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Figure 1: DC-VAE Reconstruction (top) and Sampling (bottom) on LSUN Bedroom [68] at resolution 128× 128 (left) and

CelebA-HQ [35] at resolution 512× 512 (right).

Abstract

We present a new generative autoencoder model with dual

contradistinctive losses to improve generative autoencoder

that performs simultaneous inference (reconstruction) and

synthesis (sampling). Our model, named dual contradis-

tinctive generative autoencoder (DC-VAE), integrates an

instance-level discriminative loss (maintaining the instance-

level fidelity for the reconstruction/synthesis) with a set-level

adversarial loss (encouraging the set-level fidelity for the

reconstruction/synthesis), both being contradistinctive. Ex-

tensive experimental results by DC-VAE across different res-

olutions including 32×32, 64×64, 128×128, and 512×512
are reported. The two contradistinctive losses in VAE work

harmoniously in DC-VAE leading to a significant qualitative

and quantitative performance enhancement over the base-

line VAEs without architectural changes. State-of-the-art

or competitive results among generative autoencoders for

image reconstruction, image synthesis, image interpolation,

and representation learning are observed. DC-VAE is a

general-purpose VAE model, applicable to a wide variety of

downstream tasks in computer vision and machine learning.

1. Introduction

Tremendous progress has been made in deep learning

for the development of various learning frameworks [40,

24, 17, 64]. Autoencoder (AE) [44, 27] aims to compactly

represent and faithfully reproduce the original input signal

by concatenating an encoder and a decoder in an end-to-

end learning framework. The goal of AE is to make the

encoded representation semantically efficient and sufficient

to reproduce the input signal by its decoder. Autoencoder’s

generative companion, variational autoencoder (VAE) [38],

additionally learns a variational model for the latent variables

to capture the underlying sample distribution.

The key objective for a generative autoencoder is to main-

tain two types of fidelities: (1) an instance-level fidelity to

make the reconstruction/synthesis faithful to the individual

input data sample, and (2) a set-level fidelity to make the

reconstruction/synthesis of the decoder faithful to the entire

input data set. The VAE/GAN algorithm [42] combines a
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reconstruction loss (for instance-level fidelity) with an ad-

versarial loss (for set-level fidelity). However, the result of

VAE/GAN is sub-optimal, as shown in Table 1.

The pixel-wise reconstruction loss in the standard VAE

[38] typically results in blurry images with degenerated se-

mantics. A possible solution to resolving the above conflict

lies in two aspects: (1) turning the measure in the pixel space

into induced feature space that is more semantically meaning-

ful; (2) changing the L2 distance (per-pixel) into a learned

instance-level distance function for the entire image (akin

to generative adversarial networks which learn set-level dis-

tance functions). Taking these two steps allows us to design

an instance-level classification loss that is aligned with the

adversarial loss in the GAN model enforcing set-level fidelity.

Motivated by the above observations, we develop a new gen-

erative autoencoder model with dual contradistinctive losses

by adopting a discriminative loss performing instance-level

classification (enforcing the instance-level fidelity), which

is rooted in metric learning [41] and contrastive learning

[21, 66, 63]. Combined with the adversarial losses for the

set-level fidelity, both terms are formulated in the induced

feature space performing contradistinction: (1) the instance-

level contrastive loss considers each input instance (image)

itself as a class, and (2) the set-level adversarial loss treats

the entire input set as a positive class. We name our method

dual contradistinctive generative autoencoder (DC-VAE) and

make the following contributions:

• We develop a new algorithm, dual contradistinctive gen-

erative autoencoder (DC-VAE), by combining instance-

level and set-level classification losses in the VAE frame-

work, and systematically show the significance of these

two loss terms in DC-VAE;

• The effectiveness of DC-VAE is illustrated in a number

of tasks, including image reconstruction, image synthesis,

image interpolation, and representation learning by recon-

structing and sampling images across different resolutions

including 32× 32, 64× 64, 128× 128, and 512× 512;

• Under the new loss term, DC-VAE attains a signifi-

cant performance boost over the competing methods

without architectural change, thus potentially provid-

ing a handy solution for many AE/VAE based model-

ing/representation applications. DC-VAE helps greatly

reducing the performance gap for image synthesis be-

tween the baseline VAE to the competitive GAN models.

2. Related Work

Related work can be roughly divided into three categories:

(1) generative autoencoder, (2) deep generative model, and

(3) contrastive learning.

Generative autoencoder. Variational autoencoder (VAE)

[38] points to an exciting direction of generative models

by developing an Evidence Lower BOund (ELBO) objec-

tive. However, the VAE reconstruction/synthesis is known

to be blurry. To improve the image quality, a sequence of

VAE based models have been developed [42, 15, 30, 3, 69].

VAE/GAN [42] adopts an adversarial loss to improve the

quality of the image, but its output for both reconstruction

and synthesis (new samples) is still unsatisfactory. IntroVAE

[30] adds a loop from the output back to the input and is

able to attain image quality that is on par with some modern

GANs in some aspects. However, its full illustration for both

reconstruction and synthesis is unclear. PGA [69] adds a

constraint to the latent variables.

Deep generative model. Pioneering works of [61, 20] alle-

viate the difficulty of learning densities by approximating

likelihoods via classification (real (positive) samples vs. fake

(pseudo-negative or adversarial) samples). Generative adver-

sarial network (GAN) [17] builds on neural networks and

amortized sampling (a decoder network that maps a noise

into an image). The subsequent development after GAN

[56, 2, 18, 35, 16] has led to a great leap forward in build-

ing decoder-based generative models. It has been widely

observed that the adversarial loss in GANs contributes signif-

icantly to the improved quality of image synthesis. InfoGAN

[9] aims to maximize mutual information between latent vari-

ables and the output of the generator. In contrast, DC-VAE

can be understood as increasing mutual information between

the input and output of the autoencoder. Furthermore, In-

foGAN does not learn encoder. ALI/BiGAN [15, 14] ad-

ditionally learn inference network (encoder), however they

are shown to have poor reconstruction. Energy-based gen-

erative models [57, 67, 43, 32, 47] — which aim to directly

model data density — are making a steady improvement for

a simultaneously generative and discriminative single model.

Contrastive learning. From another angle, contrastive

learning [21, 66, 23, 6] has lately shown its particular advan-

tage in unsupervised training of CNN features. It overcomes

the limitation in unsupervised learning where class label is

missing by turning each image instance into one class. Thus,

the softmax function in the standard discriminative classifi-

cation training can be applied. Contrastive learning can be

connected to metric learning [4, 10, 5].

In this paper, we aim to improve VAE [38] by introduc-

ing a contrastive loss [63] to address instance-level fidelity

between the input and the reconstruction in the induced fea-

ture space. Unlike in self-supervised representation learning

methods [63, 23, 6], where self-supervision requires generat-

ing a transformed input (via data augmentation operations),

the reconstruction naturally fits into the contrastive term that

encourages the matching between the reconstruction and

the input image instance, while pushing the reconstruction

away from the rest of the images in the entire training set.

Thus, the instance-level and set-level contradistinctive terms

collaborate with each to encourage the high fidelity of the

824



reconstruction and synthesis. In Figure 3 and Table 1, we

systematically show the significance of with and without the

instance-level and the set-level contradistinctive terms. In

addition, we explore multi-scale contrastive learning via two

schemes in Section 4.2: 1) deep supervision for contrastive

learning in different convolution layers, and 2) patch-based

contrastive learning for fine-grained data fidelity. In the ex-

periments, we show competitive results for the proposed DC-

VAE in a number of benchmarks for three tasks, including

image synthesis, image reconstruction, and representation

learning.

3. Preliminaries: VAE and VAE/GAN

Variational autoencoder (VAE) Assume a given training

set S = {xi}
n
i=1 where each xi ∈ R

m. We suppose that

each xi is sampled from a generative process p(x|z). In

the literature, vector z refers to latent variables. In practice,

latent variables z and the generative process p(x|z) are un-

known. The objectives of a variational autoencoder (VAE)

[38] is to simultaneously train an inference network qφ(z|x)
and a generator network pθ(x|z). In VAE [38], the infer-

ence network is a neural network that outputs parameters for

Gaussian distribution qφ(z|x) = N (µφ(x),Σφ(x)). The

generator is a deterministic neural network fθ(z) parameter-

ized by θ. Generative density pθ(x|z) is assumed to be sub-

ject to a Gaussian distribution: pθ(x|z) = N (fθ(z), σ
2I).

These models can be trained by minimizing the negative of

evidence lower bound (ELBO) in Eq. (1) below.

LELBO(θ,φ;x) =

− Ez∼qφ(z|x)[log(pθ(x|z))] +KL[qφ(z|x)||p(z)]
(1)

where p(z) is the prior, which is assumed to be N (0, I).
The first term −Eqφ(z|x)[log(pθ(x|z))] reduces to standard

pixel-wise reconstruction loss Eqφ(z|x)[||x−fθ(z)||
2
2] (up to

a constant) due to the Gaussian assumption. The second term

is the regularization term, which prevents the conditional

qφ(z|x) from deviating from the Gaussian prior N (0, I).
The inference network and generator network are jointly

optimized over training samples by:

min
θ,φ

E
x∼pdata(x)

LELBO(θ,φ;x). (2)

where pdata is the distribution induced by the training set S.

VAE has an elegant formulation. However, it relies on a

pixel-wise reconstruction loss, which is known not ideal to

be reflective of perceptual realism [33, 31], often resulting in

blurry images. From another viewpoint, it can be thought of

as using a kernel density estimator (with an isotropic Gaus-

sian kernel) in the pixel space. Although allowing efficient

training and inference, such a non-parametric approach is

overly simplistic for modeling the semantics and perception

of natural images.

VAE/GAN Generative adversarial networks (GANs) [17]

and its variants [56], on the other hand, are shown to be

producing highly realistic images. The success was largely

attributed to learning a fidelity function (often referred to as

a discriminator) that measures how realistic the generated

images are. This can be achieved by learning to contrast

(classify) the set of training images with the set of generated

images [61, 20, 17].

VAE/GAN [42] augments the ELBO objective (Eq. (2))

with the GAN objective. Specifically, the objective of

VAE/GAN consists of two terms, namely the modified ELBO

(Eq. (3)) and the GAN objective. To make the notations later

consistent, we now define the set of given training images as

S = {xi}
n
i=1 in which a total number of n unlabeled training

images are present. For each input image xi, the modified

ELBO computes the reconstruction loss in the feature space

of the discriminator instead of the pixel space:

LELBO(θ,φ, D;xi) =

E
z∼qφ(z|xi)[||FD(xi)− FD(fθ(z))||

2
2] +KL[qφ(z|xi)||p(z)]

(3)

where FD(·) denotes the feature embedding from the dis-

criminator D. Feature reconstruction loss (also referred to

as perceptual loss), similar to that in style transfer [33]. The

modified GAN objective considers both reconstructed im-

ages (latent code from qφ(z|x)) and sampled images (latent

code from the prior p(z)) as its fake samples:

LGAN(θ,φ, D;xi) = logD(xi) + E
z∼p(z) log(1−D(fθ(z))

+ E
z∼qφ(z|xi) log(1−D(fθ(z)).

(4)

The VAE/GAN objective becomes:

min
θ,φ

max
D

n
∑

i=1

[LELBO(θ,φ, D;xi) + LGAN(θ,φ, D;xi)] .

(5)

4. Dual contradistinctive generative autoen-

coder (DC-VAE)

Here we want to address a question: Is the degeneration

of the synthesized images by VAE always the case once the

decoder is joined with an encoder? Can the problem be

remedied by using a more informative loss?

Although improving the image qualities of VAE by in-

tegrating a set-level contrastive loss (GAN objective of Eq.

(4)), VAE/GAN still does not accurately model instance-

level fidelity. Inspired by the literature on instance-level

classification [51], approximating likelihood by classifica-

tion [61], and contrastive learning [21, 66, 23], we propose to

model instance-level fidelity by contrastive loss (commonly

referred to as InfoNCE loss) [63]. In DC-VAE, we perform
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Figure 2: Model architecture for the proposed DC-VAE algorithm.

the following minimization and loosely call each term a loss.

Linstance(θ,φ, D; i, {xj}
n
j=1) �

− Ez∼qφ(z|xi)

[

log
eh(xi,fθ(z))

∑n

j=1 e
h(xj ,fθ(z))

]

,
(6)

where i is an index for a training sample (instance), {xj}
n
j=1

is the union of positive samples and negative samples,

h(x,y) is the critic function that measures compatibility

between x and y. Following the popular choice from [23],

h(x,y) is the cosine similarity between the embeddings of

x and y: h(x,y) = FD(x)�FD(y)
||FD(x)||2||FD(y)||2

. Note that unlike

in contrastive self-supervised learning methods [63, 23, 6]

where two views (independent augmentations) of an instance

constitutes a positive pair, an input instance xi and its re-

construction fθ(z) comprises a positive pair in DC-VAE.

Likewise, the reconstruction fθ(z) and any instance that is

not xi can be a negative pair.

To bridge the gap between the instance-level contrastive

loss (Eq. (6)) and log-likelihood in ELBO term (Eq. (1)),

we observe the following connection.

Remark 1 (From [50, 55]) The following objective is

minimized, i.e., the optimal critic h is achieved, when

h(fθ(z),x) = log p(x|z) + c(x) where c(x) is any func-

tion that does not depend on z.

INCE � Ex1,···xK
Ei[Linstance(θ,φ, D; i, {xj}

n
j=1)]. (7)

It can be seen from [50, 55] that the contrastive loss of

Eq. (6) implicitly estimates the log-likelihood log pθ(x|z)
required for the evidence lower bound (ELBO). Hence, we

modify the ELBO objective of Eq. (1) as follows and name

it as implicit ELBO (IELBO):

LIELBO(θ,φ, D;xi) =

Linstance(θ,φ, D; i, {xj}
n
j=1) +KL[qφ(z|xi)||p(z)].

(8)

Finally, the combined objective for the proposed DC-VAE

algorithm becomes:

min
θ,φ

max
D

n
∑

i=1

[LIELBO(θ,φ, D;xi) + LGAN(θ,φ, D;xi)] .

(9)

The definition of LGAN follows Eq. (4). Note here we

also consider the term in Eq. (4) as contrasdistinctive since

it tries to minimize the difference/discriminative classifi-

cation between the input (“real”) image set and the recon-

structed/generated (“fake”) image set. Below we highlight

the significance of the two contradistinctive terms. Figure 2

shows the model architecture.

4.1. Understanding the loss terms

Instance-level fidelity. The first item in Eq. (8) is an

instance-level fidelity term encouraging the reconstruction

to be as close as possible to the input image while being dif-

ferent from all the rest of the images. A key advantage of the

contrastive loss in Eq. (8) over the standard reconstruction

loss in Eq. (3) is its relaxed and background instances aware

formulation. In general, the reconstruction in Eq. (3) wants

a perfect match between the reconstruction and the input,

whereas the contrastive loss in Eq. (8) requests for being the

most similar one among the training samples. This way, the

contrastive loss becomes more cooperative with less conflict

to the GAN loss, compared with the reconstruction loss. The

introduction of the contrastive loss results in a significant

improvement over VAE and VAE/GAN.

We further explain the difference between reconstruction

and contrastive loss based on the input x and it’s recon-

struction fθ(z). To simplify the notation, we use x instead

of the output layer feature FD(x) (shown in Eq. 4)) for

the illustration purpose. The reconstruction loss enforces

the similarity between the reconstructed image and the in-

put image min ||x− fθ(z)|| while the GAN loss computes



an adversarial loss minmaxw log( 1
1+exp{−w·x} ) + log(1−

1
1+exp{−w·fθ(z)}

). w refers to the classifier parameter. The

reconstruction loss term enforces pixel-wise/feature match-

ing between input and the reconstruction, while the GAN

loss encourages the reconstruction and input discrimina-

tively non-separable; the two are measured in different ways

resulting in a conflict. Our contrastive loss on the other

hand, is also a discriminative term, it can be viewed as

min− log exp{(x·fθ(z))}∑
n
j=1

exp{(xj ·fθ(z))}
. To compare the reconstruc-

tion loss with the contrastive loss: the former wants to have

an exact match between the reconstruction with the input,

whereas the later is more relaxed to be ok if no exact match

but as the closest one amongst all the training samples.

In other words, the reconstruction wants a perfect match

for the instance-level fidelity whereas the contrastive loss

is asking for being the most similar one among the given

training samples. Using the contrastive loss gives more room

and creates less conflict with the GAN loss.

Set-level fidelity. The second item in Eq. (9) is a set-level fi-

delity term encouraging the entire set of synthesized images

to be non distinguishable from the input image set. Having

this term (Eq. (4)) is still important since the instance con-

trastive loss alone (Eq. (9)) will also lead to a degenerated

situation: the input image and its reconstruction can be pro-

jected to the same point in the new feature space, but without

a guarantee that the reconstruction itself lies on the valid

“real” image manifold.

As shown in Figure 3 and Table 1 for the comparison

with and without the individual terms in Eq. (9). We observe

evident effectiveness of the proposed DC-VAE combining

both the instance-level fidelity term (Eq. (6)) and the set-

level fidelity term (Eq. (4)), compared with VAE (using

pixel-wise reconstruction loss without the GAN objective),

VAE-GAN (using feature reconstruction loss and the GAN

objective), and VAE contrastive (using contrastive loss but

without the GAN objective).

In the experiments, we show that both terms required to

achieve faithful reconstruction (captured by InfoNCE loss)

with perceptual realism (captured by the GAN loss).

4.2. Multi scale contrastive learning

Inspired by [46], we utilize information from feature

maps at different scales. In addition to contrasting on the last

layer of D in Eq. 9, we add contrastive objective on fl(z)
where fl is some function on top of an intermediate layer l

of D. We do it in two different ways.

1. Deep supervision: We use 1×1 convolution to reduce

the dimension channel-wise, and use a linear layer to

obtain fl.

2. Local patch: We use a random location across channel

at layer l (size: 1×1×d, where d is the channel depth).

(a) CIFAR-10 Reconstruction

(b) CIFAR-10 Samples

Figure 3: Qualitative results of CIFAR-10 [39] images (resolution

32× 32) for experiments in Table 1 [39].

The intuition for the second is that in a convolutional neu-

ral network, one location at a feature map corresponds to

a receptive area (patch) in the original image. Thus, by

contrasting locations across channels in the same feature

maps, we are encouraging the original image and the re-

construction to image have locally similar content, while

encouraging them to have locally dissimilar content in other

images. We use deep supervision for initial training, and add

local patch after certain iterations. We observe that by using

multi-scale contrastive learning, the perceptual distance for

CIFAR-10 reconstruction improves from 72.2 to 52.9, while

the FID score increases slightly from 15.7 to 17.9. While

the decrease in the perceptual distance can be understood,

we hypothesize that the increase for FID score is because

multi-scale learning focuses on details, and thus creates a

trade-off for the overall FID score.

5. Experiments

5.1. Implementation

Datasets To validate our method, we train our method on

several different datasets — CIFAR-10 [39], STL-10 [11],

CelebA [49], CelebA-HQ [35], and LSUN bedroom [68].

See the appendix for more detailed descriptions.

Network architecture For 32 × 32 resolution, we design

the encoder and decoder subnetworks of our model in a

similar way to the discriminator and generator found through

neural architecture search in AutoGAN [16]. For the higher

resolution experiments (128×128 and 512×512 resolution),

we use Progressive GAN [35] as the backbone. Network



architecture diagram is available in the appendix.

Training details The number of negative samples for con-

trastive learning is 8096 for all datasets. The latent dimen-

sion for the VAE decoder is 128 for CIFAR-10, STL-10, and

512 for CelebA, CelebA-HQ and LSUN Bedroom. Learning

rate is 0.0002 with Adam parameters of (β1, β2) = (0.0, 0.9)
and a batch size of 128 for CIFAR-10 and STL-10. For

CelebA, CelebA-HQ, LSUN Bedroom datasets, we use the

optimizer parameters given in [35]. The contrastive embed-

ding dimension used is 16 for each of the experiments.

5.2. Ablation Study

Table 1: Ablation studies on CIFAR-10 for the proposed DC-

VAE algorithm. We follow [33] and measure perceptual distance in

an relu4_3 layer of a pretrained VGG network. ↓ means lower is

better. ↑ means higher is better.

Method
FID↓/IS↑
Sampling

FID↓/IS↑
Reconstruction

Pixel↓
Distance

Perceptual↓
Distance

VAE 115.8 / 3.8 108.4 / 4.3 21.8 65.8

VAE/GAN 39.8 / 7.4 29.0 / 7.6 62.7 57.2

VAE-Contrastive 240.4 / 1.8 242 / 1.9 53.6 104.2

DC-VAE 17.9 / 8.2 21.4 / 7.9 45.9 52.9

To demonstrate the necessity of the GAN loss (Eq. 4) and

contrastive loss (Eq. 8), we conduct four experiments with

the same backbone. These experiments are: VAE (No GAN,

no Contrastive), VAE/GAN (with GAN, no Contrastive),

VAE-Contrastive (No GAN, with Contrastive, and ours (With

GAN, with Contrastive). Here, GAN denotes Eq. 4, and

Contrastive denotes Eq. 8.

Qualitative analysis From Figure 3, we see that without

GAN and contrastive, images are blurry; Without GAN, the

contrastive head can classify images, but not on the image

manifold; Without Contrastive, reconstruction images are on

the image manifold because of the discriminator, but they are

different from input images. These experiments show that

it is necessary to combine both instance-level and set-level

fidelity, and in a contradistinctive manner.

Quantitative analysis In Table 1 we observe the same trend.

VAE generates blurry images; thus the FID/IS (Inception

Score) is not ideal. VAE-Contrastive does not generate im-

ages on the natural manifold; thus FID/IS is poor. VAE/GAN

combines set-level and instance-level information. However

the L2 objective is not ideal; thus the FID/IS is sub-optimal.

For both reconstruction and sampling tasks, DC-VAE gen-

erates high fidelity images and has a favorable FID and

Inception score. This illustrates the advantange of having

a contradistinctive objective on both set level and instance

level. To measure the faithfulness of the reconstructed image

we compute the pixelwise L2 distance and the perceptual

distance ([33]). For the pixel distance, VAE has the lowest

reconstruction value because it directly optimizes this dis-

tance during training; our pixel-wise distance is better than

VAE/GAN and VAE-Contrastive. For perceptual distance,

Table 2: Comparison on CIFAR-10 and STL-10. Average In-

ception scores (IS) [58] and FID scores [25]. Results derived from

[16]. †Result from [1]. ∗Result from [12].

CIFAR-10 STL-10

Method IS↑ FID↓ IS↑ FID↓

Methods based on GAN:

DCGAN [56] 6.6 - - -

ProbGAN [22] 7.8 24.6 8.9 46.7

WGAN-GP ResNet [18] 7.9 - - -

RaGAN [34] - 23.5 - -

SN-GAN [53] 8.2 21.7 9.1 40.1

MGAN [28] 8.3 26.7 - -

Progressive GAN [35] 8.8 - - -

Improving MMD GAN [65] 8.3 16.2 9.3 37.6

PULSGAN [19] - 22.3 - -

AutoGAN [16] 8.6 12.4 9.2 31.0

Methods based on VAE:

VAE 3.8 115.8 - -

VAE/GAN 7.4 39.8 - -

VEEGAN∗ [59] - 95.2 - -

WAE-GAN [60] - 93.1 - -

NCP-VAE [1] - 24.08 - -

NVAE† [62] Sampling - 50.8 - -

NVAE† [62] Reconstruction - 2.67 - -

DC-VAE Sampling (ours) 8.2 17.9 8.1 41.9

DC-VAE Recon. (ours) 7.9 21.4 8.4 43.6

our method outperforms the other three methods, which con-

firms that using contrastive learning helps the model retain

more of the semantic features from the input in the recon-

structed image.

5.3. Comparison to existing generative models

Table 2 gives a comparison of quantitative measurement

for CIFAR-10 and STL-10 dataset. In general, there is a

large difference in terms of FID and IS between GAN family

and VAE family of models. Our model has state-of-the-art

results in VAE family, and is comparable to state-of-the-

art GAN models on CIFAR-10. Similarly Tables 3, 5, and

4 show that DC-VAE is able to generate images that are

comparable to GAN based methods even on higher resolu-

tion datasets such as LSUN Bedrooms, CelebA, CelebA-HQ.

Our method achieves state-of-the-art results on these datasets

among VAE-based methods which focus on building better

architectures. The qualitative comparison in Figure 5 and the

reconstruction comparison in Table 8 show that our model

yields more faithful reconstructions compared to existing

state-of-the-art generative auto-encoder methods.

5.4. Latent Space Representation: Image and style
interpolation

We further validate the effectiveness of DC-VAE for rep-

resentation learning. One benefit of having an AE/VAE

framework compared with just a decoder as in GAN [17] is

to be able to directly obtain the latent representation from

the input images. The encoder and decoder modules in VAE

allows us to readily perform image/style interpolation by
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Figure 4: DC-VAE Samples on LSUN Bedroom [68] (left) at resolution 128× 128 and CelebA-HQ [35] at resolution 512× 512 (right)

(a) Input Image (1024× 1024)

(b) IntroVAE Reconstruction (1024× 1024)

(c) DC-VAE Reconstruction (ours, 512× 512)

Figure 5: Comparison of DC-VAE (resolution 512 × 512) with

IntroVAE [30] (resolution 1024 × 1024). Zoom in for a better

visualization.

Table 3: Quality of Image generation (FID) comparison on

LSUN Bedrooms. †128×128 resolution. ‡256×256 resolution. ↓
means lower is better.

Method FID↓ FID↓
(Sampling) (Reconstruction)

Progressive GAN‡ [35] 8.3 -

SNGAN† [53] (from [7]) 16.0 -

SSGAN†[7] 13.3 -

StyleALAE‡ [54] 17.13 15.92

DC-VAE † (ours) 14.3 10.57

mixing the latent variables of different images and recon-

struct/synthesize new ones. We demonstrate qualitative re-

sults on image interpolation (Fig. 6), style interpolation and

image editing (Fig. 7). We directly use the trained DC-VAE

model without disentanglement learning [36]. We also quan-

titatively compare the latent space disentanglement through

the perceptual path length (PPL) [36] (Table 7). We observe

that DC-VAE learns a more disentangled latent space rep-

Table 4: FID comparison on CelebA-HQ for 256x256 resolu-

tion. ↓ means lower is better.

Method FID↓

StyleALAE [54] 19.21

NVAE [62] (from [1]) 40.26

NCP-VAE [1] 24.79

DC-VAE (ours) 15.81

Table 5: FID comparison on CelebA. ∗64×64 resolution.
†128×128 resolution. ↓ means lower is better.

Method FID↓

Methods based on GAN:

PresGAN∗ [12] 29.1

LSGAN [52] (from [29]) 53.9

COCO-GAN † [48] 5.7

ProGAN† [35] (from [48]) 7.30

Methods based on VAE:

VEE-GAN† [59] (from [12]) 46.2

WAE-GAN∗ [60] 42

NCP-VAE∗ [1] 5.3

DC-VAE† (ours) Reconstruction 14.3

DC-VAE† (ours) Sampling 19.9

resentation than the backbone Progressive GAN [35] and

StyleALAE [54] that use a much more capable StyleGAN

[36] backbone.

5.5. Latent Space Representation: Classification

To show that our model learns a good representation,

we measure the performance on the downstream MNIST

classification task [13]. The VAE models were trained on

MNIST dataset [45]. We feed input images into our VAE

encoder and get the latent representation. Then we train a

linear classifier on the latent representation to classify the

classes of the input images. Results in Table 6 show that

our model gives the lowest classification error in most cases.

This experiment demonstrates that our model not only gains
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Figure 6: Interpolation results generated by DC-VAE (ours) on CelebA-HQ [35] images (512× 512, left) and LSUN Bedroom [68] images

(128× 128, right). (Zoom in for a better visualization.)

input 

image

-

glasses

+ 

glasses

input 

image

-

window

+ 

window

input image + blonde - beard + female + glasses

Figure 7: Latent traversal on CelebA-HQ [35] (resolution 512×
512) and LSUN Bedroom [68] (resolution 128×128) and example

image editing on CelebA-HQ [35] images.

Table 6: Comparison to prior VAE-based representation learn-

ing methods. Classification error on MNIST dataset. ↓: lower is

better. 95 % confidence intervals are from 5 trials. Results derived

from [13].

Method dz = 16 ↓ dz = 32 ↓ dz = 64 ↓
VAE [38] 2.92%±0.12 3.05%±0.42 2.98%±0.14

β-VAE(β=2) [26] 4.69%±0.18 5.26%±0.22 5.40%±0.33

FactorVAE(γ=5) [37] 6.07%±0.05 6.18%±0.20 6.35%±0.48

β-TCVAE (α=1,β=5,γ=1) [8] 1.62%±0.07 1.24%±0.05 1.32%±0.09

Guided-VAE [13] 1.85%±0.08 1.60%±0.08 1.49%±0.06

Guided-β-TCVAE [13] 1.47%±0.12 1.10%±0.03 1.31%±0.06

DC-VAE (Ours) 1.30%±0.035 1.27%±0.037 1.29%±0.034

the ability to do faithful synthesis and reconstruction, but

also gains better representation ability on the VAE side.

Table 7: PPL Comparison of on CelebA-HQ [35].

Method Backbone PPL Full↓

StyleALAE [54] StyleGAN [36] 33.29

ProGAN [35] ProGAN [35] 40.71

DC-VAE (ours) ProGAN [35] 24.66

Table 8: Reconstruction Comparison of on CelebA-HQ

[35] validation set. We follow [33] and measure perceptual

distance in an relu4_3 layer of a pretrained VGG network. ↓
means lower is better.

Method Backbone
Pixel↓

Distance

Perceptual↓
Distance

StyleALAE [54] StyleGAN [36] 0.117 40.40

DC-VAE (ours) ProGAN [35] 0.072 38.63

6. Conclusion

In this paper, we have developed dual contradistinctive

generative autoencoder (DC-VAE), a new framework that in-

tegrates an instance-level discriminative loss (InfoNCE) with

a set-level adversarial loss (GAN) into a single variational

autoencoder framework. Our experiments show state-of-the-

art or competitive results in several tasks, including image

synthesis, image reconstruction, representation learning for

image interpolation, and representation learning for classi-

fication. DC-VAE is a general-purpose VAE model and it

points to a encouraging direction that attains high-quality

synthesis (decoding) and inference (encoding).
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