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US Bridges scored a C+ on the 2017 infrastructure report card. There is a need for
substantial improvement in bridge conditions as many of them are structurally
deficient and can become unsafe in the near future. The nation’s most recent
bridge rehabilitation estimate is $123 billion.

Many state’s department of transportation (DOT) have limited resources,
leaving them with difficult decisions about where to invest and allocate limited
resources. To make cost-effective decisions, these bridge stakeholders need clean
data and studies to estimate the future bridge conditions. This will give them
data-driven, accurate life-cycle models for bridges and improved inspections
intervals.

Previous researchers have identified factors that may cause bridge
deterioration. Unfortunately, these researchers limit their data to specific regions
and bridge types. This severely limits their result’s general applicability.

In this thesis, we approach bridge health-related decision making challenges
using a novel data science perspective. This bridge health deterioration study
provides new insights into making bridge rehabilitation and reconstruction
decisions. In this research, we use all US inspection record data regulated by the

Federal Highway Agency that is available in the National Bridge Inventory (NBI)



database and precipitation data from the Center for Disease Control and
Prevention (CDC).

Our specific contributions are 1) providing a reference big data pipeline
implementation for bridge health-related datasets; 2) demonstrating the feasibility
of data science to study bridge deterioration; 3) developing repeatable methods for
sharing large datasets with reproducible analysis driven by data science and
making them available to other researchers. Further, our curated datasets and
platforms are used to analyze the statistical significance of bridge deterioration
factors as identified by the literature and subject matter experts at the Nebraska
State DOT. From our results, we found that bridge material type has the highest
association in comparison to other factors such as average daily traffic, average
daily truck traffic, structure length, maintainer, region, and precipitation. This
research used all NBI inspection records and precipitation rates from all US

counties.
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Chapter 1

Introduction

1.1 Overview

Highways and bridges are cornerstones of the US Transportation system. It is
essential for commerce and economic activity and is the primary mode of
transportation in America. The 2017 infrastructure report states that there are
about 600,000 bridges in the US. The average age of four out of ten bridges is 50
years. Approximately, 39% of the bridges will soon require rehabilitation as most
of them were designed for a lifespan of around 50 years. About 9.1% of the
nation’s bridges were structurally deficient by 2017.! These statistics highlight the
urgent need for innovative solutions to better understand and manage bridge health.

Through this research, we provide our stakeholders tools and insights to make
data driven decisions regarding bridges’ maintenance, appropriate inspection
intervals, rebuild and reconstruction, using bridge life cycle and bridge
deterioration models.

We use survey records of over 600,000 bridges in the United States from
National Bridge Inventory, also known as NBI, to guide the development of

effective decision making tools. State Departments of Transportation (DOT'’s)



nationwide survey every bridge, every two years. The results of this survey of
bridges is submitted to the NBI every year.

Previous research efforts have attempted to address problems of estimating
appropriate inspection intervals and future condition of bridges, by developing
deterioration models and life-cycle models. In particular, the following limitations

in prior research efforts are noteworthy:

1. Previous research has failed to provide a generalized strategy to clean bridge

survey records across all states in the U.S.

2. Previous research has not provided clear specification of data sources,
working data samples, data cleaning strategies employed, and development

environment used to conduct their study.

3. The analysis presented by previous research has limited their data to only
specific regions and type of bridges. Hence, the insights gained from these

studies are not generalizable.

4. Previous research has not devised methods that systematically identify and

eliminate factors that contribute to condition of the bridges.

In this thesis, we address these limitations. First, we contribute in providing a
generalized strategy to clean the NBI dataset. Second, we provide a way of using
bridge inspection records (NBI) through a online data analytics platform. Third,
we demonstrate the use of data from all available inspection records in the US, for
all years to support reproducible analysis and generalizable insights. Fourth,
provide a way to identify or eliminate factors that affect bridge conditions over

time.



More formally, this thesis addresses the questions listed in the following

subsections:

1.2 Research Question 1

The NBI dataset is a collection of the data submitted by all the states in the United
States, and the data from different states might have variability in the number of
fields, missing data, and how data is recorded. These discrepancies can be a
challenge for data processing, cleaning, and curation when working with the NBI
dataset. Therefore, the research study is interested in investigating the following
question:

1. How can data cleaning be generalized across NBI data submitted from

different states?

1.3 Research Question 2

Many DOT stakeholders and researchers rely on the NBI dataset to develop and
validate their claims about bridge health. Due to the lack of a shared scientific
compute and storage service, efforts to analyze and build decision support tools
are in silos. This disconnect among NBI data users leads to rework, inconsistent
cleaning practices, in-compatible analytic platforms, non-reproducible research,
and lack of strong evidence for asserted claims about bridge health deterioration.
2. How can data processing platforms for large bridge inspection datasets

be shared among researchers and practitioners?



1.4 Research Question 3

Average daily traffic is an indicator of frequency of bridge usage. The amount of
precipitation helps estimate the exposure of the bridge to rain and snow events.
Both these factors are used in many decision making tools and research efforts as
the leading factors of bridge health deterioration. While average daily traffic is part
of the NBI, precipitation data is not. As a result, examining the efforts of
precipitation on bridge health deterioration is a non-trivial endeavor. For large
datasets like the NBI combined with other large datasets like precipitation,
methods to quickly identify or eliminate factors hypothesized to contribute to
bridge health deterioration, and understanding the strength of their association are
needed.

3. How can bridge inspection related datasets be used to identify or
eliminate factors that affect bridge conditions?

In summary, we identified three research question, and in the following

chapters we will do the following:

In Chapter 2, we will review literature in the field of modeling bridge health.

* In Chapter 3, we will introduce our methods for carrying a systematic

analysis to identify influential factors that affect bridge conditions.

* In Chapter 4, we will test various factors that are in NBI dataset and external

factors using methods described in chapter 3, and understand the results.

 In Chapter 5, Chapter 6, we will discuss the results from chapter 4 and
provide conclusion and discuss possible improvements for future work

respectively.



Chapter 2

Previous Work

2.1 Overview

To address the research questions introduced in Chapter 1 Introduction of this
thesis, we reviewed the literature regarding bridges from the following

perspectives:
1. Data sources used to perform analysis and data cleaning strategies employed.

2. Data cleaning and data analysis environment made available to other

researchers, and practitioners through the research.

3. Techniques and methods employed to identify and eliminate factors that
contribute to the condition and deterioration of bridges, evaluate the current

state of the bridge, and predict future condition of the bridges.

In reviewing the literature from the first perspective, we found that the data used is
often limited to a single state. Hence, provide limited information on other state’s
bridges.*>= Several of these studies also rely on augmenting the NBI dataset with
additional data collected by the state Department of Transportation (DoT)’s.>”” As

a result, the combined dataset used in one research effort for a particular state is



different from another. Getting access to or creating a consistent and consolidated
dataset for all states is a challenge. Some of these databases are also restricted for
access, which makes related studies challenging to reproduce and used by other
civil engineering practitioners.

With respect to the second perspective, most prior research does not make
their working data and data processing environment available. The description of
data cleaning procedures are often unclear, and the original source of the data is
unavailable. Unobtainable working data and descriptions of the data processing
environment used for data analysis pose challenges in reproducing the results.

Finally, the review of the literature from the third perspective has revealed
significant efforts made in the evaluation of current bridge condition and
predicting future condition. These efforts rely on statistical analysis, geographical
information system and artificial intelligence. These studies have previously
identified several influential factors in determining deterioration of bridges based
on certain established techniques for conducting the predictive analysis.
Several®~!? researchers have used Geographical Information System (GIS)
techniques to show deficient bridges. Bolukbasi et al.> 2004 conducted regression
analysis on bridges in Illinois. Washer et al. 2014* performed statistical analysis to
understand patterns in deterioration and estimate bridge inspection cycles, rather
than doing it every two years for all bridges.

There has been a considerable effort in improving existing artificial
intelligence techniques used in predicting future conditions of the bridge. Markov
chain-based techniques are popular throughout the literature,>!" =13 Artificial
Neural Network (ANN) are also used in developing predictive models of
deterioration.'* Apart from looking at problems only from the statistical point of
view, there has been an exploration of various new methods for predicting future

condition of bridges. The visual patterns from GIS provide valuable information



and make results understandable. Kim et al. (2009)° observe that there are critical
findings from research predicting the future condition of constructed bridges.
There are lack of insights into factors owners and maintainers, regions of the U.S
having similar weather influence in deterioration and condition of the bridges.
There is a need to have a standard set of tools and services to conduct large-scale

research.

2.2 Summary of Prior State-of-the-Art

In Table 2.2, select papers from prior state-of-the-art is summarized. This compact
format is intended to highlight the perspectives identified the opening discussion in

this Chapter. Table 2.1 provides term used in the literature review table 2.2:

Term Research Paper

PAPER 1 Estimating the Future Condition of Highway Bridge Components
using National Bridge Inventory Data’

PAPER 2 Identifying Critical Sources of Bridge Deterioration in Cold Re-
gions through the constructed Bridges in North Dakota®

PAPER 3 The Methodology for Probabilistic Modeling of Highway Bridge
Infrastructure: Accounting for Improvement Effectiveness and In-
corporating Random Effects’

PAPER 4 Comparative Analysis of Bridge Superstructure Deterioration'

PAPER 5 An In-Depth Analysis of the national bridge inventory database
utilizing data mining, GIS, and advance statistical methods®

PAPER 6 Estimation of Infrastructure Transition Probabilities from Condi-
tion Rating Data Research Purpose'®

PAPER 7 Estimating inspection intervals for bridges based on statistical
analysis of national bridge inventory data*

PAPER 8 Modeling Bridge Deterioration Using Case-Based Deterioration’

Table 2.1: Terms used to represent research papers



PAPER: 1
TIME SPAN: 1976-98
BRIDGES: 2601
DATA SOURCE 1: NBI
DATA SOURCE 2: [SIMS

PURPOSE: Develop methods to esti-
mate planning of future conditions of

bridges.

METHODS: Deterioration curves and
calculating expected duration of condi-
tion ratings

INDICATOR: Average daily traffic,
Type of Service. Type of Material.
PROS: Elimination of unclean records.
Takes reconstruction into account. Small
sample size. Limited to one state. No
source code available.

CONS: Small sample size. Limited to
one state. No source code available.

PAPER: 2
TIME SPAN: 2006-07
BRIDGES: 5289

DATA SOURCE 1: NBI

PURPOSE: Performance of constructed
bridges in cold regions by examining the

bridges in North Dakota.

METHODS: Multiple linear regression
and GIS techniques.

INDICATOR: Interstate bridges. Large
city bridges with high population, Con-
crete bridges are better in colder regions
than steel, Year built, Volume of traffic,
Structural System. Presence of water.
PROS: Elimination of unclean records.
Takes reconstruction into account. Small
sample size. Limited to one state. No
source code available.

CONS: Small sample size. Limited to
one state. No source code available.

PAPER:
TIME SPAN:

BRIDGES:

3
1992-
2014
5600

DATA SOURCE 1: NBI

PURPOSE: Develop methods to account
bias and random effects in NBI dataset.

METHODS : Ordered Probit Models
INDICATOR : Replacement, Repair.
PROS: Considers random effects and
bias.

CONS: Small sample size. Limited to
one state. No source code available.

Table 2.2: Literature Summary Table - A




PAPER:
TIME SPAN:
BRIDGES:

DATA SOURCE 1:

4
1990
57700
NBI

PURPOSE: Data analysis on the pre-
stressed superstructure of the bridge.

METHODS : Regression analysis.
INDICATOR: Age, Average daily traf-
fic.

PROS: Considers more than one state.
CONS: Small sample size. No source
code available,No environmental factors,
Focuses only on the structural material of
superstructure.

PAPER:
TIME SPAN:
BRIDGES:

DATA SOURCE 1:
DATA SOURCE 2:

DATA SOURCE 3:

5

1996
30000
NBI
Weather
data
Natural
hazard

PURPOSE: Purpose of this study is to
look into deterioration of the bridges from
the geo- spatial layer in the GIS system.

METHODS: Regression modelling.
INDICATOR: Age, Average daily traf-
fic, Predominant structural material, An-
nual precipitation, Frequency of salting,
Temperature range, Freeze-thaw cycle
PROS: Data cleaning of outlier and erro-
neous entries. Environmental and natural
hazard factors considered.

CONS: Small sample size. Limited to
one state. No source code available.

PAPER:
TIME SPAN:

BRIDGES:

DATA SOURCE 1:

6
1978-
1986
5700
NBI

PURPOSE :Introduces new method for
bridge deterioration model.

METHODS: Markov decision model-
ing,Ordered Probit modeling.
INDICATOR: Wearing surface type
1,2,6,9. Climate region. Age. Average
daily traffic.

PROS: Difference in environment, in-
spection procedures may explain this pat-
tern.

CONS: Small sample size. Limited to
one state, No source code available, Study
is focused on only concrete bridges.

Table 2.3: Literature Summary Table - B
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PAPER: 7
TIME SPAN: 1992-
2011
BRIDGES: 4270
DATA SOURCE 1: NBI

PURPOSE : Statistical methods to esti-
mate inspection intervals.

METHODS: Weibull distribution. An-
derson Darling test.

INDICATOR: Weibull scale parameter.
PROS: Simplicity of model.

CONS: Small sample size. Limited to
one state.No source code available.Study
is focused on only on superstructure.

PAPER: 8
TIME SPAN: 1993-99
BRIDGES: 512

DATA SOURCE 1: MTQ
PURPOSE: Introduces a new method to
predict future condition of bridges.

INDICATOR: Highway class, Region,
Material, Structural System, Wearing sur-
face.

PROS: Method for predicting future con-
dition of bridges.

CONS: Small sample size. No environ-
mental factors considered.

Table 2.4: Literature Summary Table - C

2.2.1 Abbreviations of summary literature

Table 2.2 is a summary of the literature review and few of the abbreviations used

are as follows:

Abbreviation Terms

NBI
MTQ
GIS
AADT
ISIM

ment System

National Bridge Inventory

Ministry of Transportation,Quebec
Geographical Information Systems
Annual Average Daily Traffic

llinois Structure Information Manage-

Table 2.5: Abbreviations used in summary literature

In summary, we reviewed literature from perspective of data source, data

cleaning and analysis environment made available for other researches, and




11

methods employed to identify and eliminate factors that most influence
deterioration, and condition of the bridges.
From our review, the following are the observation regarding the previous

research:

* Previous research concluded their finding using a limited set of data.

* Previous research does not make their working data and data processing and

analytic environment available.

* Previous research have not explored the effects of factors such as region,

owners and maintainers.

* Previous research have not provided with a systematic approach to identify

the influential factors that affects deterioration and condition of the bridges.

This research lays a solid groundwork in the area of modeling bridge

condition. In the following chapters, we show how we improve on this work.
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Chapter 3

Methods

3.1 Overview

In this chapter, we introduce our data cleaning and transformation strategies, we
explain a new method to compute scores that indicate the condition of bridges and

we these to explore bridges in the U.S.

3.2 Data Cleaning and Transformation

In our exploration of the NBI data, we observed that some of the data needed to

cleaned and some data needed to be transformed.

3.2.1 Data Normalization

Since our work is focused on bridge deterioration, we are most interested in the
condition of the bridge, which is indicated in the deck rating, substructure rating,
and superstructure fields of a bridge inspection record, we also examined other
fields in the NBI such as latitude, longitude, and structure type. We found that

many bridges had inconsistencies such as such as:
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» Condition ratings such as deck, substructure, and superstructure rating had

missing values.
* Fields such as Longitude and latitude were not in usable format.

* Fields were inconsistent when checked using the given cross-checking

guidelines.”

* Other fields had invalid values that are out of range as per described in the

NBI recording guide,'® and NDOT!”
* Repeated inspection records of the same structure number early in the
lifecyle of the database or records with changing values for the year of built.
3.2.1.1 Data Cleaning

In data cleaning stage of our pipeline we addressed the above-mentioned

inconsistencies by:

* Discarding records with missing values for deck, substructure, and

superstructure.
* Maintaining a log of invalid values and repeated records.

* Adding a new field for location: Longitude and Latitude, to have a usable

format of degrees and minutes.

* Reintroducing bridges in database by identifying the change in year-built of

the bridge.

Tables 3.1 and 3.2 show the number of culled inspection records by year and
reason for removal. These stables show the substantial decrease in the repeated
records and missing geo-coordinates of the bridges over the years in the state of

Nebraska.
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Year | Repeated Records
1992 454
1993 453
1994 468
1995 472
1996 477
1997 476
1998 477
1999 484
2000 486
2001 488
2002 493
2003 503
2004 504
2005 514
2006 517
2007 517
2008 532
2009 532
2010 522
2011 517
2012 515
2013 0
2014 0
2015 0
2016 0
2017 0

Table 3.1: Table showing the number of repeated NBI inspection records for the
state of Nebraska, 1992 - 2017
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Year | Valid Geo-Coordinates | Missing  Geo- | Total
Coordinates
1992 3983 12238 16221
1993 4026 12212 16238
1994 4109 12199 16308
1995 4142 12185 16327
1996 4189 12153 16342
1997 4193 12135 16228
1998 4205 12088 16293
1999 16181 108 16289
2000 16272 1 16273
2001 16260 2 16262
2002 16237 2 16240
2003 16241 1 16242
2004 16238 5 16243
2005 16254 1 16255
2006 16254 1 16255
2007 16300 1 16301
2008 16294 1 16295
2009 16243 1 16244
2010 16185 1 16186
2011 16195 1 16196
2012 15392 1 15393
2013 15369 1 15370
2014 15372 2 15374
2015 15341 0 15341
2016 15334 0 15334

Table 3.2: Table showing the number of NBI inspection records with invalid geo-
coordinates in the state of Nebraska, 1992-2017
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NBI Data Field Criteria

Item 058 Deck Field coded as 'N” or "NA’
Item 059 Substructure Field coded as 'N” or "NA’
Item 060 Superstructure Field coded as "N’ or 'NA’
Item 108A Type of Wearing | Field coded as ’6’

Surface

Item 43 Structure Type Field is coded as *19’

State | Total No. of Survey Records | Bridge Sur- | % of Bridge
vey Records | Survey in Study
Considered In
Study
CO 223645 55259 24.71
WY 81257 48403 59.57
MT 143904 86220 59.91
ID 110415 37871 34.30
WA 219318 111952 51.05
OR 198421 55259 33.01
UT 86707 21616 24.93
NV 45179 13013 28.80
CA 761313 336288 44.17
AK 334522 21204 63.39
HI 28868 10968 37.99
X 1347902 473361 35.12
OK 623417 330803 53.06
NM 105730 38725 36.63
AZ 198595 53104 26.74
WV 194514 87703 45.09
VA 396744 164877 41.56
KY 373241 214966 57.59
TN 545968 138745 25.41
NC 517708 132552 25.60
SC 246494 93626 37.98
GA 405216 186850 46.11
AL 417539 212866 50.91

Table 3.3: Table showing the number of NBI inspection records available after data
cleaning - A
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State | Total No. of Survey Records | Bridge Sur- | % of Bridge
vey Records | Survey in Study
Considered In
Study
MS 442724 278356 62.87
LA 350988 192878 54.95
FL 339786 168565 49.61
NE 400539 295655 73.81
IA 641429 500280 77.99
IL 714936 362921 50.76
IN 484585 260133 53.68
KS 663487 387056 58.34
MI 641698 369188 57.53
ND 116171 71287 61.36
MO 641698 369188 57.53
SD 158215 98721 62.40
OH 1570646 531684 33.85
WI 386700 225939 58.43
MN 480773 156378 32.53
MA 137664 20186 14.66
CT 126267 6118 4.85
ME 67423 22560 33.46
NH 82523 12203 14.79
RI 22591 2521 11.16
VT 73408 20385 27.77
NJ 216169 76105 35.21
NY 522369 179217 34.31
PA 665314 267464 40.20
DC 7808 2623 33.59
MD 144047 60340 41.89
DE 28935 11135 38.48
AR 339492 178566 52.60
PR 61350 25421 41.44

Table 3.4: Table showing the number of NBI inspection records available after data
cleaning - B

Tables 3.3 and 3.4 show the results of our data cleaning on the number of
inspection records available in all states of the U.S. We observed that a large part

of the data is unavailable for further analysis of identifying influential factors—on
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average only 42% of the original dataset is available for data analysis after the data
cleaning and filtration process.

NBI Dataset also has substantial number of bridges with constant condition
ratings. About 48% of the bridges used in this analysis post data cleaning and data

filtration criteria have constant condition ratings.
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3.2.2 Data Transformation

In this work we study bridges over the course of two decades to determine which
factors have the greatest effect on bridge health. However, as we transformed the
database of inspection records into a database of bridges with timeseries of data,
we noted that the year built for some bridges was not consistent. As a result,
Bridges appeared as unnaturally aged or newly built. Based on our discussion with
subject matter experts, we learned that when an inspection record shows a newer
year built than previous inspection records, it often means the bridge was rebuild.
To capture this fact into our data, we divided the time-series of a bridge data into
several consistent segments with the same year-built, and then each consistent
segment was treated as a different bridge in our working data. We maintain the
traceability of every segment to the original bridge by adding a segment number as
a suffix to the original structure number of the bridge.

In summary, by dividing bridges’ timeseries data into consistent segments and
reintroducing each consistent segment of bridge time series as a new bridge, we
were able to create a consistent dataset of bridges’ timeseries for our analysis of
identifying influential factors of bridge conditions.

By applying data cleaning and transforming the NBI data, we could create a
definition of bridge condition and develop method using our definition of bridge
condition. In next section, we described the condition of the method for computing

Baseline Difference method.
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3.3 Measurements

Our goal is to provide data-driven tools to our bridge stakeholder collaborators.
With the use of these data-driven tools, stakeholders can allocate their limited
resources to bridges that require the most attention.

To effectively allocate resources, stakeholders require methods that evaluate
bridges individually. As discussed in our literature review, the current
state-of-the-art only provide collective measures, not the individual measures that
stakeholders need (e.g. Markov Decision Process,'® Ordered Probit Model,? and
Regression Models®).

Using the cleaned NBI data just discussed, we propose a method that scores
bridges individually, which we call the Baseline Difference Score (BDS) method.
BDS determines the performance of a bridge relative to a baseline computed from
the national average of BDS scores. With this method, we can examine how a
bridge may differ from the established national baseline, giving each bridge a
quantitative, individualized score.

To compute BDS, we consider only one of the three ratings (deck,
substructure, superstructure) of the bridge. A review of literature in deterioration
of the bridges indicate that deterioration of superstructure is considered crucial, as
the function of the superstructure is of the backbone of the bridge, which plays an
important role in the safety of the bridge.* In Figure 3.1, The condition ratings of
deck, superstructure, and substructure are highly correlated. Therefore, we

compute BDS for bridges using superstructure condition ratings of the bridge.
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Figure 3.1: Pearson Correlation of bridge Deck, Substructure, and Superstructure
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3.3.1 Baseline Difference Score

To calculate the BDS S,, for Bridge A.
Let 7 be the age of Bridge A, when bridge A was first inspected.
k be the age of Bridge A, when bridge A was last inspected.
C be the vector of condition ratings of the Bridge A from age i to age k.
X be the average condition rating of bridges of all bridges from age 1 to 100.
X, be the vector of average condition rating from age ¢ to age j,

such that j < k.Then, Deterioration Score .S,
S,=C-X,

3.3.1.1 Computing National Baseline

To provide a clear example of the computation, we provide a graphical example of
the baseline difference computation of a bridge. In Figure 3.2, we compute a
baseline from the condition rating of the Bridge A, Bridge B, and Bridge C. Here,
a baseline is the average condition rating at each age.
;H\ X Bridge A
) X Bridge B
\ \ Bridge C

Condition Ratings

Age

Figure 3.2: Condition Ratings of the Bridge A, Bridge B, and Bridge C.
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In Figure 3.3, we compute the average of condition rating of the bridges for
all age.

X Bridge A
X Bridge B
> Bridge C

@ Mean Condition Ratings

Figure 3.3: Computation of baseline from the condition rating of Bridge A, Bridge
B, and Bridge C.



3.3.1.2 Computing BDS of an individual bridge
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After computing the baseline, in Figure 3.4 and 3.5, we compute the difference in

condition ratings and the baseline.

Condition Rating

@ Mean Condition R¢

== Bridge B

Figure 3.4: Computation of baseline difference score of Bridge B.

In figure 3.5, we compute the final BDS for Bridge B’ by averaging the

difference.

M-B =(8.5-9)+(8.5-9)+(8-8)+(8-8)+(8-8)+(8-8)+(8-8)+(8-8)+
(8-8)+(8-8)+(7-7)+(7-7)+(7.5-7)+(7.5-7T) +(1.5-7) + (7.5 -7)

M-B=-05+-05+0+0+0+0+0+0+0+0+0+0+0.5+0.5+0.5+0.5

M - B / Length of the condition rating = 1/16

Score (B) = 0.0625

Figure 3.5: Computation of baseline difference score of Bridge B (Continued).
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3.3.2 Psuedocode of Baseline Difference Score

The pseudocode for computing BSD score has a main method that encompass

three main functions:

1. getCountAndSum

2. ComputeBaseline

3. ComputeBaselineDifferenceScore.

First, getCountAndSum function will compute sum and count of all the
condition ratings for all ages in a given region. Second, ComputeBaseline function
will compute a baseline of bridges by averaging condition rating for all years in a
given region. Since, Bridges are designed for the service of 50 years, we only take
into consideration of the baseline till the year 50; Finally,
ComputeBaselineDifference function compare each bridge with the baseline and
returns the difference in between the bridge and baseline and computes mean of

the differences and returns the BDS score of the bridge.
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Algorithm 1: mainFunction

Input: Condition_Rating: A sequence of condition ratings (integers) of

bridges

<<01170127 NP ,Cln>, <021, Cogy v v - 702n>, ceey <an, Copyv vt 702n>>,
Age_Of_Bridges: A sequence of condition ratings (integers) of
bridges

((A1,, Avyy oo AL (Ao Aoy ooy As ) oo (A Asy oL Ag))

Output: Baseline_Difference_Score: A List of scores for every segment in
the List_Of_Segments

<<BR11,BR22, ce 7BR2n>’ <BRQI,BR22, - "SRQn>’ ey <BRn17BRn27 e

Count_Of_Bridges_at_Age, Sum_Of_Condition_Rating_at_Age =
getCountAndSum(Condition_Rating, Age_Of_Bridges)

Dict_Of_Age_Average_Condition_Rating =
computeBaseline(Count_Of_Bridges_at_Age,
Sum_Of_Condition_Rating_at_Age)

Baseline Difference_Score =

computeBaselineDifferenceScore(Condition_Ratings,
Dict_Of_Age_And_Average_Condition_Rating_Ages)

return Baseline_Dif ference_Score
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Algorithm 2: getCountAndSum

Input: Condition_Rating: A sequence of condition ratings (integers) of

bridges

<<C117612, c. ,Cln>7 <C21, Coyy - - - ,an>, ceey <an, Copye v s ,C2n>>,
Age_O f_Bridges: A sequence of Age (integers) of bridges
(1,2,...,n)

Output: Count_O f_Bridges: A sequence of total count (integers) of
bridges at all ages r age of the bridge (T3, 15, ..., T3)

Sum_O f_Condition_Rating_at_Age: A sequence of Sums of the

condition Rating (integers) of bridges at all ages. (X7, X, ..., X3)

1 < 0, be the outer pointer
J < 0, be the inner pointer

Count_O f_Bridges_at_Age < [], be the list of deteriorating segments of

condition ratings

Len < Length(Condition_Rating), be the length of list of deteriorating
segments of condition ratings

Sum_O f_Condition_Rating_at_Age <+ ]

while i == Len do
Condition_Rating_Bridge = Condition_Ratings_Of_All_Bridges[i]
Ages = Age_Of_Bridges|[i]
j=0
Len_Condition_Rating_of_A_Bridge = len(Condition_Rating_Bridge)
while j == Len_Condition_Rating_of _A_Bridge do

Age = Ages[j] Count_Of_Bridges_at_Age[Age] =

Count_Of_Bridges_at_Age[Age] + 1
j=j+1

i=i+1

return Count_Of_Bridges_at_Age, Sum_Of_Condition_Rating_at_Age
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Algorithm 3: computeBaseline

Input: Condition_Rating: A sequence of condition ratings (integers) of
bridges
({C1,,Clyy oy C1, 0, (Coyy Cogy ooy Co )y ey (Copy Coyy ey )
Output: Dict_Of_Age_And_Average_Condition_Rating: A
Key-Value pair of Age and Baseline_Condition_Rating

Age_Of_Bridges: A sequence of Age (integers) of bridges (1,2,...,n)

Counter + 0

Dict_Of_Age_And_Average_Condition_Ratings < ,

while Counter == Len(Count_Of_Bridges_at_Age) do
Dict_of_Age_and_Average_Condition_Rating[Counter] =

L (Sum_Of_Condition_Rating_at_Age / Count_Of_Bridges_at_Age)

return Dict_of_Age_and_Average_Condition_Rating
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Algorithm 4: computeBaselineDifferenceScore
Input: C'ondition_Rating: A sequence of condition ratings (integers) of

bridges

<<61176127 s acln>7 <6217 Cogy - - - 762n>7 SRR <62n7 Cops v ,an>>,
Age_Of_Bridges: A sequence of Age (integers) of bridges
(1,2,...,n),

Dict_Of_Age_And_Average_Condition_Rating: A Key-Value pair of
Age and Baseline Condition Rating

Output: An Integer: BaselineScore; A Baseline Difference Score of a
bridge

Let Mean(), be the function to calculate mean of a list.
Counter <— 0 Temp_List < []
while Counter == len(Condition_Ratings) do
Condition_Rating = Condition_Ratings[Counter]
Age = Ages[Counter]
Baseline_Condition_Rating =
Dict_Of_Age_And_Average_Condition_Rating[Age]
Temp_List.append(Condition_Rating - Baseline_Condition_Rating)
BaselineScore = Mean(Temp_List)

return BaselineScore

Overall, BDS evaluates bridges individually and provides a measure of

comparison against the national baseline.
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3.4 Distribution of Baseline Difference Scores in the

U.S.

To select appropriate statistical techniques to guide us in identifying the factors
that affect the condition of the bridges, we have to understand the distribution of

the BSD score of the bridges in the U.S.

Baseline Difference Scores - U.S

[0

§ 2 0.5
Q4 04
(&)

&

o 1N
a 0.2
o -1

£

% 2 0.1
(‘U RN S—

@ 0.0

-2 -1 0 1 2
Baseline Difference Score

Figure 3.6: Baseline Difference Scores - U.S.

U.S.
Count 1142331
Mean -0.061
Std. dev 0.887
Min -2.50
25% -0.617
50% 0.014
75 % 0.54
Max 2.368

Table 3.5: The Summary Statistics of Distribution of BDS of the bridges in the U.S.

We provide a box-plot and the density plot of the BDS in Figure 3.6 and
summary statistics in the Table 3.7 . Note that the median (0.014) of the BDS

score distribution in the box plot is positive and close to zero. The summary
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statistics of the distribution reveals that the mean (-0.061) is negative and close to
zero and the standard deviation (0.887) close to one.

These results suggest that the variance, mean, and median of the distribution
may satisfy the assumption of the normal distribution. To confirm our hypotheses
about the distribution of the data, we performed a normality test of the distribution

of the data.

3.4.1 Normality Test

We performed two normality test: D’ Agostino’s K2 Test and
Kolmogorov-Smirnov Test. In Table 3.6, with p-value of 0.0 for both test:
D’Agostino’s K? Test and Kolmogorov, we reject the null hypothesis. The results
of the normality test suggest that the distribution of the baseline difference score
(BDS) of all available bridges in the U.S is not normal; However, we performed a
similar test on the random sample of 400 bridges, the normality test 3.7 results

suggest the distribution of the random sample is normal.

Test Statistic | p-value | Null Hypothesis
D’ Agostino’s 12917.120 0.0 reject
Kolmogorov- 0.064 0.0 reject
Smirnov

Table 3.6: Normality Test on all Bridges in the U.S.

Test Statistic | p-value | Null Hypothesis
D’ Agostino’s 4.204 0.122 fail to reject
Kolmogorov- 0.090 0.370 fail to reject
Smirnov

Table 3.7: Normality Test on Random Sample of 400 Bridges

In the following chapter, we will present our findings on the effect of the
following factors on bridge health as described by our BDS algorithm: Region,

Average Daily Traffic, Average Daily Truck Traffic, Precipitation, Maintainer,
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Structure Length, and Material. We also classify bridges into appropriate groups
with respect to every factor and perform ANOVA to understand the differences in

the mean BDS in between the groups.

3.5 Summary

In summary, we employed data cleaning and transformation strategy on 17 million
inspection records across 53 states and territories. We introduced the Baseline
Difference Score and computed BDS for every bridge to enable comparison
among bridges. The distribution of randomly selected 400 bridges’ BDS in the
U.S. is a normal distribution.

In next chapter, we will test factors such as Region, Maintainers,
Precipitation, Average Daily Traffic, Average Daily Truck Traffic, Structure

Material, and Structure Length, to see if these factors affect the bridge conditions.
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Chapter 4

Results

4.1 Overview

In this chapter, we identify factors that have a significant effect on the condition of
bridges based on Baseline Difference Score (BDS).

For every factor, we will categorize bridges into several groups as appropriate
and then perform ANOVA to find the difference between the mean Baseline
Difference (BDS) score of the groups.

We choose to do ANOVA because BDS is a continuous variable and factors
have independent categories. We learned from chapter 3 that the normality test of
the BDS score of a small sample of BDS is normally distributed and a large sample
1s similar to a normal distribution. Hence, all these mentioned criteria fulfill the
assumptions of the ANOVA, and that makes ANOVA suitable for this analysis.

The degree of association between the factors and BDS score is measured
using effect size. A measure of effect size can also be thought of as a correlation
between factor and BDS score. In ANOVA, a commonly used measure of effect
size is Eta Squared.

Cohen’s d is a standardized measure that is easy to interpret. For our analysis,



34

we used Cohen’s to measure the effect size between two means. Therefore, we
converted eta squared value from our analysis of ANOVA to Cohen’s d using a

web resource.!” The Table 4.1 provides a description for magnitude of Cohen’s d.

Effect Size | Cohen’s d
Very Small 0.01
Small 0.20
Medium 0.50
Large 0.80
Very Large 1.20
Huge 2.00

Table 4.1: Description for magnitudes of Cohen’s d by Sawilowsky?

In the following section, we will explore the effect of Region, Precipitation,
Average Daily Traffic, Average Daily Truck Traffic, Maintainers, Structure
Material, and Structure Length on the bridge condition based on BDS. These
factors are either suggested by the NDOT (Structure Length, Material, ADT, and
ADTT), are commonly cited (Precipitation, ADT, and ADTT), or may serve as a

proxy for the compound effect of various factors (Region).



4.2 Effect of Average Daily Traffic

Average Daily Traffic is one of the most commonly studied attribute of the bridge
as the factor that affects the condition of the bridges.* %3 151620 To observe the
effect of Average Daily Traffic (ADT) on condition of the bridges, Morcous et a

provided criteria to classify ADT into four classes shown in the Table 4.2:

1. Very Light

2. Light

3. Moderate

4. Heavy
ADT Group Criteria
Very Light ADT < 100
Light 100 < ADT < 1000
Moderate 1000 < ADT <5000
Heavy ADT > 5000

Table 4.2: Grouping of Bridges by Average Daily Traffic
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Baseline Difference Scores
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Figure 4.1: Number of Bridges in Very Light, Moderate, Light, and Heavy Average
Daily Traffic

From Figure 4.1, a large number of bridges belong to Light ADT. Heavy and
Very Light ADT have an similar number of bridges, and Moderate ADT has the
least number of bridges.

Figure 4.2 compares the BDS distribution of the four different ADT classes of
bridges and reveals that the mean and median are very similar within these groups

and across other groups.
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Figure 4.2: Distribution of Baseline Difference Scores of Very Light, Light, Mod-
erate, and Heavy Average Daily Traffic

As seen in the Figure 4.2, the mean and the medians are similar within these

distributions.
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4.2.1 Results

We performed one-way ANOVA on a small sample size and a large sample size of

data.

4.2.1.1 One-way ANOVA - Small Sample

We randomly selected 400 bridges (100 bridges from each ADT group) to perform

ANOVA.
sumsq | df F | PR(F) | etasq | cohen’s d | effect size
ADT 0.493 3.0 |0.21 0.88 | 0.0016 0.08 very small
Residual | 305.93 | 396.0 | - - - - -

Table 4.3: One-way ANOVA of Average Daily Traffic on sample size of 400 bridges

With PR(>F) > 0.05 as seen in the Table 4.3, we fail to reject the null
hypothesis based on ANOVA results. The effect size (Cohen’s d = 0.08) is very
small by convention.

However, the analysis is performed on small sample size (0.04% of the
available data.) Therefore, it is likely that a small sample size might have not
captured the variance in the data of a large sample. Hence, we did a similar

analysis on a large sample.

4.2.1.2 One-way ANOVA - Large Sample

From Figure 4.1, we noticed that ADT group Moderate has the lowest number
(229,442) of bridges. To have an equal sample size from all groups, we randomly
selected 229,442 (least number of bridges belonging to Moderate Group) bridges
from other groups (Very Light, Moderate, Light, and Heavy).

The analysis on 917,768 bridges (229,442 bridges in each group) reveals that
the PR(>F) value < 0.05 as seen in the Table 4.4, so we reject the null hypothesis.

We observed the change in PR(>F) of a small sample and a large sample analysis,
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sum sq df F PR(>F)
ADT 289.31 3.0 123.70 0.0
Residual | 715466.50 | 917764 - -
eta sq cohen’s d | effect size -
ADT 0.0004 0.04 very small -
Residual - - - -

Table 4.4: One-way ANOVA of Average Daily Truck Traffic on the sample size of
917,768 bridges

this change in PR(>F) value suggests that as the sample size increased, we
observed a difference in mean BDS among the ADT groups. However, the effect
size (Cohen’s d) of 0.04 is very small that suggests a small association between
ADT and condition of the bridges.

From the analysis of small samples and a large sample, our findings suggest
that the mean BDS score among four groups of the bridges (Very Light, Moderate,
Light, and Heavy) is statistically insignificant. These results seem to indicate that,
Average Daily Traffic fails to explain the differences in the bridge condition in

comparison to the national baseline.
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4.3 Effect of Average Daily Truck Traffic

Heavy trucks can have an impact on bridge substructure that can lead to a
progressive collapse of the bridge superstructure and disastrous accidents.”!
Several studies investigated the effect of ADTT on the condition of the bridge,*"*?
and cite ADTT as an indicator of bridge condition.

In the NBI dataset, Average Daily Truck Traffic is reported as a percentage of
Average Daily Traffic. We grouped bridges into three Average Daily Truck Traffic

groups: Light, Moderate, and Heavy in the U.S. respectively.?’

1. Light
2. Moderate

3. Heavy

In Table 4.5, we show the criteria for grouping of bridges with respect to

ADTT.
ADT Group Criteria
Light ADTT < 100
Moderate 100 < ADTT < 500
Heavy ADTT > 500

Table 4.5: Grouping of the bridges by Average Daily Truck Traffic

As seen in Figure 4.3 a large number of bridges belong to Light ADT Heavy
ADTT and Moderate ADTT have a similar number of bridges.

Figure 4.4 compares the BDS distribution of Moderate, Light, and Heavy
ADTT groups of bridges and reveals that the mean and median are similar within
the groups and across other groups. The range of the distribution of bridges with
Light ADT is the largest, which could be a result of a large number of bridges in

this grouping.
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Figure 4.3: Number of Bridges in Light, Moderate, and Heavy Average Daily Truck
Traffic group
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We performed one-way ANOVA on a small sample and a large sample of data.

4.3.1.1 One-way ANOVA - Small Sample

We randomly selected 300 bridges (100 bridges from each ADTT group) to

perform ANOVA.
sumsq | df F | PRGF) | etasq | cohen’s d | effect size
ADTT 2.84 20 212 0.12 0.01 0.20 small
Residual | 199.02 | 297.0 | - - - - -

Table 4.6: One-way ANOVA of Average Daily Truck Traffic on the sample size of
300 bridges

The results seen in Table 4.6 of the ANOVA revealed that the PR(>F) > 0.05,
so we fail to reject the null hypothesis. The effect size (Cohen’s d) of 0.20
calculated in the analysis reveals a small effect size by convention.

However, the analysis is performed on small sample size (0.08% of the
available data). Therefore, it is likely that the small sample size might not have
captured the variance in the data of a large sample. Hence, we did a similar

analysis on a large sample.

4.3.1.2 One-way ANOVA - Large Sample

From Figure 4.1, we noticed that group Moderate has the lowest number (112,983)
of bridges. To have an equal sample size from all groups, we randomly selected
112,983 (least number of bridges belonging to Moderate Group) bridges from
other groups (Heavy and Light).

The analysis on 338,949 bridges (112,983 bridges in each group) reveals that
the PR(>F) value < 0.05 as given in Table 4.7, so we reject the null hypothesis. We

observed that there is a change in PR(>F) of a small sample and a large sample



sum sq df F PR(>F)
ADTT 469.33 2.0 33.44 0.0
Residual | 238552.42 | 338946 - -
eta sq cohen’s d | effect size -
ADTT 0.001 0.063 very small -
Residual - - - -
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Table 4.7: One-way ANOVA of Average Daily Truck Traffic on the sample size of

338,949 bridges

analysis, which suggests that as the sample size increased, we also see the
difference in mean BDS among the ADTT groups. However, the effect size
(Cohen’s d = 0.063) is very small. A very small effect size suggest a very small

association between ADTT and condition of the bridges. From our analysis on

small sample size and a large sample size, our findings suggest that the mean BDS

score among three groups of the bridges (Light, Moderate, and Heavy) is

statistically insignificant. In other words, Average Daily Truck Traffic fails to

explain the differences in the bridge condition in comparison to national baseline.
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4.4 Effect of Bridge Maintainer

Maintenance practices related to bridges such as Rehabilitation, Replacement and
Repair (RRR) of bridge components are essential for the durability of bridges.’
These bridge maintenance practices may differ across various states and
maintainer groups. In this research study we limited our analysis to only the top

four agencies that maintain bridges:

1. State Highway Agency
2. County Highway Agency
3. Town or Township Agency

4. City or Municipal Highway Agency
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Figure 4.5: Number of Bridges in Town, State, County, and City Maintainers groups

From figure 4.5, a large number of bridges are maintained by the State and
County. A smaller, similar number of bridges are maintained by either the Town or

the City.



47

Baseline Difference Scores

2 -1 .
o
S 1
n
o
o
c
2 A
s O . i .
£
[m]
o
£
< 1
[72]
3]
m

_2 — 1

=1 —A— Mean 1
—— Median
h City or Municipal County State Town or Township
Maintainer

Figure 4.6: Distribution of Baseline Difference Scores of Town, State, County, and
City Maintainer group

Figure 4.6, compares the BDS distribution of City, County, State, and Town
maintained bridges. The groups of BDS reveals that the mean and the median are
similar within the groups of City, County, and State groups. The Town maintainer
group have a higher mean and the median. The range of distribution of bridges
with State maintained bridges is the smallest. The mean and median are close to
zero, the mean and the median suggest that state highway maintained bridges are

in better condition.
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4.4.1 Results

We performed one-way ANOVA on maintainers: City or Municipal Highway
Agency, County Highway Agency, State Highway Agency, and Town or Township

Highway Agency with a small sample and a large sample of data.

4.4.1.1 One-way ANOVA - Small Sample

We randomly selected 400 bridges (100 bridges from each maintainers group) to

perform ANOVA.

sumsq | df F | PRGF) | etasq | cohen’s d | effect size

Maintainer | 4.96 3.0 | 1.87 0.13 0.013 0.15 very small

Residual 349.54 | 396.0 - - - - -

Table 4.8: One-way ANOVA of Maintainer on the sample size of 400 bridges

The results of the ANOVA as seen in the Table 4.8 revealed that the PR(>F) >
0.05, so we fail to reject the null hypothesis. The effect size (Cohen’s d) of 0.15
calculated in the analysis reveals a small effect size by convention. This means
that the association between maintainer and the condition of the bridge is very
small in this sample.

However, the analysis is performed on small sample size (0.22% of the
available data). Therefore, it is likely that a very small sample size might not have
captured the variance in the data of a large sample. Hence, we did a similar

analysis on a large sample.
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4.4.1.2 One-way ANOVA - Large Sample

From Figure 4.1, we noticed that group Town or Township Highway Agency have
the lowest number (43,530) of bridges. To have an equal sample size from all
groups, we randomly selected 43,530 bridges from other groups (State, County,

and City Highway Agency).

sum sq df F PR(>F)
Maintainer 577.07 3.0 245.50 0.0
Residual | 136421.92 | 174116 - -
eta sq cohen’s d | effect size -
Maintainer 0.004 0.12 very small -
Residual - - - -

Table 4.9: One-way ANOVA of Maintainer on the sample size of 174,120 bridges

The analysis on 174,120 bridges (43,530 bridges in each group) as seen in the
Table 4.9 reveals that the PR(>F) value < 0.05, since the PR(>F) value is less than
0.05 we reject the null hypothesis. This change in PR(>F) value suggests as the
sample size increased, we observed a difference in mean BDS among the
maintainer groups. However, the effect size (Cohen’s d) of 0.12 is very small that
suggests a small association between maintainer and condition of the bridges.

From our analysis on small and large samples, our findings suggest that mean
BDS score among four groups of the bridges (City, County, State, and Town) are
statistically insignificant. In other words, the Maintainer factor alone fails to
explain the differences in the bridge condition in comparison to the national

baseline.
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4.5 Effect of Material

Material of the bridge plays an important role in the durability of the bridge,?* and
are commonly analyzed as an indicator of the bridge condition.? %320
Bridges are often classified by the material of the bridge. In NBI dataset,

there are nine Material Types for bridges. But for our analysis, we limited our

analysis to four most commonly used Material Types:

1. Concrete
2. Prestressed Concrete
3. Steel

4. Wood and Timber

From Figure 4.7, a large number of bridges in the U.S. are made of Steel and
Prestressed Concrete. A smaller number of bridges are made of the Wood or
Timber.

From Figure 4.8, the range of the BDS distribution of Prestressed Concrete is
lower than the other bridges. The mean and median of the Prestressed Concrete is
positive, which suggest that Prestressed Concrete bridges are in better condition
than another Material Type of bridges. This may also be due to the fact that
Prestressed Concrete bridges are relatively newer technology in bridge
construction material. Wood and Timber bridges have the highest range of BDS
distribution, and the mean and median of Wood and Timber bridges are below

Z€10.
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Figure 4.7: Number of bridges in Wood, Steel, Prestressed Concrete, and Concrete

Material Type
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Figure 4.8: Distribution of Baseline Difference Score of Concrete, Prestressed Con-
crete, Steel, and Wood or Timber Material Type. Notice Prestressed Concrete
bridges have the highest mean and median values
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To understand boxplot of the BDS score from a different perspective, we
provided a density plot 4.9 of the BDS scores with respect to the Material Type of
the bridges, that Prestressed Concrete has the sharpest/tallest peak with most of its

values skewed towards the positive side.

Baseline Difference Scores
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0.6 —— Prestressed Concrete
— Steel

05 Wood or Timber
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Baseline Difference Score

Figure 4.9: Density plot of Baseline Difference Scores of Concrete, Prestressed
Concrete, and Steel the bridges in the U.S.

As seen in the Figure 4.9 Wood/Timber bridges has the lowest peak and
skewed towards negative values. It also noteworthy that the steel bridges appear to

have a bimodal distribution.



4.5.1 Results

54

In our analysis of the effect of the material on bridge condition, we performed

ANOVA on a small sample of randomly selected 100 bridges from each of the four

types of material: Concrete, Prestressed Concrete, Steel, and Wood or Timber

bridges.

We further performed a similar analysis on a larger sample of bridges 421,792

bridges, that have equal size representation of 105,448 bridges from Concrete,

Prestressed Concrete, Steel, and Wood or Timber bridges.

4.5.1.1 One-way ANOVA - Small Sample

sum sq df F | PR(>F) | etasq | cohen’s d | effect size
Material | 11.872406 | 3.0 | 2.80 | 0.010 0.02 0.30 small
Residual 277.4 396.0 - - - - -

Table 4.10: One-way ANOVA of Material Type on the sample size of 400 bridges

The results of the ANOVA as seen in the Table 4.10 revealed that the PR(>F)
value < 0.05, so we reject the null hypothesis. This suggests that there is a
difference between mean BDS across the four types of materials. The Cohen’s d
value is 0.30 in the analysis that suggests that there is a small effect size, or in
other words a small association between Material Type and condition of the

bridges compared to the national baseline.

4.5.1.2 One-way ANOVA - Large Sample

To capture the variance in data, we performed a similar analysis on a large sample
of the data. Similar to the previous analysis as seen in the Table 4.11, the results of
the ANOVA revealed that with the PR(>F) value < 0.05, so we reject the null
hypothesis. The Cohen’s d value is 0.35 in the analysis that suggests that there is

small effect size.
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sum sq df F PR(F)
Material | 5368.913 3.0 1259.8 0.0
Residual | 159216 421788 -
etasq | cohen’sd | effect size
Material 0.03 0.35 small
Residual - - -
Table 4.11: One-way ANOVA of Material Type on the sample size of 421,792
bridges

4.5.1.3 Post-hoc Test

The p-value of one-way ANOVA is not significant at the 99% confidence level, we

know that the BDS of different Material Type differs. To understand how these

Materials Types differ, we can perform a follow up "post-hoc test’. One of the

post-hoc tests to perform is a separate t-test for each pair of regions.

Group 1 Group 2 reject | Statistic | p-value

Wood or Timber | Steel True -12.47 0

Wood or Timber | Concrete True -44 .44 0

Wood or Timber | Prestressed Con- | True -63.28 0
crete

Steel Concrete True -32.778 0

Steel Prestressed Con- | True -51.72 0
crete

Concrete Prestressed Con- | True -17.13 0
crete

Table 4.12: Pair-wise T-Test

In the Table 4.12, the p-values for each t-test suggest that the bridges of each

Material Type are different from other Material Types. Since the p-values for each

t-test is less than 0.0, using unadjusted pairwise t-tests can overestimate

significance. However, we can perform Tukey’s test comparison between Material

Types.
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Group 1 Group 2 meandiff | upper | lower | reject
Concrete Prestressed Con- | 0.1101 0.0915 | 0.1287 | True
crete

Concrete Steel -0.2408 | -0.2594 | -0.2222 | True
Concrete Wood or Timber -0.34 -0.3586 | -0.3215 | True
Prestressed Con- | Steel -0.3509 | -0.3694 | -0.3323 | True
crete

Prestressed Con- | Wood or Timber -0.4501 | -0.4687 | -0.4316 | True
crete

Steel Wood or Timber -0.0993 | -0.1178 | -0.0807 | True

Table 4.13: Tukey’s Test on Bridges in the U.S. by Construction Material Type
reveals the difference in BDS of all Material Type of the bridges. Note that None
of the Material Type pairs fail to reject null-hypothesis
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Multiple Comparisons Between All Pairs (Tukey)
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Figure 4.10: Confidence interval plot of all Material Types of the bridges based on
Tukey’s Test. The results include all available bridges from the U.S.

In Table 4.13, the output of the Tukey’s test shows both the average difference
between the Material Types and the confidence interval. It also shows whether to
reject or fail to reject the null hypothesis for each pair of groups at the given
significance level. In this case, the test suggests we reject the null hypothesis for
all pairs of Material Type, since the confidence intervals of all pair do not overlap
at all, this suggests that condition of bridges with each material is different from
each other. Figure 4.10 shows the 95% confidence interval plot reinforces the
results visually. As it can be seen in this figure that no Material type’s confidence

interval overlaps with any other material group’s confidence interval.

4.5.2 Further Analysis

Given that prestressed concrete is a relatively newer material, it is appropriate to
suggest that age might have an impact on the different Material Types. In other
words, prestressed concrete bridges are newer and hence might be better
performing. We accounted for age as a factor in our analysis to study the

material’s effect on the condition of the bridge by holding age constant.
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Figure 4.11 shows bridges made of Prestressed Concrete are the youngest in
comparison to other material type bridges in this analysis, while Steel and

Concrete Bridges have the highest mean age.

Mean Age of Bridges with respect to Material Type
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Figure 4.11: Mean Age of the bridges with respect to Materials Type

Based on Figure 4.11, we can further assume that bridges of a given Material
Type are not equally represented at any given age. Using the four quartiles of age

distribution of the bridges, we can categorize bridges into four age category: Very
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Young, Young, Mid Age, and Old. Figure 4.12 shows that our initial assumption of

unequal representation is seen clearly as there is a very small number of Wood or

Timber bridges in the categories such as Very Young, Young, Mid Age and Old

category of the bridge. Prestressed Concrete bridges are nearly absent in the Old

category. Steel bridges have a similar proportion of the bridges in each category.
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Figure 4.12: Number of Bridges in each categorization of bridges in Age group

To perform ANOVA by accounting age in this analysis, we selected a

category of bridges with the most and equal data sample representing every

Material Type and considered that Prestressed Concrete are likely to be more

younger than other Material Types of bridge.

In the Young category of the bridges, Wood or Timber type of bridges are the

most underrepresented. However, in comparison to other categories, Wood or

Timber have the most number of bridges in the Young criteria. Therefore, an

undersampling of the Young criteria of the bridges allowed us to have the highest
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number of data possible having equal representation from Material Type of the

bridges.
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Figure 4.13: Distribution of Baseline Difference Score in Young Category of Con-
crete, Prestressed Concrete, Steel, and Wood or Timber. Notice Prestressed Con-
crete bridges have the highest mean and median values

In Figure 4.13, the distribution of BDS is normally distributed for each
Material Type in the Young category. The mean and median are almost the equal
within the category for all type of bridges, Concrete Bridges and Prestressed
Concrete bridges have the same distribution. Steel bridges have a wider range of
BDS scores and Wood or Timber bridges have the lowest mean and median

compared to other Material Types.



4.6 Results of Young category of Bridges
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We performed a similar ANOVA on a small sample of randomly selected 100

bridges and large sample analysis on selected 8,661 bridges (a total of 34,644

bridges) from Young category bridges.

sum sq df PR(>F) | etasq | cohen’s d | effect size
Material | 22.51 3.00 | 10.68 0.0 0.07 0.54 medium
Residual | 278.25 | 396.00 - - -

Table 4.14: One-way ANOVA of Material Type on the sample size of 400 bridges -

Young

The results of the ANOVA as seen in the Table 4.14 revealed that the PR(>F)

value < 0.05, so we reject the null hypothesis. By keeping the age constant for all

bridges, there is still a difference between mean BDS across the four types of

materials. The Cohen’s d value is 0.54 in the analysis that suggests that there is a

medium association between Material Type and condition of the bridges in

comparison to the national baseline.

Table 4.15:

sum sq df F PR(GF)
Material | 1745.02 3.0 888.50 0.0
Residual | 22677.81 34640 - -

etasq | cohen’sd | effect size -
Material 0.07 0.54 medium -
Residual - - - -

One-way ANOVA of Material Type on the sample size of 34,644
bridges - Young

In a similar large sample analysis seen in the Table 4.15, the results of the

ANOVA revealed that the PR(>F) value < 0.05, so we reject the null hypothesis.

The Cohen’s d value is 0.54 in the analysis that suggests that there is a medium

effect size between the Material Type and condition of the bridges in comparison

the national average within Young category.




4.6.1 Post-hoc Test of Young category of bridges
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In our similar post-hoc test of Young category of bridges, the test result 4.16 each

Material Type is different from other Material Types.

Group 1 Group 2 reject | Statistic | p-value

Wood or Timber | Steel True -11.73 0

Wood or Timber | Concrete True -44.09 0

Wood or Timber | Prestressed Con- | True -63.31 0
crete

Steel Concrete True -33.27 0

Steel Prestressed Con- | True -51.71 0
crete

Concrete Prestressed Con- | True -16.69 0
crete

Table 4.16: Pair-wise T-Test

In Table 4.17, the p-values for each t-test suggest that the bridges of each

Material Type are different from other Material Types. Since the p-values for each

t-test is less than 0.05, we also performed did Tukey’s test to take into account

overestimation of significance from the t-test.

Group 1 Group 2 meandiff | upper | lower | reject
Concrete Prestressed Con- | 0.1071 0.0885 | 0.1256 | True
crete

Concrete Steel -0.2432 | -0.2617 | -0.2247 | True
Concrete Wood or Timber -0.3362 | -0.3547 | -0.3177 | True
Prestressed Con- | Steel -0.3503 | -0.3688 | -0.3317 | True
crete

Prestressed Con- | Wood or Timber -0.4433 | -0.4618 | -0.4248 | True
crete

Steel Wood or Timber -0.093 -0.1116 | -0.0745 | True

Table 4.17: Tukey’s Test on Bridges in Young Category in the U.S. by Construction
Material Type reveals the difference in BDS of all Material Type of the bridges.
Note that none of the Material Type pairs fail to reject null-hypothesis
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Multiple Comparisons Between All Pairs (Tukey)
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Figure 4.14: Confidence interval plot of all Material Types of the bridges based on
Tukey’s Test. The results include all available bridges from the U.S.

The test suggests that we reject the null hypothesis for all pairs of Material
Type within the Young category of bridges. No overlapping of the confidence
interval between the pairs of Material Type suggests that each Material Type is
different from each other. Figure 4.14 suggests that the difference between Wood
and Steel is the smallest followed by Concrete and Prestressed Concrete.

Prestressed Concrete and Wood bridges have the biggest difference.
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4.7 Effect of Structure Length

Structure Length of the bridge is also commonly studied as the factor that can
determine the condition of the bridges.!>!%2° To understand the effects of
Structure Length on the condition of the bridges, we classify bridges into two
Structure Length groups as seen in the Table 4.18, the Very Long (Top 5% of the
length of bridges in the U.S.) and Very Short (Bottom 5% of the length of bridges
in the U.S.) in the U.S. respectively, and performed ANOVA.

Group Range of Structure Length
Very Short 6.1 -8.5(m)
Very Long 58.9 - 38421 (m)

Table 4.18: Grouping of Bridges by Structure Length in meters

In Figure 4.15, there is a larger number of bridges in the Very Long category
in comparison to the Very Short Category of the bridges. However, Figure 4.16

reveals a wider range of BDS in the Very Short category of the bridges.
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Figure 4.15: Number of Bridges with Very Long and Very Short Structure Length
groups. Notice a high representation of Very High Structure Length group
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Figure 4.16: Distribution of Baseline Difference Scores of Very Long and Very
Short Structure Length group
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4.7.1 Results

For performing ANOVA on small sample, we selected a random sample of 200
bridges (100 from each group), and large sample data that includes randomly

selected 90,242 bridges (45,121 from Very Long and Very Short groups).

4.7.1.1 One-way ANOVA - Small Sample

sumsq | df F | PR(>F) | etasq | cohen’s d | effect size
Structure | 0.19 1.0 | 0.21 0.63 0.001 0.06 very small
Length
Residual | 176.32 | 198.0 | - - - - -

Table 4.19: One-way ANOVA of Structure Length on the sample size of 200 bridges

The result of ANOVA on a data sample of 200 bridges (100 bridges each
structure length group), has the PR(>F) value (0.63) > 0.05 as seen in Table 4.19,
so we fail to reject the null hypothesis. In order words, there is a difference
between mean BDS across Very Long and Very Short Structure Length. The
Cohen’s d value of 0.06 reveals a very small effect size between the structure
length and BDS. This means there is a very small association between Structure

Length and condition of bridges in comparison to the national average.

4.7.1.2 One-way ANOVA - Large Sample

sum sq df F PR(>F)
Structure Length 214 1.0 26.02 0.0
Residual 74295.28 | 90240.00 - -
etasq | cohen’sd | effect size -
Structure Length | 0.0002 0.02 very small -
Residual - - - -

Table 4.20: One-way ANOVA of Structure Length on the sample size of 90,242
bridges
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Our results suggest that with a PR(>F) value (0.0) < 0.05 as seen in the Table
4.20, so we reject the null hypothesis in a large sample size of the bridges for each
group of structure length. There are differences in mean between Very Long and
Very Short Structure Length of the bridges.

However, with Cohen’d value of 0.02 suggest that association between
structure length and BDS is very small. This means that Structure Length alone
fails to explain the differences in bridge condition compared to the national

baseline.
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4.8 Effect of Precipitation

External factor such as precipitation are cited as an indicator for the condition of
bridges.® The challenge of analyzing the effect of external factors on the condition
of the bridges is that the data for these factors are not available in the NBI dataset.
We use the dataset from the Center for Disease Control and Prevention to
analyze the effects of Precipitation on bridge conditions. In Figure 4.17, we see
eight bands of precipitation, from a range of O to 7.64 average daily precipitation

(mm) at county - level.

US Average Daily Precipitation

Avg Daily Precipitation (mm)
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Figure 4.17: County-level Precipitation Data from CDC

To understand the effects of precipitation on the condition of the bridges, we
classify bridges into two precipitation groups: Very High (Top 5% of the
Precipitation in the U.S) and Very Low (Bottom 5% of the Precipitation in the
U.S.) respectively, and performed ANOVA.

In Table 4.21, shows the range of precipitation in the Very Low and Very
High group.

Since the distribution of the BDS is a normal distribution, The grouping of
bridges in top 5% and bottom 5% precipitation as described in Figure 4.21,

allowed to have an equal number of bridges.



Precipitation Range of Precipitation
Group

Very High 0.43 - 1.23 (mm)

Very Low 3.76 - 7.64 (mm)
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Table 4.21: Classification of Groups by Precipitation
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Figure 4.18: Number of Bridges in Very High and Very Low Precipitation regions
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In Figure 4.19, we can see the distribution for BDS that Very High
precipitation and Very Low precipitation are very similar. The mean and median

score of Very Low precipitation is higher than Very High precipitation.
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Figure 4.19: Distribution of Baseline Difference Scores of Very High and Very Low
Precipitation regions of the U.S. Notice the mean and the median of Very Low is
higher than the mean and median of Very Low Precipitation region
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For performing ANOVA on small sample, we selected a random sample of 200

bridges (100 from each group), and large sample data that includes randomly

selected 112,000 bridges (56,000 from each group).

4.8.1.1 One-way ANOVA - Small Sample

sumsq | df F | PRCF) | etasq | cohen’s d | effect size
Precipitation | 1.73 1 254 | 0.11 0.01 0.20 small
Residual 134.88 | 198.0 | - - - - -

Table 4.22: One-way ANOVA of Precipitation on the sample size of 200 bridges

From our results of ANOVA on a data sample of 200 bridges (100 bridges

each precipitation region) as seen in 4.22, the PR(>F) value (0.11) > 0.05, so we

fail to reject the null hypothesis. In order words, there is a difference between

mean BDS across Very High and Very Low precipitation regions. The Cohen’s d

value of 0.20 reveals a small effect size between the precipitation and BDS. This

means there is a small association between precipitation and condition of bridges.

4.8.1.2 One-way ANOVA - Large Sample

sum sq df F PR(GF)
Precipitation | 1070.55 1.0 1520.14 0.0
Residual 78873.58 | 111998.0 - -
etasq | cohen’sd | effect size -
Precipitation 0.01 0.20 small -
Residual - - - -

Table 4.23: One-way ANOVA of Precipitation on the sample size of 112,000

bridges

In Table 4.23, our results suggest that the PR(>F) value (0.0) < 0.05, so we

reject the null hypothesis in a large sample size of the bridges for each group.
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There are differences in mean between very high precipitation region and very low
precipitation region.

However, with Cohen’d of 0.20 the effect size in both the large sample
analysis and small sample analysis suggest that association between precipitation
and BDS is small by convention. This means that precipitation alone fails to

explain the differences in bridge condition compared to the national baseline.
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4.9 Effect of Region

Effect of factors on the bridge condition may vary across different regions of the
country. For instance: type of construction, type of material, development
maintenance practices may vary depending on the owner and maintainer of the
bridges. Externals factors such as temperature also vary across regions. Therefore,
the region serves not only as a proxy for a particular effect but, also as a proxy for
the compound effect of factors such as precipitation, maintenance that might affect
the condition of the bridges.

For our analysis, we group bridges into four regions according to U.S. Census

Bureau Regions and Divisions.
1. Northeast
2. Midwest
3. South
4. West

Table 4.24 provides the following grouping of states into regions is widely

used for data collection and analysis.



Region

States

Northeast

Connecticut, Maine, Mas-
sachusetts, New Hampshire, Rhode
Island, Vermont, New Jersey, New
York, and Pennsylvania.

Midwest

Illinois, Indiana, Michigan, Ohio,
and Wisconsin, Iowa, Kansas, Min-
nesota, Missouri, Nebraska, North
Dakota, and South Dakota

South

Delaware, Florida, Georgia,
Maryland, North Carolina, South
Carolina, Virginia, District of
Columbia, West Virginia Alabama,
Kentucky, Mississippi, Tennessee,
Arkansas, Louisiana, Oklahoma,
and Texas

West

Arizona, Colorado, Idaho, Mon-
tana, Nevada, New Mexico, Utah,
Wyoming, Alaska, California,
Hawaii, and Oregon.
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Table 4.24: Grouping of bridges into their Regions with respect to each bridge’s

State
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As seen in Figure 4.20, there is an imbalance in the number of bridges in each
region. Midwest and South have the largest number of bridges, they have an equal

number of bridges. West region has the least number of bridges.

Baseline Difference Scores

West

South
==
o
o
(2 4

Northeast

Midwest

0 100000 200000 300000 400000

Number of Bridges

Figure 4.20: Number of Bridges in West, South, Northeast, and Midwest of the U.S,
Notice the high concentration of bridges are in the regions of South and Midwest

Figure 4.21, reveals that the BDS across the region are similar. Note that the
mean and median values of BSD in the West are equal to zero, that suggesting a
perfectly normal distribution. The distribution of Northeast is similar to South.
The condition of bridges in the Midwest are better than other regions, as seen in

the figure, the mean and median value is higher than any other regions.



77

Baseline Difference Scores
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Figure 4.21: Distribution of Baseline Difference Scores of Midwest, Northeast,
South, and West Regions of the U.S., Notice the mean and the median are almost
equal and close to zero with the distribution of all groups
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Similar to previous analysis, we performed ANOVA on a small sample of 400

bridges (100 from each region: West, Northeast, Midwest, and South) and a large

Sample of 421,792 (105,448 each region) bridges.

4.9.1.1 One-way ANOVA - Small Sample

sumsq | df F | PR(GF) | etasq | cohen’s d | effect size
Region 2.87 30 | 1.19 | 031 0.008 0.17 very small
Residual | 317.5 | 396.0 | - - - - -

Table 4.25: One-way ANOVA of Region on the sample size of 400 bridges

The results seen in Table 4.26 of the ANOVA revealed that with the PR(>F)

value > 0.05. Hence, we do not reject the null hypothesis. Therefore, the

difference in the mean BDS across all regions are not statistically significant. The

Cohen’s d value is 0.17 in the analysis reveals a very small association between

region and condition of the bridges.

4.9.1.2 One-way ANOVA - Large Sample

sum sq df F PR(>F)
Region 3580.13 3.0 1558.97 0.0
Residual | 322874.96 | 421788.0 - -
eta sq cohen’s d | effect size -
Region 0.01 0.20 small -
Residual - - - -

Table 4.26: One-way ANOVA of Region on the sample size of 421,792 bridges

With a large sample size of randomly selected 421,792 bridges, we are able to

notice a difference between the mean BDS of different regions. The PR(>F) value

(0.20) < 0.05 as seen in the Table 4.26. Hence, we reject the null hypothesis.

However, there is a small difference between region and condition of bridges. In
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other words, the region of the bridge fails to explain the differences in the bridge

condition in comparison to the national baseline.
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4.10 Summary

In summary, we performed one-way ANOVA to test the effects of factors: Average
Daily Traffic, Average Daily Truck Traffic, Maintainers, Material, Structure
Length, Precipitation, and Region on the condition of the bridges. The Summary
of ANOVA analysis is provide in the Table 4.27. The Table 4.28 shows the effect

size observed in the analysis of a large sample.

Factors Fail to Reject | Fail to Reject of
Null Hypothesis | Null Hypothesis
- Small Sample | - Large Sample

Average  Daily | True (0.8) False (0.0)

Traffic

Average  Daily | True (0.12) False (0.0)

Truck Traffic

Maintainer True (0.13) False (0.0)

Material False(0.01) False (0.0)

Material (Age | False(0.0) False (0.0)

Constant)

Structure Length | True (0.63) False (0.0)

Precipitation True (0.11) False (0.0)

Region True (0.3) False (0.0)

Table 4.27: Summary of Analysis - ANOVA

Factors Effect Size of a | Effect Size of a
Small Sample Large Sample

Average  Daily | Very Small (0.08) | Very Small (0.04)

Traffic

Average  Daily | Small (0.20) Very Small (0.06)

Truck Traffic

Maintainer Small (0.15) Very Small (0.12)

Material Small (0.30) Small (0.35)

Material (Age | Medium (0.54) Medium (0.54)

Constant)

Structure Length | Very Small (0.06) | Very Small (0.02)

Precipitation Small (0.20) Small (0.20)

Region Very Small (0.17) | Small (0.20)

Table 4.28: Summary of Analysis - Effect Size
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Our findings reveal that mean BDS of bridges across Material groups were
significant in the analysis of the small sample and a large sample of the bridges.
Further post-hoc analysis (Young Category) revealed that the bridges of different
material type have a confidence interval that does not overlap with other material
types. Our post-hoc of results suggest that there is a difference in the condition of
bridges with respect to the material type of the bridge.

In our analysis of external factors, there is a small association (Cohen’d =
0.20) between precipitation and BDS. Similarly, region alone can not explain the
variance in the condition of the bridges as the association (Cohen’d = 0.20)
between region and condition of the bridges is small.

Bridge with BDS of zero is equal to the average condition of the bridge, so an
alternative perspective in understanding the effect of factors on the condition of the
bridges is to look at the percentages of bridges above the BDS of zero and below
the BDS of zero.

In Figure 4.22, we see that Prestressed Concrete bridges have the highest
number of bridges above the BDS of zero from the age 30 to age 45 (Young
Category). Wood bridges have a lower percentage of bridges above the BDS score
of zero. The Figure 4.22, reveals that Prestressed Concrete bridges perform better
than other Material Types in this analysis.

A similar analysis of precipitation reveals a counter-intuitive result. In Figure
4.23, we observe that regions with very high precipitation region have a higher
percentage of the bridge above the BDS of zero in comparison to the very low
precipitation region.

However, The results from Figure 4.24 and Figure 4.25 suggest the choice of
the material of the bridges in these precipitation regions might explain the

counter-intuitive result.
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Figure 4.22: Percentage of bridges above and below the BDS of zero with respect
to Material Type
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Very Low Precipitation
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Figure 4.23: Percentage of bridges above and below the BDS of zero with respect
to Precipitation regions

We know from the previous results 4.22 that Prestressed Concrete bridges
perform better than Wood or Timber bridges. In the Figure 4.24 that the
distribution of Prestressed Concrete bridges are low in very low precipitation
region and the distribution of Prestressed Concrete bridges are high in very high
precipitation region 4.25. Similarly, the Wood or Timber bridges are nearly absent

in high precipitation regions. Hence, the choice of the material type of the bridges
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might explain the counter-intuitive results.

Distribution of bridges with respect to Material Type in Very Low Precipitation

Wood or Timber =
Steel

Prestressed Concrete

Concrete
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Number of Bridges

Figure 4.24: Distribution of bridges with respect to Material Type in Very Low
Precipitation
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Distribution of bridges with respect to Material Type in Very High Precipitation
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Figure 4.25: Distribution of bridges with respect to Material Type in Very High

Precipitation



Overall, our findings suggest that we need to identify other relevant factors
and develop a hypothesis that can guide in testing the compound effects of the

factors on the condition of the bridges.

86
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Chapter 5

Discussion

5.1 Overview

In this chapter, we will reflect on previous literature in the new light of our
findings from Chapter 4. In the following sections, our discussion will relate to the
quality of the dataset; development process and environment; and the assumptions,

methods, factors, and limitations of our work.

5.2 Data

Each condition rating in the NBI dataset is based on subjective assessments by a
bridge inspector. In addition to this subjectivity, we also observed that the NBI
dataset has a lot of missing data, such as missing condition ratings in some years
of a bridge and missing data related to repairs and reconstruction.® The NBI
dataset also has a substantial number of bridges where the condition ratings do not
change in any of the recorded inspections.

Researchers have proposed methods that address many of the previously
mentioned inconsistencies in the NBI dataset,>* but there are no methods available

that can account for the subjectivity in the condition ratings. We attempt to address
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this issue by using a national baseline for estimating bridge performance.

The bridge inspection cycle are done biannually. Researchers have debated
that this inspection cycle is an inefficient use of time and resources because newer
bridges are in good condition and hence will take a long time before they will
deteriorate, while bridges with a bad condition might require more frequent
inspections.*

Washer et al. further concluded that their model of inspection cycle
estimation will help provide efficient data collection with respect to the resources.
However, the data collected will still be subjective. Therefore, there is also a
requirement to improve data collection. A possible solution could be the use of
Internet-of-Things (IoT) devices to collect data from the bridges.

In our study, we address issues related to NBI by applying cleaning and
filtering criteria, that we identified in chapter 3. A cleaned NBI dataset is
necessary to build a complete and robust model of bridge conditions in the U.S.
Unfortunately, we were not able to find any cleaned dataset or working datasets
from previous research. Therefore in order to make our work reproducible, we
have shared our working data and cleaned NBI dataset available on both the
National Data Service (NDS) and on GitHub. We hope this will help other
researchers by saving them time, effort, and other computing resources by

providing them with a clean dataset.

5.3 Development Environment

In this section, we address Research Question 2 related to exploring data sharing
platforms for large datasets among researcher and practitioners. Large datasets like
the NBI database are difficult to share among other researchers and practitioners.

In our research, the Labs Workbench from National Data Service (NDS) provides
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and integrated environment for storing research datasets, data sharing, data
exploration, and research collaboration using Jupyter notebooks.

The NDS Labs workbench not only reduces the work required in data
cleaning and setting up a work environment, but also maintains reproducibility of
this research. The Labs Workbench also offers features such as a sharable
filesystem and security mechanisms for logging and monitoring. These features
allows controlled sharing of datasets and workspace with other researchers and
practitioners.

The central idea of the NDS is to discover available management tools from
catalogs and services, compare and evaluate various technologies, deploy test
instances and provide tools and technology to support cloud-based development
and publish/share your tools for others to discover.?*

In this study, the Labs Workbench environment consisted of Jupyter
Notebooks and a centrally hosted MongoDB database with NBI records from all
years and all states. The NBI dataset is populated from in CSV format files
available from FHWA website. The database is curated, cleaned, and populated in
a MongoDB Database using Python scripts. The Jupyter Notebook environment
enables us to execute python scripts and display charts in a shareable and readable
document. Python scripts are developed as part of this research study for data
processing such as extraction, formatting and curating dataset.

Links to the Data Cleaning and Analysis Scripts can be found here:
* Data Cleaning and Filtration

* Data Analysis
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5.4 Method

Baseline Difference Score method provides a score for a bridge, which indicates
the condition of the bridge in comparison to the national average over its lifetime.
We used the computed BDS of bridges to identify factors that had an effect the
BDS by performing ANOVA. We performed both a small sample analysis and a
large sample analysis. This allows us to watch for inflated p-values due to large
sample sizes. Both small and large sample analysis provided a range for the effect
size of the analysis. The necessary assumptions for ANOVA of a normally
distributed population of scores is preserved in both small and large samples.

We can extend the use of BDS for other types of analysis. As discussed in
Chapter 4: Results, the distribution of the BDS scores are near normal distribution.
Using standard deviation, the set of all scores can be classified using Z-values as
cut-offs. The new labels will allow bridge condition ratings to be further
understood using classification and clustering.

The results of this study were computed based on all data available in the NBI
database, i.e.17 million bridge inspections. We also demonstrated the use of
integration of external open datasets, such as precipitation data in our analysis. In
prior studies, the results were limited to data from a single state or a few states
with a mix of open and restricted data. Their analysis pipeline is also not available

for inspection.

5.5 Factors

From our literature review, we know that Precipitation, Average Daily Traffic
(ADT), and Average Daily Truck Traffic (ADTT) are commonly believed to the
determinants of the deterioration in bridges. ADTT is considered a stronger

determinant than ADT in deterioration of the bridges, because the truck loading
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may have a serious impact on the condition of the deck,?? and there is an observed
positive correlation between structure length and average daily traffic.

But our results suggest that the material type of bridges has a higher
association with the condition of the bridges, followed by precipitation and region.
The maintainer has a higher association than average daily traffic and average
daily truck traffic, while structure length has the least association with the
condition of the bridges in comparison to all the factors analyzed in this study.

Upon analyzing the bridge material types further, our analysis revealed that
Prestressed Concrete and Concrete bridges perform better than Wood or Timber,
and Steel bridges. However, we suspect that data quality issues, such as a high
number of bridges with no change in condition ratings in their life time, could

introduce bias in our analysis. We hope to investigate this in our future work.

5.6 Other Limitations

The climate of any region is influenced by various factors such as latitude,
elevation, topography, and prevailing winds. The cumulative effect of multiple
variations in climate factors may also affect the condition of the bridges. We
included geographic regions of the bridges as a factor in our test as a proxy for the
cumulative effect of climate. However, we plan to perform additional tests at a
more granular geographic level in our future work.

Our method includes many complex steps. Many of these steps are
data-intensive and require a balanced representation of the data across several
factors. For example, based on the discussion in Chapter 3, we know that after data
cleaning and filtration, bridges from all states are not equally represented. We
address the issue of imbalanced representation of the data by sub-sampling the

over-represented states.
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Finally, the baseline difference score method is new. We expect that it will
take time before the method is widely adopted and further improved. Overall, the

results of this study were validated and deemed useful by subject matter experts.

5.7 Summary

In summary, we discussed the limitations of our development environment,
methods, and selected factors for analysis. In the next chapter, we outline our

conclusions and explore potential future work.
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Chapter 6

Conclusion and Future Work

In conclusion, this thesis:

Provided a reference implementation of a big data pipeline for bridge health
related datasets conforming to the standards described in the FHWA coding

guide'®

* Provided a method to compute and score bridge condition over a period of

time using bridge inspection records.

* Provided methods based on sound statistical analysis to identify the level of
association of certain factors such as construction material, precipitation and

traffic with bridge conditions.

* Demonstrated the use of the Labs Workbench data analytics platform for

sharing large datasets and a reproducible research environment.

6.1 Summary of Significant Findings

In this section, we provide a summary of the significant finding of our analysis of

with respect to the research question.
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1. How can data cleaning be generalized across NBI data submitted from

different states?

* The cleaning and filtration strategy used in this research can be generalized
to NBI records across all the states. The strategy is also traceable to the

coding guide and cross-checks as provided by FHWA.

 After cleaning and filtration of the NBI dataset, we found that only 42% of

the original dataset is suitable for analysis.

* A substantial number of bridges in the NBI dataset have condition ratings

that do not change across all reported inspections.

2. How can data processing platforms for large bridge inspection datasets
be shared among researchers and practitioners?

The Labs Workbench provide services for researchers and practitioners. They
can share their working datasets and the environment. The Labs Workbench also
provides a solution for long term preservation and archival of datasets and data
analysis scripts. The Labs Workbench provides services for evaluating software,
tools, and database management system.

3. How can bridge inspection related datasets be used to identify or

eliminate factors that affect bridge conditions?

* The condition rating of substructure, superstructure, and deck are highly
correlated. Hence, we selected the superstructure component of the bridge to
measure the condition of bridges because superstructure is considered the

backbone of the bridge.

* The normal distribution of the BDS of the bridges in the U.S. allows
classifying bridges into the good, the bad, and the average with respect to

the condition of the bridge.
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* The association between all factors selected in this analysis and condition of
the bridges varies from very small to small, which means that factors alone

cannot explain the condition of the bridges.

* Material type has the highest association with the condition of bridges in
comparison to the other factors selected in this study. The least associated

factor to the condition of the bridges is average daily traffic.

» External factors such as Precipitation, have a small association with the

condition of the bridges.

6.2 Future Work

In our attempt to address the research questions, we discovered several areas of
this research for advancement that are related to data cleaning, data sharing
platforms, and identifying factors that contribute to the deterioration of the
bridges. The following are the suggested recommendation for future work.

Improvement in data quality will provide us with better bridge condition
models of the bridges. Due to the missing values of condition rating of the bridges
and other inconsistencies, only 42% of the bridge inspection records are used to
conduct data analysis. Therefore, estimating the missing values will provide more
data points for analysis.

In addition to missing data, inspections of bridges are biennial and the long
intervals between inspections, prevent accurate characterization of the bridges.
Further, inspectors conduct visual inspections of the bridges that are highly
subjective. Data collection using [oT (Internet of Things) devices could provide
reliable, frequent and objective data.

In our method, we compare bridges to national baseline of the U.S., which

provides a perspective of the condition of a given bridge in comparison to the
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average National Bridge Condition. An alternative perspective to look at bridges
might be from a bridge condition deterioration point of view. Understanding the
patterns of decreasing condition ratings will guide in developing a better predictive
model of the bridges. The two challenges in devising a method to compute

deterioration would be:

* Accounting for intervention (Repair, Reconstruction, and Rehabilitation) of

bridges that increase the condition ratings of the bridge.

* Considering only monotonically decreasing segments of the bridges, as the
condition of the bridge tend to stay the same across many inspection records

in the NBI.

Future work can extend the method of computing score by using a baseline of
monotonically decreasing segments of the bridge to compute deterioration score of
the bridges.

Another approach to consider for future work is to compute a national
baseline that is specific for each material type. Then compare the performance of
the bridges relative to their material-specific national baseline.

Rural bridges are in bad condition in several states.”>~>’ A similar analysis of
urban or rural bridges will help understand the reason behind their condition.

Future work can extend the analysis of external factors by integrating datasets
such as heat and cold cycles, regional snowfall index and non-snowfall related
regions. De-icing is also considered a factor that has the protective layers of the
deck.

The following are links to various datasets that can be used for future works:
* Infobridge

e Weather Data Environment
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U.S. Climate Normals

History of the U.S. Climate Divisional Dataset

U.S. Climate Atlas

Regional Snowfall Index

The classification of bridges according to BDS produces labels. These labels
can be made use of with clustering and classification based machine learning
algorithms in building a predictive model of bridge conditions.

In this study, we looked into three research question focused on data cleaning
and transformation, analysis of commonly studied factors and unexplored factors
as an indicator of bridge condition, and making the research reproducible.

We were able to clean and transform the NBI data extracted from FHWA and
integrate external data sources such as CDC data. We tested commonly cited
factors and unexplored factors as determinants of the bridge condition. We saw
interesting and counter-intuitive results regarding Precipitation and Material Type.
We also saw factors such as ADT and ADTT were not found highly associated
with bridge condition in comparison to other factors.

Lastly, we made our research reproducible by adopting cloud-based work
environment using the Labs Workbench. We developed our source code in python
using Jupyter Notebook and MongoDB and we also made the source code
available on GitHub.

1

Our vision for this research is to understand bridge performance using
data-driven methods and identify factors that affect the condition of the bridges. In

our future work we expect to collect real-time data of the bridge condition using

! Data Cleaning and Filtration, Data Analysis
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IOT devices, and develop models that best predict future performance and needed

maintenance to extend the bridge’s service life.
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