
Line Segment Detection Using Transformers without Edges

Yifan Xu*, Weijian Xu*, David Cheung, Zhuowen Tu

University of California San Diego

{yix081,wex041,d6cheung,ztu}@ucsd.edu

Abstract

In this paper, we present a joint end-to-end line seg-

ment detection algorithm using Transformers that is post-

processing and heuristics-guided intermediate processing

(edge/junction/region detection) free. Our method, named

LinE segment TRansformers (LETR), takes advantages of

having integrated tokenized queries, a self-attention mech-

anism, and encoding-decoding strategy within Transform-

ers by skipping standard heuristic designs for the edge ele-

ment detection and perceptual grouping processes. We equip

Transformers with a multi-scale encoder/decoder strategy to

perform fine-grained line segment detection under a direct

endpoint distance loss. This loss term is particularly suitable

for detecting geometric structures such as line segments that

are not conveniently represented by the standard bounding

box representations. The Transformers learn to gradually

refine line segments through layers of self-attention. In our

experiments, we show state-of-the-art results on Wireframe

and YorkUrban benchmarks.

1. Introduction

Line segment detection is an important mid-level visual

process [22] useful for solving various downstream computer

vision tasks, including segmentation, 3D reconstruction, im-

age matching and registration, depth estimation, scene under-

standing, object detection, image editing, and shape analysis.

Despite its practical and scientific importance, line segment

detection remains an unsolved problem in computer vision.

Although dense pixel-wise edge detection has achieved

an impressive performance [32], reliably extracting line seg-

ments of semantic and perceptual significance remains a

further challenge. In natural scenes, line segments of inter-

est often have heterogeneous structures within the cluttered

background that are locally ambiguous or partially occluded.

Morphological operators [27] operated on detected edges

[3] often give sub-optimal results. Mid-level representations

such as Gestalt laws [10] and contextual information [28] can

* indicates equal contribution.

Code: https://github.com/mlpc-ucsd/LETR.
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Figure 1. Pipeline comparison between: (a) holistically-attracted wire-

frame parsing (HAWP) [34] and (b) our proposed LinE segment TRans-

formers (LETR). LETR is based on a general-purpose pipeline without

heuristics-driven intermediate stages for detecting junctions and generating

line segment proposals.

play an important role in the perceptual grouping, but they

are often hard to be seamlessly integrated into an end-to-end

line segment detection pipeline. Deep learning techniques

[16, 20, 14, 32] have provided greatly enhanced feature repre-

sentation power, and algorithms such as [37, 33, 34] become

increasingly feasible in real-world applications. However,

systems like [37, 33, 34] still consist of heuristics-guided

modules [27] such as edge/junction/region detection, line

grouping, and post-processing, limiting the scope of their

performance enhancement and further development.

In this paper, we skip the traditional edge/junction/region

detection + proposals + perceptual grouping pipeline by de-

signing a Transformer-based [29, 4] joint end-to-end line

segment detection algorithm. We are motivated by the fol-

lowing observations for the Transformer frameworks [29, 4]:

tokenized queries with an integrated encoding and decoding

strategy, self-attention mechanism, and bipartite (Hungarian)

matching step, capable of addressing the challenges in line

segment detection for edge element detection, perceptual

grouping, and set prediction; general-purpose pipelines for

Transformers that are heuristics free. Our system, named

LinE segment TRsformer (LETR), enjoys the modeling

power of a general-purpose Transformer architecture while

having its own enhanced property for detecting fine-grained

geometric structures like line segments. LETR is built on

top of a seminal work, DEtection TRansformer (DETR)

[4]. However, as shown in Section 4.4 for ablation stud-



ies, directly applying the DETR object detector [4] for line

segment detection does not yield satisfactory results since

line segments are elongated geometric structures that are not

feasible for the bounding box representations.

Our contributions are summarized as follows.

• We cast the line segment detection problem in a joint

end-to-end fashion without explicit edge/junction/region

detection and heuristics-guided perceptual grouping pro-

cesses, which is in distinction to the existing literature in

this domain. We achieve state-of-the-art results on the

Wireframe [15] and YorkUrban benchmarks [5].

• We perform line segment detection using Transformers,

based specifically on DETR [4], to realize tokenized entity

modeling, perceptual grouping, and joint detection via an

integrated encoder-decoder, a self-attention mechanism,

and joint query inference within Transformers.

• We introduce two new algorithmic aspects to DETR [4]:

first, a multi-scale encoder/decoder strategy as shown in

Figure 2; second, a direct endpoint distance loss term in

training, allowing geometric structures like line segments

to be directly learned and detected — something not feasi-

ble in the standard DETR bounding box representations.

2. Related Works

2.1. Line Segment Detection

Traditional Approaches. Line detection has a long his-

tory in computer vision. Early pioneering works rely on

low-level cues from pre-defined features (e.g. image gra-

dients). Typically, line (segment) detection performs edge

detection [3, 23, 7, 8, 32], followed by a perceptual grouping

[13, 27, 10] process. Classic perceptual grouping frame-

works [2, 1, 25, 21, 30] aggregate the low-level cues to

form line segments in a bottom-up fashion: an image is

partitioned into line-support regions by grouping similar

pixel-wise features. Line segments are then approximated

from line-support regions and filtered by a validation step to

remove false positives. Another popular series of line seg-

ment detection approaches are based on Hough transform

[9, 13, 24, 12] by gathering votes in the parameter space: the

pixel-wise edge map of an image is converted into a param-

eter space representation, in which each point corresponds

to a unique parameterized line. The points in the parameter

space that accumulate sufficient votes from the candidate

edge pixels are identified as line predictions. However, due

to the limitations in the modeling/inference processes, these

traditional approaches often produce sub-optimal results.

Deep Learning Based Approaches. The recent surge

of deep learning based approaches has achieved much-

improved performance on the line segment detection prob-

lem [15, 33, 37, 36, 34] with the use of learnable features to

capture extensive context information. One typical family

of methods is junction-based pipelines: Deep Wireframe

Parser (DWP) [15] creates two parallel branches to predict

the junction heatmap and the line heatmap, followed by a

merging procedure. Motivated by [26], L-CNN [37] simpli-

fies [15] into a unified network. First, a junction proposal

module produces the junction heatmap and then converts

detected junctions into line proposals. Second, a line veri-

fication module classifies proposals and removes unwanted

false-positive lines. Methods like [37] are end-to-end, but

they are at the instance-level (for detecting the individual line

segments). Our LETR, like DETR [4], has a general-purpose

architecture that is trained in a holistically end-to-end fash-

ion. PPGNet [36] proposes to create a point-set graph with

junctions as vertices and model line segments as edges. How-

ever, the aforementioned approaches are heavily dependent

on high-quality junction detection, which is error-prone to

various imaging conditions and complex scenarios.

Another line of approaches employs dense prediction to

obtain a surrogate representation map and applies a post-

process procedure to extract line segments: AFM [33] pro-

poses an attraction field map as an intermediate representa-

tion that contains 2-D projection vectors pointing to associ-

ated lines. A squeeze module then recovers vectorized line

segments from the attraction field map. Despite a relatively

simpler design, [33] demonstrates its inferior performance

compared with junction-based approaches. Recently, HAWP

[34] builds a hybrid model of AFM [33], and L-CNN [37]

by computing line segment proposals from the attraction

field map and then refining proposals with junctions before

further line verification.

In contrast, as shown in Figure 1, our approach differs

from previous methods by removing heuristics-driven inter-

mediate stages for detecting edge/junction/region proposals

and surrogate prediction maps. Our approach is able to

directly predict vectorized line segments while keeping com-

petitive performances under a general-purpose framework.

2.2. Transformer Architecture
Transformers [29] have achieved great success in the nat-

ural language processing field and become de facto standard

backbone architecture for many language models [29, 6].

It introduces self-attention and cross-attention modules as

basic building blocks, modeling dense relations among ele-

ments of the input sequence. These attention-based mecha-

nisms also benefit many vision tasks such as video classifica-

tion [31], semantic segmentation [11], image generation [35],

etc. Recently, end-to-end object detection with Transform-

ers (DETR) [4] reformulates the object detection pipeline

with Transformers by eliminating the need for hand-crafted

anchor boxes and non-maximum suppression steps. Instead,

[4] proposes to feed a set of object queries into the encoder-

decoder architecture with interactions from the image feature

sequence and generate a final set of predictions. A bipar-

tite matching objective is then optimized to force unique
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Figure 2. Schematic illustration of our LETR pipeline: An image is fed into a backbone network and generates two feature maps, which

are then used by the coarse and the fine encoder respectively. Initial line entities are then first refined by the coarse decoder with the

interaction of the coarse encoder output, and then the intermediate line entities from the coarse decoder are further refined by the fine decoder

attending to the fine encoder. Finally, line segments are detected by feed-forward networks (FFNs) on top of line entities.

assignments between predictions and targets.

We introduce two new aspects to DETR [4] when realiz-

ing our LETR: 1) multi-scale encoder and decoder; 2) direct

distance loss for the line segments.

3. Line Segment Detection with Transformers

3.1. Motivation

Figure 3. Bounding box representation. Three difficult cases to represent

line segments using bounding box diagonals. Red lines, black boxes, and

gray dotted boxes refer to as line segments, the corresponding bounding

boxes, and anchors respectively.

Despite the exceptional performance achieved by the re-

cent deep learning based approaches [37, 33, 34] on line

segment detection, their pipelines still involve heuristics-

driven intermediate representations such as junctions and

attraction field maps, raising an interesting question: Can

we directly model all the vectorized line segments with a

neural network? A naive solution could be simply regarding

the line segments as objects and building a pipeline follow-

ing the standard object detection approaches [26]. Since

the location of 2-D objects is typically parameterized as a

bounding box, the vectorized line segment can be directly

read from a diagonal of the bounding box associated with

Figure 4. Line entity representation. For each row, we show how

a same line entity predicts line segments with same property in three

different indoor/outdoor scenes. The top line entity is specialized

for horizontal line segments in the middle of the figure, and the

bottom one prefers to predict vertical line segments with a various

range of lengths.

the line segment object. However, the limited choices of an-

chors make it difficult for standard two-stage object detectors

to predict very short line segments or line segments nearly

parallel to the axes (see Figure 3). The recently appeared

DETR [4] eliminates the anchors and the non-maximum sup-

pression, perfectly meets the need of line segment detection.

However, the vanilla DETR still focuses on bounding box

representation with a GIoU loss. We further convert the box

predictor in DETR into a vectorized line segment predictor

by adapting the losses and enhancing the use of multi-scale

features in our designed model.



3.2. Overview

In a line segment detection task, a detector aims to pre-

dict a set of line segments from given images. Performing

line segment detection with Transformers removes the need

of explicit edge/junction/region detection [37, 34] (see Fig-

ure 1). Our LETR is built purely based on the Transformer

encoder-decoder structure. The proposed line segment de-

tection process consists of four stages:

(1) Image Feature Extraction: Given an image input, we

obtain the image feature map x ∈ R
H×W×C from a CNN

backbone with reduced dimension. The image feature is

concatenated with positional embeddings to obtain spatial

relations. (2) Image Feature Encoding: The flattened feature

map x ∈ R
HW×C is then encoded to x′ ∈ R

HW×C by a

multi-head self-attention module and a feed forward network

module following the standard Transformer encoding archi-

tecture. (3) Line Segment Detection: In the Transformer

decoder networks, N learnable line entities l ∈ R
N×C inter-

act with the encoder output via the cross-attention module.

(4) Line Segment Prediction: Line entities make line seg-

ment predictions with two prediction heads built on top of

the Transformer decoder. The line coordinates are predicted

by a multi-layer perceptron (MLP), and the prediction confi-

dences are scored by a linear layer.

Self-Attention and Cross-Attention. We first visit the

scaled dot-product attention popularized by Transformer

architectures [29]. The basic scaled dot-product attention

consists of a set of m queries Q ∈ R
m×d, a set of n key-

value pairs notated as a key matrix K ∈ R
n×d and a value

matrix V ∈ R
n×d. Here we set Q, K, V to have same

feature dimension d. The attention operation F is defined as:

F = Att(Q,K, V ) = softmax(
QKT

√
d

)V (1)

In our encoder-decoder Transformer architecture, we

adopt two attention modules based on the multi-head at-

tention, namely the self-attention module (SA) and cross-

attention (CA) module (see Figure 2). The SA mod-

ule takes in a set of input embeddings notated as x =
[x1, ..., xi] ∈ R

i×d, and outputs a weighted summation

x′ = [x′
1, ..., x

′
i] ∈ R

i×d of input embeddings within x

following Eq.1 where F = Att(Q = x,K = x, V = x).
The CA module takes in two sets of input embeddings no-

tated as x = [x1, ..., xi] ∈ R
i×d, z = [x1, ..., xj ] ∈ R

j×d

following Eq.1 where F = Att(Q = z,K = x, V = x).

Transformer Encoder in LETR is stacked with multiple

encoder layers. Each encoder layer takes in image features

x ∈ R
HW×c from its predecessor encoder layer and pro-

cesses it with a SA module to learn the pairwise relation.

The output features from SA module are passed into a point-

wise fully-connected layer (FC) with activation and dropout

layer followed by another point-wise fully-connected (FC)

layer. Layer norm is applied between SA module and first

FC layer and after second FC layer. Residual connection is

added before the first FC layer and after the second FC layer

to facilitate optimization of deep layers.

Transformer Decoder in LETR is stacked with multiple

decoder layers. Each decoder layer takes in a set of image

features x′ ∈ R
HW×C from the last encoder layer and a

set of line entities l ∈ R
N×C from its predecessor decoder

layer. The line entities are first processed with a SA module,

each line entity l ∈ R
C in l attends to different regions of

image feature embeddings x′ via the CA module. FC layers

and other modules are added into the pipeline similar to the

Encoder setting above.

Line Entity Interpretation. The line entities are analogous

with the object queries in DETR [4]. We found each line

entity has its own preferred existing region, length, and ori-

entation of potential line segment after the training process

(shown in Figure 4). We discuss line entities together make

better predictions through self-attention and cross-attention

refinement when encountering heterogeneous line segment

structures in Section 4.4 and Figure 5.

3.3. CoarsetoFine Strategy
Different from object detection, line segment detection

requires the detector to consider the local fine-grained details

of line segments with the global indoor/outdoor structures

together. In our LETR architecture, we propose a coarse-to-

fine strategy to predict line segments in a refinement process.

The process allows line entities to make precise predictions

with the interaction of multi-scale encoded features while

having an awareness of the holistic architecture with the

communication to other line entities. During the coarse de-

coding stage, our line entities attend to potential line segment

regions, often unevenly distributed, with a low resolution.

During the fine decoding stage, our line entities produce

detailed line segment predictions with a high resolution (see

Figure 2). After each decoding layer at both coarse and fine

decoding stage, we require line entities to make predictions

through two shared prediction heads to make more precise

predictions gradually.

Coarse Decoding. During the coarse decoding stage, we

pass image features and line entities into an encoder-decoder

Transformer architecture. The encoder receives coarse fea-

tures from the output of Conv5 (C5) from ResNet with 1
32

original resolution. Then, line entity embeddings attend to

coarse features from the output of the encoder in the cross-

attention module at each layer. The coarse decoding stage

is necessary for success at fine decoding stage and its high

efficiency with less memory and computation cost.

Fine Decoding. The fine decoder inherits line entities from

the coarse decoder and high-resolution features from the fine

encoder. The features to the fine encoder come from the out-

put of Conv4 (C4) from ResNet with 1
16 original resolution.

The line entity embeddings decode feature information in

the same manner as the coarse decoding stage.
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3.4. Line Segment Prediction
In the previous decoding procedure, our multi-scale de-

coders progressively refine N initial line entities to produce

same amount final line entities. In the prediction stage. Each

final entity l will be fed into a feed-forward network (FFN),

which consists of a classifier module to predict the confi-

dence p of being a line segment, and a regression module

to predict the coordinates of two end points p̂1 = (x̂1, ŷ1),
p̂2 = (x̂2, ŷ2) that parameterizes the associated line segment

L̂ = (p̂1, p̂2).

Bipartite Matching. Generally, there are many more line

entities provided than actual line segments in the image.

Thus, during the training stage, we conduct a set-based bipar-

tite matching between line segment predictions and ground-

truth targets to determine whether the prediction is associated

with an existing line segment or not: Assume there are N

line segment predictions {(p(i), L̂(i)); i = 1, ..., N} and M

targets {L(j); j = 1, ...,M}, we optimize a bipartite match-

ing objective on a permutation function σ(·) : Z+ → Z+

which maps prediction indices {1, ..., N} to potential target

indices {1, ..., N} (including {1, ...,M} for ground-truth

targets and {M + 1, ..., N} for unmatched predictions):

Lmatch =

N
∑

i=1

1{σ(i)≤M}

[

λ1d(L̂
(i),L(σ(i)))− λ2p

(i)] (2)

σ∗ = argmin
σ

Lmatch (3)

where d(·, ·) represents L1 distance between coordinates and

1{·} is an indicator function. Lmatch takes both distance and

confidence into account with balancing coefficients λ1, λ2.

The optimal permutation σ∗ is computed using a Hungarian

algorithm, mapping M positive prediction indices to target

indices {1, ...,M}. During the inference stage, we filter the

N line segment predictions by setting a fixed threshold on the

confidence p(i) if needed due to no ground-truth provided.

3.5. Line Segment Losses
We compute line segment losses based on the optimal per-

mutation σ∗ from the bipartite matching procedure, in which

{i;σ∗(i) ≤ M} represents indices of positive predictions.

Classification Loss. Based on a binary cross-entropy loss,

we observe that hard examples are less optimized after learn-

ing rate decay and decide to apply adaptive coefficients in-

spired by focal loss [18] to the classification loss term Lcls:

L(i)
cls =− 1{σ∗(i)≤M}α1(1− p(i))γ log p(i) (4)

− 1{σ∗(i)>M}α2p
(i)γ log(1− p(i)) (5)

Distance Loss. We compute a simple L1-based distance

loss for line segment endpoint regression:

L(i)
dist = 1{σ∗(i)≤M}d(L̂

(i),L(σ∗(i))) (6)

where d(·, ·) represents the sum of L1 distances between

prediction and target coordinates. The distance loss is only

applied to the positive predictions. Note that we remove the

GIoU loss from [4] since GIoU is mainly designed for the

similarity between bounding boxes instead of line segments.

Thus, the final loss L of our model is formulated as:

L =
N
∑

i=1

λclsL(i)
cls + λdistL(i)

dist (7)

4. Experiments

4.1. Datasets

We train and evaluate our model on the ShanghaiTech

Wireframe dataset [15], which consists of 5000 training im-

ages and 462 testing images. We also evaluate our model on

the YorkUrban dataset [5] with 102 testing images from both

indoor scenes and outdoor scenes.

Through all experiments, we conduct data augmentations

for the training set, including random horizontal/vertical flip,

random resize, random crop, and image color jittering. At

the training stage, we resize the image to ensure the shortest

size is at least 480 and at most 800 pixels while the longest

size is at most 1333. At the evaluation stage, we resize the

image with the shortest side at least 1100 pixels.

4.2. Implementation

Networks. We adopt both ResNet-50 and ResNet-101 as

our feature backbone. For an input image X ∈ R
H0×W0×3,

the coarse encoder takes in the feature map from the

Conv5 (C5) layer of ResNet backbone with resolution

x ∈ R
H×W×C where H = H0

32 ,W = W0

32 , C = 2048.

The fine encoder takes in a higher resolution feature map

(H = H0

16 ,W = W0

16 , C = 1024) from the Conv4 (C4) layer

of ResNet. Feature maps are reduced to 256 channels by

a 1x1 convolution and are fed into the Transformer along

with the sine/cosine positional encoding. Our coarse-to-fine

strategy consists of two independent encoder-decoder struc-

tures processing multi-scale image features. Each encoder-

decoder structure is constructed with 6 encoder and 6 de-

coder layers with 256 channels and 8 attention heads.

Optimization. We train our model using 4 Titan RTX

GPUs through all our experiments. Model weights from

DETR [4] with ResNet-50 and ResNet-101 backbone are

loaded as pre-training, and we discuss the effectiveness of

pre-training in Section 5. We first train the coarse encoder-

decoder for 500 epochs until optimal. Then, we freeze the

weights in the coarse Transformer and train the fine Trans-

former initialized by coarse Transformer weights for 325

epochs (including a 25-epoch focal-loss fine-tuning). We

adopt deep supervision [17, 32] for all decoder layers fol-

lowing DETR [4]. FFN prediction head weights are shared

through all decoder layers. We use AdamW as the model
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(a) AFM [33] (b) LCNN [37] (c) HAWP [34] (d) LETR (ours) (e) Ground-Truth

Figure 5. Qualitative evaluation of line detection methods. From left to right: the columns are the results from AFM [33], LCNN [37],

HAWP [34], LETR (ours) and the ground-truth. From top to bottom: the top two rows are the results from the Wireframe test set, and the

bottom two rows are the results from the YorkUrban test set.

optimizer and set weight decay as 10−4. The initial learning

rate is set to 10−4 and is reduced by a factor of 10 every 200

epochs for the coarse decoding stage and every 120 epochs

for the fine prediction stage. We use 1000 line entities in all

reported benchmarks unless specified elsewhere. To mitigate

the class imbalance issue, we also reduce the classification

weight for background/no-object instances by a factor of 10.

4.3. Evaluation Metric

We evaluate our results based on two heatmap-based met-

rics, APH and FH , which are widely used in previous LSD

task[37, 15], and Structural Average Precision (sAP) which

is proposed in L-CNN [37]. On top of that, we evaluate the

result with a new metric, Structural F-score (sF), for a more

comprehensive comparison.

Heatmap-based metrics, APH , FH : Prediction and ground

truth lines are first converted to heatmaps by rasterizing the

lines, and we generate the precision-recall curve comparing

each pixel along with their confidence. Then we can use the

curve to calculate FH and APH .

Structural-based metrics, sAP[37], sF: Given a set of ground

truth line and a set of predicted lines, for each ground-truth

line L, we define a predicted line L̂ to be a match of L if

their L2 distance is smaller than the pre-defined threshold

ϑ ∈ {10, 15}. Over the set of lines matched to L, we select

the line with the highest confidence as a true positive and

treat the rest as candidates for false positives. If the set of

matching lines is empty, we would regard this ground-truth

line as false negative. Each predicted line would be matched

to at most one ground truth line, and if a line isn’t matched

to any ground-truth line, then it is considered as a false

positive. The matching is recomputed at each confidence
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Table 1. Comparison to prior work on Wireframe and YorkUrban benchmarks. Our proposed LETR reaches state-of-the-art perfor-

mance except sAP10 and sAP15 slightly worse than HAWP [34] in Wireframe. FPS Results for LETRs are tested on a single Tesla V100.

Results for other prior works are adopted from HAWP paper.

Method
Wireframe Dataset YorkUrban Dataset FPS

sAP10 sAP15 sF10 sF15 APH FH sAP10 sAP15 sF10 sF15 APH FH

LSD [30] / / / / 55.2 62.5 / / / / 50.9 60.1 49.6

DWP [15] 5.1 5.9 / / 67.8 72.2 2.1 2.6 / / 51.0 61.6 2.24

AFM [33] 24.4 27.5 / / 69.2 77.2 9.4 11.1 / / 48.2 63.3 13.5

L-CNN [37] 62.9 64.9 61.3 62.4 82.8 81.3 26.4 27.5 36.9 37.8 59.6 65.3 15.6

HAWP [34] 66.5 68.2 64.9 65.9 86.1 83.1 28.5 29.7 39.7 40.5 61.2 66.3 29.5

LETR (ours) 65.2 67.7 65.8 67.1 86.3 83.3 29.4 31.7 40.1 41.8 62.7 66.9 5.04

Figure 6. Precision-Recall (PR) curves. PR curves of sAP15 and APH for DWP[15], AFM[33], L-CNN[37], HAWP[34] and LETR (ours)

on Wireframe and YorkUrban benchmarks.

level to produce the precision-recall curve, and we consider

sAP as the area under this curve. Considering FH as the

complementary F-score measurement for APH , we evaluate

the F-score measurement for sAP, denoted as sF, to be the

best balanced performance measurement.

4.4. Results and Comparisons

We summarize quantitative comparison results between

LETR and previous line segment detection methods in Table

1. We report results for LETR with ResNet-101 backbone

for Wireframe dataset and results with ResNet-50 backbone

for York dataset. Our LETR achieves new state-of-the-art for

all evaluation metrics on YorkUrban Dataset [5]. In terms of

heatmap-based evaluation metrics, our LETR is consistently

better than other models for both benchmarks and outper-

forms HAWP [34] by 1.5 for APH on YorkUrban Dataset.

We show PR curve comparison in Figure 6 on sAP15 and

APH for both Wireframe [15] and YorkUrban benchmarks.

In Figure 6, we notice the current limitation of LETR comes

from lower precision prediction when we include fewer pre-

dictions compare to HAWP. When we include all sets of

predictions, LETR predicts slightly better than HAWP and

other leading methods, which matches our hypothesis that

holistic prediction fashion can guide line entities to refine

low confident predictions (usually due to local ambiguity

and occlusion) with high confident predictions.

We also show both Wireframe and YorkUrban line seg-

ment detection qualitative results from LETR and other com-

peting methods in Figure 5. The top two rows are indoor

scene detection results from the Wireframe dataset, while the

bottom two rows are outdoor scene detection results from

the YorkUrban dataset.

5. Ablation Study

Compare with Object Detection Baselines. We compare

LETR results with two object detection baseline where the

line segments are treated as 2-D objects within this context

in Table 2. We see clear limitations for using bounding box

diagonal for both Faster R-CNN and DETR responding to

our motivation in Section 3.1.

Table 2. Comparison with object detection baselines on Wire-

frame [15].
Method sAP10 sAP15 sF10 sF15

Faster R-CNN 38.4 40.7 51.5 53.0

Vanilla DETR 53.8 57.2 57.2 59.0

LETR (ours) 65.2 67.7 65.8 67.1

Effectiveness of Multi-Stage Training. We compare the ef-

fectiveness of different modules in LETR in Table 3. During

the coarse decoding stage, LETR reaches 62.3 and 65.2 for

sAP10 and sAP15 with encoding features from the C5 layer

of ResNet backbone, and 63.8 and 66.5 with the one from C4

of ResNet backbone. The fine decoder reaches 64.7 and 67.4

for sAP10 and sAP15 by improving the coarse prediction

with fine-grained details from high-resolution features. We

then adjust the data imbalance problem with focal loss to

reach 65.2 and 67.7 for sAP10 and sAP15.

As shown in Figure 7 (a), we found it is necessary to train

the fine decoding stage after the coarse decoding stage con-

verges. Training both stages together as a one-stage model



results a significant worse performance after 400 epochs.

Effect of Number of Queries. We found a large number of

line entities is essential to the line segment detection task by

experimenting on a wide range of the number of line entities

(See Figure 7 (c), and using 1000 line entities is optimal for

the Wireframe benchmark which contains 74 line segments

in average.

Table 3. Effectiveness of modules. Ablation study of the ar-

chitecture design and learning aspects in the proposed LETR on

Wireframe dataset. (C) indicates the indexed feature used for coarse

decoder; (F) indicates the indexed feature used for fine decoder.
Coarse Decoding Fine Decoding Focal Loss Feature Index sAP10 sAP15

� C5(C) 62.3 65.2

� C4(C) 63.8 66.5

� � C5(C), C4(F) 64.7 67.4

� � � C5(C), C4(F) 65.2 67.7

Stage 1

Stage 2

Figure 7. (a) Multi-stage vs. single-stage training. We com-

pare results training coarse and fine layers in single stages and

multi-stages (b) Number of decoding layers. We evaluate the

performance of outputs from each decoding layer. The 1-6 layers

are coarse decoder layers and 7-12 layers fine decoder layers. (c)

Number of line entities. We test LETR (coarse decoding stage

only) with different numbers of line entities on Wireframe.

Effect of Image Upsampling. All algorithms see the same

input image resolution (640×480 typically). However, some

algorithms try more precise predictions by upsampling im-

ages. To understand the impact of upsampling, we train and

test HAWP and LETR under multiple upsampling scales.

In Table 4 below, higher training upsampling resolution im-

proves both methods. LETR obtains additional gains with

higher test upsampling resolution.

Table 4. Effectiveness of upsampling with Wireframe dataset.

LETR uses ResNet-101 backbone. * Our LETR-512 resizes orig-

inal image with the shortest size in a range between 288 and 512

† Our LETR-800 resizes original image with the shortest size in a

range between 480 and 800.
Train Size Test Size sAP10 sAP15 sF10 sF15

HAWP 512 512 65.7 67.4 64.7 65.8

HAWP 832 832 67.7 69.1 65.5 66.4

HAWP 832 1088 65.7 67.1 64.3 65.1

LETR 512* 512 61.1 64.1 63.1 64.8

LETR 800† 800 64.3 67.0 65.5 66.9

LETR 800† 1100 65.2 67.7 65.8 67.1

Effectiveness of Pretraining. We found model pretraining

is essential for LETR to obtain state-of-the-art results. With

DETR pretrained weights for COCO object detection [19],

our coarse-stage-only model converges at 500 epochs. With

CNN backbone pretrained weights for ImageNet classifi-

cation, our coarse-stage-only model converges to a lower

score at 900 epochs. Without pretraining, LETR is difficult

to train due to the limited amount of data in the Wireframe

benchmark.

Table 5. Effectiveness of pretraining. We train LETR (coarse

decoding stage only) with two variants. ImageNet represents LETR

with ImageNet pretrained ResNet backbone. COCO represents

LETR with COCO pretrained DETR weights.

Method Epochs sAP10 sAP15 sF10 sF15

ImageNet 900 58.4 62.0 62.4 64.6

COCO 500 62.3 65.2 64.3 65.9

6. Visualization

We demonstrate LETR’s coarse-to-fine decoding process

in Figure 8. The first two columns are results from the coarse

decoder receiving decoded features from the C5 ResNet

layer. While the global structure of the scene is well-captured

efficiently, the low-resolution features prevent it from mak-

ing predictions precisely. The last two columns are results

from the fine decoder receiving decoded features from the C4

ResNet layer and line entities from the coarse decoder. The

overlay of attention heatmaps depicts more detailed relations

in the image space, which is the key to the detector perfor-

mance. This finding is also shown in Figure 7(b), where the

decoded output after each layer has consistent improvement

with the multi-scale encoder-decoder strategy.

sAP15=0.51sAP15=0.49sAP15=0.49sAP15=0.37

Figure 8. Visualization of LETR coarse-to-fine decoding pro-

cess. From top to bottom: The 1
st row shows line segment detec-

tion results based on line entities after different layers and the 2
nd

row shows its corresponding overlay of attention heatmaps. From

left to right: The 1
st, 2nd, 3rd, 4th columns are coarse decoder

layer 1, coarse decoder layer 6, fine decoder layer 1, fine decoder

layer 6, respectively.

7. Conclusion

In this paper, we presented LETR, a line segment de-

tector based on a multi-scale encoder/decoder Transformer

structure. By casting the line segment detection problem

in a holistically end-to-end fashion, we perform set pre-

diction without explicit edge/junction/region detection and

heuristics-guided perceptual grouping processes. A direct

endpoint distance loss allows geometric structures beyond

bounding box representations to be modeled and predicted.
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