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Abstract

Cross-modal retrieval aims to learn discriminative and
modal-invariant features for data from different modalities.
Unlike the existing methods which usually learn from the
features extracted by offline networks, in this paper, we pro-
pose an approach to jointly train the components of cross-
modal retrieval framework with metadata, and enable the
network to find optimal features. The proposed end-to-end
framework is updated with three loss functions: 1) a novel
cross-modal center loss to eliminate cross-modal discrep-
ancy, 2) cross-entropy loss to maximize inter-class varia-
tions, and 3) mean-square-error loss to reduce modality
variations. In particular, our proposed cross-modal cen-
ter loss minimizes the distances of features from objects
belonging to the same class across all modalities. Exten-
sive experiments have been conducted on the retrieval tasks
across multi-modalities including 2D image, 3D point cloud
and mesh data. The proposed framework significantly out-
performs the state-of-the-art methods for both cross-modal
and in-domain retrieval for 3D objects on the ModelNet10
and ModelNet40 datasets.

1. Introduction

With the stream of multimedia data flourishing on the In-
ternet in the format of videos, images, text, etc, cross-modal
retrieval task has attracted more and more attention from the
multimedia communities. Cross-modal retrieval is the task
of retrieving data from one modality given a query from
a different modality. Inspired by the representation power
of deep learning, a series of deep learning-based methods
have been proposed for cross-modal retrieval [27, 52, 51].
These methods operate by learning modal-invariant repre-
sentations in a common space.

The features from different modalities generally have
different distributions. Therefore, a fundamental require-
ment for cross-modal retrieval task is to bridge the gap
among different modalities which is commonly done by
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Figure 1. Traditional center loss vs. the proposed cross-modal
center loss. Our proposed cross-modal center loss (right) finds a
unique center for each class across all modalities. Traditional cen-
ter loss (left) finds a center for each modality and each class and
ignores the relation among centers of different modalities. Our
proposed cross-modal center loss specifically eliminates the dis-
crepancy across multiple modalities and thus is very effective for
learning modal-invariant features.

representation learning. The existing methods mainly ex-
tract the features of each modality by offline pre-trained
models, and apply a projection function to transfer the fea-
tures into a common representation space. By this transfor-
mation, the similarity of features from different modalities
can be directly measured. Hence, the main challenge during
this process is to learn discriminative and modal-invariant
features.

By learning discriminative features, we ensure that data
from the same class are mapped closely to each other in the
feature space while different classes are separated as far as
possible. In many studies, cross entropy or mean square
error loss in the label space are used to maximize the inter-
class variations. In order to compare the features extracted
from different modalities, the features need to be modal-
invariant. Various methods are proposed to reduce the
cross-domain discrepancy by using adversarial loss, sharing
a projection network, using triplet loss with pairs/triplets of
different modalities, maximizing cross-modal pairwise item
correlation [29, 42, 34, 20, 10].

Even though the existing methods [42, 51] achieved
promising results in the cross-modal retrieval tasks, they



suffer from the following limitations: 1) Their core idea
is to minimize the cross-modal discrepancy over the fea-
tures from multiple modalities extracted by pre-trained neu-
ral networks. For example, in the task of image-text re-
trieval, image and text features are extracted by pre-trained
models(VGG [37] and SentenceCNN [21]), and then learn-
ing is performed on these extracted features instead of the
metadata. Because these feature extractors (VGG, Sen-
tenceCNN) are not trained or finetuned for cross-modal re-
trieval task, they are not optimally representative. Instead,
the network should be jointly trained with multimodal data
to fully address the retrieval task. 2) The existing loss
functions are mainly designed for two types of modalities,
mainly image and text, and may not generalize well for
cases when more than two modalities are available. It is
essential to develop a simple yet effective loss function that
can be easily extended for multiple modalities.

In this paper, we propose a new loss function, called
Cross-modal Center Loss, specifically designed to mini-
mize the intra-class variation across multiple modalities.
Our loss function is directly inspired by the traditional uni-
modal center loss which learns a center for each class and
minimizes the distance between objects and their corre-
sponding centers in the feature space. Fig. 1 shows the com-
parison between the traditional center loss and the newly
proposed cross-modal center loss. Having multi-modal
data, the traditional center loss minimizes the distance of
objects and their centers in separate features spaces defined
for each modality. Instead, our proposed cross-modal center
loss learns a unique center C for each class in the common
space of all modalities. Specifically, it minimizes the dis-
tance of multi-modal objects and their centers in the same
common feature space for all modalities. When more multi-
modal data is available, the cross-modal center loss will be
able to learn more reliable centers for each class in the com-
mon space.

With the proposed cross-modal center loss, the cross-
modal discrepancy between different modalities of the data
can be eliminated. The proposed cross-modal center loss
can be employed in conjunction with other loss functions to
jointly learn features for cross-modal retrieval task. To ver-
ify the effectiveness of the proposed loss function, we fur-
ther propose an end-to-end framework for cross-modal re-
trieval task to learn discriminative and modal-invariant fea-
tures. The proposed framework is optimized with three loss
functions including the cross-entropy in the label space to
learn discriminative features, the cross-modal center loss to
specifically eliminate the cross-modal discrepancy in a uni-
versal space, and the mean square error loss to minimize
the cross-modal distance per object. Furthermore, a weight
sharing strategy is applied to learn modal invariant features
in the common space.

Different from the previous cross-modal retrieval meth-

ods which extract the features of image or text by offline
networks, we propose to jointly train the entire framework
from the metadata without being limited by pre-trained
models from other datasets. The effectiveness of the pro-
posed framework is evaluated on a novel 3D cross-modal
retrieval task which has not been explored by existing super-
vised methods. Our method significantly outperforms the
recent state-of-the-art methods on 3D cross-modal retrieval
task and in-domain retrieval task. The main contributions
of this paper are summarized as follows:

• We propose a novel cross-modal center loss to map the
representations of different modalities into a common
feature space.

• We propose an end-to-end framework for cross-modal
retrieval task by jointly training multiple modalities us-
ing the proposed cross-modal center loss. The pro-
posed framework can be extended to various cross-
modal retrieval tasks.

• The proposed framework significantly outperforms
the state-of-the-art methods on cross-modal and in-
domain retrieval tasks across images, point cloud, and
mesh for 3D shapes. To the best of our knowledge, this
is the first supervised learning method for object re-
trieval across 2D image and 3D point cloud and mesh
data.

2. Related Work
Feature Learning for 3D Objects: 3D data are inherently
multi-modal and can be represented in various ways such
as point cloud, multi-view images, mesh, volumetric data,
etc. Various deep learning-based methods have been pro-
posed for 3D feature learning including unordered point
cloud-based methods [23, 24, 30, 32, 41, 44, 47], multi-
view images-based methods [38, 39], and volumetric vox-
elized data-based methods [5, 22, 31, 26, 40]. Qi et al. pro-
posed the first deep learning-based model (i.e. PointNet) to
directly learn the features from unordered point cloud data.
To specifically model the local information for each point
[30], Wang et al. proposed a dynamic graph convolution
neural network (DGCNN) with EdgeConv using k nearest
neighbor (KNN) points [44]. Su et al. proposed to learn
the features for 3D objects with multi-view CNN operating
on 2D images that are rendered from different views of 3D
data [38]. MeshNet [8] and MeshCNN [12] were proposed
to learn features directly from the mesh data by modelling
the geometric relations of mesh faces of the object. Re-
cently, few studies attempted to learn modal-invariant fea-
tures with self-supervised learning. Jing et al. proposed
MVI for modal and view-invariant feature learning by con-
trasting where the learned features can be used for cross-
modal retrieval [17].



Cross-modal retrieval: Several methods have been pro-
posed for cross-modal retrieval task, mainly targeting
image-text retrieval. One straightforward solution for this
task is to formulate the problem as a linear projection
[16, 18, 33, 50]. Most recently, deep learning-based meth-
ods have been proposed for representation learning due to
the powerful feature learning capability. As a deep ver-
sion of CCA, Andrew et al. proposed deep canonical cor-
relation analysis (DCCA) to adapt deep neural network to
model the complex nonlinear transformations by project-
ing two highly linear correlated views into the same com-
mon space [2]. As a further step, Wang et al. proposed
deep canonically correlated autoencoders (DCCAE) which
is a two-autoencoder design and is jointly optimized by
the combination of the canonical correlation between the
learned representations and the reconstruction errors of the
autoencoders [43]. Peng et al. proposed a two-stage frame-
work called Cross-Media Deep Networks (CMDM) which
acquires inter- and intra-modality features and then hierar-
chically combines the representations to further learn the
rich cross-media correlations [28]. However, these deep
learning-based methods did not concentrate on inter- and
intra-modality relations in their designs. The CMDN later is
extended by Peng et al. to cross-modal correlation learning
(CCL) by adding inter-modal interactions in the first stage
while adding intra-modal semantic constraints in the second
stage [29].

To learn modal-invariant features, Wang et al. proposed
adversarial cross-modal retrieval (ACMR) which adapted
adversarial learning to minimize the domain gap by using
a discriminator to predict the corresponding modality of the
representations [42]. With the adversarial loss function, this
method significantly outperformed the previous state-of-
the-art methods on popular benchmarks with a large margin.
Zhen et al. proposed deep supervised cross-modal retrieval
(DSCMR) to learn the representations in the common space
in regard to both inter-class and intra-class relations [51].
The DSCMR increases the inter-class variations via the
discrimination loss in both the label space and the com-
mon representation space. Although the DSCMR achieved
state-of-the-art performance on image-text retrieval task,
our analysis show that this method have poor generalization
ability to settings with diverse data samples.

Most of the existing work use the image and text fea-
tures extracted by offline networks and directly minimize
the cross-modal gap in the common space using these fea-
tures. In this paper, we propose an end-to-end jointly
trained framework and a novel cross-modal center loss to
learn discriminative and modal-invariant features directly
from metadata.

3. Methods
We propose an end-to-end framework with joint training

of multiple modalities for cross-modal retrieval task based
on the proposed cross-modal center loss. The overview of
our proposed framework for 3D cross-modal retrieval task
is shown in 2. As shown in the figure, The features for dif-
ferent modalities including Mesh, point cloud, and image
are extracted by different networks, then these features are
projected to a common space via two shared fully connected
layers. The cross-modal discrepancy is eliminate in the uni-
versal space with our proposed loss functions. The formu-
lation of the proposed cross-modal center loss is introduced
in the following sections.

3.1. Problem Formulation

Dataset S contains N instances where the i-th instance
ti is a set of M modalities with a semantic label yi. The set
of modalities of ti is denoted by si. Formally:

S = {ti}Ni=1 , ti =
(
si, yi

)
, si = {xmi }Mm=1

Generally, the modality samples {x1i , x2i , · · · , xMi } are
in M different representation spaces and their similarities
cannot be directly measured. The goal of the cross-modal
retrieval task is to learn M projection functions fm for each
modality m ∈ [1,M ], where vmi = fm(xmi , θm) and θm is
a learnable parameter. As a result, vmi is a projected fea-
ture in the common representation space. Distance between
the projected features is a measure of similarity between the
samples across all modalities. Therefore, samples from the
same class should be mapped closely to each other indepen-
dent of their modalities: d(vmi , v

m∗

i ) ∼ low. On the other
hand, samples from different classes should be projected as
far as possible: d(vmi , v

m∗

j ) ∼ high (where i 6= j)

3.2. Loss Function

The core of the cross-modal retrieval is to obtain discrim-
inative and modal-invariant features for data of different
modalities with heterogeneous networks. To learn discrimi-
native features, we use the cross entropy loss over the shar-
ing head of our network, while our proposed cross-modal
center loss and mean square error help with learning modal-
invariant features.

Cross-modal center Loss: Given the extracted features
{vmi }Ni=1 (m ∈ [1,M ]) for N instances and M modalities,
our proposed cross-modal center loss is formulated in Eq.
1:

Lc =
1

2

N∑
i=1

M∑
m=1

‖vmi − Cyi‖
2
2 , (1)

where Cyi ∈ Rk denotes the center of class yi in the
common space and k is the dimension of features. Com-



Figure 2. An overview of the proposed framework for 3D cross-modal retrieval task. Mesh, point cloud, and multi-view 2D image features
are extracted by MeshNet, DGCNN, and ResNet, respectively, then projected to a common space via two shared fully connected layers.
With the cross-modal center loss in conjunction with the cross-entropy loss and mean square error loss, the proposed framework can learn
discriminative and modal invariant features.

paring to the original center loss [46], our proposed cross-
modal center loss learns by eliminating the cross-modality
gap and reducing the intra-class variation. To learn modal-
invariant features, the cross-modal center loss optimizes the
network to learn a center Cyi for class yi and minimize the
distance between the features and their corresponding cen-
ters within each training batch. After each training iteration,
the center of each class, Cj , is updated by 4Cj with data
from all modalities belonging to class j:

4 Cj =

∑N
i=1

∑M
m=1 δ(yi = j)(Cj − vmi )

1 +
∑N
i=1 δ(yi = j)

, (2)

where

δ(condition) =

{
1 condition = True
0 otherwise

(3)

Given a large batch size, the model can learn a robust
center for each class, leading to produce features with small
intra-class variation across all modalities. One advantage of
the proposed cross-modal center loss is that it can be easily
extended to more modalities. When data with more modal-
ities are available, it provides more robust centers and may
lead to better optimized features.

Discriminative Loss: To learn discriminative features,
cross entropy loss in the label space is employed to opti-
mize the network. Given N samples from M modalities,

the discriminative loss is calculated by the cross-entropy
loss between the MLP prediction ŷmi from each extracted
feature vmi , and its label yi.

Ld = −
1

N
(

N∑
i=1

M∑
m=1

ymi · log(ŷmi )), (4)

where ŷmi is predicted by the two shared layers as:

ŷmi =MLP (vmi ). (5)

Trained with cross-entropy loss, samples from the same
category have higher similarities, while samples from dif-
ferent categories have lower similarities. Jointly trained
with cross-modal center loss and cross-entropy loss, the net-
work is able to learn both modal-invariant and discrimina-
tive features.

To further reduce the cross-modal discrepancy for each
instance, we propose a loss function based on mean square
error to minimize the distances between the features of all
cross-modal sample pairs. The loss function across M
modalities for each instance i is defined as the following
where {v1i , v2i , · · · , vMi } are the extracted features:

Lm =
∑

α,β∈[1,M ]α6=β

∥∥∥vαi − vβi ∥∥∥2
2
. (6)



The three proposed loss functions are used to jointly train
the network to learn discriminative and modal-invariant fea-
tures:

Loss = αcLc + αdLd + αmLm, (7)

where αc, αd, and αm are the weights for each loss term.
Our proposed joint loss function in Eq. 7 can be optimised
by stochastic gradient descent. The details of the optimiza-
tion procedure is summarized in Algorithm 1.

Algorithm 1 Optimization procedure of the proposed
framework
Require: The training data set S = {(ti, yi)}ni=1, the di-

mensionality of the common representation space k, the
mini-batch size nb, the learning rate τ , the maximal
number of epochs N .

Ensure: The optimized parameters in the M sub-networks
θm,m ∈ [1,M ].
Initialization : Randomly initialize the parameters of
M subnetworks θm,m ∈ [1,M ] and the parameters of
the shared MLP classifier θP .

1: for j = 1 to N do
2: for b = 1 to

⌊
n
nb

⌋
do

3: Construct a training mini-batch by randomly se-
lecting nb samples from S.

4: Extract the representations vmi for each sample xmi
in the mini-batch by forward propagation, where
m ∈ [1,M ], and i ∈ [1, nb].

5: For each vmi , acquire the class prediction ymi by:
ymi =MLP (vmi )

6: Calculate the mini-batch training loss L by Eq. 7.
7: Update the parameters of the entire network,

where each part is updated by:
a) Parameters of linear classifier P is updated by
minimizing J in Eq. 7 with:

θP = θP − τ ∂J
∂θP

b) Parameters of the sub-networks, θm, by mini-
mizing J with descending their stochastic gradi-
ent:

θm = θm − τ ∂J
∂θm

, m ∈ [1,M ]
c) Center of each class is updated by Eq. 2.

8: end for
9: end for

3.3. Framework Architecture

The proposed loss function can be applied to various
cross-modal retrieval tasks. To verify the effectiveness
of the proposed loss function, we designed an end-to-end
framework for 3D cross-modal retrieval task to jointly train
multiple modalities including image, mesh, and point cloud.

The overview of the proposed framework for 3D cross-
modal retrieval is shown in Fig. 2. As shown in the figure,
there are three networks: F (θ) for image feature extraction,
G(β) for point cloud feature extraction, and H(γ) for mesh
feature extraction. Our framework can be easily extended
to cases with more modalities or to different cross-modal
retrieval tasks.

3D cross-modal retrieval. For 2D image feature ex-
traction, we utilize ResNet18 [13] as the backbone network
with four convolution blocks, all with 3× 3 kernels, where
the number of kernels are 64, 128, 256, and 512, respec-
tively. Unless specifically mentioned, after the global aver-
age pooling, a 512-dimensional final feature vector is ac-
quired in all experiments. Dynamic graph convolutional
neural network (DGCNN)[45] is employed as the backbone
model to capture point cloud features. DGCNN contains
four EdgeConv blocks with the number of kernels set to 64,
64, 64, and 128. After the four EdgeConv block, a fully
connected layer with 512 neurons is used to extract point-
specific features for each point and then a max-pooling
layer is applied to extract global features for each object.
MeshNet [8] consists of 2 mesh convolution blocks, which
achieved the state-of-the-art results for mesh retrieval, and
is selected as the backbone to extract the features from mesh
data. Two fully connected layers with size of 256 and 40
are employed to make classification predictions based on
the 512-dimensional global features for all three modali-
ties. The entire framework is trained from scratch for 3D
cross-modal retrieval task with the proposed loss function.

4. Experiments

Datasets: The ModelNet40 [48] and ModelNet10 [48]
datasets are used for evaluation. The ModelNet40 dataset is
a 3D object benchmark and contains of 12, 311 CAD mod-
els which belong to 40 different categories with 9, 843 used
for training and 2, 468 for testing, while ModelNet10 con-
sists of 3, 991 CAD models for training and 909 models
for testing belonging to 10 categories. Three modalities are
provided in these two datasets including image, point cloud,
and mesh.

4.1. Experimental Setup:

Evaluation Metrics: The evaluation results for all ex-
periments are presented in terms of Mean Average Preci-
sion (mAP) score which is a classical performance evalua-
tion criterion for cross-modal retrieval task [53, 7, 42]. The
mAP for retrieval task is defined to measure whether the re-
trieved data belong to the same class as the query (relevant)
or do not (irrelevant). Given a query and a set of R cor-
responding retrieved data (R top-ranked data), the Average
Precision is defined as:



Source Target mAP-v1 mAP-v2 mAP-v4
Image Image 82.06 86.00 90.23
Image Mesh 85.58 87.31 89.59
Image Point Cloud 85.23 86.79 89.04
Mesh Image 83.58 85.96 88.11

Point Cloud Image 82.29 85.18 87.11
Mesh Mesh 88.51 — —
Mesh Point Cloud 87.37 — —

Point Cloud Mesh 87.58 — —
Point Cloud Point Cloud 87.04 — —

Table 1. Performance of 3D in-domain and cross-modal retrieval
task on ModelNet40 dataset in terms of mAP. When the target or
source are from image domain, the results are reported for multi-
view images: 1 view, 2 views, and 4 views denoted by v1, v2, and
v4.

AP =
1

N

R∑
r=1

p(r) · δ(r), (8)

where N is the number of relevant data in the retrieved set,
p(r) is the precision of first r retrieved data, and δ(r) is
the relevance of the r-th retrieved data (1 if relevant and 0
otherwise).

4.2. 3D Cross-modal Retrieval Task

To evaluate the effectiveness of the proposed end-to-
end framework, we conduct experiments on ModelNet40
dataset with three different modalities including multi-view
images, point cloud, and mesh. To thoroughly examine the
quality of learned features, we conduct two types of re-
trieval tasks including in-domain retrieval when the source
and target objects are from the same domain and cross-
domain retrieval when they are from two different domains.
When the target or source is from image domain, we eval-
uate the performance of multi-view images where the num-
ber of views is set to 1, 2 and 4. The performance of our
method for 3D in-domain and cross-modal retrieval tasks is
shown in Table 1.

As shown in Table 1, the proposed framework achieves
more than 85% mAP for both in-domain and cross-domain
retrieval tasks on ModelNet40 dataset. When the query
or target are from the image-domain, the retrieval perfor-
mance are significantly improved if more image views are
used. Even though cross-modal center loss is specifically
designed for learning modal invariant features, it is capa-
ble of discriminating the features of different classes within
the same domain and achieves more than 86% mAP for
Image2Image, Point2Point, and Mesh2Mesh in-domain re-
trieval tasks.

4.3. Impact of Loss Function

The three components of our proposed loss function are
denoted as following: cross-entropy loss for each modal-

ity in the label space as L1, cross-modal center loss in the
universal representation space as L2, and mean-square loss
between features of different modalities as L3. To further
investigate the impact of each component, we evaluate dif-
ferent combinations for the loss functions including: 1) op-
timization with L1, 2) jointly optimization with L1 and L3,
3) jointly optimization with L1 and L2, and 4) jointly op-
timization with L1, L2, and L3. These four models are
trained with the same setting and hyper-parameters, where
the performance is shown in Table 2.

Loss L1 L1 + L3 L1 + L2 L1 + L2 + L3

Image2Image 75.09 74.21 84.87 86.0
Image2Mesh 75.38 75.86 86.7 87.31
Image2Point 69.76 70.52 86.11 86.79
Mesh2Mesh 75.53 76.36 88.83 88.59
Mesh2Image 75.2 74.76 85.66 85.96
Mesh2Point 69.64 70.34 87.58 87.37
Point2Point 66.63 68.18 86.89 87.04
Point2Image 69.54 70.34 84.76 85.18
Point2Mesh 69.23 71.88 87.69 87.58

Table 2. The ablation studies for loss functions. L1 is cross entropy
loss, L2 is cross-modal center loss, and L3 is mean squared error
loss. The number of views for images is fixed to 2.

As illustrated in Table 2, we have the following obser-
vations:

• The combination of L1, L2 and L3 achieves the best
performance for all cross-modal and in-domain re-
trieval tasks.

• As the baseline, cross-entropy loss alone achieves rel-
atively high mAP due to the sharing head of the three
modalities forcing the network to learn similar repre-
sentations in the common space for different modali-
ties of the same class.

• By adding cross-modal center loss to cross entropy
loss, a constant and significantly improvement in mAP,
between 7% to 20%, could be achieved for different
retrieval tasks, proving that the proposed cross-modal
center loss could significantly reduces the cross-modal
discrepancy.

• Particularly, performance of Point2Mesh, Point2Point,
and Mesh2Point retrieval tasks are improved by nearly
20% which further validates the effectiveness of the
proposed cross-modal center loss.

• Adding the MSE loss to cross entropy and cross-modal
center loss also slightly improves the performance.

4.4. Impact of Batch Size

The core idea of the proposed cross-modal center loss is
to learn a unique center for each class and to minimize the



distance of data from different modalities in that class to
its center. However, calculation based on the whole dataset
in each update is inefficient even practical [46]. As a result,
the center for each class is defined as the average of features
for that class in a mini-batch and updated with optimizer.
Therefore, the reliability of the features for each class is
highly correlated with the batch size. Using a large enough
batch size provides sufficient samples for each class to find
a reliable center, while having a small batch size leads to
unreliable centers. To analyze the impact of batch sizes to
the performance, we conduct experiments on ModelNet40
dataset with different batch sizes (12, 24, 48, 96). The re-
sults are shown in Table 3. All models are trained with the
same number of epochs and same hyper-parameters.

Batch Size 12 24 48 96
Image2Image 45.67 63.56 85.64 90.23
Image2Mesh 13.89 73.22 86.94 89.59
Image2Point 32.32 72.08 85.59 89.04
Mesh2Mesh 25.5 88.44 88.91 88.51
Mesh2Image 6.98 68.81 86.5 88.11
Mesh2Point 8.29 84.6 86.67 87.37
Point2Point 59.5 82.44 85.44 87.04
Point2Image 27.68 67.46 84.67 87.11
Point2Mesh 15.87 83.56 86.62 87.58

Table 3. The ablation studies for the batch size on the ModelNet40
dataset. The number of views for images is fixed to 4. Same num-
ber of epochs are used for all the experiments.

As shown in Table 3, changing the batch size from 12
to 96 significantly improves the performance for all modal-
ities. Due to the limitations of the GPU memory, the largest
batch size that we tested is 96. This results indicate that
a larger batch size should be used for the proposed cross-
modal center loss whenever possible.

4.5. Comparison with Existing Methods on 3D Re-
trieval

In this section, we compare the performance of our
method with the state-of-the-art methods on 3D in-domain
and cross-modal retrieval tasks in both ModelNet10 and
ModelNet40 datasets.

4.5.1 Comparing with the state-of-the-art Cross-
Modal Retrieval Methods

Since there is no method specifically designed for 3D cross-
modal retrieval task yet, we re-produce the current state-
of-the-art method (DSCMR [51]) that designed for image-
text retrieval task. Since DSCMR was originally designed
only for image-text retrieval, we extend it to three types
of modalities (image, point cloud, and mesh) and jointly

Method DSCMR [51] Ours
Image2Image 82.31 90.23
Image2Mesh 77.30 89.59
Image2Point 74.33 89.04
Mesh2Mesh 74.84 88.51
Mesh2Image 76.18 88.11
Mesh2Point 70.21 87.37
Point2Point 70.80 87.04
Point2Image 73.74 87.11
Point2Mesh 71.59 87.58

Table 4. Comparison with the state-of-the art method on Model-
Net40 dataset for 3D cross-modal retrieval task. The number of
views for images is fixed to 4. The DSCMR has poor gener-
alization ability of extending to diverse datasets. The proposed
jointly trained method significantly outperforms the state-of-the-
art method on all retrieval tasks.

trained it on 3D datasets. We conduct experiments for 3D
cross-modal retrieval on both ModelNet10 and ModelNet40
datasets.

As shown in Table 4 and Table 5, our proposed method
significantly outperforms the state-of-the-art methods for
all of the retrieval tasks on the two benchmarks. The
ModelNet10 only consists of 10 categories of data and the
DSCMR performs well on this small dataset. However,
when extending to ModelNet40 which consists of data be-
longing to 40 classes, the performance of DSCMR is sig-
nificantly worse than our proposed method showing that
the DSCMR has poor generalization ability when extend
to more classes and more diverse dataset. Compared to
DSCMR, our method obtained significantly better perfor-
mance on all the retrieval pairs on both datasets showing
our proposed method has very strong generalization ability.

4.5.2 Comparing with the State-of-the-art In-Domain
Retrieval Methods

Although designed for cross-modal retrieval task, our model
and loss function can be easily extended to in-domain re-
trieval task. Following the prior state-of-the-art methods
for 3D in-domain retrieval task [5, 38, 19, 36, 8, 3, 4, 9, 15,
11, 14, 14], We compare the performance of in-domain 3D
object retrieval task on ModelNet40 dataset with different
modalities. As shown in Table 6, our method outperforms
all the state-of-the-art methods on ModelNet40 dataset val-
idating again the strong generalization ability of our pro-
posed method.

4.6. Qualitative Visualization

T-SNE Feature Embedding Visualization: Fig. 3 (a),
(b), and (c) show that the features are distributed as sepa-



Method DSCMR [51] Ours
Image2Image 84.49 91.75
Image2Mesh 84.09 91.23
Image2Point 81.73 91.37
Mesh2Mesh 83.92 90.41
Mesh2Image 82.52 89.98
Mesh2Point 80.81 90.00
Point2Point 83.08 90.99
Point2Image 84.15 90.73
Point2Mesh 84.37 90.92

Table 5. Comparison with the state-of-the art methods on Model-
Net10 dataset for 3D cross-modal retrieval task. The number of
views for images is fixed to 4. The proposed method significantly
outperforms the state-of-the-art method.

Method Domain MAP
SPH [19] Mesh 33.3
LFD [6] Image 40.9
3DShapeNet [5] Volume 49.2
Deeppano [36] Image 76.8
MVCNN [38] Image 80.2
MeshNet [8] Mesh 81.9
GIFT [3] Image 81.9
SPNet [49] Image 85.2
RED [4] Volume 86.3
Panorama-ENN [35] Image 86.3
DLAN [9] Point 85.0
TCL [15] Image 88.0
SequenceView [11] Image 89.1
VNN [14] Image 89.3
ADCNN [1] Image 91.1
Ours Mesh 90.41
Ours Point 90.99
Ours Image 91.75

Table 6. Comparison with the state-of-the-art in-domain retrieval
methods for 3D objects on ModelNet40 Dataset. The number of
views for images is 4 for our method. Our method outperforms
all the other methods that are specifically designed for in-domain
retrieval for 3D data.

rated clusters, demonstrating that the proposed loss is able
to discriminate the samples from different classes for each
modality. From Fig. 3 (d), the features from three differ-
ent modalities are mixed together showing that the features
learned by the proposed framework in the universal space
are indeed model-invariant.

Cross-Modal Retrieval Visualization: Fig. 4 shows the
cross-modal retrieval samples for six different queries from
ModelNet40 dataset. For each query, the euclidean distance
over the normalized features is used to measure the simi-
larity of data from different modalities. The Top-10 clos-
est samples for each query data are visualized. The fig-

(a) Image Features (b) Point Cloud Features (c) Mesh Features (d) All Modalities

Figure 3. The visualization for the testing data in the ModelNet40
dataset by using t-SNE method [25]. Each point in the figure rep-
resents one object. Objects from the same category are rendered
with the same color.

Figure 4. Top-10 retrieval results for six query samples on Model-
Net40 dataset with our models. The green bounding boxes indicate
that the images belong to the same category as the query, whereas
the red bounding boxes indicate wrong matches.

ure shows the objects with similar appearance are closer
in the features space even though they are from different
modalities, proving that the network indeed learned model-
invariant features.

5. Conclusion

In this paper, we have proposed a cross-modal center
loss to learn discriminative and modal-invariant features for
cross-modal retrieval tasks. The proposed cross-modal cen-
ter loss significantly reduces the cross-modal discrepancy
by minimizing the distances of features belonging to the
same class across all modalities, and can be used in conjunc-
tion with other loss functions. Extensive experiments have
been conducted on retrieval tasks across multi-modalities
including image, 3D point cloud and mesh data. The pro-
posed framework significantly outperforms the state-of-the-
art methods on the ModelNet40 dataset validating the ef-
fectiveness of the proposed cross-modal center loss and the
end-to-end framework.
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