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Abstract. Lattice-based cryptography relies on generating random bases
which are difficult to fully reduce. Given a lattice basis (such as the pri-
vate basis for a cryptosystem), all other bases are related by multiplica-
tion by matrices in GL(n,Z). We compare the strengths of various meth-
ods to sample random elements of GL(n,Z), finding some are stronger
than others with respect to the problem of recognizing rotations of the
Z™ lattice. In particular, the standard algorithm of multiplying unipotent
generators together (as implemented in Magma’s RandomSLnZ command)
generates instances of this last problem which can be efficiently broken,
even in dimensions nearing 1,500. Likewise, we find that the random
basis generation method in one of the NIST Post-Quantum Cryptog-
raphy competition submissions (DRS) generates instances which can be
efficiently broken, even at its 256-bit security settings. Other random ba-
sis generation algorithms (some older, some newer) are described which
appear to be much stronger.
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1 Introduction

In cryptography one often encounters problems which are easy to solve using
a secret private basis of a lattice A C R™, but are expected to be difficult to
solve using suitably-chosen public bases. Famous examples include the Shortest
Vector Problem (SVP) and Closest Vector Problem (CVP).

In [17] Lenstra and Silverberg posed the challenge of whether highly-symmetric
lattices have hard bases, and proved several interesting results along these lines
(related to earlier work of Gentry-Szydlo [10]; see also [16,18]). One particularly
beautiful question they posed is:

can one efficiently recognize rotations of the standard Z" lattice? (L.1)

To be more precise, this problem can be stated in two different group-theoretic
ways (the second being the formulation in [17, §2]). Let {b1,...,b,} denote a
basis for A and let B denote the n x n matrix whose i-th row is b;:
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Problem 1la (Decision version).

Can one efficiently factor B as B = MR, with M € GL(n,Z) and R €
O(n)?

Problem 1b (Search version).

If so, efficiently find such matrices M € GL(n,Z) and R € O(n).

Alternatively, following [9] and [17, §2] we may suppose one is given a positive-
definite symmetric matrix G € SL(n,Z) (which we think of as the Gram matrix
G = BB! of A):

Problem 2a (Decision version).

Given a positive-definite integral matrix G, efficiently determine whether
or not there is some M € GL(n,Z) such that G = M M".

Problem 2b (Search version).

If so, efficiently find such a matrix M € GL(n,Z).

(1.2)
Clearly, Problem 1 reduces to Problem 2 with G = BB*!. Conversely, one can
orthogonally diagonalize the matrix G in Problem 2 as G = PDP?! for some P ¢
O(n) and diagonal matrix D with positive diagonal entries. Then B = PD'/?
solves the equation G = BB!, and Problem 2 therefore reduces to Problem 1
(modulo technicalities we will not delve into, such as that the entries of P, D,
and B may in general be irrational).

In particular, by orthogonal diagonalization it is trivial to find a non-integral
solution M € GL(n,R) to Problem 2. However, imposing the constraint that
M € GL(n,Z) adds an intricate dose of number theory, since Problem 2a then
becomes a class number problem: indeed, in large dimensions n there is a com-
binatorial explosion of possible GL(n, Z)-equivalence classes.!

Both Problems 1 and 2 have inefficient solutions using sufficiently strong
lattice basis reduction. For example, the given information is sufficient to deter-
mine whether or not all lattice vector norms are square-roots of integers, and an
SVP solver can determine the shortest nonzero norm A;(A). If A;(A) # 1, the
lattice A is definitely not a rotation of Z™ and Problems la and 2a have negative
solutions. However, if one finds a vector of norm 1 and all lattice norms are
square-roots of integers, it is then easy to see (by subtracting multiples of this
vector to obtain an orthogonal complement) that the dimension in Problems 1b
and 2b reduces from n to n — 1. It was recently shown in [13] that Problem 2a
is in the class NPNco-NP, using results of Elkies [8] on characteristic vectors of
lattices (see also [11, §9.6]).

! For example, the Eg lattice has a Gram matrix G in SL(8,Z), but is not isometric to
the Z8 lattice. In general the number of GL(n,Z)-equivalence classes of such integral
unimodular lattices grows faster than exponentially in n [6, Chapter 16].



This paper primarily concerns Problem 2b, i.e., one is handed a matrix of the
form M M? and wishes to efficiently recover M. Of course permuting the columns
of M does not change M M?, nor does multiplying any subset of columns by —1;
thus we look for solutions up to such signed permutations of the columns. (For
this reason it is equivalent to insist that M € SL(n,Z).) We find that the choice
of procedure to randomly generate instances of M has a drastic impact on the
difficulty of the problem. We state this in terms of a probability density function

p:GL(n,Z) = Rxq (i.e, Yo preqrinz P(M) =1):

Problem 3 (Average case version of Problem 2b).

Given a random matrix M € GL(n,Z) drawn with respect to the proba-
bility density p, efficiently recover M from M M?* (up to signed permuta-
tions of the columns) with high probability.

In Section 2 we compare various methods of generating random bases of a
lattice, corresponding to different probability densities p (generalizing [3, §5.1.2];
see also Section 4). Here one seeks distributions for which Problem 3 is hard on
average, much like SIS and LWE are average-case hard instances of variants
of SVP and CVP, respectively. We then perform experiments on them in Sec-
tion 3. Some of the methods we describe, such as the long-known Algorithm 4
(see, for example, [5]), give relatively hard instances of Problem 3. However, our
main finding is that a certain well-known existing method, namely generating
matrices by multiplying unipotents (e.g., Magma’s RandomSLnZ command), is
cryptographically weak: we were able to recover M in instances in dimensions
nearly 1500 (in some measurable ways these instances are comparable to NTRU
lattices having purported 256-bit quantum cryptographic strength). That gives
an example of an average-case easy distribution. In Section 4 we similarly find
that the random basis generation method used in the DRS NIST Post-Quantum
Cryptography submission [21] also gives weak instances of Problem 3: in 708
hours we could recover M generated using DRS’s 256-bit security settings.

Acknowledgements: it is a pleasure to thank Huck Bennett, Leo Ducas,
Nicholas Genise, Craig Gentry, Shai Halevi, Nadia Heninger, Jeff Hoffstein, Hen-
drik Lenstra, Amos Nevo, Phong Nguyen, Chris Peikert, Oded Regev, Ze'ev
Rudnick, Alice Silverberg, Damien Stehlé, Noah Stephens-Davidowitz, and Berk
Sunar for very helpful discussions. We are particularly indebted to Joe Silverman
for kindly suggesting an earlier variant of Algorithm 4, which is very similar to
the one we suggest here, and to Daniel J. Bernstein for important comments
about the poor equidistribution provided by Algorithm 2. We are also grateful
to Galen Collier of the Rutgers University Office of Advanced Research Com-
puting for his assistance, and to the Simons Foundation for providing Rutgers
University with Magma licenses.



2 Choosing random elements of GL(n,Z)
We consider the problem of uniformly sampling matrices in a large box?

I'r = {M=(my;) € GL(n,Z) : my| <T}, T>0, (2.1)
inside GL(n,Z). For large T one has #I'r ~ chnz_", for some positive constant

¢n.3 We now consider a series of algorithms to sample matrices in GL(n,Z). The
most naive way to uniformly sample I7 is prohibitively slow:

Algorithm 1.

For each 1 <,j < n sample m; ; € ZN[-T,T] at random.
Discard and repeat if det(M) # £1, otherwise
return M.

Though we do not analyze it here, the determinant of such a randomly chosen
matrix M is a very large integer, and highly improbable to be £1 as required
for membership in GL(n,Z). One minor improvement that can be made is to
first check that the elements of each row (and of each column, as well) do not
share a common factor, which is a necessary condition to have determinant +1.
Nevertheless, this fails to seriously improve the extreme unlikelihood of randomly
producing an integral matrix of determinant +1.

Problem 4.

Find a nontrivial uniform sampling algorithm which substantially speeds
up Algorithm 1.

We note that some computer algebra packages include commands for generating
random elements of GL(n,Z). In addition to its command RandomSLnZ which
we shall shortly come to in Algorithm 2, Magma’s documentation includes the
command RandomUnimodularMatrix for fairly rapidly generating matrices in
GL(n,Z) (not SL(n,Z) as the name indicates) having “most entries” inside a
prescribed interval, but provides no further explanation. Even after accounting
for a typo which switches the role of the command’s arguments, we found that
in fact most of the entries were outside the prescribed interval (the documenta-
tion’s claims notwithstanding). Furthermore, the lattices constructed using this
command appear to be much easier to attack than those generated by the closest
analog considered here (Algorithm 4). SageMath’s random matrix command has

2 One can consider other shapes, such as balls; boxes are convenient for our applica-
tions and for making more concise statements. The same problem for SL(n,Z) is of
course equivalent.

3 See [12, Corollary 2.3] and [7, (1.14)] for more details on this surprisingly difficult
result.



a unimodular constructor (designed for teaching purposes) which does produce
matrices in GL(n,Z) whose entries are bounded by a given size, but it is not
as fast as other alternatives and its outputs must satisfy further constraints.
For these reasons we did not seriously examine RandomUnimodularMatrix and
random matrix.

Because Algorithm 1 is so slow, the rest of this section considers faster al-
gorithms which do not uniformly sample I, some coming closer than others.*
For 1 <1i# j <nlet E; ; denote the elementary n x n matrix whose entries are
all 0 aside from a 1 in the (4, j)-th position. Here as elsewhere the abbreviation
“i.i.d.” stands for “independently identically distributed”.

Algorithm 2 (Random products of unipotents,
such as Magma’s RandomSLNZ).

Input: a size bound b and word length /.

Return: a random product 7 - - - ¢, where each v is chosen i.i.d. uni-
formly among all n x n matrices of the form I, + zE; ;, with ¢ # j and
x € ZN[=b,b].

(2.2)
As we shall later see, the matrices produced by Algorithm 2 have a very special
form, creating a cryptographic weakness.

Algorithm 2 can be thought of as a counterpart to the LLL algorithm [15],
which applies successive unipotent matrices and vector swaps to reduce lattices.
Although Algorithm 2 does not literally contain vector swaps, they are neverthe-
less present in the background because conjugates of y; by permutation matrices
have the same form I,, + zF; ; as ;. In that light, the following algorithm can
then be thought of as an analog of BKZ reduction [23], since it utilizes block
matrices of size much smaller than n. Its statement involves the embedding maps
Dp, ... kg : GL(d,R) < GL(n,R) for size-d subsets {k1,...,kq} C {1,...,n},

hij, if i’ =k; and j' = k; for some i, j < d;

dir=j, otherwise, (2.3)

(@rra(W))iry = {

where h = (h;;) € GL(d,R).> The image of @, _j, is a subgroup of GL(n,R)
isomorphic to GL(d,R). (Of course we will only apply the map Py, . x, to
elements of GL(d,Z).)

4 Unfortunately it is prohibitively complicated here to describe particular parameter
choices matching the bound in (2.1).
® The role of GL(-,-) as opposed to SL(-,-) here is again purely cosmetic.



Algorithm 3 (Random products of smaller matrices).

Input: a word length ¢ and fixed dimension 2 < d < n for which one can
uniformly® sample GL(d,Z) matrices in a fixed box.

Return: a random product y; - - - v, in which each v; € GL(n, Z) is a ma-
trix of the form &y, ., (’y(d)), where 'y(d) is a uniformly sampled random
element of GL(d, Z) in the fixed box mentioned above, and {k1,...,kq} is
a uniformly sampled random subset of {1,...,n} containing d elements.

® More generally, one can consider non-uniform distributions as well.

We expect Algorithm 3 produces more-uniformly distributed matrices as d
increases. The role of the parameter d is essentially to interpolate between Al-
gorithm 1 (which is the case d = n) and Algorithm 2 (which is close to the case
d = 2, but not exactly: v(?) need not be unipotent).

Next we turn to the following method, which among the algorithms we consid-
ered seems the best at rapidly creating uniformly-distributed entries of matrices
in GL(n,Z). This algorithm was originally suggested to us by Joseph Silverman
in a slightly different form, in which more coprimality conditions needed to be
checked. It relies on the fact that an integral n x n matrix M = (m;;) lies in
GL(n,Z) if and only if the n determinants of (n — 1) x (n — 1) minors

Maog - Man ma1 Ma23 -+ Map ma1 o M2p-—1
det (| : -. ydet (¢ o0 o ) ,o,det | - : (2.4)
Mn2 = Mnn Mn1 Mnp3 ** Mnn Mn1 =+ Mnn—1

share no common factors.

Algorithm 4 (slight modification of a suggestion of
Joseph Silverman).

Uniformly sample random integers m; ; € [—T1,T], for 2 < ¢ < n and
1 < j < n, until the n determinants in (2.4) share no common factor.
Use the euclidean algorithm to find integers mjqq,...,m1, such that
det((m;;)) = £1, the sign chosen uniformly at random.

Use least-squares to find the linear combination 5, ¢;[mq - - - myy] clos-
est to [mq1 -+ -my,], and let ¢; denote an integer nearest to ¢;.

Return: the matrix M whose top row is

n

[mn s mm] - Zgi[mil s min]
i>2

and whose i-th row (for i > 2) is [mg1 - - - M.

Remarks on Algorithm 4: The n large integers in (2.4) are unlikely to share
a common factor: for example, the most probable common factor is 2, which
happens only with probability =~ 27™. Obviously the top row of M is chosen



differently than the others, and its size is different as well since it typically has
entries larger than size T' — this is because the euclidean algorithm can produce
large coefficients (as the minors in (2.4) are themselves so enormous). Also, it
is likely that the first two or three minors will already be coprime, and hence
that most of the entries in [mq11 mi2 - -+ my,] will vanish. The use of rounding
and least-squares cuts down this size and further randomizes the top row, while
keeping the determinant equal to one.

One could instead try a different method to find an integral combination of
the bottom n — 1 rows closer to the initial guess for the top row. One extreme
possibility involves appealing to the Closest Vector Problem (CVP) itself, which
is thought to be very difficult. We found Algorithm 4 gave good randomness
properties in that nearly all of the matrix is equidistributed, and it is fairly fast
to execute. In comparison, we will see that using Algorithm 2 requires many
matrix multiplications to achieve random entries of a similar size, which are not
as well distributed anyhow.

The following algorithm is folklore and has appeared in various guises in
many references (for example [5], which uses Gaussian sampling and has provable
hardness guarantees,® though not necessarily for Problem 3). As we shall see just
below, it shares some similarities with Algorithm 4.

Algorithm 5 (via Hermite Normal Form).

Create a uniformly distributed m x n matrix B, with m > n and entries
uniformly chosen in Z N [-T,T].

Decompose B in a Hermite normal form B = UM, where M € GL(n,Z)
and U = (u,;) has no nonzero entries with ¢ < j.

Return: M.

A surprising connection between Algorithms 4 and 5: Even though Al-
gorithms 4 and 5 appear to be very different, they are actually extremely similar
(in fact, arguably nearly identical) in practice. Algorithms for Hermite Normal
Form (such as HermiteDecomposition in Mathematica) proceed by building the
matrix M directly out of the rows of B whenever possible. For example, it is
frequently the case that the first n —1 rows of U agree with those of the identity
matrix I,, or at least differ only very slightly; in other words, the first n — 1
rows of B and M are expected to coincide or nearly coincide.” Also, the last
row of M is an integral combination of the first n rows of B. In contrast with
Algorithm 4 this last combination, however, is mainly determined by arithmetic
considerations, and in particular depends on the n-th row of B; thus more ran-

5 It should be mentioned that provable guarantees were earlier established in [1,2,19]
when one generates both the lattice together with a basis at random from a family.
Here our emphasis is on a fixed, given lattice.

" In our experiments, for example, the top n — 2 rows agreed most of the time for
m =n > 10.



dom information is used than in Algorithm 4, which uses only n? — n random
integers instead of the n? here.®

To summarize, in fairly typical cases both Algorithms 4 and 5 populate the
matrix M by first generating all but one row uniformly at random, and then
using integral combinations to create a final row having relatively small entries.
The practical distinction is essentially how this final row is created, which utilizes
further random information in Algorithm 5 but not in Algorithm 4. The final row
also appears to be typically smaller (that is, closer to fitting in the box defined
in (2.1)) when using Algorithm 4 than when using Algorithm 5; consequently,
we did not perform any experiments with Algorithm 5.

Note that the Hermite decomposition as stated above is not unique, since
there are lower triangular matrices in GL(n, Z). Thus there can be no immediate
guarantee on the entry sizes of M unless this ambiguity is resolved. Algorithm
5 can be thought of as a p-adic analog of the following method of producing
random rotations in O(n): apply the Gram-Schmidt orthogonalization process
to a matrix chosen according to a probability density function (e.g., Gaussian)
which is invariant under multiplication by O(n).

Remarks on an Algorithm in [22]: Igor Rivin makes the proposal in [22, §6.1]
to generate matrices in GL(n,Z) by applying complete lattice basis reduction
to a basis of R™ chosen inside a large ball. Let B € GL(n,R) denote the n x n
matrix whose rows consist of this basis. Complete lattice reduction produces a
random element v € GL(n,Z) of constrained size for which vB lies in a fixed
fundamental domain for GL(n,Z)\GL(n,R).

This procedure is extremely slow, since complete lattice reduction is imprac-
tical in large dimensions. Rivin thus considers instead using weaker lattice basis
reduction methods (such as LLL [15]) to speed this up, but at the cost of less-
uniform distributions. For example, the results of LLL are thought to be skewed
towards certain favored outputs avoiding “dark bases” [14]. Since our interest in
generating random bases is to see how long incomplete lattice reduction takes
on them, the use of lattice reduction to itself make the basis itself is too slow for
our purposes (hence we did not consider this algorithm in our experiments).

3 Experiments on recognizing 7"

In this section we report on attempts to solve Problem 2b on instances of matrices
M generated using some of the algorithms from Section 2 for sampling GL(n, Z).
We first note that Geissler and Smart [9] reported on attempts to solve Prob-
lem 2b on NTRU lattices using LLL [15] (as well as their own modification, for
which they report up to a factor of four speedup), and concluded from lattice
reduction heuristics that LLL itself is insufficient for NTRU instances with di-
mensions and matrix entry size far smaller than those considered in (3.2) below

8 Note the order of magnitude of the set I'r from (2.1) is T"zfn7 naturally matching
the n? — n random integers picked in Algorithm 4.



(see Appendix C). Nevertheless LLL performs fairly well on rotations of the Z"
lattice as compared to on a random lattice, which is not unexpected since the
latter has shortest vector on the order of \/n (as opposed to 1 for rotations of
the Z™ lattice). Given that LLL typically outperforms its provable guarantees,
it is not surprising it is fairly effective on Problem 2b.

Our main emphasis is that LLL and BKZ perform better on certain distri-
butions with respect to Problem 2b than on others. Instead of LLL alone, we
try the following:

Procedure to test matrix generation algorithms
with Problem 2b.

1. In Magma, apply LLL or Nguyen-Stehlé’s L2 lattice basis reduction
algorithm [20] to the Gram matrix G = M M", then

2. apply BKZ with incrementally-increasing block sizes 3,4, and 5.

3. Success is measured by whether or not the output basis vectors all have
norm equal to 1 (in which case they span a rotation of the Z" lattice).

(3.1)
We chose to use Magma’s built-in lattice basis reduction routines, partly because
of slow running times with other implementations (such as fplll in SageMath)
on matrices with very large integer entries. In step 2 one can of course continue
further with block sizes larger than 5, but we fixed this as a stopping point in
order to be systematic.

Our main finding is that Algorithm 2 in Section 2 (as implemented in Magma’s
RandomSLnZ) is insecure for generating hard instances of Problem 2b. Algorithms
3, 4, and 5 fare much better. It is not surprising that Algorithm 5 (and the
nearly-equivalent Algorithm 4) give harder instances, since there are provable
guarantees attached to Algorithm 5 in a different context [5]; there is a serious
difference between these and Algorithm 2 described below and in Appendices A
and B.

3.1 Experiments with Algorithm 2 (Magma’s RandomSLnZ command)

We begin with some comments on entropy and generating random products
with a constrained number of bits. To mimic random elements of GL(n,Z), one
may desire that the product matrix has as many nonzero entries as possible
per random bit. For this reason, our experiments set the parameter b = 1 in
Algorithm 2 in order to take longer products (thereby further increasing the
number of nonzero entries of the matrix), while keeping the number of random
bits constant. When the product length is less than n, one expects to have rows
or columns of the product matrix which are unchanged by the successive matrix
multiplications. (This much less likely to be the case for the Gram matrices,
however.)

Thus each random factor has at most a single nonzero off-diagonal entry,
which is £1. It is prohibitive to pack in as many random bits as the total number



of entries this way, since multiplication of large matrices is slow. As an extreme
example, as part of a comparison with the last row of (C.3) we generated a
random matrix in GL (1486, Z) using products of length 55,000, again with b = 1.
Generating the product alone took about half a day. Its row lengths were between
2% and 220 in size. For comparison, an NTRU matrix with similar row lengths
(as in Table C.3) uses 8,173 random bits. The comparison with NTRU is made
here simply because concrete bit-strengths have been asserted for NTRU lattices;
this is why we took the particular values of n in (3.2) (see Appendix C for more
details). One might hypothesize that having more random bits in the matrix
makes solving Problem 2b more difficult, but as we shall see this in fact turns
out to not always be the case: the structure of the matrix plays a very important
role, and the product structure from Algorithm 2 seems to be a contributing
weakness. In particular, the larger the value of the parameter b, the more unusual
properties the product matrix possesses.

Successful experiments on large lattices

n = dim(A)| estimated bit-hardness |range of vector lengths|product
for corresp. NTRU (C.3) (in bits) length | (3.2)

886 128 from 25 to 32 55,000

1486 256 from 14 to 20 55,000

From the success of our trials one immediately sees the Lenstra-Silverberg Prob-
lem 2b is fairly easy for matrices M generated by Magma’s RandomSLnZ com-
mand. (Of course it is well known to be impossible to solve Problem 2b using
LLL or BKZ with small block sizes on NTRU matrices of the comparable size
listed in (3.2) and (C.3), or even those much smaller.)

3.2 Experiments with Algorithm 3 (random GL(d,Z) matrices)

Next we consider matrices generated by Algorithm 3 (random GL(d,Z)’s), and
find that for small d they are also cryptographically weak for the Lenstra-
Silverberg problem, but stronger than those generated by Algorithm 2. Fur-
thermore, we see their strength increases with increasing d.

The tables in Appendix A list the outcomes of several experiments attacking
instances of Problem 2b for matrices M generated by Algorithm 3. One sees the
dramatic effect of the product length ¢. For example, if £ is too short there may be
rows and columns of the matrix not touched by the individual multiplications by
the embedded random d x d matrices; if ¢ is too long, the matrix entries become
large and lattice basis reduction becomes difficult.

3.3 Experiments with Algorithm 4

Finally, we turn to the opposite extreme of random elements of GL(n,Z) gener-
ated by Algorithm 4, in which the bottom n — 1 rows are uniformly distributed
among entries in the range [—T,T]. Here we were able to solve Problem 2b with



instances having n = 100, even with entry sizes up to T' = 50 (again, using the
testing procedure in (3.1)). However, none of our experiments with n > 110 were
successful at all, even with T'=1 (i.e., all entries below the top row are —1, 0,
or 1). See the tables in Appendix B for more details.

4 Random basis generation in the DRS NIST
Post-Quantum Cryptography competition submission

In [3, §5.1.2] some examples of methods for generating random lattice bases
are described, which are closely related to Algorithms 2, 3, and 5. The authors
reported their experiments on those methods resulted in similar outcomes in
practice. Our experiments, however, do show a difference (as was explained in
Section 3).

In this section we wish to make further comments about one method high-
lighted in [3], which is from the DRS NIST Post-Quantum competition submis-
sion [21, §2.2]. Random elements of GL(n,Z) there are constructed as products
of length 2R + 1 of the form

Py PyyaPyys - - - PRYrPr+1 , (4.1)

where Pj,..., Pry1 are chosen uniformly at random among permutation ma-
trices in GL(n,Z) and 71,...,vr are elements in SL(n,Z) produced by the
following random process. Let A = (13) and A_ = (!, 3'). Then each ~; is
a block diagonal matrix with § 2 x 2 entries chosen uniformly at random from
{A4, A_}. This construction has some similarities with Algorithm 3 for d = 2,
but note that here many of the SL(2) matrices commute (being diagonal blocks
of the same matrix). In fact, since A, is conjugate by ((1) _01) to A_ one may

replace each y; with the block diagonal matrix
D = diag(A+,A+,...7A+),

at the cost of allowing the P;’s to be signed permutation matrices. Alternatively,
by rearranging the permutation matrices and applying an extra rotation on the
right, Problem 2b on matrices of the form (4.1) is equivalent to it on products
of the form

M = MM, ---Mpg, (4.2)

in which each M; is conjugate of D by a random signed permutation matrix.

Since Algorithm 3 with d = 2 performed relatively weakly in the experiments
of Section 3, we suspect Problem 2b is relatively easy to solve on matrices gener-
ated using (4.1) (as compared to those, say, generated using Algorithm 4). The
experiments described below bear this out. (All of our remaining comments in
this section pertain solely to (4.1) in the context of Problem 2b, and not to any
other aspect of [21].)

The parameters listed in [21, §3.2] assert 128-bit security for their scheme
when (n, R) = (912,24), 192-bit security when (n, R) = (1160, 24), and 256-bit



security when (n, R) = (1518, 24). Our main finding is that the testing procedure
(3.1) was able to recover M chosen with the 256-bit security parameters in 708
hours of running time. We could also recover M chosen with the 192-bit security
parameters in 222 hours of running time but (as we describe below) could not
fully recover M with the 128-bit security parameters.

Running times to find M from MM for n=912 and various R
M time in seconds

200000
150000
100000

. _|||||
4 5 6 7 8 9

1 2 3 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
R

Fig.1. We experimentally tried to solve Problem 2b on instances generated by the
random basis construction from the DRS NIST submission [21, §2.2], using its suggested
parameters (n, R) = (912, 24) for 128-bit security. This failed with n = 912 and R = 24
itself (the gray bar on the right), but was successful for n = 912 and 1 < R < 23.
We were able to solve all cases for R < 22 in less than 60 hours using LLL alone, and
the R = 23 case in slightly more time using the procedure in (3.1). We conclude that
method of random basis generation in the DRS digital signature scheme is insecure
with the recommended parameter setting (n, R) = (912,24), at least for Problem 2b.
Times are shown for runs on a Dell PowerEdge R740xd server equipped with two Intel
Xeon Silver 4114 2.2GHz processors and 256GB RAM.

The testing procedure (3.1) also easily solves Problem 2b when n or R are
smaller yet still relatively large. For example, it took roughly an hour to recover
M from M M?* when (n, R) = (180, 24) using BKZ with block sizes up to 26. In
Figure 1 we show the results of several experiments for the parameter choice of
n = 912 and increasing values of R up to the recommended choice of R = 24
for 128-bit security. The results were strikingly successful, in that each trial for
R < 22 successfully recovered M from M M? using only LLL (without requiring
BKZ). We additionally tried R = 23 and nearly recovered M using LLL this
way: the longest vector in the LLL output had length /7, and subsequently
applying BKZ reduction with block size 3 for less than five minutes then fully
recovered M. However, we were unsuccessful in the R = 24 case suggested in
[21].

Again, these results are only for Problem 2b applied to the random basis con-
struction used in the DRS digital signature scheme [21]; nevertheless, this may



indicate a weakness in the digital signature scheme as well. Somewhat counter-
intuitively, our experiments for fixed values of the product length parameter R
sometimes fared better for larger values of n. For example, we were successful
with (n, R) = (912, 22) despite not being successful for (n, R) = (200,22), and
we were successful with (n, R) = (1160, 24) and (1518, 24) despite not being suc-
cessful for (n, R) = (912,24). Our explanation is that as n grows there may be
a weakness in that it is hard to randomly fill out the full matrix M (a similar
phenomenon occurs in Algorithms 2 and 3 for small ¢). Indeed, matrices of the
form (4.1) seem to have a very special form: Figure 2 shows the entry sizes in
M M? have a banded structure.

5 Conclusions

We have considered the role of generating random elements in GL(n,Z) in the
difficulty of lattice problems, and have found that it can have a profound in-
fluence. Concretely, Magma’s RandomSLnZ command (Algorithm 2) gives easy
instances of Lenstra-Silverberg’s “Recognizing Z" Decision” Problem 2b from
(1.2). We were able to successfully attack lattices of dimension up to 1,486, which
are in some measurable ways comparable to NTRU lattices having claimed 256-
bit quantum security. On the other hand, using the apparently stronger meth-
ods of Algorithms 3 and 4 make Problem 2b much more difficult to solve (as
expected).

We would thus recommend not using Algorithm 2 in generating random
bases for cryptographic applications. We also recommend not using the random
basis algorithm from the NIST Post-Quantum Competition submission DRS [21],
because we were similarly able to solve Problem 2b on instances of its random
basis generation method with its recommend parameters for 256-bit security.

We have not fully understood the weaknesses of these algorithms. It seems
plausible that the failure to quickly fill out the matrix entries in a uniform
way is at least partly to blame, since many do not get sufficiently randomized.
The construction of Algorithm 2 in some sense reverses the steps of an LLL
basis reduction, which might explain why LLL is particularly effective against
it. More generally one might expect the block sizes in Algorithm 3 to be related
to the block sizes in the BKZ algorithm. It is natural from this point of view to
expect Algorithms 4 and 5 to be the strongest lattice basis generation algorithms
considered in this paper, consistent with the results of our experiments.
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Fig. 2. Mathematica’s MatrixPlot command displays the nonzero entries of Gram
matrix MM?" as darkened pixels, where M was generated according to (4.1) with
recommended parameters n = 912 and R = 24 from [21]. Similarly banded plots
arise when M is generated using Algorithm 3 with d = 2. In contrast, Gram matrices
generated by Algorithm 4 have a (provably) far more uniform structure.
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A Experiments with Algorithm 3 (random GL(d,Z)
matrices)

Below we list tables of the experimental results mentioned in Section 3 on Algo-
rithm 3, performed using the testing procedure (3.1).

n|d| T l shortest row longest row|(found M?
length (in bits)|length (in bits)
200|2| 1]4000 6.03607 12.7988 X
200(2| 2[1500 1.29248 18.5329 v
200|2| 2]2000 7.86583 22.2151 X
200|2| 3]1000 0.5 27.0875 X
200|2| 3]2000 23.521 41.5678 X
200|2|10] 500 2.04373 38.7179 v
200|2|10| 700 7.943 49.0346 X
200(3| 1]1000 2.04373 11.3283 v
200(3| 11500 7.66619 17.1312 X
200(3| 1]2000 13.0661 20.8768 X
200(3| 2| 500 3.27729 18.4087 v
200(3| 2| 600 4.89232 24.111 X
200(3| 2[{1000 13.0585 34.0625 X
200(4| 1| 500 3.66096 12.2277 v
200(4| 2| 300 0.5 24.2424 N
200(4| 2| 400 1.79248 26.6452 X

key: n=lattice dimension, d=size of smaller embedded matrices, T=bound on
embedded matrix entries, {=length of the product of smaller matrices.
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n|d| T / shortest row longest row|/found M?
length (in bits)|length (in bits)
500(2| 1| 4000 0. 5.90085 v
500(2| 1| 8000 3.41009 10.7467 v
500(2| 1{10000 7.08508 12.7447 v
500(2| 1{15000 12.6617 18.5326 v
500(2| 1/20000 18.0246 24.5732 X
500(2| 2| 4000 4.21731 18.587 v
500(2| 2| 6000 12.3467 28.7882 X
500(2| 2| 8000 18.87 35.7267 X
500(2| 2|10000 28.5508 45.8028 X
500(2| 3| 2000 0. 19.0752 v
500(2| 3| 3000 7.38752 32.9895 v
500(2| 3| 4000 16.9325 40.9656 X
500(2{10| 1000 0. 30.3755 v
500(2{10| 2000 11.9964 61.5006 X
500(3| 1| 1000 0. 5.39761 v
500(3| 1| 2000 1.29248 9.164 v
500(3| 1| 3000 2.37744 13.9903 v
500(3| 1| 4000 8.43829 17.4593 v
500(3| 1| 5000 14.1789 21.528 v
500(3| 1| 6000 18.3878 25.2578 X
500(3| 1| 7000 20.5646 29.287 X
500(3| 2| 1000 0. 15.551 v
500(3| 2| 2000 3.24593 33.0945 v
500(3| 2| 3000 23.5966 43.7986 X
500(3| 3| 1000 0. 28.1575 v
500(3| 3| 2000 16.6455 53.1806 X
500(3| 3| 3000 41.3371 83.9486 X
500(4| 1| 1000 0. 9.85319 v
500(4| 1| 2000 8.11356 18.9434 v
500(4| 1| 3000 19.1019 26.9836 v
500(4| 1| 4000 24.4869 35.6328 X
500(4| 1| 5000 26.6804 44.3982 X
500(4| 1| 6000 40.5944 53.3654 X
500(4| 2| 1000 6.29272 33.4373 v
500(4| 2| 2000 33.6181 63.3469 X

key: n=lattice dimension, d=size of smaller embedded matrices, T=bound on
embedded matrix entries, {=length of the product of smaller matrices.



n|d|T l||  shortest row longest row|[found M?
length (in bits)|length (in bits)
886(2| 1| 3000 0 3.49434 v
886(2| 1| 4000 0 3.80735 v
886|2| 1| 5000 0 4.40207 v
886|2| 1| 6000 0 5.30459 v
886(2| 1| 7000 0 6.16923 v
886(2| 1| 8000 0 6.90754 v
886(2| 1| 9000 1 7.58371 v
886|2| 1{10000 2.37744 8.05954 v
886|2| 1{15000 5.46942 11.2176 v
886(2| 1{20000 8.6594 14.5837 v
886(2| 1/25000 10.884 18.035 v
886(2| 1{30000 15.0082 21.0333 v
886|2| 1{35000 17.6964 24.8408 v
886|2| 1{40000 20.7706 28.3888 v
886(2| 1{45000 24.484 30.6745 v
886(2| 1{50000 25.7401 34.0742 X

key: n=lattice dimension, d=size of smaller embedded matrices, T=bound on
embedded matrix entries, {=length of the product of smaller matrices.

Comments

Each sequence of experiments (for fixed values of n, d, and T') eventually fails
when £ is sufficiently large. For £ too small the random product will not involve
all the rows and columns of the matrix, meaning that the dimension of the lattice
problem is effectively reduced to a smaller value of n, so the most interesting
cases are for intermediate values of ¢ (e.g., 10000 < ¢ < 50000 in this last table).
There is some correlation between a successful trial and having a short vector
in M (the fifth column), especially in the trials for n = 200. For n = 500 one
sees more successful trials with longer shortest rows, especially as d (and to a
lesser extent, T') increase. Note that each entry in these tables corresponds to a
single experiment; we did not attempt to average over several experiments since
we wanted to report on the range of the row lengths.

We did not take values of d > 4, since it is difficult to use Algorithm 1 to
generate larger random elements of GL(d,Z).

The table for n = 886 is in some sense an elaboration of the middle entry of
(3.2), the difference being that the latter uses unipotents (instead of embedded
GL(2,Z) matrices).

B Experiments with Algorithm 4

Below we list tables of the experiments mentioned in Section 3 on Algorithm 4,
performed using the testing procedure (3.1).



n |T|| shortest row longest row |[found M?
length (in bits)|length (in bits)
100| 1 2.91645 4.65757 v
100 3 4.14501 5.81034 v
100| 4 4.50141 6.20496 v
100{10 5.64183 7.15018 v
100(50 7.99332 9.77546 v
100| 1 2.91645 4.65757 v
110 1 2.98864 4.54902 X
120( 1 3.03304 4.77441 X
125|1 3.09491 4.93979 X
150 1 3.12396 5.09738 X
200| 1 3.42899 5.32597 X
200] 2 4.23584 6.42421 X
200| 3 4.72766 6.82899 X
200| 4 5.06529 7.41803 X

key: n=lattice dimension, T=bound on matrix entries in bottom n — 1 rows.

Comments

In general, matrices in GL(n,Z) with large entries have very small determinants
(£1) relative to their overall entry size, so they are already very close to singular
matrices. However, the size of the rank of nearby matrices is important. The
matrices produced by Algorithm 4 are perturbations of matrices having rank
n — 1 (which is as large as possible for singular n x n matrices). In contrast,
one numerically sees that matrices produced by Algorithm 2 are instead nearly
rank-one matrices (i.e., up to a small overall perturbation relative to the size of
the entries). We expect Algorithm 3’s matrices, which are produced by taking
products of random GL(d,Z) matrices, have intermediate behavior (but have
not systematically analyzed this).

A related fact is that matrices produced by Algorithm 2 frequently have a
very large row or column (if b is sufficiently large) — typically coming from the
first or last factor in the matrix multiplication, respectively. That serves as a
possible hint to recover the spelling of the word in the random product, along
the lines of the length-based attack in [4, §4]. However, we were unable to turn
this into a direct, general attack. For example, it is unclear what to do when the
value of x € Z N [—b,b] is small, say in the regime that b < £. (The situation is
clearer when b is extremely large relative to ¢, in which case we expect a bias
effect in random words similar to underlying device used in [4, §4].)

C A reference point for the bit-strength of lattice
problems: NTRU

In this appendix we give some information about how we measured when prod-
uct lengths in Algorithms 2 and 3 were sufficiently long enough to ensure Gram



matrix entries have an appropriately large size. The security of lattices against
LLL and BKZ is an active area in which no general consensus has been reached
despite many competing suggestions (reflecting its underlying notoriously com-
plicated difficulty).

One type of lattice for which bit strengths have been suggested are NTRU
lattices. We mention this as an attempt to quantify the notion that lattice prob-
lems in high dimensions are hard, as well as to provide a point of comparison
— though there are of course many differences between NTRU lattices and ro-
tations of the Z" lattice (we don’t say anything about the security of NTRU
itself).

NTRU matrices have the form

("¢ urr) (C.1)

with n even, ¢ an integer greater than one, and X randomly chosen from a
certain distribution among all integral matrices of the form

L1 T2 T3 0 Tp/2-1 Tp/2
T2 T3 T4 - Tp/2 Z1 q

X = oo ; ] < R (C.2)
Tp/2 T1 T2 0 Tp/2-2 Tp/2-1

The rows of an NTRU matrix span an “NTRU lattice” A C R™. In [24] and in
earlier NIST Post-Quantum Cryptography submissions the following quantum
bit security is suggested for NTRU with the following parameters:

q |n = dim(A)|estimated quantum security (in bits)
2048 886 128 (C.3)
2048| 1486 256

These estimates are not directly relevant to the lattice bases we examine, which
have different determinants and a very different structure. Nevertheless, they are
consistent with the general expectation that lattice problems in dimensions 500
or more (and especially 1,000 or more) become cryptographically difficult.

The choice of length ¢ in the experiments in (3.2) was determined as follows.
The vector lengths of the rows in the NTRU matrix (C.1) are either roughly
V54 (for the first n/2 rows), or exactly ¢ (for the last n/2 rows). We took
{ large enough so that the resulting product had comparable row lengths, and
made sure to use at least as many random bits as go into constructing an NTRU
lattice (which is 5 log,(q)).
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