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New Measure to Understand and Compare Bridge
Conditions Based on Inspections Time-Series Data

Akshay Kale'; Brian Ricks, Ph.D.2; and Robin Gandhi, Ph.D.2

Abstract: The C+ score for US bridges on the 2017 infrastructure report card underscores the need for improved data-driven methods to
understand bridge performance. There is a lot of interest and prior work in using inspection records to determine bridge health scores.
However, aggregating, cleaning, and analyzing bridge inspection records from all states and all past years is a challenging task, limiting
the access and reproducibility of findings. This research introduces a new score computed using inspection records from the National Bridge
Inventory (NBI) data set. Differences between the time series of condition ratings for a bridge and a time series of average national condition
ratings by age are used to develop a health score for that bridge. This baseline difference score complements NBI condition ratings in further
understanding a bridge’s performance over time. Moreover, the role of bridge attributes and environmental factors can be analyzed using the
score. Such analysis shows that bridge material type has the highest association with the baseline difference score, followed by snowfall and
maintenance. This research also makes a methodological contribution by outlining a data-driven approach to repeatable and scalable analysis
of the NBI data set. DOI: 10.1061/(ASCE)IS.1943-555X.0000633. © 2021 American Society of Civil Engineers.

Introduction

Highways and bridges are cornerstones of the US transportation
system. This infrastructure is essential for commercial and eco-
nomic activity because it supports the primary mode of transpor-
tation worldwide. According to the 2017 infrastructure report, there
are over 600,000 bridges in the US (ARTBA 2017). The average
age of 4 out of 10 bridges is 50 years. Approximately 39% of the
bridges will soon require rehabilitation since most of them were
designed for a life span of around 50 years. By 2017, about 9.1%
of the nation’s bridges had been designated as structurally deficient
(ARTBA 2017). These statistics highlight the urgent need for
innovative solutions to understand and manage bridge health.
National Bridge Inventory (NBI) inspection records quantify bridge
deck, substructure, and superstructure health using condition rat-
ings (0-9), providing a rich data set that is often used to analyze
bridge performance over time.

Bridge deterioration is a subject of tremendous interest to bridge
engineers. Understanding factors that influence bridge health will
provide insights to key stakeholders. For example, such an under-
standing can inform designers and engineers about building bridges
that undergo deterioration and help maintainers employ smarter
strategies to monitor factors that influence bridge health. Research-
ers have proposed several methods for evaluating the present
condition of bridges, identifying influential factors for bridge con-
dition and predicting bridges’ future condition using deterioration
models (Nasrollahi and Washer 2015). These methods often rely
on deterministic, stochastic, and artificial intelligence (AI) models.
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A deterministic model is typically built using techniques like
straight-line extrapolation and regression (Morcous et al. 2002).
These techniques are used to evaluate the deterioration of a bridge
by computing the time spent at a particular condition rating (Saeed
et al. 2017) or computing hazard ratios for the pace of bridge
deterioration (Wettach-Glosser et al. 2020). Stochastic models,
built using Markov methods, are used to analyze bridge health
by computing the probability of transition from one condition rat-
ing to another (Madanat et al. 1995; DeStefano and Grivas 1998).
Al models are built using techniques such as artificial neural net-
works (ANNSs), decision trees, and case-based reasoning (Madanat
et al. 1995). Al models are effective at sheding light on the inter-
active effect among factors that affect bridge health (Morcous et al.
2002). In summary, methods that rely on deterministic, stochastic,
or Al models add a unique perspective in understanding bridge
health. However, certain aspects of these computational models
can influence the study of factors that affect bridge health. One such
aspect is how age affects bridge performance. The rate of bridge
deterioration is observed to be different at different ages (Huang
et al. 2009). Yet many recent approaches to understanding bridge
health do not account for this difference when developing stochas-
tic models based on Markov methods (Chang et al. 2019; Saeed
et al. 2017; Assaad and El-adaway 2020).

Next, factors that affect bridge health usually interact with each
other (Barreto and Howland 2006). These factors may also vary
with region and type of bridge (Saeed et al. 2017; Huang et al.
2009). In addition, the study objectives may influence the selection
of factors being studied or the amount of data available in the study
of these factors. As a result, prior studies provide inadequate or
fragmented evidence to decide which factors are influential for
bridge health.

We propose a new measure to understand and compare bridge
conditions based on inspections of time-series data. This measure
accounts for the effect of age on the rate of deterioration. It does this
by aggregating the differences in the condition rating of a bridge
with respect to a baseline of condition ratings at each age. The base-
line is an average of condition ratings computed using all available
annual NBI inspection records since 1992, from all states and for
bridge records available at every age value.
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There are three main contributions of this new approach. First,
our algorithm, which is based on readily available condition rat-
ings, provides time-series results, capturing how the condition of
an individual bridge changes over time. Second, our algorithm
is not geographically bound and allows for the analysis of bridges
within a region and across the US. Third, our method assigns a
single health score for each bridge in the NBI. This score, which
we call the baseline difference score (BDS), follows a normal dis-
tribution. Hence, using statistical methods, we can examine what
factors best explain its variance. Our analysis demonstrates the
use of bridge inventory, environment, and regional factors obtained
from the NBI and multiple external data sources. The findings are
based on inspection records of over 600,000 bridges in the United
States reported every year since 1992 in the NBI data set. Between
1992 and 2017, this amounts to over 17 million inspection records.

In this study, we cleaned and transformed the NBI data extracted
from the Federal Highway Administration (FHWA) and integrated
external data sources such as Centers for Disease Control and Pre-
vention (CDC) data and weather data. Also, we tested commonly
cited factors and unexplored factors as determinants of the bridge
condition. Our results were counterintuitive regarding average daily
traffic (ADT) and average daily truck traffic (ADTT). We observed
a relatively low association of ADT and ADTT with bridge perfor-
mance, a finding that is surprising in light of several prior studies
(Chang et al. 2019; Assaad and El-adaway 2020; Kim and Yoon
2010; Hasan and Elwakil 2020; Nasrollahi and Washer 2015).
Lastly, we made our research reproducible by adopting a cloud-
based work environment using DEEDS (datacenterhub.org; Smarti
data set).

Prior Work

There are several challenges in modeling bridge health. Prominent
challenges include incomplete bridge survey records, lack of re-
porting of improved bridge condition ratings, and identifying inter-
active effects among influential factors.

Incomplete records of bridges are one of the biggest challenges
in modeling bridge health. Survey records of bridges are available
only from 1992 to 2019; bridges built before 1992 have no prior
records. To address the problem of incomplete and missing bridge
condition records, Nasrollahi and Washer (2015) devised a method
to estimate bridge condition ratings. The method computes the
amount of time a bridge has spent in a particular condition rating
using 20 years of bridge survey records. This method of measuring
bridge condition ratings is also known as the time in condition rat-
ing (TICR). Fleischhacker et al. (2020) extended the use of TICR to
develop a scalable method, which was applied to study the health of
over 150,000 bridge decks nationwide. Under this method, TICR is
used with Bayesian analysis to predict future health conditions.
Similar to TICR, the hazard ratio (HR) was developed by Wettach-
Glosser et al. (2020), which describes a bridge’s probability of stay-
ing in a particular condition. An increase in HR greater than one
indicates an increase in the likelihood of bridge condition rating
decrease (deterioration). In contrast, a decrease in HR to less than
one indicates a reduction in the likelihood of a bridge condition
rating decrease. Wettach-Glosser et al. (2020) applied this method
to study the performance of 5,242 bridge decks in Oregon.

In addition to the lack of complete records, the condition rating
of bridges can be subjective because bridge inspectors manually
inspect them. Often, the condition rating of bridges may increase
or decrease over a period of time. However, it is difficult to under-
stand whether improvements in bridges’ condition are due to a sub-
jective rating or intervention such as repair, reconstruction, or
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rehabilitation. Accounting for maintenance activities in bridge
health is considered crucial because the absence of maintenance
activity in modeling bridge health may not provide a bridge con-
dition’s true deterioration rate. Often, missing reports on a bridge’s
intervention history in the survey records can further exacerbate the
problem. Researchers have attempted to mitigate bias caused by
missing reports on bridge intervention through analyzing a nonin-
creasing subset of bridge records. Bolukbasi et al. (2004) studied
records from 1976-1998 on 2,601 bridges in Illinois. The author
proposed two different methods to account for unrecorded repairs
and replacement: assuming that consecutive inspections should not
increase and taking the duration between the consecutive inspec-
tions as a means to construct deterioration curves. Other research-
ers, such as Saeed et al. (2017), addressed unrecorded repairs and
replacement by introducing the Bridge Intervention Matrix (BIM),
which maps transitions in condition ratings to interventions that
might have caused it. The BIM takes into account improvements
in consecutive condition ratings. We use BIM in this study to ob-
serve maintenance events.

Various factors may contribute to bridge health; hence, it is es-
sential to consider how factors interact to model bridge health
(Morcous et al. 2002). Kim and Yoon (2010) applied a determin-
istic approach to identify latent variables that affect bridges’
deterioration by studying 5,289 bridge records from 2006 and
2007 in North Dakota. Saced et al. (2017) studied 5,600 Indiana
bridges from 1992 to 2014 to account for the interactive effect
among factors to model bridge deterioration; the study included
a marginal effect analysis to identify influential factors in bridge
health, while other researchers have used stochastic models, such
as the Markov decision process (MDP) (Scherer and Glagola 1994;
Saeed et al. 2017; Cesare et al. 1992; DeStefano and Grivas 1998).
These probabilistic models are effective at accounting for the latent
relationship among factors. In 1995, Madanat et al. (1995) studied
5,700 bridges from Indiana to develop a MDP model for predicting
the future condition of bridges. DeStefano and Grivas (1998) fur-
ther developed MDP methods and updated transition probabilities
to account for previous bridge conditions.

In our analysis of prior literature, we observed the use of deter-
ministic, stochastic methods and Al methods to understand bridge
health. Chang et al. (2019) implement a combination of Markov
chain stochastic and deterministic modeling of bridge condition
using logistic regression. They also apply a linear regression model
for identifying influential factors that affect bridges’ condition in
Wyoming. Researchers have also adopted Al techniques to predict
future bridge health. For instance, Huang (2010) implemented
ANNSs using 942 observations from the Wisconsin Pontis Bridge
Management System (BMS) data set to predict Wisconsin bridges’
future deterioration. Case-based reasoning (CBR) is an Al tech-
nique to predict future bridge health. Morcous et al. (2002) built
a CBR model using 521 observations of bridges obtained from
the Canadian province of Quebec to predict the future condition
of bridges. Kim and Yoon (2010) conducted a GIS analysis to pre-
dict the future condition of bridges. Chang et al. (2019) also imple-
mented classification trees to model bridge health and identify
influential factors. Assaad and El-adaway (2020) developed ANN
models and k-nearest neighbor models by studying 19,269 bridges
in Missouri. The authors report 91.44% accuracy in predicting
the future condition of bridges. Other research efforts to predict
future bridge conditions include simulation techniques. Hasan and
Elwakil (2020) modeled the impact of influential factors on
bridge decks using Monte Carlo simulations based on 1992-2018
California bridges. The simulation of bridge decks provides a prob-
ability of future condition ratings of decks.
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In the development of various methods to model bridge health,
researchers identified various influential factors. We use the general
categories of factors by Kim and Yoon (2010) to report influential
factors (Table 1). Our literature review revealed that some of the
most commonly reported influential variables were traffic (Chang
et al. 2019; Assaad and El-adaway 2020; Kim and Yoon 2010;
Hasan and Elwakil 2020; Nasrollahi and Washer 2015), age
(Chang et al. 2019; Saeed et al. 2017; Assaad and El-adaway 2020),
structure length (Chang et al. 2019; Saeed et al. 2017; Assaad and
El-adaway 2020; Hasan and Elwakil 2020), and interventions such
as replacement (Saeed et al. 2017; Kim and Yoon 2010). Other than
a commonly reported influential factors, Morcous (2011) found
highway class and region to be the most influential factors in under-
standing Quebec bridges’ future condition. Chang et al. (2019)
found that physical attributes, such as the functional classification
of routes and lanes on structures in records from the period 1992—
2014, were the most influential factors. Assaad and El-adaway
(2020) found that deck width, number of spans, operating rating,
inventory rating, and structural evaluation as influential factors
in modeling bridge condition. Kim and Yoon (2010) found that
materials, such as concrete, prestressed concrete, and steel, and
structural systems, such as slab and temperature, were helpful in
understanding bridges’ condition. Hasan and Elwakil (2020) found
that inspection frequency, degree of skew, structure length were in-
fluential factors in simulating bridge condition ratings. In general,
we observed that consideration of environmental factors in prior
literature was limited. This may be due to a lack of data integration.

Table 1. Categorization of influential factors

Category Factor Description
Physical Design load Design load
No. of spans No. of spans in main unit
Width Width of deck
Year built/age Year of construction
ADT/ADTT Average daily volume of vehicles
Replacement Widening, replacement, and
rehabilitation of bridge
Replaced length Length of structure improvement
Deck/substructure/ Condition ratings of deck,
superstructure substructure, and superstructure
condition
Region State State
County County
US Census region Region that includes states,
defined by US Census
Structural- Material type Kind of material used such as

material type

Structure type

concrete, steel, wood, or timber
Kind of structural system of
bridge such as slab, girder/beam,
and truss

Several studies do rely on augmenting the NBI data set with addi-
tional data collected by their respective state DOT (Bolukbasi et al.
2004; Saeed et al. 2017; Nasrollahi and Washer 2015; Kim and
Yoon 2010; Morcous 2011).

In reviewing the literature, we found that the data used are often
limited to a single state or region. There is a lack of insight in under-
standing maintainers’ role in bridge health. Such studies provide
both limited information on other states’ bridges (Bolukbasi et al.
2004; Nasrollahi and Washer 2015; Saeed et al. 2017) and are
conducted on relatively small bridges compared to the full NBI
data set.

Data

Our research method can be divided into six phases: data collection,
data cleaning, data transformation, factor selection, BDS computa-
tion, and identifying significant factors. These phases are summa-
rized as a flowchart in Fig. 1.

Data Collection
1. National Bridge Inventory
2. Centers for Disease Control and Prevention [~

¥

Data Cleaning
Discard bridges with no deck, substructure, and
superstructure condition rating

2

Data Transformation
1. Transformation of numerical variables into
categorical variables
2. Identification of rebuilt bridges and treating
them as separate bridges
3. Consolidation of survey records of each
bridge to consider entire timespan of the

bridge
¥

Factor Selection
Selecting subset of factors to understand the
contribution of variables in performance of
bridge’s factor as:
ADT, ADTT, Material, Precipitation, Snowfall,
Freeze-thaw, Maintenance, Maintainer,
Structure Length, and Region

¥

>— Data Processing

Environmental Precipitation Annual mean precipitation in
inches or millimeters Calculating Baseline Difference Score
Snowfall Annual mean snowfall Identifying Prldges with replac'ements and
treating them as new bridges
Temperature Mean temperature
Over water Bridge over waterway
Service Highway Bridge service on highway ‘
Railroad Bridge service on railroad
Interstate Bridge.is part of Interstate Identifying Significant factors
Toll Toll bridge Analyze difference in factors such as ADT, ADTT,
Average farm size Average farm size of size of Material, Precipitation, Snowfall, Freeze-thaw,
census track where bridge located Maintenance, Maintainer, Structure, Length,
Population Population of census track where and Region
bridge is located
Maintenance Maintenance responsibility of
bridges Fig. 1. Research methodology of study.
© ASCE J. Infrastruct. Syst.
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Data Collection

To accomplish the goals of this research, we identified three data
sets: the NBI, snowfall, and freeze-thaw data from the National
Oceanic and Atmospheric Administration (NOAA) (supplied by
FHWA) and precipitation data from the CDC. A script is used to
download the NBI data set from the FHWA website for all 52 states
over the period 1992-2017. This includes over 17 million inspec-
tion records for more than 600,000 bridges in the US. The snowfall
and freeze-thaw data were supplied by LTBP InfoBridge, a central-
ized national repository for bridge information. The precipitation
data downloaded from the CDC span the years 1992-2011.

Data Cleaning

Data cleaning is essential to assure reliable analysis in the later
stages of this research study. We created a clean, integrated data set
consisting of information about bridges from the NBI and weather
data from the CDC. We now describe the data cleaning and trans-
formation strategy applicable to three data sets identified in the data
collection step.

In the NBI data set, we observed errors, missing data, and in-
consistencies in complying with the FHWA coding guide (FHWA
1995). As expected from any large data collection effort, the
NBI inspection records aggregated from different state DOTs by
the FHWA face many issues. In particular, the early years of
NBI-related data collection has a large percentage of data that is
incomplete or nonconformant to the coding guide. For example,
we encountered missing condition ratings, incorrect longitude and
latitude, unrecorded reconstruction, and rehabilitation dates. These
missing data, if left unaddressed, affect the reliability of any find-
ings reported from data analysis. For example, when a bridge is
repaired, reconstructed, or rehabilitated, its condition improves.
Therefore, missing information makes it difficult to account for
reconstruction and rehabilitation as a factor that can improve bridge
condition.

In addition to condition ratings, we also examined other fields,
such as latitude, longitude, and structure type associated with
bridge inspection records in the NBI. For these fields, we addressed
several data-related inconsistencies as follows:

* Discard inspection records with missing values for deck, sub-
structure, and superstructure.

* Convert longitude and latitude to degrees and minutes.

* Detect changes in year-built record for a bridge over different
inspection records in the NBI. The change is assumed to be a
bridge replacement. For every change, reintroduce the bridge
with a new identifier (original structure number with a segment
suffix) to preserve bridge life-cycle consistency.

* Maintain a log of invalid values and repeated records. A log
promotes transparency of any updates to the original data for
the purpose of cleaning.

Our observations regarding missing records are summarized by
region in Table 2. These statistics suggest that the Northeast region
has the highest number of missing records, followed by the West
and South. The Midwest region has the highest number of clean
records. On average, 60% of the records are missing.

While a complete listing of the number of missing records per
state is available in the Appendix, we only discuss the summary
statistics. Midwestern states, Nebraska (73%), and lowa (77%) have
the highest number of records available. In contrast, Northeastern
states, such as Connecticut (4%), New Hampshire (11%), and
Massachusetts (14%), have the smallest number of survey records
for analysis. Since each bridge may have multiple records, the num-
ber of inspection records considered in the study is higher than the
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Table 2. Summary of missing records

Data processing summary
No. of studied

Percentage of studied

Region Total records records records(%)
Northeast 1,913,728 606,759 31.7
Midwest 7,124,522 3,683,689 51.7
South 6,177,021 2,648,231 42.8
West 2,859,731 1,115,204 38.9

number of bridges. As a result, Table 2 gives the percentage of miss-
ing inspection records, not the number of missing bridges.

Data Transformation

In the data cleaning phase, we observed that the year built field had
some inconsistencies. For example, bridges may appear unnaturally
aged or newly built. Based on our discussion with subject matter
experts from the Nebraska DOT, we learned that when an inspec-
tion record shows a more recent year built than previous inspection
records, it often means the bridge was rebuilt. To account for this
inconsistency, we split a bridge’s condition rating time series into
segments that share the same year built. Bridge segments are iden-
tified by adding a segment number as a suffix to the bridge structure
number. Each segment is then tracked separately in the data set and
associated with its own BDS.

Factor Selection and Preparation

Factor selection was driven by observed popularity in prior litera-
ture. To avoid bias, in addition to frequently tested factors in the
literature, we also included factors not commonly associated with
bridge condition ratings as well as environment and geographic
factors. The full list of factors considered in our research study in-
cludes ADT, ADTT, maintainer, maintenance, material, structure
length, precipitation, snowfall, freeze-thaw, and region.

We used ANOVA to examine the association of each factor with
the BDS. To perform this analysis, we converted all independent
factors into categorical variables. The conversions were informed
by methods from earlier literature and the NBI coding guide. For
instance, Morcous (2011) provides a guide for converting ADT into
very light, light, medium, and very heavy. For factors such as pre-
cipitation, snowfall, and freeze-thaw, we created two categories
after removing outliers: the largest 10% of values and the lowest
10% of values.

To check for normality, the Shapiro-Wilk test was performed
on small and large samples for each factor level. While several
methods exist for determining the appropriate sample size, there
is limited guidance in the literature related to appropriate sample
sizes for NBI data sets. For small-sample analysis, statisticians con-
sider 100 to be considered a good minimum sample size. For large
sample analysis, factors are downsampled with a random selection
such that there is equal representation from all factor levels. Thus, a
large sample size is determined by the factor level with the smallest
number of observations.

The results of normality tests for all factor levels are reported in
Tables 3-5. For large samples, the tests reject the null hypothesis
that the samples came from a normally distributed population, with
95% confidence for all factors. On the other hand, all small-sample
tests fail to reject the null hypothesis for all factors with 95%
confidence. With large sample sizes, it is expected that the Shapiro-
Wilk test will detect even trivial departures from the null hypoth-
esis. This phenomenon explains the divergent results between
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B Table 3. Factor division criteria and normality test results

T3:1 Summary of data set
T3:2 Factors Sample size small, large Criteria Category Normality p-value
T3:3 ADT 100, 112K ADT < 100 Very light 0.5, 0.0
T3:4 (NBI Item 27) 100, 112K 100 < ADT < 1,000 Light 0.3, 0.0
T3:5 Unit: Volume of vehicles 100, 112K 1,000 < ADT < 5,000 Moderate 0.4, 0.0
T3:6 100, 112K ADT > 5,000 Heavy 0.4, 0.0
T3:7 ADTT 100, 112K ADTT < 100 Light 0.2, 0.0
T3:8 (NBI Item 27) 100, 112K 100 < ADTT < 500 Moderate 0.2, 0.0
T3:9 Unit: volume of vehicles 100, 112K ADTT > 500 Heavy 0.2, 0.0
T3:10 Maintainer 100, 43K NBI Item: 21 = 02 County 0.3, 0.0
T3:11 (NBI Item 21) 100, 43K NBI Item: 21 = 01 State 0.3, 0.0
T3:12 100, 43K NBI Item: 21 = 03 Town 0.3, 0.0
T3:13 100, 43K NBI Item: 21 = 04 Municipal
T3:14 And city 0.3, 0.0
T3:15 Material 100, 105K NBI Item: 43A =1 Concrete 0.2, 0.0
T3:16 (NBI Item 43A) 100, 105K NBI Item: 43A = 3 Steel 0.2, 0.0
T3:17 100, 105K NBI Item: 43A =5 Prestressed 0.2, 0.0
T3:18 100, 105K NBI Item: 43A =7 Wood 0.1, 0.0
T3:19 Material (age constant) 100, 8.6K NBI Item: 43A =1 Concrete 0.3, 0.0
T3:20 (NBI Item 43A) 100, 8.6K NBI Item: 43A =3 Steel 0.2, 0.0
T3:21 100, 8.6K NBI Item: 43A =5 Prestressed 0.2, 0.0
T3:22 100, 8.6K NBI Item: 43A =7 Wood 0.1, 0.0
El Table 4. Continued. Factors division criteria and normality test results
T4:1 Summary of data set
T4:2 Factors Sample size small, large Criteria Category Normality p-value
T4:3 Structure length 100, 45K 6.1-8.5 (m) Very short 0.2, 0.0
T4:4 (NBI Item 49) 100, 45K 58.9-38421 (m) Very large 0.2, 0.0
T4:5 Precipitation 100, 56K 0.43-1.23 (mm) Very low 0.1, 0.0
T4:6 (CDC) 100, 56K 3.76-7.64 (mm) Very high 0.1, 0.0
T4:7 Unit: Mean daily precipitation
T4:8 Freeze-thaw 100, 56K 47-60 Very low 0.1, 0.0
T4:9 (NOAA) 100, 56K 93-95 Very high 0.1, 0.0
T4:10 Unit: Mean No. of freeze-thaw days
T4:11 Snowfall 100, 56K 12-14.3 Very low 0.2, 0.0
T4:12 (NOAA) 100, 56K 61.8-66 Very high 0.2, 0.0
T4:13 Unit: Mean No. of snowfall days
T4:14 Maintenance 100, 27K 0 Very low 0.2, 0.0
T4:15 Unit: No. of intervention 100, 27K 3-5 Very high 0.2, 0.0
(repair, reconstruction, and reconstruction)
T4:16 Region 100, 105K See Table 5 West 0.1, 0.0
T4:17 (Derived from NBI Item 1) 100, 105K See Table 5 South 0.2, 0.0
T4:18 100, 105K See Table 5 Northwest 0.2, 0.0
T4:19 100, 105K See Table 5 Midwest 0.3, 0.0

Table 5. Grouping of bridges into regions with respect to each bridge’s state
T5:1 Region

T5:2 Northeast
T5:3 Midwest

States

Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont, New Jersey, New York, and Pennsylvania
[llinois, Indiana, Michigan, Ohio, Wisconsin, lowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and South Dakota

T5:4 South Delaware, Florida, Georgia, Maryland, North Carolina, South Carolina, Virginia, Washington, DC, West Virginia, Alabama, Kentucky,
Mississippi, Tennessee, Arkansas, Louisiana, Oklahoma, and Texas

T5:5 West Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Washington, Utah, Wyoming, Alaska, California, Hawaii, and Oregon

358  small- and large-sample normality (Anderson et al. 2000). In ad- only a few or with many condition ratings in their time series. For 364

359  dition to sample sizes, we must also ensure that each sample is example, a divergence in the length of the time series may occur for 365
360  of a consistent quality with respect to factors such as maintenance. newly built bridges or old bridges. 366
361 In the context of NBI records, we have observed that the time series With varying time-series lengths, factors such as the number of 367
362  of condition ratings are of varying lengths depending on the age of maintenance events can be misleading—bridges with fewer records 368
363  the bridge. Thus, a bias may arise if we select bridge samples with will have fewer maintenance events. Thus, to analyze maintenance, 369
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we only select bridge samples with lengths of their time series be-
tween the first and third quartile of all possible lengths. Our result-
ing sample contains bridges with a minimum of 13 and a maximum
of 26 observations in their condition rating time series. To derive
the number of maintenance events, we then use the BIM (Saeed
et al. 2017). It determines a maintenance event by observing an
increase in the condition of a bridge. Finally, the samples are cat-
egorized into the top 10% of bridges with maintenance and bottom
10% of bridges with maintenance to observe the difference in the
means of their BDSs using ANOVA. This process of sampling
bridges to study the number of maintenance events does not apply
to other factors, such as region, precipitation, structure length, and
material, because these factors do not depend on the length of a
bridge’s condition rating time series.

Methodology

In this section, we describe the computation of the BDS and
provide a mathematical formulation. Further, we analyze the BDS
of bridges nationally to understand the method’s characteristics,
strengths, and limitations.

New Measure for Bridge Health

The NBI data set is updated annually with the condition ratings for
bridge decks, substructures, and superstructures. Among bridge
components, the superstructure is considered the backbone of a
bridge (Nasrollahi and Washer 2015). Our analysis shows that the
superstructure condition ratings are highly correlated to deck and
substructure. Since computing a condition score using deck and
substructure condition ratings would produce similar statistical re-
sults, in the rest of the paper, we only consider the superstructure
condition rating for the purposes of our study.

We now outline the method for computing the BDS. The first
step in the method is to compute a baseline of condition ratings,
which considers the time series of bridge condition ratings from
all states in the US. This baseline is the national average of bridge
condition ratings, calculated using the superstructure condition rat-
ing, from ages 1 to 60. As a result, the computed baseline is a vector
of length 60. We choose to end our analysis at age 60 since bridges
are built for a 50-year life span. To compute the baseline, we com-
pute the average of the condition ratings of all the available bridges
at age one. Next, we compute all bridges’ average condition ratings
at age two; this process is continued until age 60.

Once the baseline is computed, we compute the BDS for each
bridge. The condition ratings of bridges are compared against
the baseline with respect to age. For instance, a bridge that has con-
dition ratings from ages 10 to 25 is compared with the average
condition rating from ages 10 to 25 in the baseline. Finally, we

[l Table 6. Description of notation

compute the BDS by averaging the difference between the condi-
tion ratings and baseline. This process of BDS computation is
carried out for all available bridges. The magnitude of the BDS
of a bridge indicates bridge performance compared to the average
bridge; an increase in BDS indicates higher performance, whereas a
decrease in BDS indicates lower bridge performance.

In the following subsection, we present the mathematical for-
mulation and algorithm to compute the baseline difference score.
Table 6 provides a description of the notation used in explaining the
formulation.

Formulation of Baseline Difference Score

Let a bridge be b € B, where B is the set of bridges in the NBI.
Let a bridge age be a € A, where A is the set of bridge ages in
the NBL
Let the set of possible condition ratings be C, C C Z = [0,9].
Let the condition rating of bridge b at age a be ¢,, € C,
where ba € A x B.
Let the list of all condition ratings of bridges in the NBI at age a
be sequence X, where X, is the ith element of sequence X,.
Then the expected condition rating of a bridge in the NBI at age
a, s,, is defined as follows in Eq. (1):

|
X 1
M; (1)

Let S be the sequence of expected condition ratings (baseline)
for all bridge ages, such that Va, a € A = 5, € S.

Let @, be the set of all ages for which b € B has a condition
rating.

Then the baseline difference score of bridge b, bds,, is defined
as follows in Eq. (2):

S =

1
bds, = — Cha — Sa 2

Analysis of Baseline Difference Scores

After computing the BDS for all the bridges in the US, we observe
that it follows a normal distribution. We present summary statistics
of BDSs from over 300,000 bridges in Table 7. Note that the mean
and median are practically zero, and the standard deviation is close
to one. It is expected that when performing a normality test on such
a large sample, small deviations can cause the test to report non-
normality. Hence, we also ran the normality test with a small sam-
ple size of 100 x 4 = 400. The multiplier of 4 is chosen based on
the maximum number of levels available among our 10 categorical
factors. Fig. 2 shows the resulting box plot and histogram, which
appear to follow a normal distribution. The normality test results in

N Description Table 7. Summary statistics of distribution of BDS of bridges in US

A Set of bridges ages a € A Us

B Set of bridges b at age b € B

bds,, Condition rating of bridge b € B Count 334,331

C Set of possible condition ratings Mean —0.061
Cha Condition ratings of bridge b at age a Standard deviation 0.887
S Set of expected condition ratings for all bridges at all ages Minimum —2.50
Sa Expected condition rating at age a 25% —0.617
0, Set of all ages for which b € B 50% 0.014
X, List of all condition ratings of bridge at age a 75% 0.54
Xai An ith element of sequence X, Maximum 2.368
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Fig. 2. Baseline difference scores—US.

Table 8. Normality test on random sample of 400 bridges

Test Sample size  Statistic  p-value  Null hypothesis
Shapiro-Wilks Small 4.204 0.122 Fail to reject
Shapiro-Wilks Large 4.204 0.02 Reject

Note: The p-value suggests that the distribution of the baseline difference
score of a random sample of 400 is normal.

Table 8 also confirm that the distribution of the random sample is
normal.

Fig. 3 illustrates the time series of condition ratings for three
bridges. Note that condition ratings for a particular bridge only take
on ordinal (0-9) values. In contrast, the baseline is continuous, be-
cause it is the average condition rating over all bridges in the NBI at
a particular age. Note also that the bridge condition ratings may
fluctuate above and below the baseline because of improvements
from interventions and deterioration of bridge components. Thus,
bridges with equal BDSs could have highly varied condition rat-
ings. To understand how condition rating time series of bridges
vary with respect to BDS, using measures of standard deviation
(SD), we categorized bridges as average (within plus or minus
one SD), poor (less than one SD), and good (greater than one SD)
based on their BDS. Thus, rather than using absolute thresholds, the
interpretation of BDS for a population of bridges is established
based on statistical significance.

It is essential to understand the characteristics of the time series
of bridges with statistically significant poor, average, and good
BDSs. For example, bridges with statistically significant poor
BDSs are expected to have a time series of condition ratings that
stay below the national baseline time series. Fig. 3 illustrates such
time-series comparisons. In this example, the x-axis is the age and

477 [Ethe y-axis the condition rating (superstructure). The blue line is the

478

average condition rating of all bridges nationally, i.e., the baseline.

479 @ The red, green, and yellow lines are time series that belong to actual

480
481
482
483
484
485
486
487
488
489

bridges in the NBI with statistically significant poor, average, and
good BDSs, respectively. While the figure only provides anecdotal
evidence, we performed additional analysis. We observe that for
bridges with good BDSs, their time series of condition ratings
spends on average 80% of the time above the baseline. On the other
hand, for bridges with poor BDSs, their time series of condition
ratings spends on average 80% of the time below the baseline. For
average performing bridges, their time series of condition ratings
spend about 50% of the time above and below the baseline, respec-
tively. This finding suggests that a good BDS, i.e., a statistically
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Condition Rating
>

= Baseline
2 —— Good performing bridge, score: 2.27
Average performing bridge, score: 0.46
—e— Poor performing bridge, score: -1.84

0 10 20 30 40 50 60
Age

Fig. 3. Comparison of good, average, and poor performing bridges
against blue national baseline. x-axis is bridge age and y-axis is bridge
condition.

significant positive score, is not a result of large variances that
are spread on either side of the baseline but a collection of small
variances throughout the time series of the bridge that are positive.

The BDS is a sum of the differences among two condition rating
time series aligned by age. While a single score for bridge perfor-
mance is desirable, the summation operation in BDS computation
cannot capture the consistency (or variation) of bridge conditions
with respect to the national baseline over time. As a result, even a
bridge with condition ratings above the national baseline at a given
age can have a BDS of zero or even negative owing to its past per-
formance. BDS is not a measure of the current bridge state but a
longitudinal performance over time. It is possible for two bridges
with very different condition ratings over time to have a BDS of
zero: a bridge whose condition rating perfectly matches the base-
line and a bridge whose score is above the baseline half the time and
below the baseline the other half. The sum of differences in BDS
computation also prevents detecting significant rises and declines
in bridges’ condition ratings. However, empirical observation in the
NBI data set suggests that condition ratings often do not rise or
decline significantly.

Since the BDS follows a normal distribution, ANOVA can be
used to test the significance of various factors (e.g., ADT) on
the BDS of bridges. For every factor, we categorized bridges into
several groups (e.g., low, moderate, and high ADT) as appropriate
and then performed one-way ANOVA to find the difference be-
tween the mean BDS of the groups. The degree of association
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Table 9 Description for magnitudes of Cohen’s d

Table 10. Summary of Analysis—ANOVA

Effect size Cohen’s d
Very small 0.01
Small 0.20
Medium 0.50
Large 0.80
Very large 1.20
Huge 2.00

Source: Data from Sawilowsky (2009).

between the factors and BDS is measured using effect size. In
ANOVA, a commonly used measure of effect size is eta squared.
However, eta squared is not easy to interpret. Therefore, we use
Cohen’s d—a standardized measure that makes it easy to interpret
the effect size between two means. Eta squared values from
ANOVA are converted to Cohen’s d using a conversion tool
(DeCoster 2009). Table 9 provides a description of the magnitude
of Cohen’s d and the corresponding effect sizes. In the following
section, we will explore the effect of the selected factors on BDS.

Results

Our results are summarized in Tables 10 and 11. Table 10 lists the
significance of ANOVA tests for each of the 11 factors, while
Table 11 shows the effect size for each factor when tested individu-
ally. Notice that in Table 10, for a small sample size, only material
(i.e., the bridge material type), snowfall, and maintenance explains
the differences in BDS. Since the type of material used in bridge
construction generally improves with time, we also tested the
material factor, while keeping age constant. This factor is listed
as material (age constant) in Tables 10 and 11. Correspondingly, the
effect size of material (age constant) was the largest (Cohen’d =
0.54) in both the large and small sample analysis (Table 11).
Snowfall has the second-highest association with BDS (Cohen’d =
0.45), followed by a close third in maintenance (Cohen’d = 0.44).
These top three factors exhibit a medium association with BDS.
Precipitation, freeze-thaw, maintainer, ADTT, and region have a
small association with BDS. Both ADT and structure length have
a very small association with BDS.

Upon further investigation of material categories, we observed
that younger bridges were primarily made of concrete and pre-
stressed concrete. We also expected younger bridges to perform
better than older bridges. Therefore, to account for this bias related
to age, we performed a post hoc analysis with a balanced sample
of young bridges from four categories of bridges: steel, wood or
timber, prestressed concrete, and concrete. This post hoc analysis
further revealed a difference in BDS with respect to the material of
the bridge, even when age is kept constant (e.g., all young bridges).

In Fig. 4, we show another view to understand the relation of
material to BDS. The figure shows the percentage of bridges with
different materials above and below the BDS of zero. Prestressed
concrete bridges have the highest number of bridges above the BDS
of zero between the ages of 30 and 45 (young category). In the
same age range, a much lower percentage of wood bridges are
above the BDS of zero. Fig. 4 reveals that prestressed concrete
bridges generally perform better than other material types in this
analysis using BDS.

A similar analysis of precipitation reveals a counterintuitive re-
sult. In Fig. 5, the percentage of bridges in very low and very high
precipitation regions above and below the BDS of zero is shown
between the ages of 1 and 60. We observe that very high precipi-
tation regions have a higher percentage of bridges above a BDS of
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Fail to reject null hypothesis

Factor Small sample Large sample
ADT True (0.8) False (0.0)
ADTT True (0.12) False (0.0)
Maintainer True (0.13) False (0.0)
Material False (0.01) False (0.0)
Material (age constant) False (0.0) False (0.0)
Structure Length True (0.63) False (0.0)
Precipitation True (0.11) False (0.0)
Freeze-thaw True (0.4) False (0.0)
Snowfall False (0.0) False (0.0)
Maintenance False (0.0) False (0.0)
Region True (0.3) False (0.0)

Note: Statistically significant difference in baseline difference score only
with respect to material.

Table 11. Summary of analysis—effect size

Effect size
Factor Small sample Large sample
ADT Very small (0.08) Very small (0.04)
ADTT Small (0.20) Very small (0.06)
Maintainer Small (0.15) Very small (0.12)
Material Small (0.30) Small (0.35)

Medium (0.54)
Very small (0.06)

Medium (0.54)
Very small (0.02)

Material (age constant)
Structure length

Precipitation Small (0.20) Small (0.20)
Freeze-thaw Small (0.17) Very small (0.05)
Snowfall Medium (0.45) Small (0.21)
Maintenance Medium (0.44) Small (0.27)
Region Small (0.17) Small (0.20)

Note: In the small- and large-sample analysis, the material (age constant)
has the highest effect size, followed by material and precipitation on
baseline difference score.

zero compared to very low precipitation regions. We conducted a
Mann-Whitney U test to observe whether this difference was stat-
istically significant since the distributions did not follow a normal
distribution. Based on the test results, we conclude that the distri-
bution of bridges with a BDS greater than O in the very low pre-
cipitation region is different from bridges with a BDS greater than 0
in the very high precipitation region. Similarly, the distribution of
bridges with a BDS less than 0 in very low precipitation regions is
different from bridges with a BDS less than O in very high precipi-
tation regions.

Because we are very interested in precipitation and its effect on
bridge health, we conducted further analyses to observe the inter-
action between precipitation and material types. We know from the
previous results in Fig. 4 that prestressed concrete bridges perform
better than wood or timber bridges. In addition, Fig. 6 shows that
the distribution of prestressed concrete bridges is low in very low
precipitation regions, and the distribution of prestressed concrete
bridges is high in very high precipitation regions (Fig. 6). Also,
wood or timber bridges are nearly absent in high precipitation
regions.

We performed a Shapiro-Wilk normality test on four categories
of materials with respect to high precipitation and low precipitation
regions to check for normality. The results suggest that with 95%
confidence, we reject the null hypothesis with a p-value of 0.0. In
other words, none of the categories of material with respect to both
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Fig. 4. Percentage of bridges above and below BDS of zero with respect to material type; note concrete and prestressed concrete bridges have higher

percentages of bridges above BDS.

high precipitation and low precipitation regions follows a normal
distribution. Therefore, to understand whether all material types’
distributions are similar with respect to high precipitation and
low precipitation, we performed a Kruskal-Wallis H test. Our result
suggests that with 95% confidence and a p-value of 0.0, we can
reject the null hypothesis that the BDS from the two distributions
is similar. In conclusion, the distribution of the material types
is different in high precipitation regions and low precipitation re-
gions. This may explain the counterintuitive result with respect to
precipitation.

Tool Support

Large data sets like the NBI are challenging to analyze and share.
Therefore, in this study, we used DataCenterHub to host and ex-
plore the NBI data set. DataCenterHub is built on the HUBzero
platform developed at Purdue University. In addition to providing
specialized hosting services, DataCenterHub also provides user-
friendly and flexible tools for exploration. DataCenterHub supports
various data types, such as media (photos, drawings, and images)
and data (CSV, text files, and JSON files). DataCenterHub provides
a standard format for uploading large data sets and a web entry to
upload and update metadata and parameter sets. DataCenterHub
provides security mechanisms to protect data and supports
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restricted access that grants access only to select groups to see ap-
propriate data sets with role-based constraints.

In this study, DataCenterHub consisted of Jupyter Notebooks
and centrally hosted files with NBI records from all years and all
states. The NBI data set is populated from CSV format files avail-
able from the FHWA website. The database is curated, cleaned, and
populated using Python scripts. The Jupyter Notebook environment
enabled us to execute Python scripts and display charts in a share-
able and readable document. Python scripts are developed as part
of this research study for data processing, such as extraction, for-
matting, and curating data sets. Links to the Data Cleaning and
Analysis scripts are hosted on GitHub.

Discussion

This research study addresses some critical challenges with respect
to data cleaning and related transformation related to NBI data. It
does so in a manner that is repeatable and scalable. We overcome
challenges related to incomplete or missing records, accounting for
maintenance events, and explore interactive effects among factors
like materials, age, and precipitation.

Incomplete and missing inspection records can be quite chal-
lenging. While computing a national baseline, missing condition
rating data in individual bridges are not a concern. However, when
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Fig. 5. Percentage of bridges above and below BDS of zero with re-
spect to precipitation regions. There is a lower percentage of bridges
above BDS in high precipitation, and there is a higher percentage of
bridges above BDS in lower precipitation.

computing the BDS of a bridge, gaps in the time series of condition
rating is yet to be completely addressed. In this study, if we observe
a large gap in the time series of condition ratings for a bridge,
we split the time series into segments and treat each segment as
a separate bridge record. We observed that large gaps in time series
usually corresponded to a bridge being rebuilt.

Another challenge in modeling bridge health is accounting for
maintenance/intervention. In our study, we considered maintenance
as a factor that influences bridge health. We did not take into ac-
count specific interventions, such as replacement, rehabilitation,
and reconstruction, but this can be easily done in the future with
data availability. The analysis presented in this paper is based on the
observed improvement in the condition rating of a bridge that can
be attributed to any of the general intervention types. Since BDS
computation is independent of the factors that influence bridge
health, testing additional factors presents no significant computa-
tional overhead.

Our primary objective in this study was to understand the uni-
form association of an individual factor with the BDS. Therefore,
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we did not specifically test for the interactive relationship among
factors. Our analysis of interaction among factors is limited to
material, age, and precipitation to further explore factors that ex-
hibited a high association with BDS. Our results suggest that the
BDS is a key performance indicator, which can complement other
bridge indicators provided by previous literature. In future studies,
techniques like ANNS, classification trees, and regression analysis
could include BDS with other bridge attributes to study interactions
among factors.

Our study included all US bridges. Our selection was not limited
to any particular region. Analysis with ANOVA included both
small and large samples. Using small sample sizes allowed us to
watch for deflated p-values due to large sample sizes. Both small-
and large-sample analysis also provided a range for the effect size
of the analysis. ANOVA’s necessary assumptions of a normally dis-
tributed population of scores are preserved in both small and large
samples.

To compare and contrast our findings with prior efforts, Table 12
lists significant results from the current state of the art. Previous
research studies generally reported that physical and service-related
factors were more influential than environmental and regional fac-
tors. For example, physical factors such as traffic (or ADT) (Chang
et al. 2019; Assaad and El-adaway 2020; Kim and Yoon 2010;
Hasan and Elwakil 2020; Nasrollahi and Washer 2015), age
(Chang et al. 2019; Saeed et al. 2017; Assaad and El-adaway 2020),
and structure length (Chang et al. 2019; Saeed et al. 2017; Assaad
and El-adaway 2020; Hasan and Elwakil 2020) were found to be
the most influential in understanding bridge conditions in several
research efforts. Chang et al. (2019) found the functional classifi-
cation of a route and the number of lanes to be influential factors.
Assaad and El-adaway (2020) reported that deck width, number of
spans, operating rating, inventory rating, and structural evaluation
were also significant factors. Finally, Hasan and Elwakil (2020)
found the degree of skew and structure length to be influential
factors in simulating future bridge condition ratings. However,
our results shoed only a small association of the commonly re-
ported physical factors to the BDS at a national scale. These differ-
ences present interesting opportunities for future work.

Our results do align with the findings of Kim and Yoon (2010),
Hasan and Elwakil (2020), and Saeed et al. (2017). Similar to their
findings, our results suggest that the material type of a bridge has a
higher association with the bridge’s health. We observed that pre-
stressed concrete and concrete bridges performed better than wood
or timber and steel bridges. The climate of a given region is influ-
enced by various factors, such as latitude, elevation, topography,
and prevailing winds. The cumulative effect of multiple variations
in climate factors may also affect bridge condition. We included
bridges’ geographic regions as a factor in our test as a proxy for
climate’s cumulative effect and found that region had a slight asso-
ciation with BDS. However, we plan to perform additional tests at a
more granular geographic level in future work. Contrary to popular
belief, we only found a small effect of precipitation or freeze-thaw
cycles on BDS, but snowfall had a medium effect. Our literature
review suggested that the approaches to understanding bridge
health differ in methods, objectives, and factors. The scope of vari-
ous studies also differs. For example, one study may consider a
particular type of bridge component, while another may focus on
bridges in a specific region. We aggregate the influential factors
reported from studies that used deterministic models (regression
analysis), stochastic models (Markov decision processes and probit
models), and AI models (ANNs and CBR) to inform factor selec-
tion in our study. However, owing to differences in our work’s
method, scale, and scope, comparisons are not straightforward.
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B} ¥l Table 12. Comparison of influential factors identified throughout literature

T12:1

T12:2
T12:3

T12:4
T12:5
T12:6
T12:7
T12:8
T12:9
T12:10

717
718
719

Structural and

Physical Region material Environmental Service

Case-based reasoning (Morcous et al. 2002) voE — v — —
Cox hazards model with LASSO a and stepwise regression voE — voE voE voE
(Wettach-Glosser et al. 2020)

Linear regression and Monte Carlo simulation (Hasan and Elwakil 2020) — voF voF Vo voE
Bayesian survival analysis (Fleischhacker et al. 2020) voFE — v voE voFE
Artificial neural network and k-nearest neighbor (Assaad and El-adaway 2020) voE — v — v
Logistic regression and classification tree (Chang et al. 2019) v/E — — — —
Ordered probit model (Saeed et al. 2017) /o v v v v
Multiple regression and GIS (Kim and Yoon 2010) voE — voE voF voE
Baseline difference score voE voE voE Vo voE

Note: A check mark indicates factor category tested; an asterisk indicates the factor category found to be influential.

Finally, we realize that our method includes many steps of vary-
ing complexity. These steps are data-intensive and require a bal-
anced representation of data across several factors. For example,

720 Plilbased on the discussion in section 4, we know that bridges from

721
722
723
724
725
726
727
728

729

730
731
732
733
734
735
736

all states are not equally represented after data cleaning and filtra-
tion. We address the issue of imbalanced representation of data by
subsampling overrepresented states. Finally, the BDS method is
new. We expect that it will take time before the method is widely

Piladopted and further improved. Overall, this study’s results were

validated and deemed useful by subject matter experts at several
Bridging Big Data workshops (https://bridgingbigdata.github.io
/pages/workshops.html).

Conclusion and Future Work

This research study introduces a new measure to understand and
compare bridge conditions based on inspection time-series data
called BDS. The BDS provides a single score for bridge health.
The BDS follows a normal distribution, which categorizes bridges
as average, poor, and good using standard deviation measures.
We observed that good-performing bridges have condition ratings
that are mostly above the baseline from our analysis. In contrast,
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poor-performing bridges have condition ratings that are below the
baseline. Our use of a national baseline in BDS computation also
accounts for a bridges’ condition ratings with respect to age and
scheduled Maintenance performed over a bridge’s life.

This research study provided a reference implementation of a
big data pipeline for bridge health—related data sets. The data clean-
ing and related transformation used in this research scale to NBI
records across all US states. The strategy is also traceable to coding
guidelines and cross-checks, as provided by FHWA (1995). Our
data cleaning efforts only found 42% of the original data set to be
suitable for analysis. A substantial number of bridges in the NBI
data set have condition ratings that do not change across all re-
ported inspections.

We examined 11 factors, including environmental factors that
could influence bridge conditions. This paper found that material,
snowfall, and maintenance were the three factors most associated
with bridge condition. However, material, in particular concrete
and prestressed concrete, was associated with better-performing
bridges. Material type has the highest association with the condi-
tion of bridges, followed by snowfall and maintenance, compared
to the other factors selected in this study. One could also argue that
snowfall may be associated with an increased need for mainte-
nance. We did not explore this relationship in this paper. The factor
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T13:16
T13:17
T13:18
T13:19
T13:20
T13:21
T13:22
T13:23
T13:24
T13:25
T13:26

that had the smallest effect on BDS was ADT. External factors,
such as precipitation, showed only a slight association with bridge
condition. The association between all factors selected in this
analysis and BDS varies from very small to medium, meaning indi-
vidual factors cannot fully explain the condition of bridges. We also
observed a strong association between material and BDS by ac-
counting for the latent relationships with age and precipitation.

BDS can provide a measure of the performance of bridges over
time. However, BDS does not take into account the variance of con-
dition ratings over time. Therefore, a significant drop or rise in a
bridge’s condition ratings are not reflected in the BDS. Future re-
search could focus on developing a complementary measure that
would provide a degree of variance in condition ratings over time.
Such a measure could allow for a deeper understanding of the sta-
bility of bridge performance. Also, the quality of the NBI data
needs to be improved, for example, by estimating missing values
that would provide more data points for analysis. In addition to
missing data, bridge inspections are biennial, and the long intervals
between inspections prevent the accurate characterization of
bridges. Further, inspectors conduct visual inspections of bridges
that are highly subjective. Data collection using Internet of Things
devices could provide reliable, frequent, and objective data. Finally,
as more states start collecting and publishing element-level inspec-
tion data, we expect to use more detailed condition assessments in
computing bridge health scores.

Appendix. Statewise Summary of Missing Records
after Data Cleaning

In Table 13, we provide a statewise analysis of the total survey
records available in the NBI from 1992 to 2012; we also provide
the total number and percentage of surveys considered for analysis
after performing the data cleaning process.

Table 13. Table showing number of NBI inspection records available after

data cleaning

Total Records Percentage

survey considered of records
State records in study in study
Colorado 223,645 55,259 24.71
Montana 143,904 86,220 59.91
Washington 219,318 111,952 51.05
Utah 86,707 21,616 24.93
California 761,313 336,288 44.17
Hawaii 28,868 10,968 37.99
Oklahoma 623,417 330,803 53.06
Arizona 198,595 53,104 26.74
Virginia 396,744 164,877 41.56
Tennessee 545,968 138,745 25.41
South Carolina 246,494 93,626 37.98
Alabama 417,539 212,866 50.91
Louisiana 350,988 192,878 54.95
Nebraska 400,539 295,655 73.81
Illinois 714,936 362,921 50.76
Kansas 663,487 387,056 58.34
North Dakota 116,171 71,287 61.36
South Dakota 158,215 98,721 62.4
Wisconsin 386,700 225,939 58.43
Massachusetts 137,664 20,186 14.66
Maine 67,423 22,560 33.46
Rhode Island 22,591 2,521 11.16
New Jersey 216,169 76,105 35.21
Pennsylvania 665,314 267,464 40.2
Maryland 144,047 60,340 41.89
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Table 13. (Continued.)

Total Records Percentage
survey considered of records

State records in study in study
Arkansas 339,492 178,566 52.6
Wyoming 81,257 48,403 59.57
Idaho 110,415 37,871 343
Oregon 198,421 55,259 33.01
Nevada 45,179 13,013 28.8
Alaska 334,522 21,204 63.39
Texas 1,347,902 473,361 35.12
New Mexico 105,730 38,725 36.63
West Virginia 194,514 87,703 45.09
Kentucky 373,241 214,966 57.59
North Carolina 517,708 132,552 25.6
Georgia 405,216 186,850 46.11
Mississippi 442,724 278,356 62.87
Florida 339,786 168,565 49.61
Towa 641,429 500,280 77.99
Indiana 484,585 260,133 53.68
Michigan 641,698 369,188 57.53
Missouri 641,698 369,188 57.53
Ohio 1,570,646 531,684 33.85
Minnesota 480,773 156,378 32.53
Connecticut 126,267 6,118 4.85
New Hampshire 82,523 12,203 14.79
Vermont 73,408 20,385 27.77
New York 522,369 179,217 34.31
Washington, DC 7,808 2,623 33.59
Delaware 28,935 11,135 38.48
Puerto Rico 61,350 25,421 41.44

Data Availability Statement

Some or all data, models, or code generated or used during the
study are available in a repository or online in accordance with
funder data retention policies. All code generated during the study
is available at GitHub (Kale 2019). All data used during this study
are available at Box (Kale 2020).
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