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2 New Measure to Understand and Compare Bridge
3 Conditions Based on Inspections Time-Series Data

4 Akshay Kale1; Brian Ricks, Ph.D.2; and Robin Gandhi, Ph.D.31

5 Abstract: The C+ score for US bridges on the 2017 infrastructure report card underscores the need for improved data-driven methods to

6 understand bridge performance. There is a lot of interest and prior work in using inspection records to determine bridge health scores.

7 However, aggregating, cleaning, and analyzing bridge inspection records from all states and all past years is a challenging task, limiting

8 the access and reproducibility of findings. This research introduces a new score computed using inspection records from the National Bridge

9 Inventory (NBI) data set. Differences between the time series of condition ratings for a bridge and a time series of average national condition

10 ratings by age are used to develop a health score for that bridge. This baseline difference score complements NBI condition ratings in further

11 understanding a bridge’s performance over time. Moreover, the role of bridge attributes and environmental factors can be analyzed using the

12 score. Such analysis shows that bridge material type has the highest association with the baseline difference score, followed by snowfall and

13 maintenance. This research also makes a methodological contribution by outlining a data-driven approach to repeatable and scalable analysis

14 of the NBI data3 set. DOI: 10.1061/(ASCE)IS.1943-555X.0000633. © 2021 American Society of Civil Engineers.

15 4 Introduction

16 Highways5 and bridges are cornerstones of the US transportation

17 system. This infrastructure is essential for commercial and eco-

18 nomic activity because it supports the primary mode of transpor-

19 tation worldwide. According to the 2017 infrastructure report, there

20 are over 600,000 bridges in the US (ARTBA 2017). The average

21 age of 4 out of 10 bridges is 50 years. Approximately 39% of the

22 bridges will soon require rehabilitation since most of them were

23 designed for a life span of around 50 years. By 2017, about 9.1%

24 of the nation’s bridges had been designated as structurally deficient

25 (ARTBA 2017). These statistics highlight the urgent need for

26 innovative solutions to understand and manage bridge health.

27 National Bridge Inventory (NBI) inspection records quantify bridge

28 deck, substructure, and superstructure health using condition rat-

29 ings (0–9), providing a rich data set that is often used to analyze

30 bridge performance over time.

31 Bridge deterioration is a subject of tremendous interest to bridge

32 engineers. Understanding factors that influence bridge health will

33 provide insights to key stakeholders. For example, such an under-

34 standing can inform designers and engineers about building bridges

35 that undergo deterioration and help maintainers employ smarter

36 strategies to monitor factors that influence bridge health. Research-

37 ers have proposed several methods for evaluating the present

38 condition of bridges, identifying influential factors for bridge con-

39 dition and predicting bridges’ future condition using deterioration

40 models (Nasrollahi and Washer 2015). These methods often rely

41 on deterministic, stochastic, and artificial intelligence (AI) models.

42A deterministic model is typically built using techniques like

43straight-line extrapolation and regression (Morcous et al. 2002).

44These techniques are used to evaluate the deterioration of a bridge

45by computing the time spent at a particular condition rating (Saeed

46et al. 2017) or computing hazard ratios for the pace of bridge

47deterioration (Wettach-Glosser et al. 2020). Stochastic models,

48built using Markov methods, are used to analyze bridge health

49by computing the probability of transition from one condition rat-

50ing to another (Madanat et al. 1995; DeStefano and Grivas 1998).

51AI models are built using techniques such as artificial neural net-

52works (ANNs), decision trees, and case-based reasoning (Madanat

53et al. 1995). AI models are effective at sheding light on the inter-

54active effect among factors that affect bridge health (Morcous et al.

552002). In summary, methods that rely on deterministic, stochastic,

56or AI models add a unique perspective in understanding bridge

57health. However, certain aspects of these computational models

58can influence the study of factors that affect bridge health. One such

59aspect is how age affects bridge performance. The rate of bridge

60deterioration is observed to be different at different ages (Huang

61et al. 2009). Yet many recent approaches to understanding bridge

62health do not account for this difference when developing stochas-

63tic models based on Markov methods (Chang et al. 2019; Saeed

64et al. 2017; Assaad and El-adaway 2020).

65Next, factors that affect bridge health usually interact with each

66other (Barreto and Howland 2006). These factors may also vary

67with region and type of bridge (Saeed et al. 2017; Huang et al.

682009). In addition, the study objectives may influence the selection

69of factors being studied or the amount of data available in the study

70of these factors. As a result, prior studies provide inadequate or

71fragmented evidence to decide which factors are influential for

72bridge health.

73We propose a new measure to understand and compare bridge

74conditions based on inspections of time-series data. This measure

75accounts for the effect of age on the rate of deterioration. It does this

76by aggregating the differences in the condition rating of a bridge

77with respect to a baseline of condition ratings at each age. The base-

78line is an average of condition ratings computed using all available

79annual NBI inspection records since 1992, from all states and for

80bridge records available at every age value.
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81 There are three main contributions of this new approach. First,

82 our algorithm, which is based on readily available condition rat-

83 ings, provides time-series results, capturing how the condition of

84 an individual bridge changes over time. Second, our algorithm

85 is not geographically bound and allows for the analysis of bridges

86 within a region and across the US. Third, our method assigns a

87 single health score for each bridge in the NBI. This score, which

88 we call the baseline difference score (BDS), follows a normal dis-

89 tribution. Hence, using statistical methods, we can examine what

90 factors best explain its variance. Our analysis demonstrates the

91 use of bridge inventory, environment, and regional factors obtained

92 from the NBI and multiple external data sources. The findings are

93 based on inspection records of over 600,000 bridges in the United

94 States reported every year since 1992 in the NBI data set. Between

95 1992 and 2017, this amounts to over 17 million inspection records.

96 In this study, we cleaned and transformed the NBI data extracted

97 from the Federal Highway Administration (FHWA) and integrated

98 external data sources such as Centers for Disease Control and Pre-

99 vention (CDC) data and weather data. Also, we tested commonly

100 cited factors and unexplored factors as determinants of the bridge

101 condition. Our results were counterintuitive regarding average daily

102 traffic (ADT) and average daily truck traffic (ADTT). We observed

103 a relatively low association of ADT and ADTT with bridge perfor-

104 mance, a finding that is surprising in light of several prior studies

105 (Chang et al. 2019; Assaad and El-adaway 2020; Kim and Yoon

106 2010; Hasan and Elwakil 2020; Nasrollahi and Washer 2015).

6107 Lastly, we made our research reproducible by adopting a cloud-

108 based work environment using DEEDS (datacenterhub.org; Smarti

109 data set).

110 Prior Work

111 There are several challenges in modeling bridge health. Prominent

112 challenges include incomplete bridge survey records, lack of re-

113 porting of improved bridge condition ratings, and identifying inter-

114 active effects among influential factors.

115 Incomplete records of bridges are one of the biggest challenges

116 in modeling bridge health. Survey records of bridges are available

117 only from 1992 to 2019; bridges built before 1992 have no prior

118 records. To address the problem of incomplete and missing bridge

119 condition records, Nasrollahi and Washer (2015) devised a method

120 to estimate bridge condition ratings. The method computes the

121 amount of time a bridge has spent in a particular condition rating

122 using 20 years of bridge survey records. This method of measuring

123 bridge condition ratings is also known as the time in condition rat-

124 ing (TICR). Fleischhacker et al. (2020) extended the use of TICR to

125 develop a scalable method, which was applied to study the health of

126 over 150,000 bridge decks nationwide. Under this method, TICR is

127 used with Bayesian analysis to predict future health conditions.

128 Similar to TICR, the hazard ratio (HR) was developed by Wettach-

129 Glosser et al. (2020), which describes a bridge’s probability of stay-

130 ing in a particular condition. An increase in HR greater than one

131 indicates an increase in the likelihood of bridge condition rating

132 decrease (deterioration). In contrast, a decrease in HR to less than

133 one indicates a reduction in the likelihood of a bridge condition

134 rating decrease. Wettach-Glosser et al. (2020) applied this method

135 to study the performance of 5,242 bridge decks in Oregon.

136 In addition to the lack of complete records, the condition rating

137 of bridges can be subjective because bridge inspectors manually

138 inspect them. Often, the condition rating of bridges may increase

139 or decrease over a period of time. However, it is difficult to under-

140 stand whether improvements in bridges’ condition are due to a sub-

141 jective rating or intervention such as repair, reconstruction, or

142rehabilitation. Accounting for maintenance activities in bridge

143health is considered crucial because the absence of maintenance

144activity in modeling bridge health may not provide a bridge con-

145dition’s true deterioration rate. Often, missing reports on a bridge’s

146intervention history in the survey records can further exacerbate the

147problem. Researchers have attempted to mitigate bias caused by

148missing reports on bridge intervention through analyzing a nonin-

149creasing subset of bridge records. Bolukbasi et al. (2004) studied

150records from 1976–1998 on 2,601 bridges in Illinois. The author

151proposed two different methods to account for unrecorded repairs

152and replacement: assuming that consecutive inspections should not

153increase and taking the duration between the consecutive inspec-

154tions as a means to construct deterioration curves. Other research-

155ers, such as Saeed et al. (2017), addressed unrecorded repairs and

156replacement by introducing the Bridge Intervention Matrix (BIM),

157which maps transitions in condition ratings to interventions that

158might have caused it. The BIM takes into account improvements

159in consecutive condition ratings. We use BIM in this study to ob-

160serve maintenance events.

161Various factors may contribute to bridge health; hence, it is es-

162sential to consider how factors interact to model bridge health

163(Morcous et al. 2002). Kim and Yoon (2010) applied a determin-

164istic approach to identify latent variables that affect bridges’

165deterioration by studying 5,289 bridge records from 2006 and

1662007 in North Dakota. Saeed et al. (2017) studied 5,600 Indiana

167bridges from 1992 to 2014 to account for the interactive effect

168among factors to model bridge deterioration; the study included

169a marginal effect analysis to identify influential factors in bridge

170health, while other researchers have used stochastic models, such

171as the Markov decision process (MDP) (Scherer and Glagola 1994;

172Saeed et al. 2017; Cesare et al. 1992; DeStefano and Grivas 1998).

173These probabilistic models are effective at accounting for the latent

174relationship among factors. In 1995, Madanat et al. (1995) studied

1755,700 bridges from Indiana to develop a MDP model for predicting

176the future condition of bridges. DeStefano and Grivas (1998) fur-

177ther developed MDP methods and updated transition probabilities

178to account for previous bridge conditions.

179In our analysis of prior literature, we observed the use of deter-

180ministic, stochastic methods and AI methods to understand bridge

181health. Chang et al. (2019) implement a combination of Markov

182chain stochastic and deterministic modeling of bridge condition

183using logistic regression. They also apply a linear regression model

184for identifying influential factors that affect bridges’ condition in

185Wyoming. Researchers have also adopted AI techniques to predict

186future bridge health. For instance, Huang (2010) implemented

187ANNs using 942 observations from the Wisconsin Pontis Bridge

188Management System (BMS) data set to predict Wisconsin bridges’

189future deterioration. Case-based reasoning (CBR) is an AI tech-

190nique to predict future bridge health. Morcous et al. (2002) built

191a CBR model using 521 observations of bridges obtained from

192the Canadian province of Quebec to predict the future condition

193of bridges. Kim and Yoon (2010) conducted a GIS analysis to pre-

194dict the future condition of bridges. Chang et al. (2019) also imple-

195mented classification trees to model bridge health and identify

196influential factors. Assaad and El-adaway (2020) developed ANN

197models and k-nearest neighbor models by studying 19,269 bridges

198in Missouri. The authors report 91.44% accuracy in predicting

199the future condition of bridges. Other research efforts to predict

200future bridge conditions include simulation techniques. Hasan and

201Elwakil (2020) modeled the impact of influential factors on

202bridge decks using Monte Carlo simulations based on 1992–2018

203California bridges. The simulation of bridge decks provides a prob-

204ability of future condition ratings of decks.

© ASCE 2 J. Infrastruct. Syst.
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205 In the development of various methods to model bridge health,

206 researchers identified various influential factors. We use the general

207 categories of factors by Kim and Yoon (2010) to report influential

208 factors (Table 1). Our literature review revealed that some of the

209 most commonly reported influential variables were traffic (Chang

210 et al. 2019; Assaad and El-adaway 2020; Kim and Yoon 2010;

211 Hasan and Elwakil 2020; Nasrollahi and Washer 2015), age

212 (Chang et al. 2019; Saeed et al. 2017; Assaad and El-adaway 2020),

213 structure length (Chang et al. 2019; Saeed et al. 2017; Assaad and

214 El-adaway 2020; Hasan and Elwakil 2020), and interventions such

215 as replacement (Saeed et al. 2017; Kim and Yoon 2010). Other than

216 a commonly reported influential factors, Morcous (2011) found

217 highway class and region to be the most influential factors in under-

218 standing Quebec bridges’ future condition. Chang et al. (2019)

219 found that physical attributes, such as the functional classification

220 of routes and lanes on structures in records from the period 1992–

221 2014, were the most influential factors. Assaad and El-adaway

222 (2020) found that deck width, number of spans, operating rating,

223 inventory rating, and structural evaluation as influential factors

224 in modeling bridge condition. Kim and Yoon (2010) found that

225 materials, such as concrete, prestressed concrete, and steel, and

226 structural systems, such as slab and temperature, were helpful in

227 understanding bridges’ condition. Hasan and Elwakil (2020) found

228 that inspection frequency, degree of skew, structure length were in-

229 fluential factors in simulating bridge condition ratings. In general,

230 we observed that consideration of environmental factors in prior

231 literature was limited. This may be due to a lack of data integration.

232Several studies do rely on augmenting the NBI data set with addi-

233tional data collected by their respective state DOT (Bolukbasi et al.

2342004; Saeed et al. 2017; Nasrollahi and Washer 2015; Kim and

235Yoon 2010; Morcous 2011).

236In reviewing the literature, we found that the data used are often

237limited to a single state or region. There is a lack of insight in under-

238standing maintainers’ role in bridge health. Such studies provide

239both limited information on other states’ bridges (Bolukbasi et al.

2402004; Nasrollahi and Washer 2015; Saeed et al. 2017) and are

241conducted on relatively small bridges compared to the full NBI

242data set.

243Data

244Our research method can be divided into six phases: data collection,

245data cleaning, data transformation, factor selection, BDS computa-

246tion, and identifying significant factors. These phases are summa-

247rized as a flowchart in 7Fig. 1.

Table 1. Categorization of influential factors

T1:1 Category Factor Description

T1:2 Physical Design load Design load

T1:3 No. of spans No. of spans in main unit

T1:4 Width Width of deck

T1:5 Year built/age Year of construction

T1:6 ADT/ADTT Average daily volume of vehicles

T1:7 Replacement Widening, replacement, and

rehabilitation of bridge

T1:8 Replaced length Length of structure improvement

T1:9 Deck/substructure/

superstructure

condition

Condition ratings of deck,

substructure, and superstructure

T1:10 Region State State

T1:11 County County

T1:12 US Census region Region that includes states,

defined by US Census

T1:13 Structural-

material type

Material type Kind of material used such as

concrete, steel, wood, or timber

T1:14 Structure type Kind of structural system of

bridge such as slab, girder/beam,

and truss

T1:15 Environmental Precipitation Annual mean precipitation in

inches or millimeters

T1:16 Snowfall Annual mean snowfall

T1:17 Temperature Mean temperature

T1:18 Over water Bridge over waterway

T1:19 Service Highway Bridge service on highway

T1:20 Railroad Bridge service on railroad

T1:21 Interstate Bridge is part of Interstate

T1:22 Toll Toll bridge

T1:23 Average farm size Average farm size of size of

census track where bridge located

T1:24 Population Population of census track where

bridge is located

T1:25 Maintenance Maintenance responsibility of

bridges F1:1Fig. 1. Research methodology of study.
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248 Data Collection

249 To accomplish the goals of this research, we identified three data

250 sets: the NBI, snowfall, and freeze-thaw data from the National

251 Oceanic and Atmospheric Administration (NOAA) (supplied by

252 FHWA) and precipitation data from the CDC. A script is used to

253 download the NBI data set from the FHWAwebsite for all 52 states

254 over the period 1992–2017. This includes over 17 million inspec-

255 tion records for more than 600,000 bridges in the US. The snowfall

256 and freeze-thaw data were supplied by LTBP InfoBridge, a central-

257 ized national repository for bridge information. The precipitation

258 data downloaded from the CDC span the years 1992–2011.

259 Data Cleaning

260 Data cleaning is essential to assure reliable analysis in the later

261 stages of this research study. We created a clean, integrated data set

262 consisting of information about bridges from the NBI and weather

263 data from the CDC. We now describe the data cleaning and trans-

264 formation strategy applicable to three data sets identified in the data

265 collection step.

266 In the NBI data set, we observed errors, missing data, and in-

267 consistencies in complying with the FHWA coding guide (FHWA

268 1995). As expected from any large data collection effort, the

269 NBI inspection records aggregated from different state DOTs by

270 the FHWA face many issues. In particular, the early years of

271 NBI-related data collection has a large percentage of data that is

272 incomplete or nonconformant to the coding guide. For example,

273 we encountered missing condition ratings, incorrect longitude and

274 latitude, unrecorded reconstruction, and rehabilitation dates. These

275 missing data, if left unaddressed, affect the reliability of any find-

276 ings reported from data analysis. For example, when a bridge is

277 repaired, reconstructed, or rehabilitated, its condition improves.

278 Therefore, missing information makes it difficult to account for

279 reconstruction and rehabilitation as a factor that can improve bridge

280 condition.

281 In addition to condition ratings, we also examined other fields,

282 such as latitude, longitude, and structure type associated with

283 bridge inspection records in the NBI. For these fields, we addressed

284 several data-related inconsistencies as follows:

285 • Discard inspection records with missing values for deck, sub-

286 structure, and superstructure.

287 • Convert longitude and latitude to degrees and minutes.

288 • Detect changes in year-built record for a bridge over different

289 inspection records in the NBI. The change is assumed to be a

290 bridge replacement. For every change, reintroduce the bridge

291 with a new identifier (original structure number with a segment

292 suffix) to preserve bridge life-cycle consistency.

293 • Maintain a log of invalid values and repeated records. A log

294 promotes transparency of any updates to the original data for

295 the purpose of cleaning.

296 Our observations regarding missing records are summarized by

297 region in Table 2. These statistics suggest that the Northeast region

298 has the highest number of missing records, followed by the West

299 and South. The Midwest region has the highest number of clean

300 records. On average, 60% of the records are missing.

301 While a complete listing of the number of missing records per

302 state is available in the Appendix, we only discuss the summary

303 statistics. Midwestern states, Nebraska (73%), and Iowa (77%) have

304 the highest number of records available. In contrast, Northeastern

305 states, such as Connecticut (4%), New Hampshire (11%), and

306 Massachusetts (14%), have the smallest number of survey records

307 for analysis. Since each bridge may have multiple records, the num-

308 ber of inspection records considered in the study is higher than the

309number of bridges. As a result, Table 2 gives the percentage of miss-

310ing inspection records, not the number of missing bridges.

311Data Transformation

312In the data cleaning phase, we observed that the year built field had

313some inconsistencies. For example, bridges may appear unnaturally

314aged or newly built. Based on our discussion with subject matter

315experts from the Nebraska DOT, we learned that when an inspec-

316tion record shows a more recent year built than previous inspection

317records, it often means the bridge was rebuilt. To account for this

318inconsistency, we split a bridge’s condition rating time series into

319segments that share the same year built. Bridge segments are iden-

320tified by adding a segment number as a suffix to the bridge structure

321number. Each segment is then tracked separately in the data set and

322associated with its own BDS.

323Factor Selection and Preparation

324Factor selection was driven by observed popularity in prior litera-

325ture. To avoid bias, in addition to frequently tested factors in the

326literature, we also included factors not commonly associated with

327bridge condition ratings as well as environment and geographic

328factors. The full list of factors considered in our research study in-

329cludes ADT, ADTT, maintainer, maintenance, material, structure

330length, precipitation, snowfall, freeze-thaw, and region.

331We used ANOVA to examine the association of each factor with

332the BDS. To perform this analysis, we converted all independent

333factors into categorical variables. The conversions were informed

334by methods from earlier literature and the NBI coding guide. For

335instance, Morcous (2011) provides a guide for converting ADT into

336very light, light, medium, and very heavy. For factors such as pre-

337cipitation, snowfall, and freeze-thaw, we created two categories

338after removing outliers: the largest 10% of values and the lowest

33910% of values.

340To check for normality, the Shapiro-Wilk test was performed

341on small and large samples for each factor level. While several

342methods exist for determining the appropriate sample size, there

343is limited guidance in the literature related to appropriate sample

344sizes for NBI data sets. For small-sample analysis, statisticians con-

345sider 100 to be considered a good minimum sample size. For large

346sample analysis, factors are downsampled with a random selection

347such that there is equal representation from all factor levels. Thus, a

348large sample size is determined by the factor level with the smallest

349number of observations.

350The results of normality tests for all factor levels are reported in

351Tables 3–5. For large samples, the tests reject the null hypothesis

352that the samples came from a normally distributed population, with

35395% confidence for all factors. On the other hand, all small-sample

354tests fail to reject the null hypothesis for all factors with 95%

355confidence. With large sample sizes, it is expected that the Shapiro-

356Wilk test will detect even trivial departures from the null hypoth-

357esis. This phenomenon explains the divergent results between

Table 2. Summary of missing records

T2:1Data processing summary

T2:2Region Total records

No. of studied

records

Percentage of studied

records(%)

T2:3Northeast 1,913,728 606,759 31.7

T2:4Midwest 7,124,522 3,683,689 51.7

T2:5South 6,177,021 2,648,231 42.8

T2:6West 2,859,731 1,115,204 38.9

© ASCE 4 J. Infrastruct. Syst.
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358 small- and large-sample normality (Anderson et al. 2000). In ad-

359 dition to sample sizes, we must also ensure that each sample is

360 of a consistent quality with respect to factors such as maintenance.

361 In the context of NBI records, we have observed that the time series

362 of condition ratings are of varying lengths depending on the age of

363 the bridge. Thus, a bias may arise if we select bridge samples with

364only a few or with many condition ratings in their time series. For

365example, a divergence in the length of the time series may occur for

366newly built bridges or old bridges.

367With varying time-series lengths, factors such as the number of

368maintenance events can be misleading—bridges with fewer records

369will have fewer maintenance events. Thus, to analyze maintenance,

Table 3. Factor division criteria and normality test result8 s

T3:1 Summary of data set

T3:2 Factors Sample size small, large Criteria Category Normality p-value

T3:3 ADT 100, 112K ADT < 100 Very light 0.5, 0.0

T3:4 (NBI Item 27) 100, 112K 100 ≤ ADT ≤ 1,000 Light 0.3, 0.0

T3:5 Unit: Volume of vehicles 100, 112K 1,000 ≤ ADT ≤ 5,000 Moderate 0.4, 0.0

T3:6 100, 112K ADT > 5,000 Heavy 0.4, 0.0

T3:7 ADTT 100, 112K ADTT < 100 Light 0.2, 0.0

T3:8 (NBI Item 27) 100, 112K 100 ≤ ADTT ≤ 500 Moderate 0.2, 0.0

T3:9 Unit: volume of vehicles 100, 112K ADTT > 500 Heavy 0.2, 0.0

T3:10 Maintainer 100, 43K NBI Item: 21 = 02 County 0.3, 0.0

T3:11 (NBI Item 21) 100, 43K NBI Item: 21 = 01 State 0.3, 0.0

T3:12 100, 43K NBI Item: 21 = 03 Town 0.3, 0.0

T3:13 100, 43K NBI Item: 21 = 04 Municipal

T3:14 And city 0.3, 0.0

T3:15 Material 100, 105K NBI Item: 43A = 1 Concrete 0.2, 0.0

T3:16 (NBI Item 43A) 100, 105K NBI Item: 43A = 3 Steel 0.2, 0.0

T3:17 100, 105K NBI Item: 43A = 5 Prestressed 0.2, 0.0

T3:18 100, 105K NBI Item: 43A = 7 Wood 0.1, 0.0

T3:19 Material (age constant) 100, 8.6K NBI Item: 43A = 1 Concrete 0.3, 0.0

T3:20 (NBI Item 43A) 100, 8.6K NBI Item: 43A = 3 Steel 0.2, 0.0

T3:21 100, 8.6K NBI Item: 43A = 5 Prestressed 0.2, 0.0

T3:22 100, 8.6K NBI Item: 43A = 7 Wood 0.1, 0.0

Table 4. Continued. Factors division criteria and normality test result9 s

T4:1 Summary of data set

T4:2 Factors Sample size small, large Criteria Category Normality p-value

T4:3 Structure length 100, 45K 6.1–8.5 (m) Very short 0.2, 0.0

T4:4 (NBI Item 49) 100, 45K 58.9–38421 (m) Very large 0.2, 0.0

T4:5 Precipitation 100, 56K 0.43–1.23 (mm) Very low 0.1, 0.0

T4:6 (CDC) 100, 56K 3.76–7.64 (mm) Very high 0.1, 0.0

T4:7 Unit: Mean daily precipitation

T4:8 Freeze-thaw 100, 56K 47–60 Very low 0.1, 0.0

T4:9 (NOAA) 100, 56K 93–95 Very high 0.1, 0.0

T4:10 Unit: Mean No. of freeze-thaw days

T4:11 Snowfall 100, 56K 12–14.3 Very low 0.2, 0.0

T4:12 (NOAA) 100, 56K 61.8–66 Very high 0.2, 0.0

T4:13 Unit: Mean No. of snowfall days

T4:14 Maintenance 100, 27K 0 Very low 0.2, 0.0

T4:15 Unit: No. of intervention

(repair, reconstruction, and reconstruction)

100, 27K 3–5 Very high 0.2, 0.0

T4:16 Region 100, 105K See Table 5 West 0.1, 0.0

T4:17 (Derived from NBI Item 1) 100, 105K See Table 5 South 0.2, 0.0

T4:18 100, 105K See Table 5 Northwest 0.2, 0.0

T4:19 100, 105K See Table 5 Midwest 0.3, 0.0

Table 5. Grouping of bridges into regions with respect to each bridge’s state

T5:1 Region States

T5:2 Northeast Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont, New Jersey, New York, and Pennsylvania

T5:3 Midwest Illinois, Indiana, Michigan, Ohio, Wisconsin, Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and South Dakota

T5:4 South Delaware, Florida, Georgia, Maryland, North Carolina, South Carolina, Virginia, Washington, DC, West Virginia, Alabama, Kentucky,

Mississippi, Tennessee, Arkansas, Louisiana, Oklahoma, and Texas

T5:5 West Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Washington, Utah, Wyoming, Alaska, California, Hawaii, and Oregon
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370 we only select bridge samples with lengths of their time series be-

371 tween the first and third quartile of all possible lengths. Our result-

372 ing sample contains bridges with a minimum of 13 and a maximum

373 of 26 observations in their condition rating time series. To derive

374 the number of maintenance events, we then use the BIM (Saeed

375 et al. 2017). It determines a maintenance event by observing an

376 increase in the condition of a bridge. Finally, the samples are cat-

377 egorized into the top 10% of bridges with maintenance and bottom

378 10% of bridges with maintenance to observe the difference in the

379 means of their BDSs using ANOVA. This process of sampling

380 bridges to study the number of maintenance events does not apply

381 to other factors, such as region, precipitation, structure length, and

382 material, because these factors do not depend on the length of a

383 bridge’s condition rating time series.

384 Methodology

385 In this section, we describe the computation of the BDS and

386 provide a mathematical formulation. Further, we analyze the BDS

387 of bridges nationally to understand the method’s characteristics,

388 strengths, and limitations.

389 New Measure for Bridge Health

390 The NBI data set is updated annually with the condition ratings for

391 bridge decks, substructures, and superstructures. Among bridge

392 components, the superstructure is considered the backbone of a

393 bridge (Nasrollahi and Washer 2015). Our analysis shows that the

394 superstructure condition ratings are highly correlated to deck and

395 substructure. Since computing a condition score using deck and

396 substructure condition ratings would produce similar statistical re-

397 sults, in the rest of the paper, we only consider the superstructure

398 condition rating for the purposes of our study.

399 We now outline the method for computing the BDS. The first

400 step in the method is to compute a baseline of condition ratings,

401 which considers the time series of bridge condition ratings from

402 all states in the US. This baseline is the national average of bridge

403 condition ratings, calculated using the superstructure condition rat-

404 ing, from ages 1 to 60. As a result, the computed baseline is a vector

405 of length 60. We choose to end our analysis at age 60 since bridges

406 are built for a 50-year life span. To compute the baseline, we com-

407 pute the average of the condition ratings of all the available bridges

408 at age one. Next, we compute all bridges’ average condition ratings

409 at age two; this process is continued until age 60.

410 Once the baseline is computed, we compute the BDS for each

411 bridge. The condition ratings of bridges are compared against

412 the baseline with respect to age. For instance, a bridge that has con-

413 dition ratings from ages 10 to 25 is compared with the average

414 condition rating from ages 10 to 25 in the baseline. Finally, we

415compute the BDS by averaging the difference between the condi-

416tion ratings and baseline. This process of BDS computation is

417carried out for all available bridges. The magnitude of the BDS

418of a bridge indicates bridge performance compared to the average

419bridge; an increase in BDS indicates higher performance, whereas a

420decrease in BDS indicates lower bridge performance.

421In the following subsection, we present the mathematical for-

422mulation and algorithm to compute the baseline difference score.

423Table 6 provides a description of the notation used in explaining the

424formulation.

425Formulation of Baseline Difference Score

426Let a bridge be b ∈ B, where B is the set of bridges in the 11NBI.

427Let a bridge age be a ∈ A, where A is the set of bridge ages in

428the NBI.

429Let the set of possible condition ratings be C, C ⊂ Z ¼ ½0; 9#.
430Let the condition rating of bridge b at age a be cba ∈ C,

431where ba ∈ A × B.

432Let the list of all condition ratings of bridges in the NBI at age a

433be sequence Xa, where Xai
is the ith element of sequence Xa.

434Then the expected condition rating of a bridge in the NBI at age

435a, sa, is defined as follows in Eq. ( 121):

sa ¼
1

jXaj

XjXaj

i¼1

Xai
ð1Þ

436Let S be the sequence of expected condition ratings (baseline)

437for all bridge ages, such that ∀a, a ∈ A ⇒ sa ∈ S.

438Let Qb be the set of all ages for which b ∈ B has a condition

439rating.

440Then the baseline difference score of bridge b, bdsb, is defined

441as follows in Eq. (2):

bdsb ¼
1

jQbj

X

a∈Qb

cba − sa ð2Þ

442Analysis of Baseline Difference Scores

443After computing the BDS for all the bridges in the US, we observe

444that it follows a normal distribution. We present summary statistics

445of BDSs from over 300,000 bridges in Table 7. Note that the mean

446and median are practically zero, and the standard deviation is close

447to one. It is expected that when performing a normality test on such

448a large sample, small deviations can cause the test to report non-

449normality. Hence, we also ran the normality test with a small sam-

450ple size of 100 × 4 ¼ 400. The multiplier of 4 is chosen based on

451the maximum number of levels available among our 10 categorical

452factors. Fig. 2 shows the resulting box plot and histogram, which

453appear to follow a normal distribution. The normality test results in

Table 6. Description of notatio10 n

T6:1 Notation Description

T6:2 A Set of bridges ages a ∈ A

T6:3 B Set of bridges b at age b ∈ B

T6:4 bdsb Condition rating of bridge b ∈ B

T6:5 C Set of possible condition ratings

T6:6 Cba Condition ratings of bridge b at age a

T6:7 S Set of expected condition ratings for all bridges at all ages

T6:8 sa Expected condition rating at age a

T6:9 Qb Set of all ages for which b ∈ B

T6:10 Xa List of all condition ratings of bridge at age a

T6:11 Xai An ith element of sequence Xa

Table 7. Summary statistics of distribution of BDS of bridges in 13US

T7:1US

T7:2Count 334,331

T7:3Mean −0.061

T7:4Standard deviation 0.887

T7:5Minimum −2.50

T7:625% −0.617

T7:750% 0.014

T7:875% 0.54

T7:9Maximum 2.368
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454 Table 8 also confirm that the distribution of the random sample is

455 normal.

456 Fig. 3 illustrates the time series of condition ratings for three

457 bridges. Note that condition ratings for a particular bridge only take

458 on ordinal (0–9) values. In contrast, the baseline is continuous, be-

459 cause it is the average condition rating over all bridges in the NBI at

460 a particular age. Note also that the bridge condition ratings may

461 fluctuate above and below the baseline because of improvements

462 from interventions and deterioration of bridge components. Thus,

463 bridges with equal BDSs could have highly varied condition rat-

464 ings. To understand how condition rating time series of bridges

465 vary with respect to BDS, using measures of standard deviation

466 (SD), we categorized bridges as average (within plus or minus

467 one SD), poor (less than one SD), and good (greater than one SD)

468 based on their BDS. Thus, rather than using absolute thresholds, the

469 interpretation of BDS for a population of bridges is established

470 based on statistical significance.

471 It is essential to understand the characteristics of the time series

472 of bridges with statistically significant poor, average, and good

473 BDSs. For example, bridges with statistically significant poor

474 BDSs are expected to have a time series of condition ratings that

475 stay below the national baseline time series. Fig. 3 illustrates such

476 time-series comparisons. In this example, the x-axis is the age and

477 the y-axis the condition rating (superstructure).14 The blue line is the

478 average condition rating of all bridges nationally, i.e., the baseline.

15479 The red, green, and yellow lines are time series that belong to actual

480 bridges in the NBI with statistically significant poor, average, and

481 good BDSs, respectively. While the figure only provides anecdotal

482 evidence, we performed additional analysis. We observe that for

483 bridges with good BDSs, their time series of condition ratings

484 spends on average 80% of the time above the baseline. On the other

485 hand, for bridges with poor BDSs, their time series of condition

486 ratings spends on average 80% of the time below the baseline. For

487 average performing bridges, their time series of condition ratings

488 spend about 50% of the time above and below the baseline, respec-

489 tively. This finding suggests that a good BDS, i.e., a statistically

490significant positive score, is not a result of large variances that

491are spread on either side of the baseline but a collection of small

492variances throughout the time series of the bridge that are positive.

493The BDS is a sum of the differences among two condition rating

494time series aligned by age. While a single score for bridge perfor-

495mance is desirable, the summation operation in BDS computation

496cannot capture the consistency (or variation) of bridge conditions

497with respect to the national baseline over time. As a result, even a

498bridge with condition ratings above the national baseline at a given

499age can have a BDS of zero or even negative owing to its past per-

500formance. BDS is not a measure of the current bridge state but a

501longitudinal performance over time. It is possible for two bridges

502with very different condition ratings over time to have a BDS of

503zero: a bridge whose condition rating perfectly matches the base-

504line and a bridge whose score is above the baseline half the time and

505below the baseline the other half. The sum of differences in BDS

506computation also prevents detecting significant rises and declines

507in bridges’ condition ratings. However, empirical observation in the

508NBI data set suggests that condition ratings often do not rise or

509decline significantly.

510Since the BDS follows a normal distribution, ANOVA can be

511used to test the significance of various factors (e.g., ADT) on

512the BDS of bridges. For every factor, we categorized bridges into

513several groups (e.g., low, moderate, and high ADT) as appropriate

514and then performed one-way ANOVA to find the difference be-

515tween the mean BDS of the groups. The degree of association

F2:1 Fig. 2. Baseline difference scores—US.

Table 8. Normality test on random sample of 400 bridges

T8:1 Test Sample size Statistic p-value Null hypothesis

T8:2 Shapiro-Wilks Small 4.204 0.122 Fail to reject

T8:3 Shapiro-Wilks Large 4.204 0.02 Reject

Note: The p-value suggests that the distribution of the baseline difference

score of a random sample of 400 is normal.

F3:1Fig. 3. Comparison of good, average, and poor performing bridges

F3:2against blue national baseline. x-axis is bridge age and y-axis is bridge

F3:3condition.
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516 between the factors and BDS is measured using effect size. In

517 ANOVA, a commonly used measure of effect size is eta squared.

518 However, eta squared is not easy to interpret. Therefore, we use

519 Cohen’s d—a standardized measure that makes it easy to interpret

520 the effect size between two means. Eta squared values from

521 ANOVA are converted to Cohen’s d using a conversion tool

522 (DeCoster 2009). Table 9 provides a description of the magnitude

523 of Cohen’s d and the corresponding effect sizes. In the following

524 section, we will explore the effect of the selected factors on BDS.

525 Results

526 Our results are summarized in Tables 10 and 11. Table 10 lists the

527 significance of ANOVA tests for each of the 11 factors, while

528 Table 11 shows the effect size for each factor when tested individu-

529 ally. Notice that in Table 10, for a small sample size, only material

530 (i.e., the bridge material type), snowfall, and maintenance explains

531 the differences in BDS. Since the type of material used in bridge

532 construction generally improves with time, we also tested the

533 material factor, while keeping age constant. This factor is listed

534 as material (age constant) in Tables 10 and 11. Correspondingly, the

535 effect size of material (age constant) was the largest (Cohen’d ¼
536 0.54) in both the large and small sample analysis (Table 11).

537 Snowfall has the second-highest association with BDS (Cohen’d ¼
538 0.45), followed by a close third in maintenance (Cohen’d ¼ 0.44).

539 These top three factors exhibit a medium association with BDS.

540 Precipitation, freeze-thaw, maintainer, ADTT, and region have a

541 small association with BDS. Both ADT and structure length have

542 a very small association with BDS.

543 Upon further investigation of material categories, we observed

544 that younger bridges were primarily made of concrete and pre-

545 stressed concrete. We also expected younger bridges to perform

546 better than older bridges. Therefore, to account for this bias related

547 to age, we performed a post hoc analysis with a balanced sample

548 of young bridges from four categories of bridges: steel, wood or

549 timber, prestressed concrete, and concrete. This post hoc analysis

550 further revealed a difference in BDS with respect to the material of

551 the bridge, even when age is kept constant (e.g., all young bridges).

552 In Fig. 4, we show another view to understand the relation of

553 material to BDS. The figure shows the percentage of bridges with

554 different materials above and below the BDS of zero. Prestressed

555 concrete bridges have the highest number of bridges above the BDS

556 of zero between the ages of 30 and 45 (young category). In the

557 same age range, a much lower percentage of wood bridges are

558 above the BDS of zero. Fig. 4 reveals that prestressed concrete

559 bridges generally perform better than other material types in this

560 analysis using BDS.

561 A similar analysis of precipitation reveals a counterintuitive re-

562 sult. In Fig. 5, the percentage of bridges in very low and very high

563 precipitation regions above and below the BDS of zero is shown

564 between the ages of 1 and 60. We observe that very high precipi-

565 tation regions have a higher percentage of bridges above a BDS of

566zero compared to very low precipitation regions. We conducted a

567Mann-Whitney U test to observe whether this difference was stat-

568istically significant since the distributions did not follow a normal

569distribution. Based on the test results, we conclude that the distri-

570bution of bridges with a BDS greater than 0 in the very low pre-

571cipitation region is different from bridges with a BDS greater than 0

572in the very high precipitation region. Similarly, the distribution of

573bridges with a BDS less than 0 in very low precipitation regions is

574different from bridges with a BDS less than 0 in very high precipi-

575tation regions.

576Because we are very interested in precipitation and its effect on

577bridge health, we conducted further analyses to observe the inter-

578action between precipitation and material types. We know from the

579previous results in Fig. 4 that prestressed concrete bridges perform

580better than wood or timber bridges. In addition, Fig. 6 shows that

581the distribution of prestressed concrete bridges is low in very low

582precipitation regions, and the distribution of prestressed concrete

583bridges is high in very high precipitation regions (Fig. 6). Also,

584wood or timber bridges are nearly absent in high precipitation

585regions.

586We performed a Shapiro-Wilk normality test on four categories

587of materials with respect to high precipitation and low precipitation

588regions to check for normality. The results suggest that with 95%

589confidence, we reject the null hypothesis with a p-value of 0.0. In

590other words, none of the categories of material with respect to both

Table 9 Description for magnitudes of Cohen’s d

T9:1 Effect size Cohen’s d

T9:2 Very small 0.01

T9:3 Small 0.20

T9:4 Medium 0.50

T9:5 Large 0.80

T9:6 Very large 1.20

T9:7 Huge 2.00

Source: Data from Sawilowsky (2009).

Table 10. Summary of Analysis—ANOVA

T10:1Factor

Fail to reject null hypothesis

T10:2Small sample Large sample

T10:3ADT True (0.8) False (0.0)

T10:4ADTT True (0.12) False (0.0)

T10:5Maintainer True (0.13) False (0.0)

T10:6Material False (0.01) False (0.0)

T10:7Material (age constant) False (0.0) False (0.0)

T10:8Structure Length True (0.63) False (0.0)

T10:9Precipitation True (0.11) False (0.0)

T10:10Freeze-thaw True (0.4) False (0.0)

T10:11Snowfall False (0.0) False (0.0)

T10:12Maintenance False (0.0) False (0.0)

T10:13Region True (0.3) False (0.0)

Note: Statistically significant difference in baseline difference score only

with respect to material.

Table 11. Summary of analysis—effect size

T11:1Factor

Effect size

T11:2Small sample Large sample

T11:3ADT Very small (0.08) Very small (0.04)

T11:4ADTT Small (0.20) Very small (0.06)

T11:5Maintainer Small (0.15) Very small (0.12)

T11:6Material Small (0.30) Small (0.35)

T11:7Material (age constant) Medium (0.54) Medium (0.54)

T11:8Structure length Very small (0.06) Very small (0.02)

T11:9Precipitation Small (0.20) Small (0.20)

T11:10Freeze-thaw Small (0.17) Very small (0.05)

T11:11Snowfall Medium (0.45) Small (0.21)

T11:12Maintenance Medium (0.44) Small (0.27)

T11:13Region Small (0.17) Small (0.20)

Note: In the small- and large-sample analysis, the material (age constant)

has the highest effect size, followed by material and precipitation on

baseline difference score.
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591 high precipitation and low precipitation regions follows a normal

592 distribution. Therefore, to understand whether all material types’

593 distributions are similar with respect to high precipitation and

594 low precipitation, we performed a Kruskal-Wallis H test. Our result

595 suggests that with 95% confidence and a p-value of 0.0, we can

596 reject the null hypothesis that the BDS from the two distributions

597 is similar. In conclusion, the distribution of the material types

598 is different in high precipitation regions and low precipitation re-

599 gions. This may explain the counterintuitive result with respect to

600 precipitation.

601 Tool Support

602 Large data sets like the NBI are challenging to analyze and share.

603 Therefore, in this study, we used DataCenterHub to host and ex-

604 plore the NBI data set. DataCenterHub is built on the HUBzero

605 platform developed at Purdue University. In addition to providing

606 specialized hosting services, DataCenterHub also provides user-

607 friendly and flexible tools for exploration. DataCenterHub supports

608 various data types, such as media (photos, drawings, and images)

609 and data (CSV, text files, and JSON files). DataCenterHub provides

610 a standard format for uploading large data sets and a web entry to

611 upload and update metadata and parameter sets. DataCenterHub

612 provides security mechanisms to protect data and supports

613restricted access that grants access only to select groups to see ap-

614propriate data sets with role-based constraints.

615In this study, DataCenterHub consisted of Jupyter Notebooks

616and centrally hosted files with NBI records from all years and all

617states. The NBI data set is populated from CSV format files avail-

618able from the FHWAwebsite. The database is curated, cleaned, and

619populated using Python scripts. The Jupyter Notebook environment

620enabled us to execute 16Python scripts and display charts in a share-

621able and readable document. Python scripts are developed as part

622of this research study for data processing, such as extraction, for-

623matting, and curating data sets. Links to the Data Cleaning and

624Analysis scripts are hosted on GitHub.

625Discussion

626This research study addresses some critical challenges with respect

627to data cleaning and related transformation related to NBI data. It

628does so in a manner that is repeatable and scalable. We overcome

629challenges related to incomplete or missing records, accounting for

630maintenance events, and explore interactive effects among factors

631like materials, age, and precipitation.

632Incomplete and missing inspection records can be quite chal-

633lenging. While computing a national baseline, missing condition

634rating data in individual bridges are not a concern. However, when

F4:1 Fig. 4. Percentage of bridges above and below BDS of zero with respect to material type; note concrete and prestressed concrete bridges have higher

F4:2 percentages of bridges above BDS.
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635 computing the BDS of a bridge, gaps in the time series of condition

636 rating is yet to be completely addressed. In this study, if we observe

637 a large gap in the time series of condition ratings for a bridge,

638 we split the time series into segments and treat each segment as

639 a separate bridge record. We observed that large gaps in time series

640 usually corresponded to a bridge being rebuilt.

641 Another challenge in modeling bridge health is accounting for

642 maintenance/intervention. In our study, we considered maintenance

643 as a factor that influences bridge health. We did not take into ac-

644 count specific interventions, such as replacement, rehabilitation,

645 and reconstruction, but this can be easily done in the future with

646 data availability. The analysis presented in this paper is based on the

647 observed improvement in the condition rating of a bridge that can

648 be attributed to any of the general intervention types. Since BDS

649 computation is independent of the factors that influence bridge

650 health, testing additional factors presents no significant computa-

651 tional overhead.

652 Our primary objective in this study was to understand the uni-

653 form association of an individual factor with the BDS. Therefore,

654we did not specifically test for the interactive relationship among

655factors. Our analysis of interaction among factors is limited to

656material, age, and precipitation to further explore factors that ex-

657hibited a high association with BDS. Our results suggest that the

658BDS is a key performance indicator, which can complement other

659bridge indicators provided by previous literature. In future studies,

660techniques like ANNs, classification trees, and regression analysis

661could include BDS with other bridge attributes to study interactions

662among factors.

663Our study included all US bridges. Our selection was not limited

664to any particular region. Analysis with ANOVA included both

665small and large samples. Using small sample sizes allowed us to

666watch for deflated p-values due to large sample sizes. Both small-

667and large-sample analysis also provided a range for the effect size

668of the analysis. ANOVA’s necessary assumptions of a normally dis-

669tributed population of scores are preserved in both small and large

670samples.

671To compare and contrast our findings with prior efforts, Table 12

672lists significant results from the current state of the art. Previous

673research studies generally reported that physical and service-related

674factors were more influential than environmental and regional fac-

675tors. For example, physical factors such as traffic (or ADT) (Chang

676et al. 2019; Assaad and El-adaway 2020; Kim and Yoon 2010;

677Hasan and Elwakil 2020; Nasrollahi and Washer 2015), age

678(Chang et al. 2019; Saeed et al. 2017; Assaad and El-adaway 2020),

679and structure length (Chang et al. 2019; Saeed et al. 2017; Assaad

680and El-adaway 2020; Hasan and Elwakil 2020) were found to be

681the most influential in understanding bridge conditions in several

682research efforts. Chang et al. (2019) found the functional classifi-

683cation of a route and the number of lanes to be influential factors.

684Assaad and El-adaway (2020) reported that deck width, number of

685spans, operating rating, inventory rating, and structural evaluation

686were also significant factors. Finally, Hasan and Elwakil (2020)

687found the degree of skew and structure length to be influential

688factors in simulating future bridge condition ratings. However,

689our results shoed only a small association of the commonly re-

690ported physical factors to the BDS at a national scale. These differ-

691ences present interesting opportunities for future work.

692Our results do align with the findings of Kim and Yoon (2010),

693Hasan and Elwakil (2020), and Saeed et al. (2017). Similar to their

694findings, our results suggest that the material type of a bridge has a

695higher association with the bridge’s health. We observed that pre-

696stressed concrete and concrete bridges performed better than wood

697or timber and steel bridges. The climate of a given region is influ-

698enced by various factors, such as latitude, elevation, topography,

699and prevailing winds. The cumulative effect of multiple variations

700in climate factors may also affect bridge condition. We included

701bridges’ geographic regions as a factor in our test as a proxy for

702climate’s cumulative effect and found that region had a slight asso-

703ciation with BDS. However, we plan to perform additional tests at a

704more granular geographic level in future work. Contrary to popular

705belief, we only found a small effect of precipitation or freeze-thaw

706cycles on BDS, but snowfall had a medium effect. Our literature

707review suggested that the approaches to understanding bridge

708health differ in methods, objectives, and factors. The scope of vari-

709ous studies also differs. For example, one study may consider a

710particular type of bridge component, while another may focus on

711bridges in a specific region. We aggregate the influential factors

712reported from studies that used deterministic models (regression

713analysis), stochastic models (Markov decision processes and probit

714models), and AI models (ANNs and CBR) to inform factor selec-

715tion in our study. However, owing to differences in our work’s

716method, scale, and scope, comparisons are not straightforward.

F5:1 Fig. 5. Percentage of bridges above and below BDS of zero with re-

F5:2 spect to precipitation regions. There is a lower percentage of bridges

F5:3 above BDS in high precipitation, and there is a higher percentage of

F5:4 bridges above BDS in lower precipitation.
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717 Finally, we realize that our method includes many steps of vary-

718 ing complexity. These steps are data-intensive and require a bal-

719 anced representation of data across several factors. For example,

19720 based on the discussion in section20 4, we know that bridges from

721 all states are not equally represented after data cleaning and filtra-

722 tion. We address the issue of imbalanced representation of data by

723 subsampling overrepresented states. Finally, the BDS method is

724 new. We expect that it will take time before the method is widely

725 adopted and further improved.21 Overall, this study’s results were

726 validated and deemed useful by subject matter experts at several

727 Bridging Big Data workshops (https://bridgingbigdata.github.io

728 /pages/workshops.html).

729 Conclusion and Future Work

730 This research study introduces a new measure to understand and

731 compare bridge conditions based on inspection time-series data

732 called BDS. The BDS provides a single score for bridge health.

733 The BDS follows a normal distribution, which categorizes bridges

734 as average, poor, and good using standard deviation measures.

735 We observed that good-performing bridges have condition ratings

736 that are mostly above the baseline from our analysis. In contrast,

737poor-performing bridges have condition ratings that are below the

738baseline. Our use of a national baseline in BDS computation also

739accounts for a bridges’ condition ratings with respect to age and

740scheduled Maintenance performed over a bridge’s life.

741This research study provided a reference implementation of a

742big data pipeline for bridge health–related data sets. The data clean-

743ing and related transformation used in this research scale to NBI

744records across all US states. The strategy is also traceable to coding

745guidelines and cross-checks, as provided by FHWA (1995). Our

746data cleaning efforts only found 42% of the original data set to be

747suitable for analysis. A substantial number of bridges in the NBI

748data set have condition ratings that do not change across all re-

749ported inspections.

750We examined 11 factors, including environmental factors that

751could influence bridge conditions. This paper found that material,

752snowfall, and maintenance were the three factors most associated

753with bridge condition. However, material, in particular concrete

754and prestressed concrete, was associated with better-performing

755bridges. Material type has the highest association with the condi-

756tion of bridges, followed by snowfall and maintenance, compared

757to the other factors selected in this study. One could also argue that

758snowfall may be associated with an increased need for mainte-

759nance. We did not explore this relationship in this paper. The factor

F6:1 Fig. 6. Distribution of bridges with respect to material type in very low precipitation and very high precipitation regions. Note high distribution of

F6:2 concrete and wood or timber bridges in very low precipitation region and high distribution of steel and prestressed concrete bridges in very high

F6:3 precipitation region.

Table 12. Comparison of influential factors identified throughout1718 literature

T12:1 Physical Region

Structural and

material Environmental Service

T12:2 Case-based reasoning (Morcous et al. 2002) ✓ * — ✓ — —

T12:3 Cox hazards model with LASSO a and stepwise regression

(Wettach-Glosser et al. 2020)

✓ * — ✓ * ✓ * ✓ *

T12:4 Linear regression and Monte Carlo simulation (Hasan and Elwakil 2020) — ✓ * ✓ * ✓ * ✓ *

T12:5 Bayesian survival analysis (Fleischhacker et al. 2020) ✓ * — ✓ * ✓ * ✓ *

T12:6 Artificial neural network and k-nearest neighbor (Assaad and El-adaway 2020) ✓ * — ✓ — ✓

T12:7 Logistic regression and classification tree (Chang et al. 2019) ✓* — — — —

T12:8 Ordered probit model (Saeed et al. 2017) ✓ * ✓ ✓ ✓ ✓

T12:9 Multiple regression and GIS (Kim and Yoon 2010) ✓ * — ✓ * ✓ * ✓ *

T12:10 Baseline difference score ✓ * ✓ * ✓ * ✓ * ✓ *

Note: A check mark indicates factor category tested; an asterisk indicates the factor category found to be influential.
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760 that had the smallest effect on BDS was ADT. External factors,

761 such as precipitation, showed only a slight association with bridge

762 condition. The association between all factors selected in this

763 analysis and BDS varies from very small to medium, meaning indi-

764 vidual factors cannot fully explain the condition of bridges. We also

765 observed a strong association between material and BDS by ac-

766 counting for the latent relationships with age and precipitation.

767 BDS can provide a measure of the performance of bridges over

768 time. However, BDS does not take into account the variance of con-

769 dition ratings over time. Therefore, a significant drop or rise in a

770 bridge’s condition ratings are not reflected in the BDS. Future re-

771 search could focus on developing a complementary measure that

772 would provide a degree of variance in condition ratings over time.

773 Such a measure could allow for a deeper understanding of the sta-

774 bility of bridge performance. Also, the quality of the NBI data

775 needs to be improved, for example, by estimating missing values

776 that would provide more data points for analysis. In addition to

777 missing data, bridge inspections are biennial, and the long intervals

778 between inspections prevent the accurate characterization of

779 bridges. Further, inspectors conduct visual inspections of bridges

780 that are highly subjective. Data collection using Internet of Things

781 devices could provide reliable, frequent, and objective data. Finally,

782 as more states start collecting and publishing element-level inspec-

783 tion data, we expect to use more detailed condition assessments in

784 computing bridge health scores.

785 Appendix. Statewise Summary of Missing Records
786 after Data Cleaning

787 In Table 13, we provide a statewise analysis of the total survey

788 records available in the NBI from 1992 to 2012; we also provide

789 the total number and percentage of surveys considered for analysis

790 after performing the data cleaning process.
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