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Abstract
Variational methods, such as mean-field (MF) and tree-reweighted (TRW), provide computation-
ally efficient approximations of the log-partition function for generic graphical models but their
approximation ratio is generally not quantified. As the primary contribution of this work, we pro-
vide an approach to quantify their approximation ratio for any discrete pairwise graphical model
with non-negative potentials through a property of the underlying graph structure G. Specifically,
we argue that (a variant of) TRW produces an estimate within factor 1/

p
(G)where (G) 2 (0, 1]

captures how far G is from tree structure. As a consequence, the approximation ratio is 1 for trees,p
(d+ 1)/2 for graphs with maximum average degree d and 1+1/(2�)+ o�!1(1/�) for graphs

with girth at least � logN . The quantity (G) is the solution of a min-max problem associated with
the spanning tree polytope ofG that can be evaluated in polynomial time for any graph. We provide
a near linear-time variant that achieves an approximation ratio depending on the minimal (across
edges) effective resistance of the graph. We connect our results to the graph partition approximation
method and thus provide a unified perspective.
Keywords: variational inference, log-partition function, spanning tree polytope, minimum effec-
tive resistance, balanced covering of graph, min-max spanning tree, local inference

1. Introduction

The Setup. We consider a collection of N discrete valued random variables on a discrete alphabet,
X = (X1, . . . , XN ), whose joint distribution is modeled as a pair-wise graphical model. Let G =
(V,E) represent the associated graph with vertices V = {1, . . . , N} representing N variables and
E ⇢ V ⇥ V representing edges. Let each variable take value in a discrete alphabet X . For e 2 E,
let �e : X ⇥X ! R+ denote the edge potential that we assume takes only non-negative values and
let ✓e 2 R+ denote the associated weight. This leads to a joint distribution with probability mass
function

P(X = x;✓) / exp
⇣X

e2E
✓e�e(xe)

⌘
=

1

Z(✓)
exp

⇣X

e2E
✓e�e(xe)

⌘
, (1)

where x = (x1, . . . , xN ) 2 XN , xe is short hand for (xs, xt) if e = (s, t) 2 E, ✓ = (✓e : e 2 E) 2
R|E|
+ and the normalizing constant or partition function Z(✓) is defined as

Z(✓) =
X

x2XN

exp
⇣X

e2E
✓e�e(xe)

⌘
. (2)
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Such pairwise graphical models provide succinct description for complicated joint distributions.
However, the key challenge in utilizing them (e.g. for inference) arises in estimating the partition
function Z(✓). In this work, our interest is in computing logarithm of Z(✓), precisely

�(✓) = logZ(✓) = log

"
X

x2XN

exp
⇣X

e2E
✓e�e(xe)

⌘#
. (3)

Computing Z(✓) is known to be computationally hard in general, i.e. #P-complete due to rela-
tion to counting discrete objects such as independent sets cf. Valiant (1979); Jerrum and Sinclair
(1989). Due to reductions from discrete optimization problems to log-partition function compu-
tation, approximating �(✓), even up to a multiplicative error, can be NP-hard cf. Weitz (2006);
Wainwright and Jordan (2008); Dembo et al. (2013). Therefore, the goal is to develop polynomial
time (inN ) approximation method for �(✓) with provable guarantees. Specifically, let ALG denote
such an approximation method that takes problem description P = (G,X , (�e)e2E ,✓) as input and
produces estimate b�ALG(✓) for �(✓). Then, we define approximation ratio associated with ALG,
↵(G,ALG) � 1 as

↵(G,ALG) = sup
P

max
⇣ �(✓)
b�ALG(✓)

,
b�ALG(✓)

�(✓)

⌘
. (4)

Prior Work. There is a long literature on computationally efficient approximation methods for the
log-partition function with significant progress in the past two decades. We recall some relevant
prior works here.
A collection of methods, classified as variational approximations, utilize the (Gibbs) variational
characterization of the log-partition function when distribution (1) is viewed as a member of an
exponential family, cf. Georgii (2011); Wainwright and Jordan (2008). Specifically, �(✓) can be
viewed as a solution of a high-dimensional constrained maximization problem. By solving the
problem with additional constraints, one obtains a valid lower bound such as that given by Mean-
Field methods. By utilizing the convexity of �(·) and restricting it to tree-structured sub-graphs
of G, one obtains a valid upper bound such as that given by the tree-reweighted (TRW) method.
By relaxing the constraints and adapting the objective to allow for pairwise pseudo-marginals, one
obtains heuristics such as Belief Propagation (BP) via Bethe approximation Yedidia et al. (2001,
2003). While BP does not provide provable upper or lower bounds in general, for graphs with
large-girth such as sparse random graphs and distributions with spatial decay of correlation, it pro-
vides an excellent approximation cf. Mezard andMontanari (2009). The spatial decay of correlation
property has been further exploited to obtain a deterministic Fully Polynomial Time Approximation
Schemes (FPTAS) for various counting problems, i.e. computing partition functions cf. Weitz
(2006); Gamarnik and Katz (2012); Bayati et al. (2007); Gamarnik and Katz (2009). The approxi-
mation error of belief propagation has been studied through connection to loop calculus as well cf.
Chertkov and Chernyak (2006); Chandrasekaran et al. (2011).
In another line of works, graph partitioning based methods have been proposed to provide Poly-
nomial Time Approximation Schemes (PTAS) for classes of graphs that satisfy certain graph par-
titioning properties which includes minor-excluded graphs Jung and Shah (2006) or graphs with
polynomial growth Jung et al. (2009).
In summary, despite the progress, the approximation ratio ↵(G,ALG) for any of the known varia-
tional approximation methods ALG remains undetermined.
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QUANTIFYING VARIATIONAL APPROXIMATION FOR LOG-PARTITION FUNCTION

Summary of Contributions. As the main contribution, for a simple variant of tree-reweighted
(TRW) method, denoted as TRW0, we quantify ↵(G, TRW0) for anyG. TRW0 is described in Section
3 and produces an estimate of �(·) in polynomial time. Specifically, we establish

Theorem 1 For any graph G, the approximation ratio of TRW
0
is such that

↵(G, TRW0)  1/
p
(G) where (G) = min

S⇢V

|S|� 1

|E(S)| , (5)

with E(S) = E \ (S ⇥ S) for any S ⇢ V .

The term (G) captures the proximity ofG with respect to the tree structure across all of its induced
sub-graphs: for S ⇢ V , the induced subgraph (S,E(S)) would have at most |S|�1 edges if it were
cycle free, but it has |E(S)| edges. Therefore, the ratio (|S| � 1)/|E(S)| measures how far it is
from a tree. It is equal to 1 for a connected tree and 2/|S| for the complete graph. The minimum
over all possible S ⇢ V of this ratio captures how far G is from a tree structure.

Using this characterization, we provide bounds on ↵(G,TRW0) in terms of various simpler graph
properties in Section 4.3. Specifically, we show that for any graph with maximum average degree
d � 1, ↵(G, TRW0) 

p
(d+ 1)/2. And for graphs with girth (i.e. length of shortest cycle) g > 3,

↵(G, TRW0) 
q

1+N2/(g�3)

2(1�1/g) , which implies ↵(G, TRW0) 
�
1 + 1

2� + o�!1( 1
�
)
�
if g � � logN .

This means that for any G with large (� logN ) girth, ↵(G, TRW0) ⇡ 1.

In general, we establish that (G) can be evaluated in polynomial time for any graph G by solving
an appropriate linear program on the spanning tree polytope. This is explained in Section 4.

The tree-reweighted variant TRW0 uses a linear solver over the tree polytope ofG, which can be hard
to implement in practice. With an eye towards near linear-time (in |E|) computation, a variant that
instead of optimizing over the tree polytope simply considers a feasible point that corresponds to
the uniform distribution over spanning trees of G. Using the near-linear time sampling of spanning
tree from Schild (2018), we provide a randomized approximation method for �(✓). With high
probability, its approximation ratio ↵(G) is bounded above by 1/

p
mine2E re where re � 0 is the

effective resistance of e 2 E for the graph G = (V,E) (see (37) for precise definition). While in
general, this provides a weaker approximation guarantee, for graphs with degree bounded by d it
leads to a similar guarantee of ↵(G) 

p
(d+ 1)/2.

We show that the results based on graph partitioning cf. Jung and Shah (2006); Jung et al. (2009)
can be recovered as a natural extension of the variant of TRW introduced in this work by allowing
for general graphs with bounded tree-width beyond trees.

We take note of the fact that though results discussed in this work are primarily for the variant of
TRW described in Section 3, as an immediate consequence of our results, ↵(G,TRW)  1/(G),
i.e. it is bounded by the square of that derived in Theorem 1. As discussed in Section 8, understand-
ing the tightness of this characterization especially for TRW remains an important open direction.

Outline of Paper. In Section 2, we provide some preliminaries and recall the tree-reweighted
(TRW) method. In Section 3, we provide a modification of TRW and characterize its approximation
guarantee. In Section 4, we provide a linear optimization characterization of the approximation
guarantee which leads to the proof of Theorem 1. We also discuss implications of Theorem 1 for
various classes of graphs. In Section 5, we present a near linear-time variant based on sampling
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from the uniform distribution of spanning trees over G. We derive approximation guarantees for
the resulting method in terms of the effective resistance of the graph and derive its implications. In
Section 6, we discuss connection with graph partitioning methods by extending the modified TRW
of Section 3 to allow for bounded tree-width subgraphs beyond trees. We argue how results of Jung
and Shah (2006); Jung et al. (2009) follow naturally. Section 8 discusses directions for future work.

2. Preliminaries and Background

2.1. Variational Characterization, Mean-Field Approximation and Belief Propagation

We start by recalling the variational characterization of the log-partition function �(·). Let P(XN )
denote the space of all probability distributions over XN . Then, the Gibbs variational characteriza-
tion states that

�(✓) = sup
q2P(XN )

Ex⇠q

 
X

e

✓e�e(xe)

!
+H(q), (6)

where H(q) = �Ex⇠q(log(q(x))) is the entropy of q. While computationally (6) does not provide
tractable solution for evaluating �(·), it provides a framework to develop approximation methods
that we refer to as variational approximations.
As mentioned earlier, the classical mean-field (MF) consists in relaxing P(XN ) to the space of
independent distributions over XN denoted as I(XN ) ⇢ P(XN ). By restricting optimization in
(6) to I(XN ), one obtains a lower bound on �(✓).
It turns out that (6) can be solved efficiently for tree-structured graph. Specifically, if G is a
connected tree, i.e. G is connected with no cycle, then any distribution satisfying (1) can be re-
parametrized as

P(x;✓) =
Y

u2V
PXu(xu)

Y

(u,v)2E

PXu,Xv(xu, xv)

PXu(xu)PXv(xv)
. (7)

In the expression above, PXu(·) denotes the marginal distribution of Xu, u 2 V and PXu,Xv(·, ·)
denotes the pairwise marginal distribution of (Xu, Xv) for any edge e = (u, v) 2 E. The Belief
Propagation (or sum-product) algorithm can compute these marginal distributions efficiently for
tree graphs using only knowledge of ✓ and �e, e 2 E. It utilizes O(|X |2N) computation time.
Therefore, Z(✓) and hence �(✓) can be computed for tree graphs using O(|X |2N) computations.
Indeed, the re-parametrization of the form (7) was a basis for the Belief Propagation (BP) algorithm
for generic graphical models and also led to the so called Bethe Approximation of (6), cf. Yedidia
et al. (2001). However, it does not result in a provably upper or lower bound in general (with few
exceptions).
To obtain an upper bound on�(·), its convexity was exploited inWainwright et al. (2005) along with
the fact that (6) is solvable efficiently for tree-structured graph. This resulted into tree-reweighted
(TRW) algorithm which we describe next.

2.2. Tree-Reweighted (TRW): An Upper Bound on �(·)

Recall that a spanning tree T is a subgraph of G = (V,E) that contains all vertices and a subset
of the edges so that T does not have a cycle. Let T (G) be the set of all spanning trees of G. We
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QUANTIFYING VARIATIONAL APPROXIMATION FOR LOG-PARTITION FUNCTION

shall denote a distribution on T (G) as ⇢ = (⇢T )T2T (G) where ⇢T � 0 for all T 2 T (G) andP
T2T (G) ⇢

T = 1. The space of all distributions on T (G) is denoted by P(T (G)). For simplicity,
we shall drop the notation of G at times when it is clear from the context and denote it simply as
P(T ). A distribution ⇢ 2 P(T ) induces for all edge e 2 E an edge probability ⇢e that this edge
will appear in a tree selected from ⇢,

⇢e = PT⇠⇢

�
e 2 T) =

X

T2T (G)

⇢T (e 2 T ). (8)

Note that in the above, we have abused notation using T as a spanning tree as well as the set of
edges constituting it. We shall continue using this notation since the all spanning trees have the
same set of vertices and only the edges differ (among subsets of E). Also note another convenient
abuse of notation: given ⇢, ⇢T denotes probability of T 2 T (G) while ⇢e is the probability of edge
e 2 E being present in a random tree. Note that because all spanning trees have N � 1 edges, edge
probabilities satisfy

P
e2E ⇢e = N � 1. Given ⇢ 2 P(T (G)), we now define (G,⇢) as

(G,⇢) = min
e2E

⇢e. (9)

For any ✓ 2 R|E|
+ , define its support as s(✓) = {e 2 E : ✓e 6= 0}. Given a spanning tree

T 2 T (G), let ✓T 2 R|E|
+ be such that s(✓T ) ⇢ T and let ⇢ 2 P(T ) along with (✓T )T2T be such

that
P

T2T ⇢T ✓T = ✓. That is, ET⇠⇢

⇥
✓T
⇤
= ✓. Therefore, we can write

�(✓) = �
�
ET⇠⇢

⇥
✓T
⇤�
. (10)

It has been established that � : R|E|
+ ! R is a convex function because its Hessian is a covariance

matrix and hence is positive semidefinite (see Wainwright et al. (2005)). From Jensen’s inequality
applied to (10) it follows that

�(✓)  ET⇠⇢

⇥
�(✓T)

⇤
=

X

T2T
⇢T�(✓T ). (11)

Since the upper bound (53) holds for any ⇢ 2 P(T ) and (✓T )T2T such that
P

T2T ⇢T ✓T = ✓ we
can optimize on these two parameters to obtain the tree-reweighted upper bound

�(✓)  infP
T2T ⇢T ✓T=✓

 
X

T2T
⇢T�(✓T )

!
⌘ UTRW(✓). (12)

As established in Wainwright et al. (2005), this seemingly complicated bound, UTRW(✓), can be
computed via an iterative tree-reweighted message-passing algorithm through the dual of the above
optimization problem. While this is a valid upper bound, how tight the upper bound is for a given
graphical model is not quantified in the literature. And this is precisely the primary contribution of
this work.

3. Algorithm and Approximation Guarantee

Modified Tree-Reweighted: TRW0. We describe a simple variant of TRW that enables us to bound
the approximation ratio of the estimation of � using properties of G. We start with some useful
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notations. Given ✓ = (✓e)e2E 2 R|E|
+ , ⇢ 2 P(T (G)) and a spanning tree T 2 T (G) of graph G,

define “projection” operations

⇧T : R|E|
+ ! R|E|

+ where ⇧T (✓) =
�

(e 2 T )✓e
�
e2E

⇧T

⇢ : R|E|
+ ! R|E|

+ where ⇧T

⇢ (✓) =
�

(e 2 T )✓e/⇢e
�
e2E . (13)

With these notations, for a given ⇢ 2 P(T (G)) define

L⇢(✓) = ET⇠⇢(�(⇧
T(✓))) =

X

T2T (G)

⇢T�(⇧T (✓)), (14)

U⇢(✓) = ET⇠⇢(�(⇧
T

⇢(✓))) =
X

T2T (G)

⇢T�(⇧T

⇢ (✓)). (15)

For a given ⇢ 2 P(T (G)), one obtains an estimate of �(✓) as follows:

b�⇢(✓) =
q
L⇢(✓)U⇢(✓). (16)

TRW0 outputs b�⇢?(G)(✓) where ⇢?(G) 2 P(T (G)) is defined as:

⇢?(G) 2 argmax
⇢2P(T (G))

(G,⇢) with (G,⇢) = min
e2E

⇢e. (17)

Interpretation of ⇢⇤(G). The distribution ⇢⇤(G) 2 P(T (G)) can be viewed as a “balanced cover”
of G by a convex combination of its spanning trees (see Appendix A for more intuition). The prob-
lem of computing ⇢⇤(G) in polynomial time and characterizing (G) = (G,⇢⇤(G)) is addressed
in Section 4. The lemma below quantifies the approximation ratio for TRW0. Its proof is in Appendix
B.

Lemma 2 Given ✓ 2 R|E|
+ , TRW

0
produces b�⇢?(✓) with ⇢? = ⇢?(G) as defined in (17). Then,

↵(G, TRW0)  1p
(G)

where (G) = max
⇢2P(T (G))

�
min
e2E

⇢e
�
. (18)

4. (G): Efficient computation, characterization

Lemma 2 establishes the approximation guarantee for TRW0 as claimed in Theorem 1 with caveat
that it is in terms of (G) = max⇢2P(T (G))

�
mine2E ⇢e

�
while Theorem 1 relates it to a structural

property of the graph defined in (5). In this section, we shall establish this identity which will allow
us to bound (G) for certain classes of graphs and obtain meaningful intuitions. In the process, we
will argue that ⇢⇤(G) can be computed in polynomial time for any graph G.

4.1. Computing ⇢?(G) and (G) efficiently

Spanning Tree Polytope. We will use a notion of spanning tree polytope for a given graphG. Recall
that T (G) is the set of all spanning trees of G. For any tree T 2 T (G), we shall utilize the notation
of �T = [�T

e ] 2 {0, 1}E to represent the characteristic vector of the tree T defined such that

8e 2 E : �T

e = 1(e 2 T ). (19)
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QUANTIFYING VARIATIONAL APPROXIMATION FOR LOG-PARTITION FUNCTION

Given this notation, we define the polytope of spanning trees of G, denoted P
tree(G), as the convex

hull of their characteristic vectors. That is,

P
tree(G) =

�
v 2 [0, 1]E : v =

X

T2T (G)

⇢T�T ,
X

T2T (G)

⇢T = 1, ⇢T � 0, 8T 2 T (G)
 
. (20)

The weights (⇢T )T2T (G) can be viewed as probability distribution on T (G), i.e. an element of
P(T (G)). Therefore v =

P
T2T (G) ⇢

T�T corresponds to a vector representing the probabilities
that edges inE will be present in in T ⇠ ⇢ = (⇢T ), i.e. v = ET⇠⇢[ (e 2 T)]. That is, v = (⇢e)e2E
as defined in (8). Therefore, we shall abuse notation and write

P
tree(G) =

�
(⇢e)e2E | (⇢T )T2T (G) 2 P(T (G))

 
. (21)

Edmonds (1971) gave the following characterization of the spanning tree polytope:

P
tree(G) =

(
(ve)e2E 2 RE

+

�����
8S ⇢ E : v(E(S))  |S|� 1

v(E) = |V |� 1

)
, (22)

where v(E(S)) =
P

e2E(S) ve.

Efficient Separation Oracle. A polytope P ⇢ Rn, defined through a set of linear constraints, is said
to have a separation oracle if there exists a polynomial time algorithm in n which for any x 2 Rn

can determine whether x 2 P or not; and output a violated constraint if x /2 P. Edmond’s charac-
terization of the spanning tree polytope, though it has an exponential number of constraints, admits
an efficient separation oracle. Such an efficient separation oracle is defined explicitly via a min-cut
reduction, see (Lau et al., 2011, Chapter 4.1).

Complexity of Linear Programming. Consider a linear program where the goal is to find the mini-
mum of a linear objective function over a polytope defined by finitely many linear constraints. Such
a linear program can be solved in polynomial time (in size of problem description) via the Ellipsoid
method if the polytope admits an efficient separation oracle, see (Bertsimas and Tsitsiklis, 1997,
Theorem 8.5) for example. Given that the spanning tree polytope has an efficient separation oracle,
optimizing a linear objective over it can be solved efficiently. Of course, due to the structure of the
trees, a greedy algorithm like that of Kruskal’s may be a lot more direct for solving such a linear
program. Having said that, the benefit of efficient separation oracle becomes apparent as soon as we
consider additional linear constraints beyond those described in P

tree(G). Indeed, such approaches
have found utility in solving other problems, like solving bounded-degree maximum-spanning-tree
relaxations like in Goemans (2006).

Augmented Spanning Tree Polytope. We consider a reformulation of the max-min problem in (17).
To that end consider the following augmented spanning tree polytope:

P
tree
min(G) =

8
><

>:
(z, (ve)e2E) 2 R⇥ R|E|

+

�������

8e 2 E : z  ve

8S ⇢ E : v(E(S))  |S|� 1

v(E) = |V |� 1

9
>=

>;
. (23)
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With this notation, we can re-write (G) as per (17) as

(G) = max
(ve)e2E2Ptree

{min
e2E

ve} = max
(z,(ve)e2E)2Ptree

min

z. (24)

Next, we argue that Ptree
min admits an efficient separation oracle as follows. The separation oracle for

P
tree
min takes (z, (ve)e2E) as input. It first checks that all |E| constraints of the form z  ve are satis-

fied. If one is not satisfied, then the oracle outputs this constraint. If all constraints are satisfied, the
algorithm runs the separation oracle of Ptree on (ve)e2E and reproduces its output. Since |E|  N2

and Ptree has an efficient separation oracle, this leads to polynomial time separation oracle for Ptree
min.

Efficient computation of ⇢?(G) and (G). From the linear program formulation (24) and from
the efficient separation oracle as defined above, we can compute (G) in polynomial time using
the Ellipsoid algorithm. Note that this does not directly provides ⇢?(G) 2 P(T (G)) since the
representation in P

tree corresponds to the edge probabilities (⇢?(G)e)e2E . However, (⇢?(G)e)e2E
is a convex combination of extreme points of Ptree, which correspond to the spanning trees of G.
Since Ptree has efficient separation oracle, we can recover a decomposition of (⇢?(G)e)e2E in terms
of convex combination of characteristic vectors weighted by (⇢?(G)T )T2T (G) and such that at most
|E| of these weights are strictly positive, see details in (Grötschel et al., 1981, Theorem 3.9).

4.2. Characterizing (G)

We wish to establish that

(G) = max
(ve)e2E2Ptree

{min
e2E

ve} = min
S⇢V

|S|� 1

|E(S)| . (25)

Upper bound: (G)  |S|�1
|E(S)| . The upper bound is immediately given by Edmond’s characterisation

of the spanning tree polytope. For any (⇢e)e2E 2 P
tree and any S ⇢ V :

|E(S)|
�
min
e2E

⇢e
�


X

e2E(S)

⇢e = ⇢(E(S))  |S|� 1. (26)

That is, for any ⇢ 2 P(T (G))

(G,⇢)  min
S⇢V

|S|� 1

|E(S)| . (27)

And hence it holds for ⇢?(G) as well.

Lower bound: (G) � |S|�1
|E(S)| . To establish the lower bound, we need a few additional results. To

start with, we define a dual of the optimization problem (24) to characterize (G). By strong duality
it follows that

(G) = max
⇢2P(T )

min
e2E

X

T2T
(e 2 T )⇢T = min

w2P(E)
max
T2T

X

e2E
(e 2 T )we, (28)

where P(E) = {w = (we)e2E :
P

e2E we = 1, we � 0 8 e 2 E}. Table 1 provides the precise
primal and dual formulation associated with (G) justifying (28). More intuition and examples are
given in Appendix A. We state the following Lemma characterizing an optimal solution of Dual,
whose proof is in Appendix C.
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Primal Dual
Objective max z min y

Variables / Constraints z 2 R
8T 2 T : ⇢T 2 R+

P
e2E we = 1

8T 2 T : y �
P

e2T we � 0

Constraints / Variables
P

T2T ⇢T = 1
8e 2 E :

P
T3e ⇢T � z � 0

y 2 R
8e 2 E : we 2 R+

Table 1: The primal (cf. (24)) and dual formulation of (G).

Lemma 3 There exists an optimal solution of Dual,

w? 2 argmin
w2P(E)

max
T2T

X

e2E
(e 2 T )we,

such that all non-zero components of w?
take the identical values.

As per Lemma 3, consider an optimal solution w? of Dual, that assigns constant value to a subset
F ⇢ E edges and 0 to edgesE\F . It follows thatw?

e = 1
|F | for e 2 F andw?

e = 0 for e 2 E\F . Let
V (F ) ⇢ V be set of all vertices corresponding to the end points of edges in F making a subgraph
(V (F ), F ) of G. Let c(F ) � 1 denote the number of connected components of (V (F ), F ). Per
Dual, given w?, (G) equals the weight of the maximum weight spanning tree in G with edges
assigned weights as per w?. Such a maximum weight spanning tree must select as many edges as
possible from F : it can select at most |V (F )|�c(F ) such edges and any each such edge has weight
1/|F | whereas the other selected edges have weight 0. Thus, the total weight of such a maximum
weight spanning tree is (|V (F )|� c(F ))/|F |. This gives us an equivalent characterization for (G)
as

(G) = min
F⇢E

|V (F )|� c(F )

|F | . (29)

Now we state a Lemma, whose proof is in Appendix D, that concludes on Theorem 1.

Lemma 4 For any graph G,

min
S⇢V

|S|� 1

|E(S)| = min
F⇢E

|V (F )|� c(F )

|F | . (30)

4.3. Evaluating (G) For Certain Graphs

As established in Section 4.1, (G) can be computed in polynomial time for any G. Here, we
attempt to obtain a (lower) bound on (G) in terms of simple graph properties. To that end, we
obtain the following for graphs with bounded maximum average degree and for graphs with bounded
girth.

Lemma 5 Consider a graphG = (V,E). IfG has maximum average degree d̄ = maxS⇢V

2|E(S)|
|S| ,

2

d̄+ 1
 (G). (31)

9
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If G has girth (length of its shortest cycle) g > 3,

2

1 +N
2

g�3

(1� 1/g)  (G). (32)

The proof of Lemma 5 is presented in Appendix E. As an immediate consequence, for g = � logN ,

(G) = 1� 1

�
+ o�!1(

1

�
) therefore ↵(G, TRW0)  1p

(G)
= 1 +

1

2�
+ o�!1(

1

�
). (33)

5. A Near Linear-Time Variant of TRW0

5.1. Algorithm

TRW0 requires finding ⇢?(G). As discussed in Section 4, it can be computed efficiently. However
it can be cumbersome and having near-linear (in |E|) time variant can be more attractive in prac-
tice. With this as a motivation, we propose utilizing the uniform distribution on T (G), denoted as
u(G) ⌘ U(T (G)), in place of ⇢?(G) in TRW0 . The challenge is it has very large support and hence
it is difficult to compute Lu(✓), Uu(✓). But, both of these quantities are averages, with respect to
u, of a certain functional. And it is feasible to sample spanning trees uniformly at random for any
G in near-linear time. Therefore, we can draw n samples from the distribution u and consider the
empirical distribution ûn to compute estimates Lûn(✓), Uûn(✓) with few samples. This is precisely
the algorithm.

To that end, consider n trees T1, . . . ,Tn sampled uniformly at random from T (G). Compute

ûne =
1

n

nX

i=1

(e 2 Ti), Lûn(✓) =
1

n

nX

i=1

�(⇧Ti(✓)), Uûn(✓) =
1

n

nX

i=1

�(⇧Ti
ûn(✓)), (34)

where ûn = (ûne )e2E . Given this, produce the estimate,

b�ûn(✓) =
p
Lûn(✓)Uûn(✓). (35)

5.2. Guarantees

Given a graph G, remember that (G,u) = mine2E ue with ue = PT⇠u(e 2 T). We obtain the
following guarantee (proof can be found in Appendix F).

Lemma 6 Given ✏ > 0 and � > 0, for n � O
�
log(N

�
)(G,u)�2✏�2

�
and ✏ sufficiently small,

with probability at least 1� �,

max
⇣ �(✓)
b�ûn(✓)

,
b�ûn(✓)

�(✓)

⌘
 1 + ✏p

(G,u)
. (36)

5.3. Computation Cost

To sample trees uniformly at random from T (G), Schild (2018) recently proposed a ”short-cutting”
method that has O(|E|1+o(1)) runtime. The earliest polynomial time algorithm has been known
since Guenoche (1983). While we do not recall either of these here, we briefly recall algorithm

10
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from Broder (1989) due to its elegance even though it is not the optimal (it has O(N |E|) run time):
(1) starting with any u 2 V run a random walk on G until it covers all vertices, (2) for every vertex
v 6= u, select the edge through which v was reached for the first time during the walk, and (3) output
the N � 1 edges (which form tree) thus selected.

Given n such samples, in order to compute b�ûn(✓), we have to compute 2n log-partition functions
for tree structured graph. As noted in Section 2, each such computation requires O(N |X |2) opera-
tions. By Lemma 6, we therefore need total of O(|E|1+o(1) +N |X |2)⇥O((G,u)�2✏�2 log 1/✏)
runtime for (1 + ✏)/

p
(G,u) approximation with probability 1� ✏.

5.4. (G,u) and Effective Resistance

Recall that (G,u) = mine2E ue where ue = ET⇠u[ (e 2 T)] is equal to the so called “effective
resistance” associated with edge e 2 E for the graph G. The notion was introduced by Klein and
Randić (1993) and has multiple interpretations. We present one here. For e = (s, t) 2 E, the
effective resistance ue is equal to the amount of electric energy dissipated by the network when
all edges are seen as electric wire of resistance Re = 1 and a generator guarantees a total current
flow (◆gen = 1) from s to t. The distribution of the current ◆ across the network must minimize the
dissipated energy while respecting the constraints imposed by Kirchoff’s laws (also see (Lyons and
Peres, 2017, Chapter 2)). Below we provide variational characterization of it.

8e = (s, t) 2 E : ue = min

8
>>>>>><

>>>>>>:

X

{u,v}2E

◆(u, v)2

������������

8{u, v} 2 E : ◆(u, v) + ◆(v, u) = 0

8u 2 V \ {s, t} :
X

v|(u,v)2E

◆(u, v) = 0

X

v|(s,v)2E

◆(s, v) =
X

u|(u,t)2E

◆(u, t) = 1

9
>>>>>>=

>>>>>>;

.

(37)
We observe that the minimum effective resistance of the graph, (G,u) = mine2E ue can also be
connected to structural properties of the graph (proofs are in G).

Lemma 7 Given G = (V,E), if G has maximum degree d,

2

d+ 1
 (G,u) (38)

, and if G has girth at least g > 3,

1

1 + |E|/(g � 1)2
 (G,u) (39)

6. Beyond Trees

This far, we have restricted to approximating �(✓) by decomposing ✓ = ET⇠⇢[⇧T
⇢ (✓)] and then

using properties of � to produce an approximation guarantee. Such arguments would hold even if
we decompose ✓ using subgraphs of G beyond trees. The choice of trees was particularly useful
since they allow for an efficient computation of �. In general, graphs with bounded tree-width lend
themselves to efficient computation of �, cf. Chandrasekaran et al. (2011).

11
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To that end, let Tk(G) denote the set of all subgraphs ofG that have treewidth bounded by k � 1. Let
P(Tk(G)) denote the distribution over all such subgraphs. For anyH 2 Tk(G) and ⇢ 2 P(Tk(G)),
define ⇧H(·) and ⇧H

⇢ (·) similar to that in (13) in Section 3 and define,

L⇢(✓) = EH⇠⇢(�(⇧
H(✓))), U⇢(✓) = EH⇠⇢(�(⇧

H

⇢ (✓))), b�⇢(✓) =
q
L⇢(✓)U⇢(✓). (40)

Using identical arguments as in Theorem 1, it follows that b�⇢(✓) is 1/
p
(G, ⇢)-approximation.

By optimizing over the choice ⇢⇤
k
2 P(Tk(G)) one would theoretically attain

k(G) = max
⇢2P(Tk(G))

min
e2E

⇢e. (41)

(✏, k)-partitioning. While such generality is pleasing, the space of P(Tk(G)) seems too vast and
complex to compute k(G) or the associated distribution ⇢⇤

k
(G) 2 argmax⇢2P(Tk(G))mine2E ⇢e

for k > 1. In Jung and Shah (2006); Jung et al. (2009) a seemingly different approach was proposed
using graph partitioning. It resulted in an approximation method for a large family of graphs includ-
ing minor-excluded graphs and graphs with polynomial growth. It considers the set of k-partitions
of G, Partk(G) ⇢ Tk(G) defined as

Partk(G) = {H = (V,
K[

i=1

E(Si)) | (Si)1ik is a partition of V and 8i : |Si|  k}. (42)

A distribution ⇢ 2 P(Partk(G)) ⇢ P(Tk(G)) is called an (✏, k)-partitioning of G if 8e 2 E :
1� ✏  EH⇠⇢[ (e 2 H)]  1. The proof of the following result can be found in Appendix H.

Theorem 8 If G is such that there exists an (✏, k)-partitioning of G, ⇢ 2 Partk(G), then

p
1� ✏  �(✓)

b�⇢(✓)
 1p

1� ✏
. (43)

We note that 1p
1�✏

= 1 + 1
2✏ + o(✏) and hence it improves upon the result given in Jung and Shah

(2006); Jung et al. (2009) which achieves a 1 + ✏ approximation error.

7. Relation to hardness of approximation

As mentioned in earlier, the task of computing log-partition function �(✓) = log(Z(✓)) is compu-
tationally hard. Further finding constant factor approximation to it is hard in general. We provide
details to this effect.

To that end, let us consider a graph G with X = {�1, 1} and potentials such that 8e = (u, v) :
�e(xe) = � (xu 6= xv) where � 2 R+. The corresponding partition function Z(�) satisfies:

Z(�) =
X

x2{�1,1}n
exp

0

@�
X

(u,v)2E

(xu 6= xv)

1

A , (44)

=
X

0k|E|

Nk exp(�k), (45)

12
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where Nk denotes the number of k-cuts of G. This gives the following bound:

�MAXCUT(G)  �(�)  N log(2) + �MAXCUT(G), (46)

where MAXCUT(G) = max{k | Nk 6= 0} is the cardinality of the maximum cut of G. As a
consequence, for � sufficiently large (� = N log(2)/✏ for some small ✏ > 0) observe that any
constant factor guarantee on b�(�) will yield a similar constant factor guarantee on the size of the
maximum cut of G. The task of approximating the maximum cut of a graph was shown to be
NP-hard for any constant factor greater than 16/17 ⇡ 0.941 by Håstad (2001) for general graphs,
although this ratio was improved under structural assumptions for G (such as bounded degree)
by Feige et al. (2002). Through the above connection, our result provides 1/(G)-approximation
guarantee for any G.

The example above generalizes to binary constraint satisfaction problems (CSP). For a graph G =
(V,E) and an alphabet X , a binary constraint satisfaction problem C is defined by a collection
of constraints on the edges of the graph (Ce)e2E , where each constraint corresponds to a subset
Ce ⇢ X 2 of “acceptable” values for the corresponding pair of variables. For a given constraint
satisfaction problem C = (Ce)e2E , a quantity of interest is its maximum satifiability MAXCSP(C),
which is the highest fraction of satisfied constraints, over all possible assignments for V . Notice
that the maximum cut problem mentioned above is a particular case. By the same derivations, we
obtain that for the choice of potential functions �e(xe) = � (xe 2 Ce) and � sufficiently large
(� � N log(|X |)/✏) the corresponding log-partition function satisfies:

�(�)/� � ✏  MAXCSP(C)  �(�)/�. (47)

Maximum constraint satisfaction problems are known to be hard to approximate. A particular case
of constraint satisfaction problems (where the constraints are of the form Ce = {(z,⇡(z)) | z 2 X}
with ⇡ a permutation of X ) are called “unique games” (see Khot and Vishnoi (2005) for precise
definition). The unique games conjecture (Khot, 2002) states that no constant factor approximation
guarantee is achievable in polynomial time for maximum constraint satisfaction problems on unique
games in general. That is, one should not expect constant factor approximation for log partition
function computation, even with non-negative potentials as considered in this work, for general
graph. Indeed, this work provides such non-constant factor approximation, 1/(G), for any graph
G for tree-reweighted method. The question remains, whether such is the tightest possible for tree-
reweighted method in general.

8. Conclusions

We presented an approach to quantify the approximation ratio of variational methods for estimat-
ing the log-partition function of discrete pairwise graphical models. As the main contribution, we
quantified the approximation error as a function of the underlying graph properties. In particular,
for a variant of the tree-reweighted algorithm, for graphs with bounded degree the approximation
ratio is a constant factor (function of degree) and for graphs with large (� logarithmic) girth, the
approximation ratio is close to 1. The method naturally extends beyond trees unifying prior works
on graph partitioning based approach.

In this work, we restricted the analysis to non-negative valued potentials and edge parameters.
If potentials are bounded, we can transform the general setting into a setting with non-negative po-
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tentials. However, the approximation ratio with respect to this transformed setting may not translate
to that of the original setting. This may be interesting direction for future works.
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Appendix A. Balanced Covering of Graphs

In section 4, we described two linear programming problems Primal and Dual of optimum equal
to the main quantity of interest (G). We recall their formulation given in (28) and provide some
interpretation.

Primal = max
⇢2P(T )

min
e2E

X

T2T
(e 2 T )⇢T = min

w2P(E)
max
T2T

X

e2E
(e 2 T )we = Dual.

The objective of Primal is to obtain a balanced covering of G with its spanning trees, that is a
distribution ⇢ 2 P(T (G)) that maximizes the probability of apparition of the least likely edge. We
give example of such balanced coverings in Figure 1. Interestingly, Dual also has a nice formulation
as amax-min spanning tree problem. Given a total budget of 1, it aims to assign weights to the edges
of G such that an adversary removing a maximum spanning tree will receive the smallest reward.
It is natural to observe that the densest sub-graphs of G are the key to both these problems. They
are key to Primal because they are harder to cover with spanning trees. They are key to Dual
because assigning weight to dense regions is a good way to limit the adversary’s reward. This is
made explicit by the representations in Figure 2 and Figure 3.

Figure 1: Three examples of balanced coverings of graphs. Notice that for the triangle, the most
connected subgraph is the entire graph itself which yields (G) = 3�1

3 = 2
3 = 0.67 just

like for the third example for which (G) = 4�1
5 = 3

5 = 0.6.
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Figure 2: More examples of balanced covering of graphs, obtained with a LP solver. The number
assigned to each edge corresponds to (⇢e)e2E for a balanced cover ⇢⇤(G). Note that for
G7, some of the edge probability of edge (3, 5) could be redistributed to edge (4, 5) by
symmetry, but this would not improve the optimum. This is also true for G9.
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Appendix B. Proof of Lemma 2

We start by observing a few properties of function �(·).
Property 1. � is non-decreasing. For a, b 2 Rn let a � b denote that every component of a is less
or equal to that of b, i.e. ai  bi, i 2 [n]. With this, for ✓,✓0 2 R|E|

+ such that ✓ � ✓0, it can be
easily verified that

�(✓)  �(✓0). (monotonicity)

Since �(0) = N log |X |, and 0 � ✓ � ✓0, we have

N log(|X |)  �(✓)  �(✓0). (48)

Property 2. � is sub-linear. For � � 1 and ✓ 2 R|E|
+ ,

�(�✓)  ��(✓). (sub-linearity)

The above follows from the fact that for any s = (si) 2 Rn
+,

� nX

i=1

s�i
�

� nX

i=1

si
�
�
.

Now consider ⇢ 2 P(T (G)). For any T 2 T (G) and ✓ 2 R|E|
+ , by definition of ⇧T , we have that

⇧T (✓) � ✓. Therefore, using the monotonicity of the log-partition function it follows that

L⇢(✓) =
X

T2T (G)

⇢T�(⇧T (✓)) 
X

T2T (G)

⇢T�(✓)  �(✓). (49)

By definition ✓ = ET⇠⇢[⇧T
⇢(✓)], and due to convexity of �, it follows that

�(✓) = �
�
ET⇠⇢[⇧

T

⇢(✓)]
�
 ET⇠⇢[�(⇧

T

⇢(✓))] = U⇢(✓). (50)

By definition of (G,⇢) = mine2E ⇢e, it follows that

⇧T

⇢ (✓) 
1

(G,⇢)
⇧T (✓), 8 T 2 T (G). (51)

And, by definition 1/(G,⇢) � 1. Therefore by (monotonicity) and (sub-linearity), we have

�(⇧T

⇢ (✓))  �
� 1

(G,⇢)
⇧T (✓)

�
 1

(G,⇢)
�(⇧T (✓)). (52)

Therefore,

U⇢(✓) =
X

T2T (G)

⇢T�(⇧T

⇢ (✓))  1

(G,⇢)

X

T2T (G)

⇢T�(⇧T (✓)) =
1

(G,⇢)
L⇢(✓). (53)

As a consequence of (49), (50) and (53) we obtain that

�(✓)  U⇢(✓) 
1

(G,⇢)
�(✓) and (G,⇢)�(✓)  L⇢(✓)  �(✓). (54)
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From this, it follows that

p
(G,⇢)�(✓) 

q
L⇢(✓)U⇢(✓) 

1p
(G,⇢)

�(✓). (55)

Which can be rewritten as

p
(G,⇢) 

b�⇢(✓)

�(✓)
 1p

(G,⇢)
. (56)

By optimizing over choice of ⇢ = ⇢?(G), we conclude that ↵(G, TRW0)  1
(G) .

Appendix C. Proof of Lemma 3

(See illustration in Figure 3) For w = (we)e2E denote f(w) the number of distinct values in its
support:

f(w) = |{we : e 2 E,we 6= 0}|. (57)

To prove the lemma, it suffices to show that there exists an optimal solution of Dual such that
f(w) = 1. We will prove that if w is an optimal solution and f(w) > 1 then we can build w0 of
similar objective value such that f(w0)  f(w)� 1. By repeating this till f(w) = 1 will conclude
the proof.

Letw be an optimal solution with f(w) > 1. We consider the edges e1, e2, ..., e|E| ordered by their
weights, i.e.

we1 � ... � we|E| . (58)

In what follows, we will make sure that the ordering on the edges never changes, therefore we allow
ourselves to write wi instead of wei . Now the objective of Dual achieved by such an optimal w
corresponds to the weight of a maximum weight spanning tree. Let us utilize Kruskal’s algorithm to
find such an maximum weight spanning tree. Recall that Kruskal’s algorithm greedily selects edges
from higher to lower weight as long as they do not create a cycle with previously selected edges. We
will denote IT = {t1 < ... < tN�1} the indices of the edges selected by the algorithm to construct
tree T and let IE\T = [N�1

k=1 {s : tk < s < tk+1} denote the indices of edges not part of T with
notation tN = |E| + 1. The weight of the maximum spanning tree is then w(T ) =

P
N�1
k=1 wtk .

Note that t1 = 1 and t2 = 2 since cycle requires 3 or more edges. By definition wj�1 � wj for
2  j  |E|. Now if wj�1 > wj the we claim that j 2 IT . This is because for 1  k  N � 1
if (wtk , ...., wtk+1�1) are not equal, setting them all to their average decreases wtk strictly while
preserving w 2 P(E) as well as the order on the edges and therefore contradicting the optimality
of w for Dual. Therefore w is piece-wise constant with discontinuities only appearing for j 2 IT .

If f(w) = 2 and all weights are positive, we denote 2  k  N �1 such that wtk�1 > wtk > 0
and we have:

w1 = ... = wtk�1 > wtk = .... = w|E|. (59)

In this case, the optimal objective value for Dual is equal to (k � 1)w1 + (N � k)wtk . To
make w constant on its support while preserving the order on the weights, there are two possibili-
ties. Either transfer all weight from (wtk , ...., w|E|) to (w1, ..., wtk�1) until (wtk , ...., w|E|) reaches
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zero. The objective will then be w1 +
|E|�tk+1

tk�1 wtk . Or transfer all weight from (w1, ..., wtk�1) to

(wtk , ...., w|E|) until all weights are equal. The objective will be then wtk + |E|�tk+1
tk�1 (w1 � wtk).

Because either |E|�tk+1
tk�1  1 or tk�1

|E|�tk+1  1, one of these transfers does not increase the objective
and yields f(w) = 1 < 2.

If f(w) = 2 and some weights are 0, denote k0 the smallest index such that wtk0
= 0. The

method above still holds when replacing |E|� tk + 1 by tk0 � tk.

Now suppose f(w) � 3, making sure that the order on the weights is preserved requires extra
caution. In addition to k and k0 (if required), we denote k1 the index of the discontinuity that follows
k. We have:

... = wtk1
�1 > wtk1

= ... = wtk�1 > wtk = ... = wtk0
�1 > wtk0

= ... (60)

In the event when we want to transfer weight from (wtk , ..., wtk0
�1) to (wtk1

, ..., wtk�1), we must
make sure that (wtk1

, ..., wtk�1) does not exceed wtk1
�1. If (wtk1

, ..., wtk�1) attains wtk1
�1 the

transfer must stop at equality, and one should observe that we have decreased f(w) strictly by 1
because the discontinuity at wtk1

has disappeared and no new discontinuity was created.

In summary, we have argued that if w is an optimal solution and f(w) > 1 then we can build
w0 of same objective value (optimal) and such that f(w0)  f(w)� 1. This completes the proof of
Lemma.

Appendix D. Proof of Lemma 4

We prove the equality by establishing inequalities in both direction.

Establishing minS⇢V

|S|�1
|E(S)| � minF⇢E

|V (F )|�c(F )
|F | : For S ⇢ V note that V (E(S)) ⇢ S and

c(E(S)) � 1 and therefore that |S|�1
|E(S)| �

|V (E(S))|�c(E(S))
|E(S)| with E(S) ⇢ E. Thus, minS⇢V

|S|�1
|E(S)|

is minimizing a larger objective function over smaller set compared tominF⇢E

|V (F )|�c(F )
|F | . There-

fore, the inequality follows immediately.

EstablishingminS⇢V

|S|�1
|E(S)|  minF⇢E

|V (F )|�c(F )
|F | : LetF ? ⇢ E be a minimizer ofminF⇢E

|V (F )|�c(F )
|F | .

LetH = (V (F ?), F ?). By optimality, all connected components ofH must be vertex-induced sub-
graphs of G. This is because, if not then it is possible to add edges to H without changing the
number of vertices or number of connected components in it, which would contradict optimality. In
other words, there exists disjoint subsets Si, 1  i  c(H) of V (F ?) with V (F ?) = [c(H)

i=1 Si and
F ? = [c(H)

i=1 E(Si). If c(H) = 1, then the inequality follows immediately. If c(H) � 2, denote
H\H1 the graph obtained by removingH1 = (S1, E(S1)) fromH . Note that c(H\H1) = c(H)�1
and that c(H1) = 1. By Lemma 9, 8a, b, c, d 2 R4

+ : min(a
b
, c

d
)  a+c

b+d
. Therefore,

min

✓
|V (H1)|� c(H1)

|E(H1)|
,
|V (H \H1)|� c(H \H1)

|E(H \H1)|

◆
 |V (H)|� c(H)

|E(H)| . (61)

If H1 achieves the minimum on the left hand side, then it concludes the proof. If H \H1 achieves
the minimum simply iterate the above argument till we are left with single connected component
and that would conclude the proof.
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Figure 3: An example of an optimal weight assignment (we)e2E for the problem Dual on nine
different graphs. The solution was found by the interior point method using a linear
programming solver. Note that for most graphs, the solution reached is already constant
on its support. On graphsG2 andG4, note that evening out the weights would not increase
the weight of the maximum spanning tree.
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Lemma 9 For any a, b, c, d 2 R+,

min
⇣a
b
,
c

d

⌘
 a+ c

b+ d
. (62)

Let a, b, c, d 2 R+. The following sequence of statements hold leading to the proof of the claim:

ad  bc or bc  ad (63)
min(ad(b+ d), cb(b+ d))  (a+ c)bd (64)

min
⇣a
b
,
c

d

⌘
 a+ c

b+ d
. (65)

Appendix E. Proof of Lemma 5

Case of bounded maximum average degree. Assume G has maximum average degree bounded by
d̄, where by definition

d̄ = max
S⇢V

2|E(S)|
|S| . (66)

Therefore, for any S ⇢ V , |E(S)|  d̄

2 |S|. And there can be at most
�|S|

2

�
edges in a graph over

vertices S, and hence |E(S)|  |S|(|S|�1)
2 . Therefore, we obtain

|S|� 1

|E(S)| �
2

d̄

�
1� 1

|S|
�
= L1(|S|), (67)

|S|� 1

|E(S)| �
2

|S| = L2(|S|). (68)

Therefore

|S|� 1

|E(S)| � min
x2R+

{max(L1(x), L2(x))}. (69)

Note that L1 is increasing and bounded whereas L2 is decreasing. Therefore, max(L1(x), L2(x))
with x 2 R reaches its minimum for x such thatL1(x) = L2(x)which leads to minima at x = d̄+1.
Therefore, we conclude that for all S ⇢ V ,

|S|� 1

|E(S)| �
2

d̄+ 1
. (70)

Case of bounded girth. Let G with girth g > 3. Note that all subgraphs of G have girth at least g.
The generalised Moore bound (obtained by Alon et al. (2002)) then gives 8S ⇢ V :

|S| � 1 + dS

g�3
2X

i=0

(dS � 1)i if g is odd, (71)

|S| � 2

g�2
2X

i=0

(dS � 1)i, if g is even (72)

23



COSSON SHAH

with dS = 2|E(S)|
|S| . We will only keep a weaker version of this bound that does not depend on the

parity of g. Specifically, for all S ⇢ V :

|S| �
�
2
|E(S)|
|S| � 1

� g�3
2 . (73)

Therefore, |E(S)|  1
2(|S|

2
g�3+1 + |S|) for all S ⇢ V . Subsequently, we have

|S|� 1

|E(S)| � 2
1� 1

|S|

1 + |S|
2

g�3

� 2
1� 1

|S|

1 +N
2

g�3

(74)

This bound is clearly increasing with |S|. Also note that if |S|  g� 1, the subgraph (S,E(S)) can
have no cycle and therefore |S|�1

|E(S)| = 1. The worse case is therefore attained for |S| = g where we
have:

|S|� 1

|E(S)| �
2

1 +N
2

g�3

�
1� 1

g

�
. (75)

Appendix F. Proof of Lemma 6

We shall use Hoeffding’s inequality: for any bounded random variable a  X  b, the deviation of
its n-empirical average Xn computed from in dependant samples is such that for any t > 0,

P(|E(X)�Xn| � t)  2 exp
⇣ �2nt2

(b� a)2

⌘
. (76)

Another version of the equation when E(X) > 0 is as follows, for any ✏ > 0

P
✓
1� ✏  Xn

E(X)
 1 + ✏

◆
� 1� 2 exp

⇣�2n✏2E(X)2

(b� a)2

⌘
. (77)

An immediate consequence is that ûn is a good approximation for u. For any e 2 E,

P
✓
1� ✏  ûne

ue
 1 + ✏

◆
� 1� 2 exp

�
�2n✏2u2e

�
, (78)

therefore by union bound,

P
✓
8e 2 E : 1� ✏  ûne

ue
 1 + ✏

◆
� 1� 2|E| exp

�
�2n✏2(G,u)

�
. (79)

Another consequence is that Lûn is a good approximation for Lu. Indeed, considering the random
variable �(⇧T(✓)) of mean Lu(✓) and of empirical average Lûn(✓) = 1

n

P
n

i=1�(⇧
Ti(✓)) and

noting that this variable is bounded as follows 0  �(⇧T(✓)) ( �(✓))  1
u

Lu(✓), we have

P
✓
1� ✏  Lûn(✓)

Lu(✓)
 1 + ✏

◆
� 1� 2 exp

�
�2n✏22u

�
. (80)
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Regarding Uûn(✓), the discussion requires an additional argument because 1
n

P
n

i=1�(⇧
Ti
ûn(✓)) is

not a sum of independent random variables. Instead, let us focus on the close quantity, 1
n

P
n

i=1�(⇧
Ti
u (✓))

for which we have 0  �(⇧T
u(✓))

⇣
 1

u
�(✓)

⌘
 1

u
Uu(✓) and therefore,

P
 
1� ✏ 

1
n

P
n

i=1�(⇧
Ti
u (✓))

Uu(✓)
 1 + ✏

!
� 1� 2 exp

�
�2n✏22u

�
. (81)

Fortunately, if (79) is satisfied this quantity turns out to be a good approximation of Uûn(✓). Indeed,
assuming that 8e 2 E : 1� ✏  û

n
e

ue
 1 + ✏ we have that for all T 2 T (G),

(1� ✏)⇧T

u(✓) � ⇧T

ûn(✓) � (1 + ✏)⇧T

u(✓) (82)

therefore by (monotonicity) and (sub-linearity),

(1� ✏)�(⇧T

u(✓))  �(⇧T

ûn(✓))  (1 + ✏)�(⇧T

u(✓)), (83)

which shows,

(1� ✏)  Uûn(✓)
1
n

P
n

i=1�(⇧
Ti
u (✓))

 (1 + ✏). (84)

Therefore by union bound,

P
✓
(1� ✏)2  Uûn(✓)

Uu(✓)
 (1 + ✏)2

◆
� 1� (2|E|+ 2) exp

�
�2n2u✏

2
�
. (85)

By putting together (80) and (85), we obtain

P
 
(1� ✏)

3
2 

b�ûn(✓)

�u(✓)
 (1 + ✏)

3
2

!
� 1� (2|E|+ 4) exp

�
�2n2u✏

2
�
, (86)

and by arguments of Lemma 2, we can conclude that

P
 
p
u(1� ✏)

3
2 

b�ûn(✓)

�(✓)
 (1 + ✏)

3
2

p
u

!
� 1� (2|E|+ 4) exp

⇣
�2n

p
u

2✏2
⌘
, (87)

This completes the proof of Lemma 6.

Appendix G. Proof of Lemma 7

Bounded degree graph G. First assume that G has maximum degree d. Consider any edge e =
(s, t) 2 E. Denote N (s),N (t) ⇢ V the neighbours of s and t. Consider current ◆ : V ⇥ V ! R
which is a solution of optimization problem corresponding to effective resistance as defined in (37).
By definition, we have that the effective resistance ue for e 2 E is given by

ue =
X

(u,v)2E

◆(u, v)2

� ◆(s, t)2 +
X

u2N (s)\{t}

◆(s, u)2 +
X

u2N (t)\{s}

◆(u, t)2. (88)
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By constraints of the optimization problem, the sum of currents entering source s and leaving
sink t is equal to 1 (whereas it is null for isolated vertices). Therefore, focusing on s, we haveP

u2N (s)\{t} |◆(s, u)| � 1� |◆(s, t)|. By applying Cauchy Schwarz inequality, we have that
� X

u2N (s)\{t}

◆(s, u)2
�
⇥
� X

u2N (s)\{t}

12
�
� (1� |◆(s, t)|)2. (89)

Recall that G has maximum vertex degree d and therefore |N (s) \ {t}|  d� 1. Therefore,

X

u2N (s)\{t}

◆(s, u)2 � (1� |◆(s, t)|)2

d� 1
. (90)

Because the same holds for the term
P

u2N (t)\(s) ◆(u, t)
2, we obtain from (88) that

ue � ◆(s, t)2 + (1� |◆(s, t)|)2 2

d� 1
. (91)

This expression holds for all possible values of ◆(s, t). We note that for any given � 2 R+,

inf
x2R

x2 + (1� x)2� � �

1 + �
. (92)

Therefore, we conclude that for graph G with bounded degree d,

ue �
2

d+ 1
. (93)

Graph G with girth g. We now assume that G has girth g. As before, let e = (s, t) 2 E. Denote
G \ {e} = (V,E \ {e}) the graph obtained by removing edge e from G. For 0  k  g � 2, we
define

Ek = {(u, v) 2 E : dG\{e}(s, u) = k, dG\{e}(s, v) = k + 1}, (94)

where dG\{e}(s, u) denotes the shortest path distance between vertices s, u in graph G excluding
edge e. That is, Ek is the set of edges connecting vertices at distance k from s inG \ {e} to vertices
at distance k+1 from s inG\{e}. Since k  g�2, all Ek are disjoint and hence current ◆ satisfies

ue � ◆(s, t)2 +
g�2X

k=0

X

(u,v)2Ek

◆(u, v)2. (95)

For 0  k  g � 2, note that Ek [ {e} defines a cut of G. Therefore by Kirchoff’s lawP
(u,v)2Ek

|◆(u, v)| � 1� |◆(s, t)|. Using Cauchy-Schwartz inequality, we obtain:
� X

(u,v)2Ek

◆(u, v)2
�
⇥
� X

(u,v)2Ek

12
�
� (1� ◆(s, t))2. (96)

By summing-up all inequalities, we obtain

� g�2X

k=0

X

(u,v)2Ek

◆(u, v)2) � (1� |◆(s, t)|)2
� g�2X

k=0

1

|Ek|
�
. (97)
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Note that if a sequence (mk) � 0 respects
P

l

k=1mk  |E| then,
P

l

k=1
1
mk

� l
2

|E| . Therefore,

because all Ek are disjoint,
P

g�2
k=0

1
|Ek| �

(g�1)2

|E| . Inserting this in (95), we obtain

ue � ◆(s, t)2 + (1� ◆(s, t))2
(g � 1)2

|E| . (98)

Using (92), we obtain

ue �
1

1 + |E|
(g�1)2

. (99)

This completes the proof of Lemma 7.

Appendix H. Proof of Theorem 8

The proof follows by establishing that by definition if ⇢ 2 P(Partk(G)) is an (✏, k)-partitioning of
G, it implied that

(G,⇢) � 1� ✏, (100)

Indeed, by definition of (✏, k) partition, we have that for any e 2 E,

⇢e = EH⇠⇢[ (e 2 H)] � 1� ✏. (101)

Subsequently, using arguments identical to that for proof of Lemma 2, it follows that b�⇢(✓) is
1/
p
(G,⇢) approximation. That is,

p
1� ✏  �(✓)

b�⇢(✓)
 1p

1� ✏
. (102)

This completes the proof of Theorem 8.
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