly on Tuesday
Mr. Lavelle was appointed by Gov. Eliot Spitzer

Table 1: Top 5 preconditions generated from GPT-2
with beam search decoding. Key problem: the top 4
preconditions are almost identical.

input/output sequence pairs.

While PeKo is useful, it is constrained by anno-
tating a single relation for each target event. This
is contrast to the real-world where most events
have many preconditions. For example, “opening a
door” has several preconditions like approaching
the door, furning a key in the door, and pushing
the door. PeKo’s annotation limits the ability of
models to learn to generate multiple and diverse
preconditions!. In this work, we address the chal-
lenge of generating more preconditions for each
target event while still maintaining quality.

Generating non-repetitive diverse outputs is a
challenge for any conditional language generation
system. Our analysis of the GPT-2 based model
shows that this is also the case for preconditions.
Table 1 shows such top preconditions for an exam-
ple event. Standard sampling techniques produce
high-levels of lexical and semantic redundancy. In
the absence of any explicit mechanisms to force di-
versity, the model just produces minor variations of
the same event as preconditions. To obtain diverse
candidate preconditions, we have to start looking
lower in the model’s ranked lists of probable pre-
conditions, thereby sacrificing quality.

How can we induce a model to generate diverse
outputs without losing quality? Context sensitivity
might help with quality, but it also hinders diver-
sity. To address this we introduce a three-stage

'Tn order to observe diverse preconditions for the same (or
similar) target event we would need a much larger training set.

generative process, which we call DiP. In the first
stage, DiP uses an event sampler whose only goal
is to generate event trigger words as precondition
candidates. In the second stage, DiP forces the
generative model to use the candidate triggers from
the first stage to produce the full description of
the precondition event. In the third stage, DiP re-
ranks and filters the generated descriptions using a
precondition classifier (also trained from the same
training data).”> A brief example is shown here:

Target Event: I apologized for the debacle of the
day before, and [BLANK] to help me make it right

Stage 1 Stage 2 Stage 3
trying I am trying now delete
use I use my time delete
used I used my time #2
asked asked me #3
hired hired a new staff #1

Experiments on the PeKo dataset show that DiP
produces more diverse and better quality precon-
ditions compared to standard beam decoding, as
well as an iterative filtering extension that applies
a standard repetition penalty in a sampling strategy.
Analyses show that DiP is able to better balance
the need for diversity against quality. While the
iterative repetition penalty method generates lexi-
cally diverse outputs, it often introduces irrelevant
information rather than producing distinct types of
preconditions. Our human evaluation shows that
DiP on the other hand is able to produce text that
is more likely to be preconditions.

All code and data are available at https://
stonybrooknlp.github.io/DiP/.

2 Related Work

Most work on logical preconditions has focused
on identification/extraction from text. For example,
Sil et al. (2010) identified preconditions using a
SVM-based score function with hand-crafted PMI
and WordNet based features. Branavan et al. (2012)
extracted domain-specific precondition relations
from instructions for the game of Minecraft. This
paper is instead focused on generating novel pre-
conditions. To the best of our knowledge, only the
prior PeKo work (Kwon et al., 2020) has attempted
this. We are building on those initial ideas.

There has been research for diverse generation
using control codes or latent variables. Some works
use explicit cues to control text generation. Huang
et al. (2018) used emotion embeddings to gener-
ate dialogue responses in a specific mood. Keskar

2We will release the source code upon acceptance.

etal. (2019) trained a LM with human readable con-
trol codes, which describe domain, style, or topics.
Then the model learns to generate text conditioned
on a given code. The model requires manually pre-
defined control codes and a corresponding training
corpus for each code.

Other diverse generation works learn latent rep-
resentations or codes from input text, and then gen-
erate text conditioned on those codes. Shu et al.
(2019) applied a sentence embedding to generate
syntactically diverse translations. They find that
syntax-based encoding with TreeLSTM (Socher
et al., 2011) yields better diversity than a contex-
tual encoding using BERT (Devlin et al., 2019)
or FastText (Bojanowski et al., 2017). Bao et al.
(2020) used K categorical latent variables to con-
trol the generation context of dialogue responses
and pick the highest probability response from
the responses generated using the latent variables.
COD3S (Weir et al., 2020) is designed to generate
diverse causal relations. It uses locality-sensitive
hashing (LSH) (Indyk and Motwani, 1998) on rep-
resentations from Sentence-BERT (Reimers and
Gurevych, 2019). Conditioning on these 16-bit
LSH signatures, it generates cause/effect sentences
using a Transformer architecture (Vaswani et al.,
2017) but with a limited vocabulary size of 10K.

These previous approaches have some draw-
backs — they either require explicit control codes
and training examples, or they have low inter-
pretability of their codes. Our approach addresses
these two limitations: control codes are learned
from non-diverse input text and the codes are
human-readable events. And these approaches
are not directly comparable to our method with-
out proper modification, which would not be fair
comparisons. Thus, we present our own baselines
for evaluation, and these baselines serve as a proxy
of ablation studies as well.

3 Diverse Precondition Generation

This section describes our diverse precondition gen-
eration task and our methodology for solving it.
Our proposed approach does not require additional
diverse training examples.

3.1 Generation Task

This paper follows the precondition definitions
from Kwon et al. (2020):

Precondition Definition — "Given a target event
mention ¢ and a candidate event mention p, we

https://stonybrooknlp.github.io/DiP/
https://stonybrooknlp.github.io/DiP/

assert p is a precondition event for t if p is necessary
for ¢ to happen i.e., ¢ likely would not have occurred
without p, in the current text context."
Precondition Generation — "Given a target event
t, generate an event p that is a precondition for ¢."

The precondition generation task is defined over
sentences that contain both a target and a precondi-
tion event. The precondition part is masked and a
model is asked to reconstruct the sentence includ-
ing its precondition. For masking, the syntactic sub-
tree of a precondition is replaced with [BLANK].
In order to indicate the events of interest — target
and precondition — we use special tokens <event >
.. </event> and <pre> .. </pre>.

For our new task, instead of generating the entire
sentence, we only generate a precondition clause
that would fit into the input’s [BLANK]. Since a
precondition could be stated in either preceding or
succeeding position of its target event, we mod-
eled this as a text infilling task. This approach is
inspired by Donahue et al. (2020) and this modifica-
tion allows the model to focus solely on generating
preconditions because the model doesn’t need to
copy over its input text. Thus, the model can learn
faster and more efficiently.

Input: Event Sampler

Target Event
Top n Events
4
Precond.
Generator
\
Precondition
Precondition Candidates
Re-ranker @aﬂces)
Sim_i\arity N
Filter
\ 4

Output: k Preconditions

Figure 1: The DiP pipeline. Candidates are generated
conditioned on the Event Sampler. The Re-ranker and
Similarity Filter improve quality/diversity.

3.2 Diverse Precondition Generator

Generating preconditions is a difficult task even for
a single output setting (Kwon et al., 2020). With
the training data derived from existing news arti-
cles, generative models only get to see one possible
precondition for each target event. Not surprisingly
the top candidates in beam search tend to be fo-
cused towards a specific type of precondition event
with minor variations. This suggests that we need

to provide explicit guidance to the model to explore
diverse candidates.

How can we get such diverse guidance? A main
strength of large generative language models is that
they learn to generate text that fits with the input
context. If we can get the input context to be less
specific then we can aim to get more general out-
puts. We can exploit this behavior by training a
separate event sampler that is fed a reduced version
of the target event description. For example, we can
denote the target event by just the event trigger and
its arguments. The event sampler learns to predict
possible precondition event triggers based on this
reduced context. This task forces the sampler to
learn a more general mapping between target and
precondition events that can produce a diverse set
of starting points for generating the precondition
events. We can then train another generative model
to condition on the precondition trigger in addition
to the input sentence. This gives us a model whose
outputs we can control by providing different pos-
sible precondition triggers. Not all precondition
triggers may yield high quality preconditions. To
further assist the model, we also devise a precondi-
tion re-ranker.

Our overall system, shown in Figure 1, consists
of three components — an event sampler, a candi-
date generator, and a post processor (Precondition
re-ranker and Similarity filter). The first two stages
are used for generation — they use two separate gen-
eration models, and the last is employed to improve
the quality of generated preconditions. We refer to
this system as DiP short for Diverse Preconditions.

3.2.1 Event Sampler

The event sampler provides possible precondition
event triggers given a target event. This can be for-
mulated as a sequence to sequence problem where
the input sequence is a target event and the out-
put sequence is a precondition event trigger. Since
our goal here is to get diverse precondition events,
we can experiment with input contexts of different
levels of detail. To get more general precondition
events, we use just the target event triggers as the
input. To get more specific preconditions, we can
use larger contexts surrounding the target event
trigger as the input. During inference, we sample
top n event triggers based on their probability.
Formally, let 2 be a subset of the full description
x of the target event. The sampler can be seen as a
generative model that outputs event triggers e for

the preconditions of the target event.
¢ = arg max log p(e|x’)
e

The generative model is trained to maximize
the probability for the correct precondition trigger
e and during inference can be used to sample a
candidate set of top n precondition event triggers.

3.2.2 Candidate Generator

The candidate generator, as the name suggests, is
a language model that we fine-tune for generating
precondition candidates. We want this model to
generate preconditions corresponding to the trig-
gers from the event sampler. To this end, in addi-
tion to the full target event description =, we also
provide a precondition trigger marked by a special
token — <E> precondition_event — at the
end of the input. This can be seen as a form of a
control code similar to those used in Keskar et al.
(2019); Weir et al. (2020). The crucial difference,
however, is that the codes in our case are dynam-
ically generated conditioned on the input and not
restricted to a predefined set.

Formally, the candidate generator is a language
model that generates a description of the precondi-
tion event ¢; conditioning on the full description of
the target event « and a given precondition trigger
e; from the event sampler.

é; = arg maxlog p(ci|z, ¢;)
Cq

The model is trained to maximize the probabil-
ity of the observed precondition text for the target
event when provided with the correct precondition
trigger. Note that during training, the precondi-
tion trigger provided as input always appears in the
correct precondition description output (¢;). This
encourages the model to learn to incorporate the
trigger provided at the end of the input as part of its
output. During inference, the model generates a set
of preconditions one for each of the top n triggers
obtained from the event sampler.

3.2.3 Post Processor

Precondition Re-ranker We use a precondition
re-ranker to reorder the generated candidates based
on how likely they are to be preconditions of the
target event. Note that the generative model is im-
plicitly trained for a similar objective. However, the
model is also forced to include the input precondi-
tion trigger which could make it harder to focus on

ensuring the result is indeed a precondition. There-
fore, we introduce a separate precondition classifier
that scores the generated candidates. Note that the
original PeKo dataset is already setup for training
such a classifier (Kwon et al., 2020). Each instance
in this dataset consists of an input text that includes
a pair of marked event triggers (target, candidate)
and a label that indicates whether the candidate is
a precondition of the event denoted by the target
trigger. The output from the precondition gener-
ator is essentially equivalent to an instance from
this dataset. We build a classifier that scores a pair
of events in text, and we use this score as an indi-
cator of the precondition quality of the generated
candidates and re-rank them based on this score.
Iterative Redundancy Filtering The resulting
candidates are a mix of candidate precondition
events from different triggers. To further avoid re-
dundancy we also include an explicit filtering step,
where we post-process the generated text based on
their pairwise similarity. Specifically, we start with
the highest ranked instance in the output set, and
iteratively walk down the ranked list and add in-
stances to the output if the highest similarity score
they have with any of the current output set is lower
than a certain threshold.

4 Evaluation

Our goal is to investigate the impact of our DiP ap-
proach for generating diverse and high-quality pre-
conditions. We closely follow Kwon et al. (2020)
for the experimental setup and the GPT-2 based
generation system for our evaluation.

4.1 Datasets

For the fine-tuning task, we use the precondition
generation instances in the PeKo dataset. In addi-
tion, we also create a large additional pre-training
dataset that includes temporal generation instances.
With this additional dataset we can perform a form
of domain adaptive pre-training (DAPT) introduced
by Gururangan et al. (2020). The main idea here
is to create generation instances where the model
gets to see a target event but now is required to
produce an event that temporally precedes the tar-
get event. Since preconditions are supposed to be
temporally preceding this temporal generation task
can be seen as a more permissive yet related gen-
eration task, which is then subsequently restricted
to only preconditions in the fine-tuning stage. We
use the CAEVO (Chambers et al., 2014) system

Target Event The Metropolitan Transportation Authority recently canceled some large projects

Trigger Only took, canceled, succeeded, began, scheduled, died, rejected, decision, filed, pushed

+3 tokens planned, took, began, expected, needed, approved, designed, intended, completed, brought
+5 tokens planned, intended, took, began, aimed, devised, completed, expected, designed, needed
Target Event They tried to rebuild their shattered nation

Trigger Only took, rebuilt, losing, sustained, lost, opened, came, bought, died, used

+3 tokens took, lost, war, losing, reached, brought, moved, began, fled, came

+5 tokens took, lost, war, collapsed, left, failed, abandoned, came, laid, began

Table 2: Top 10 generated event triggers from the event sampler. As more context is provided, the model generate

more specific events related to the provided context.

Input Text

| Generation Target

[BLANK] that donations be made to the Crohn’s and Colitis Foundation or
NYBOT Futures and Options for Kids in memory of Harry. <E> requests

In lieu of flowers, the family requests

[BLANK] to start trading an important Nymex product, West Texas intermediate

crude oil. <E> inspired

Nymex’s foray also inspired ICE

Mr. Robbins played hard and fluidly, [BLANK] to give his solos funk and shape.

<E> landing

landing heavily on unexpected notes

Table 3: Examples of training instance pairs for the candidate generator. Unlike Kwon et al. (2020), we add the
precondition event at the end of the input to help the model utilize the event trigger when generating a precondition.

to obtain temporally related event pairs from the
NYT corpus (Sandhaus, 2008). This yields 1.1
million instances and each instance contains one
temporal relation (BEFORE/AFTER). Note that all
systems are trained using the same pre-training and
fine-tuning strategy using both datasets.

4.2 Baselines

Beam Search As a baseline, we use text infilling
GPT-2 system (inspired by (Donahue et al., 2020)
with a standard beam search decoding strategy.
This beam search decoder can provide multiple
responses up to its beam size. We expect this sim-
ple baseline to contain high-levels of redundancy
in its outputs.

Repetition Penalized Sampling (RPS) For a
stronger baseline, we use a decoding strategy that
can generate diverse preconditions by penalizing
previously generated precondition event triggers.
This is done by an iterative decoding process ap-
plied to the same GPT-2 generation model. Given
a target event, the model generates k preconditions
in an iterative manner. When the model generates
a precondition trigger — after <pre> token — a rep-
etition penalty is applied to deter the model from
selecting previously generated precondition events.
We adopt the penalized sampling from Keskar et al.
(2019). Instead of using a list of all generated to-
kens, we use a list of precondition event triggers
that are generated in the previous iterations. Given
a list of generated precondition events ¢, the proba-
bility distribution p; for the next trigger token z; is

defined as:
pi = exp (x;/1(i € 1))

CX exp(ri/I(j €t))

I(c) =\

if ¢ is true else 1

We set A = 1.2 as in Keskar et al. (2019). For de-
coding, we use Nucleus Sampling (Holtzman et al.,
2020) which has been claimed to generate a higher
quality of text. Finally, we test the RPS model with
the post-processor from DiP, to confirm that the
major gain of DiP is from the Event Sampler.

4.3 DiP Model

DiP has three modules — Event sampler, Candidate
generator, and Precondition re-ranker. We train
each module separately.

Event sampler We use the GPT-2 model for the
event sampler. The model is trained on the same
data instances described in Section 4.1, but instead
of using the entire target-precondition pairs, we
use target-precondition event trigger pairs. We
train three event samplers with different levels of
context — trigger only, 3 neighboring tokens, and 5
neighboring tokens — to understand how different
context affect candidate precondition sampling. As
Table 2 shows, adding more context help the model
to generate more specific events related to describe
situations while the model provides more general
events if only a trigger is given.

Candidate generator The GPT-2 model is
also used for the candidate generator. For
training, as described in 3.2, we add <E>
precondition_event at the end of input so

Model Diversity Evaluation

Model Self-BLEU | Self-BLEURT
Beam Search 0.234 -0.450
RPS 0.016 -1.273
RPS+Post-proc. 0.013 -1.280
DiP 0.038 -1.111

Table 4: Diversity evaluation for different models.
We evaluate top 10 preconditions for each model.
RPS+Post-proc. produces the most diverse outputs fol-
lowed by RPS and DiP with a small margin.

that the model can learn how to utilize the provided
event trigger as a control code. Table 3 shows the
training examples for the candidate generator.

Post-processor We train a precondition re-ranker
using BERT (Devlin et al., 2019). The F1 score of
the classifier is 71.91 with 64.65 of the precision.
To remove possibly redundant preconditions using
iterative redundancy filtering, we need to compute
cosine similarity between the generated precondi-
tions. We take the precondition classifier’s [CLS]
token representation as the embedding for precon-
ditions. Since the similarity score distributions are
different from instance to instance, instead of using
a fixed value as the threshold, we set the threshold
as p + o of each instance (the mean and the stan-
dard deviation of pairwise similarity scores). This
filters out ~16% of the most similar generated pre-
conditions. For comparison with the baselines, we
take top 10 preconditions from remaining outputs.

4.4 Automatic Evaluation Metrics

We use Self-BLEU (Zhu et al., 2018) and Self-
BLEURT score to measure the diversity of gener-
ated preconditions. Self-BLEU measures how sim-
ilar a set of sentences is to each other using BLEU
score — the average of BLEU scores for the all pairs
of sentences in the set. In addition to direct lexical
overlap, we also measure semantic overlap using
BLEURT (Sellam et al., 2020), which is a BERT-
based learned evaluation metric that is trained on
human ratings of sentence pairs. We refer to this
metric as Self-BLEURT. For both metrics, a lower
score implies more diverse preconditions.

4.5 Results

We compare the models on both diversity and qual-
ity. For diversity, we use an automatic evaluation,
and for quality we used human annotators.

Automatic Diversity Evaluation:

= RPS m DiP

Self-BLEURT

-1.5 : 112
5 57 7~9 9~11 11~1313~15 =15

Generation Length
Figure 2: The Self-BLEURT scores across different
lengths of generated text. The numbers indicate the
number of instances in each bucket.

Quality of Preconditions
Model ‘ Average Score | #Wins

RPS 0.954 30
DiP 1.101 56

Table 5: The Top 10 generated preconditions for each
target event were scored on a 0-2 scale. A model "wins"
a target if its average is highest. Using Bootstrapping
with n = 1000 the 95% conf-interval for the RPS mean
is (0.89, 1.01) and DiP is (1.05, 1.15).

= RPS m DiP

25

20

#Wins

Generation Length
The number of wins across generation
lengths. DiP wins more as the generations lengthen.

Figure 3:

Table 4 shows the diversity metrics for all meth-
ods. We evaluated 5,000 preconditions generated
for 500 target events. Comparing RPS+Post-proc
to RPS, Post-proc shows little effect, we com-
pare just RPS to DiP in the rest of the evaluations
(See Appendix for more details between RPS and
RPS+Post-proc).

In both metrics, DiP and RPS generate more di-
verse output than the beam search decoder. DiP
is compatible to RPS in shorter preconditions, and
RPS produces more diverse outputs when the gen-
erated text gets longer, as shown in Figure 2.

Manual Quality Evaluation:

The automatic evaluation only measures diversity.
To see if the models generate legitimate precondi-
tions, we conducted a manual evaluation for quality.
We evaluated 960 generated outputs covering 96

distinct target events for both DiP and the RPS
baseline. For each instance the annotators were
presented with the top ten generated outputs from
two systems. For each output the annotators pro-
vided a rating on a scale from O to 2, where 0 means
not a precondition, 1 is a maybe, and 2 is definitely
a precondition. We split the 96 instances across 8
different annotators>.

Table 5 shows the results in terms of two metrics:
one is the average score across all 96 instances, and
another is the number of "Wins" where a model gets
+1 point if the sum of its 10 precondition scores is
higher than the other. In both metrics, DiP outper-
forms RPS. Moreover, as shown in Figure 3, DiP
produces better preconditions across most output
lengths and is best on longer outputs.

4.6 Analysis

Examples: Table 8 shows the top 5 generations
from our main three systems. The beam search’s
failure on the diversity metric is easy to see with its
repetitive output. Most verbs are the same. Both
RPS and DiP are notably better in terms of diversity,
but RPS introduces lots of irrelevant information
that may have artificially increased its diversity
score. Long irrelevant phrases are clear to see,
and verb synonyms are common. In contrast, DiP
generates more succinct and general preconditions,
as well as fewer direct synonyms.

Context Specificity: Table 7 shows the diversity
scores when different levels of context are provided
to the event sampler. Diversity gets slightly worse
with more context. This aligns with our observation
from Table 2 that the event sampler with more con-
text generates more context-specific precondition
events, which now appear to be closer to each other
semantically. This makes intuitive sense if you
view context as closing a model’s view of broader
options.

Errors: We categorize 4 types of frequently ob-
served errors from DiP. 1) Rare target events:
some target event triggers are polysemious, and
some meanings are rarely used in the newswire.
Thus, the event sampler is biased toward generating
precondition events based on more frequent usages
of triggers. 2) Conflict with sentence structure:
the candidate generator has no ability to modify
the trigger for its syntactic context because it is
trained only as copying over the event trigger. 3)

3These were computer science graduate students

Rare target events

[BLANK] my homework,” and exercising like a de-
mon at a nearby gym. She’d lost weight and viewed
herself as training for a fight.

Event Generated Precondition

war I war with the other women in my
school, who had been working together
on

died She died of cancer in 1998, after her hus-
band was killed by an electrician who
had been working with him”

The word lost is usually used in the context of war,
election, or obituary in the newswire. That may
lead the event sampler to fail to generate proper
precondition event triggers.

Conflict with sentence structure

The proposal from Mr. Levy that the Justice Depart-
ment struck down, she added, would have violated
nondiscrimination provisions of the consent decree
and the Civil Rights Act of 1964 by [BLANK].

Event Generated Precondition

created created a new state law requiring that a
judge be present on the court

called called for a “state level ban on political
activity” in New York City

The candidate generator is not able to modify the
provided triggers according to the context.

Re-ranking issue

China’s markets nearly disintegrated in 2005, and
one 2003 poll found [BLANK].

Event Generated Precondition

became that the market became more popular
(#4) than in 2000 (#2)

named that the country was named the world’s
(>#10) largest economy (#4)

Generated sentences are not preconditions but
ranked high after re-ranking (#4 — #2 and >#10
— #4).

Limited available context
[BLANK] to hit a short forehand and guided it wide.

Event Generated Precondition

batted In the third round, he batted the ball with
his left hand

pitched In the first inning, the Mets pitched three
consecutive hits

The target context is related to tennis, but precondi-
tions are generated in the context of baseball because
the provided context is too limited.

Table 6: Examples from each type of errors. There
are 4 types of frequently observed errors and the first
3 types are caused by each stage in DiP. The last one is
due to data instances.

Re-ranking issue: the re-ranker can induce errors
due to its performance — 64.65 precision. 4) Lim-
ited available context: when the provided context
of a target event is too limited, the model often fails
to generate preconditions. Table 6 shows examples
for each type of error.

5 Conclusion

Real-world events often have multiple precondi-
tions, but today’s datasets do not, including the

Context Self-BLEU | Self-BLEURT
Trigger only 0.038 -1.111
+3 tokens 0.039 -1.103
+5 tokens 0.040 -1.098

Table 7: Diversity evaluation for different samplers.
Precondition candidates are generated from the event
samplers given the input with a trigger only, a trigger
with neighboring 3 tokens, or a trigger with 5 tokens.

latest PeKo, presenting a challenge for text-driven
models. Vanilla generative models have high-levels
of redundancy in their outputs and are thus not
well suited for diverse generation. This work intro-
duced an event sampler that overcomes the issue of
target context specificity to provide diverse guid-
ance to the generator. Coupled with a precondition
ranker and similarity filter, this multi-stage gener-
ation setup yields more diverse and higher quality
preconditions. Further, a new training corpus was
not required. More generally, this approach can be
seen as an instance of controllable diverse output
generation for conditional language models.

Acknowledgements

This material is based on research that is sup-
ported in part by the Air Force Research Labo-
ratory (AFRL), DARPA, for the KAIROS program
under agreement number FA8750-19-2-1003 and
in part by the National Science Foundation under
the award IIS #2007290.

References

Siqi Bao, Huang He, Fan Wang, Hua Wu, and Haifeng
Wang. 2020. PLATO: Pre-trained dialogue genera-
tion model with discrete latent variable. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 85-96, Online.
Association for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135—-146.

S.R.K. Branavan, Nate Kushman, Tao Lei, and Regina
Barzilay. 2012. Learning high-level planning from
text. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 126—135, Jeju Island,
Korea. Association for Computational Linguistics.

Nathanael Chambers, Taylor Cassidy, Bill McDowell,
and Steven Bethard. 2014. Dense event ordering
with a multi-pass architecture. Transactions of the

Association for Computational Linguistics, 2:273—
284.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Chris Donahue, Mina Lee, and Percy Liang. 2020. En-
abling language models to fill in the blanks. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2492—
2501, Online. Association for Computational Lin-
guistics.

Suchin Gururangan, Ana Marasovié, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342-8360, Online. Association for Computational
Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learn-
ing Representations.

Chenyang Huang, Osmar Zaiane, Amine Trabelsi, and
Nouha Dziri. 2018. Automatic dialogue generation
with expressed emotions. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Pa-
pers), pages 49-54, New Orleans, Louisiana. Asso-
ciation for Computational Linguistics.

Piotr Indyk and Rajeev Motwani. 1998. Approximate
nearest neighbors: towards removing the curse of di-
mensionality. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pages
604-613.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

Heeyoung Kwon, Mahnaz Koupaee, Pratyush Singh,
Gargi Sawhney, Anmol Shukla, Keerthi Kumar
Kallur, Nathanael Chambers, and Niranjan Balasub-
ramanian. 2020. Modeling preconditions in text
with a crowd-sourced dataset. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 3818-3828, Online. Association for
Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

https://doi.org/10.18653/v1/2020.acl-main.9
https://doi.org/10.18653/v1/2020.acl-main.9
https://www.aclweb.org/anthology/P12-1014
https://www.aclweb.org/anthology/P12-1014
https://doi.org/10.1162/tacl_a_00182
https://doi.org/10.1162/tacl_a_00182
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.225
https://doi.org/10.18653/v1/2020.acl-main.225
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.18653/v1/N18-2008
https://doi.org/10.18653/v1/N18-2008
https://doi.org/10.18653/v1/2020.findings-emnlp.340
https://doi.org/10.18653/v1/2020.findings-emnlp.340
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

Target Event: [BLANK] to maintain below-market rents.

Beam Search

RPS

DiP

In the last few years, real estate prices
have risen and real estate prices have
dropped

Wilhelmina’s stock dropped 8 percent
in early 2005 after a lull, but more ac-
tively revived the strong dollar, lending
to an expected influx of funds

The city has reached a deal with the
tenants

In the last few years, real estate prices
have risen and real estate investment
trusts have grown

The City Council’s 10-member City
Planning Committee vofed 11 to 6 yes-
terday

The city will use the money

In the last few years, real estate prices
have risen and real estate prices have
dropped, but rents have continued

property values are rising, rising as the
vacancy rate is expected

In the 1980s, the city moved its building
to a new site in the East River

In the last few years, real estate prices
have risen and real estate investment
trusts have grown in size

In less than a year, such improvements
have increased through acquisitions
and capitalization at New York City
police stations, legal firms and cruise
ships, suggesting that housing can be
bought

The City Council passed a bill on
Wednesday that would give the city the
authority to build a new building at the
site of the old Erez subway station, and

In the last few years, real estate prices
have risen and real estate prices have
dropped, and rents have risen in the last
few years

Matthew Hallico, president of the Gen-
eral Electric Company in Manhattan,
and Robert Chrisin, a sales vice partner
at Ira G. Albrecht His comments about
the incentive package raised many con-
cerns about how it works, as well as
what shareholders might do

In the 1980s, the city began a program

Target Event: By about 10 p.m., the proposals appeared dead for now [BLANK].

Beam Search

RPS

DiP

Mr. Spitzer took office

after the judge, Col Richard Kultura of
Thailand, signaled the end of his sen-
tence

after the commission filed a proposal to
provide $ 2 million in new money for
the project

Mr. Spitzer took over

after city Hall learned it would begin
public comment on ways it could add
27,000 new jobs to the island

after the Senate ’s Democratic majority
has taken over control of the House

the City Council voted on them

as they were rejected by legislative
leaders

after the State Legislature put them on
a vote

Mr. Spitzer took office in January

when Mayor Mark Meehan heeded all
of his smaller complaints

when the State Legislature used the
budget to cut a $ 2 billion tax break

the City Council passed them to the
City Council

after the State Senate vofed yes on key
issues

after a suicide bomber killed a man in
an Internet chat room

Target Event: [BLANK] to scout potential recruits.

Beam Search

RPS

DiP

The N.E.L. and the N.B.A. have taken
steps

The pending replacement of Carl Craw-
ford has enticed some intelligence offi-
cials and top Qaeda leaders

The police took over the department ’s
operations , and they began

The N.F.L. and the N.F.L. have faken
steps

Employees are giving them the oppor-
tunity

The department is sending a new sys-
tem

The N.C.A.A. has taken steps

Most Somalis want a law that would
enable them

The New York State Department of Ed-
ucation began a program last year

The N.EL. and the N.B.A. have faken
similar steps

Shortly after Katrina , Post servicemen
were chasing selectors after the storm
’s onset

The department has sent a handful of
officers to the police

The N.F.L. and the N.F.L. have taken
similar steps

Ever since college opened in 1983 , he
shopped for school assignments

The N.C.A.A. sef up a task force

Table 8: Top 5 generations from 3 systems. Red cells are invalid preconditions. Greyed out cells are repetitions
from previous cells. DiP produces both valid and diverse preconditions.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for
Computational Linguistics.

Evan Sandhaus. 2008. The New York Times Anno-

tated Corpus.

Thibault Sellam, Dipanjan Das, and Ankur Parikh.
2020. BLEURT: Learning robust metrics for text
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7881-7892, Online. Association for Computa-
tional Linguistics.

Raphael Shu, Hideki Nakayama, and Kyunghyun Cho.
2019. Generating diverse translations with sentence

https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/P19-1177

codes. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1823-1827, Florence, Italy. Association
for Computational Linguistics.

Avirup Sil, Fei Huang, and Alexander Yates. 2010. Ex-
tracting action and event semantics from web text.
In 2010 AAAI Fall Symposium Series.

Richard Socher, Eric Huang, Jeffrey Pennin, Christo-
pher D Manning, and Andrew Ng. 2011. Dynamic
pooling and unfolding recursive autoencoders for
paraphrase detection. Advances in neural informa-
tion processing systems, 24:801-809.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998-6008.

Nathaniel Weir, Jodo Sedoc, and Benjamin Van Durme.
2020. COD3S: Diverse generation with discrete se-
mantic signatures. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5199-5211, Online. As-
sociation for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38—45, Online. Asso-
ciation for Computational Linguistics.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo,
Weinan Zhang, Jun Wang, and Yong Yu. 2018. Texy-
gen: A benchmarking platform for text generation
models. In The 41st International ACM SIGIR Con-
ference on Research & Development in Information
Retrieval, pages 1097-1100.

https://doi.org/10.18653/v1/P19-1177
https://www.aclweb.org/anthology/2020.emnlp-main.421
https://www.aclweb.org/anthology/2020.emnlp-main.421
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

A Appendix

A.1 Experimental Details
A.1.1 Data Split

For the dataset for pre-training, we split into
train/dev/test with the ratio of 8:1:1. For PeKo
dataset, we follow the setting from Kwon et al.
(2020).

A.1.2 Infrastructure

All models are trained using NVIDIA Titan RTX
(24GB of GDDR6 VRAM).

A.1.3 Parameters

We use Wolf et al. (2020) library for all trans-
former models. For the beam search baseline
and RPS model we use the GPT-2 architecture,
which has 124,445,184 trainable parameters. DiP
model consists of two GPT-2 models for the
event sampler and the candidate generator — 2 x
124,445,184 — and one BERT model for the re-
ranker — 108,313,346 parameters. In total, DiP has
357,203,714 trainable parameters.
Optimizer: We use AdamW (Loshchilov and Hut-
ter, 2019) for the optimizer across all models. For
pre-trianing, we fix the learning rate as le-3. For
fine-tuning, we experiment with [1e-4, 1e-5, le-6].
Event sampler: For pre-training, the epochs are
set to 100 with the batch size of 128 for the trigger
only, 64 for the +3 tokens, and 32 for the +5 tokens
model. For fine-tuning, the epochs are set to 10
with the batch size of 32.
Candidate generator: For pre-training, the
epochs are set to 100 with the batch size of 16.
For fine-tuning, the epochs are set to 10 with the
batch size of 16.
Precondition re-ranker: We use the classifier
provided by the authors of Kwon et al. (2020)
— https://stonybrooknlp.github.io/
PeKo/.

All Models are picked based on the losses from
the dev set.

A.2 Comparison between RPS and
RPS+Post-processing

Table 9 shows the comparison between RPS and
RPS+Post-processing. The effect of Post-processor
on RPS system is considered neutral. There are
some cases where the generation qualities are im-
proved but also other cases where the qualities are
compromised.

A.3 Manual Evaluation

Evaluation Instruction Figure 4 shows the evalu-
ation instruction that we provided to annotators.
Evaluation rating distribution Table 10 shows
the distribution of voted ratings by annotators. On
average, DiP got higher ratings than RPS and RPS
got highest votes in “Not a Precondition.”

https://stonybrooknlp.github.io/PeKo/
https://stonybrooknlp.github.io/PeKo/

Target Event: [BLANK] to maintain below-market rents.

RPS

RPS+Post-processor

Wilhelmina’s stock dropped 8 percent in early 2005 after a
lull, but more actively revived the strong dollar, lending to
an expected influx of funds

Mr. Berg last year signed a two-year contract with the firm

The City Council’s 10-member City Planning Committee
voted 11 to 6 yesterday

Another landlord is assembling a plan

property values are rising, rising as the vacancy rate is ex-
pected

Ms. Cianci, 32, is building an intercom tower

In less than a year, such improvements have increased
through acquisitions and capitalization at New York City
police stations, legal firms and cruise ships, suggesting that
housing can be bought

Her workers hit a brick floor a few years ago

Matthew Hallico, president of the General Electric Company
in Manhattan, and Robert Chrisin, a sales vice partner at
Ira G. Albrecht His comments about the incentive package
raised many concerns about how it works, as well as what
shareholders might do

Last week, Lloyd Pound, the influential Wall Street analyst,
gave 75 percent shares of his money

Target Event: By about 10 p.m. , the proposals appeared de

ad for now [BLANK].

RPS

RPS+Post-processor

after the judge, Col Richard Kultura of Thailand, signaled
the end of his sentence

after negotiators from both parties reconvened in Davis Park
to talk things out

after city Hall learned it would begin public comment on
ways it could add 27,000 new jobs to the island

after the researchers analyzed DEMIC data on children and
early adults whose ages began at 8 or 15

as they were rejected by legislative leaders

after Google released its pie-in-pie template during an ex-
tensive public presentation

when Mayor Mark Meehan heeded all of his smaller com-
plaints

after the Council passed it on Monday

after the State Senate vofed yes on key issues

after the developer, Trivata Films of New Orleans, agreed to
pay up to $14 million over seven years

Target Event: [BLANK] to scout potential recruits.

RPS

RPS+Post-processor

The pending replacement of Carl Crawford has enticed some
intelligence officials and top Qaeda leaders

About the same time, Mr. Booker elicifed state financing for
another program that provided some of the funds through
the Police Department’s National Guard to help workers find
mental illness or

Employees are giving them the opportunity

In 2005 , Mr. SCAD sent students from Iowa and Ohio to
visit Johns Hopkins

Most Somalis want a law that would enable them

In championing the elite classes last week, public school
teachers mounted an extensive publicity campaign to per-
suade parents

Shortly after Katrina , Post servicemen were chasing selec-
tors after the storm ’s onset

Joel Packer, a Detroit Pistons and assistant coach with
Brigham captured a larger campus and invited the scouts

Ever since college opened in 1983 , he shopped for school
assignments

As the trend forward moves into next season , larger colleges
are beginning with faculty members from 75 sites on an
extensive bioharker scholarship site

Table 9: Top 5 generation examples from RPS and RPS+Post-processor. Green colored events are considered
legitimate preconditions and red colored ones are not. A red colored cell indicates invalid precondition text. As
the examples show, the effect of Post-processor on RPS system is neutral — in some cases, the generation qualities
are improved but compromised in other cases.

Evaluation rating distribution

Model | Not a Precond. | Maybe | Def. a Precond.
RPS 38.6% 27.3% 34.1%
DiP 29.8% 30.3% 39.9%

Table 10: Evaluation rating distribution. On average, DiP got higher ratings than RPS.

Evaluation for Diverse Precondition Generation

You will be asked to evaluate sets of generated sentences if they contain a precondition relation

Each set contains 20 generated preconditions given a target (seed) event.
-- 10 from our proposed model, other 10 from a baseline model

Please mark 0 ~ 2 if a {precond. event} is necessary for a [target event] to happen, where

0 - Definitely No. A precondition relation doesn't hold between two marked events
1 - Maybe. A precondition relation can hold in some senses
2 — Definitely Yes. Two marked events are in a precondition relation

Things to keep in mind

1. Please ignore minor grammatical errors if you can understand the meaning of a sentence

2. Please evaluate based on the context.
If a candidate precondition can cause (either directly or indirectly) the target event in the given context,
you can consider it as a valid precondition

3. Instances from systems are randomly suffled, please don't be biased on columns

4. A precondition event must happen before its target event

5. Please mark your name on the right side, so that other people can know that which sheets are taken.

Example & Explanation

Explanation

Hiring a new staff can help me make it right

Some minor error is presented, but still understandable that using one’s
time to help

Phrase doesn't seem natural

"Told the bloggers” is not necessary to help

"didn’t think” is not necessary to help

We can imagine "Appeared on my website” can indirectly help me in
the context

Spend time to help

Given the context, "signed a letter” might help me

"assigned the team” to help me - a direct way to help

"pay a friend"” to help me - a direct way to help

Preconditiol Target Score |Category
| apologized for the debacle of the day before , and {hired} a
new staff to [help] me make it right . hired help 2| Precondition
| apologized for the debacle of the day before , and {used} my Precondition
time to [help] me make it right used help 2|/ minor error
| apologized for the debacle of the day before , and | will {join}
your friends as we try to change behavior and decide what Non-precondition
tomorrow is to [help] me make it right . join help 0]/ non-sensible
| apologized for the debacle of the day before , and {told} the
bloggers that | was going to [help] me make it right told help 0 | Non-precondition
| apologized for the debacle of the day before , and | did n't Non-precondition
{think} that | was going to [help] me make it right think help 0]/ negation
| apologized for the debacle of the day before , and
{appeared} on my Web site to [help] me make it right appeared help 1| Precondition
| apelogized for the debacle of the day before , and {put} in a
few more hours to [help] me make it right put help 2 | Precondition
| apologized for the debacle of the day before , and {signed} a
letter to [help] me make it right signed help 1] Precondition
| apologized for the debacle of the day before , and {assigned}
the team to [help] me make it right . assigned help 2 | Precondition
| apologized for the debacle of the day before , and {paid} my
way to a friend to [help] me make it right paid help 2 | Precondition

Figure 4: Manual evaluation instruction

