
A Comprehensive Study of Bugs in Software
Defined Networks

Ayush Bhardwaj
Brown University

ayush bhardwaj@brown.edu

Zhenyu Zhou
Duke University
zzy@cs.duke.edu

Theophilus A. Benson
Brown University
tab@cs.brown.edu

Abstract—Software-defined networking (SDN) enables inno-
vative and impressive solutions in the networking domain by
decoupling the control plane from the data plane. In an SDN
environment, the network control logic for load balancing,
routing, and access control is written in software running on
a decoupled control plane. As with any software development
cycle, the SDN control plane is prone to bugs that impact the
network’s performance and availability. Yet, as a community, we
lack holistic, in-depth studies of bugs within the SDN ecosystem.
A bug taxonomy is one of the most promising ways to lay the
foundations required for (1) evaluating and directing emerging
research directions on fault detection and recovery, and (2)
informing operational practices of network administrators. This
paper takes the first step towards laying this foundation by
providing a comprehensive study and analysis of over 500
‘critical’ bugs (including ∼150 with manual analysis) in three
of the most widely-used SDN controllers, i.e., FAUCET, ONOS,
and CORD. We create a taxonomy of these SDN bugs, analyze
their operational impact, and implications for the developers. We
use our taxonomy to analyze the effectiveness and coverage of
several prominent SDN fault tolerance and diagnosis techniques.
This study is the first of its kind in scale and coverage to the
best of our knowledge.

Index Terms—SDN, Bugs, Fault-Tolerance, Taxonomy

I. INTRODUCTION

Software-defined Networking (SDN) has enabled a
paradigm shift from legacy networking to programmable
networks which has transformed ISP networks [1]–[3],
Clouds [4]–[6] and content provider networks [7]–[9]. Adop-
tion of SDN by all major companies has enabled them to: (1)
simplify provisioning and management of their networks, (2)
better utilize network resources available for disposal, and (3)
lower CAPEX (Capital Expenditures) and OPEX (Operating
Expenditures).

SDN’s key principle is to decouple functionality for routing,
security, and performance from the networking hardware, i.e.,
router and switches. This functionality is rewritten in special-
ized software and deployed at a centralized location, called
the controller. Today, modern SDN controllers are complex
pieces of software comprising millions of lines of code. With
key networking functionality softwarized and deployed on
controllers, it is no surprise that any bugs within the SDN
controller can lead to network performance and availability
issues.

In fact, recent studies by Google [7] and Facebook [10]
have shown that 30% of the outages in their SDN deployments

are due to software bugs in SDN control planes. Despite the
mounting evidence from industry and analysis of opensource
bugs [7], [10]–[12], the community is lacking a systematic and
detailed analysis of critical bugs within the SDN ecosystem.

This paper provides an in-depth analysis of over 500 critical
bugs across three popular and prominent controllers within the
SDN ecosystem. We created a taxonomy of bugs through our
analysis, evaluated existing SDN fault-tolerant frameworks,
and identified classes of bugs that require more research.
Our taxonomy provides the building blocks for designing
representative and informed fault-injectors for testing SDN
controllers.

Our study is motivated by the following key research
questions

• RQ1: What are the characteristics of bugs in SDNs?
• RQ2: What is the operational impact of these bugs?
• RQ3: How are these bugs triggered, and what strategies

are used to fix them?
• RQ4: How can network operators benefit from this study?
• RQ5: How effective are emerging research prototypes?

In answering these questions, this work lays the foundation
for richer and more advanced bug-tolerant SDN systems.

Our key findings are:

• Contrary to the growing work [13], [14] that effectively
tackle non-deterministic bugs, our study shows that there
is evidence, to the contrary, that most of the critical bugs
are deterministic in nature.

• While there is a growing number of SDNs fault tolerance
frameworks, e.g., Ravana [13] or STS [12], these are
focused on tackling bugs triggered by network-events.
Unfortunately, they fall short in tackling bugs triggered
by other types of events, e.g., configuration or OS events,
e.g., timers. In Section VII-C, we show that while most
existing approaches can detect bugs, recovering from
these bugs remains an unsolved question and new tools
are necessary to fill this gap.

• SDN controllers are prone to bugs like any large software
system. However, the specific subset of bugs and their
distributions within SDNs are different from traditional
server applications and distributed software. For example,
in server applications, most bugs are due to configura-
tion [15], [16], whereas, in SDNs, we found external calls
and network events form a major portion of the bugs,

which requires a redesign of monitoring techniques to
monitor all external interactions in addition to network
events.

• One of the critical advantages of SDN over legacy
networks is the global visibility [17] and the broader
optimizations that it enables. However, we observe that
the result of many of these bugs (e.g., bugs triggered
by network events (19.8%)) is that this visibility is
significantly lowered. In essence, these bugs eliminate a
crucial benefit of SDNs.

Our analysis of the SDN bug corpus is largely driven by
manual analysis and categorization of the different bugs across
controller platforms. To ensure that our results generalize, we
employ NLP-based analysis across a larger set of bugs.

Given the questions above, we re-used well-established
taxonomies [18], [19] (Table I) and extended them to incor-
porate networking specific issues. The contributions of our
characterization study can be summarized as follows:

• We provide a holistic view of SDN bugs to allow de-
velopers and researchers to leverage our conclusions to
improve the SDN fault tolerance landscape. (§ IV)

• We extract guidelines and operational hints for managing
and operating SDN networks (e.g., guidelines for Con-
troller selection). (§ VII-A)

• We evaluate and analyze the coverage and efficacy of sev-
eral existing SDN fault tolerant and recovery techniques.
(§ VII-C)

• We identified the feasibility and effectiveness of de-
signing NLP-based techniques for root cause diagnosis.
(§ VII-B)

RoadMap. The rest of this paper is structured as follows: In
section II, we discuss our target systems, our methodology, and
our approach for automated analysis. In section III, we analyze
bugs by their type. In section IV, we explore the operational
impact of these bugs. In Section V, we analyze the events that
trigger them. In section VI, we analyze code repositories to
understand their software engineering practices. In section VII,
we discuss the implications of these bugs. In section VIII, we
discuss the limitations of and threats to our study. We conclude
in sections IX and X, by describing the related and summarize
conclusions.

II. METHODOLOGY

In this section, we discuss the controller frameworks that we
analyze (§ II-A) and present our analysis techniques (§ II-B).

A. Target Systems

In Figure 1, we present an overview of the SDN ecosys-
tem. The ecosystem comprises of three components: (i) SDN
Applications, which provide specific network functionality,
e.g., routing [20], load balancing [21] or access control [22].
(ii) SDN controller framework, which manages interactions
between the SDN Applications and the underlying network
devices (e.g., switches). (iii) the network data plane, which

SDN Application

Controller Li
br

ar
y

Kernel

Service calls Application calls

Configs

H/W H/W H/W

OpenFlow
messages

Figure 1: Generic Controller Stack.

consists of the switches and routers running within the net-
work. The interactions between the SDN control plane (ap-
plications and controller) and the data plane occur through
the exchange of SDN control messages (i.e., OpenFlow mes-
sages [23] or XMPP messages [24]). Many SDN controller
frameworks build on third-party libraries to provide additional
functionality, e.g., state management or packet processing.
Thus controllers come bundled with a plethora of additional
third-party libraries and services (indicated as a yellow box in
Figure 1). SDN controllers are fundamentally event-driven:
the arrows in Figure 1 demonstrate the various sources of
input events that a controller reacts to (configuration, network
events, the kernel through system calls, and application li-
braries through function calls).

Although there are approximately 32 controllers, we focus
our study on three of the four most mature and popular open-
source controllers are: ODL, CORD, ONOS, and FAUCET.
We selected ONOS and CORD over ODL because they are
used by major operators, e.g., Comcast [25], Google [26], etc.,
in a large scale real-world production environments. Moreover,
unlike ONOS or ODL, CORD is specially tailored for emerg-
ing technologies (e.g., 5G-MEC [27], [28]) – thus providing a
different perspective. We selected FAUCET because it is used
at Google [29] and provides a unique perspective from the
other controllers because it has a more compact structure and
is written in Python. Next, we elaborate on the design of each
of the three SDN controller frameworks:

• FAUCET [30] boasts a monolithic and compact code-
base that migrates existing network functionalities like
routing protocols, neighbor discovery, etc., into vendor-
independent data planes. FAUCET manages flow deci-
sions by utilizing multiple Access Control Lists(ACL)
and multi-table processing [31].

• ONOS (Open Network Operating System) [32] builds
on four major goals: modularity, configuration flexibility,
isolation of subsystems, and protocol agnosticism. ONOS
utilizes an intent-based API that captures policy directives
for controlling network function. These intent-based APIs
are realized through a set of state transition machines.
Each subsystem employs a different state machine. This is
distinct from FAUCET’s monolithic but compact design.

• Open CORD (Central Office Re-architected as a Data-
center) [33] is a specialized version of ONOS developed

for Telecom Central Office (CO) to replace purpose-
built hardware with cost-effective, agile networks. CORD
is composed of four open-source projects, including
Openstack, ONOS, Docker, and XOS. CORD provides
a unique subsystem, based on XOS [34], to orchestrate
coordination across these four code-bases.

B. Data Set and Methodology

The controller frameworks maintain a structured bug track-
ing and code management system — ONOS and CORD
use JIRA for bugs and Gerrit for rolling out fixes, whereas
FAUCET uses Github for bug tracking and managing fixes.
While Jira includes tags that allow us to analyze bugs based
on developer-identified severity levels, for Github, we used a
keyword approach [35] to extract severity levels.

Data. As of April 2020, the FAUCET, ONOS, and CORD
communities have identified 251, 186, and 358 critical bugs,
respectively, which include both open and close bugs. In
examining the bugs in ONOS and CORD, we found that: (1)
Over time, the number of critical bugs keeps increasing. This
motivates a need for more principled analysis. (2) We observe
that a burst of bugs occurs around release dates. For example,
in the first quarter of 2017, we observed a burst in CORD
bugs which coincided with a release [36]. This highlights the
need for longitudinal analysis across different releases.

For our study, we randomly selected 50 closed1 bugs from
each controller for manual analysis. Moreover, we further
verified the automatic analysis with an extended data set
containing over 500 critical bugs.

C. Bug Autoclassification with NLP

To scale and automate classification, we re-use an NLP
technique that prior bug studies have used, i.e., Word2Vec [37],
to classify bugs and validate our taxonomy. We summarize the
steps as follows:

• First, we pre-process the bug data to extract features.
There are three classic approaches for keyword extract-
ing including Latent Dirichlet Allocation (LDA) [38],
Hierarchical Dirichlet Process (HDP) [39] and Non-
negative Matrix Factorization (NMF) [40] based on Term
Frequency Inverse Document Frequency (TF-IDF) [41].
We choose the last approach because previous work [42],
[43] has demonstrated its potential to analyze similar data.

• Second, we train a Word2Vec model, which provides a
mechanism for automatically determining similar words.

Given a bug description, these two steps allow us to map
each bug to a numerical vector in a Euclidean space. After
mapping bugs to Euclidean space, we can employ classic Ma-
chine Learning (ML) techniques, e.g., Support Vector Machine
(SVM) or Decision Tree (DT), to automatically classify the
bugs.

149,49,48 from CORD, ONOS, FAUCET — we initially had 50 but
removed open bugs to enable classification by fixes.

1) Bug Labeling: We utilize the following dimensions to
classify the bugs: bug type, outcome, fix, and trigger. In
Table I, we summarize these dimensions. These dimensions
align with the recent work to characterize bugs in cloud
systems [18], [19] which provide a similar classification as
Orthogonal Defect Classification (ODC) [44]. At a high level,
we classify bugs based on determinism to understand their
reproducibility. For the root-cause and fixes, we classify
bugs based on the controller code-base or logic’s impact:
some problems require changes to logic while others do not–
similarly, some bugs are due to existing logic or absence of
any logic (e.g., edge cases). To verify the fixes, we manually
analyzed the source code patches and fixes. For the triggers,
we identify four key events that initiate bugs. These events
align with a canonical SDN controller (Figure 1). For the
symptoms, we focus on the type of failure triggered by the
bug.

Each bug receives at most one tag from each of the
dimensions in Table I.

2) Validation: We validated the automated classification
techniques with cross-validation by splitting our data set into
2/3 for training and 1/3 for testing. We explored several classic
ML techniques, including Support Vector Machine (SVM) and
Decision Tree (DT), Principal Component Analysis (PCA),
and AdaBoost. In our experiments, we found that SVM model
with normalization provided the best accuracy for predicting
bug types and symptoms, with accuracies of 96% and 86%,
respectively. Unfortunately, we found it hard to find any
algorithm to predict bug fixes accurately, and we believe this
is because bug descriptions generally provide little data about
the fixes.

III. RQ1: BUG TYPE

We begin by classifying bugs according to determinism.
Deterministic bugs are defined as bugs that are clearly re-
producible with a fixed set of input actions, whereas non-
deterministic bugs are inconsistent and cannot be consistently
reproduced by replaying the same set of input events/actions.
The key observation is that all frameworks are dominated by
deterministic bugs: FAUCET (96%), ONOS (94%), and CORD
(94%). One potential reason for this is that many controllers
employ standard state-machine-based techniques [13], [14],
[45], [46], e.g., Paxos [45] or Raft [46], which tackle and
mask most non-deterministic bugs.

Takeaway. Given the dominance of deterministics bugs, we
believe that record-and-replay-based recovery techniques [47]
will have limited applicability on most SDN controllers.
Instead, we recommend failure recovery systems which alter
controller input events [12], [48], environments [49], [50], or
source code [51]–[55].

IV. RQ2: OPERATIONAL IMPACT OF SDN BUGS

In this section, we explore the bugs’ symptoms and char-
acterize them based on the controller’s behavior. The analysis
of symptoms and controller behavior provides us with a first
step towards understanding each bug’s operational impact.

Classification Categories
Bug Type Deterministic, Non-deterministic

Root Cause Controller Logic-bugs: Load, Concurrency, Memory, Missing Logic
Non Controller logic-bugs: Human (misconfiguration), Ecosystem Interaction (Third-Party, Application Libraries or System Calls)

Symptoms Performance, Fail-stop, Error Message, Byzantine (Wrong Behavior)

Fix
No Logic Changes: Rollback Upgrades, Upgrade Packages
Add New Logic: Add Logic
Change Existing Logic: Add Synchronization, Fix Configuration, Add Compatibility, Workaround [35]

Trigger Configuration, External Calls, Network Events (OpenFlow Message), Hardware Reboots

Table I: Bug Taxonomy.

Byzantine Failures (61.33%): A majority of the bugs lead
to the following unexpected behavior: (i) gray failures – a par-
tial outage of the controller (52.17%), where some controller
functionality is working while others are not. For example, in
FAUCET-1623 [56] where the controller continues to manage
flows but is unable to manage broadcast packets because of an
unhandled edge case, a bug in the mirroring interface (shown
in Figure 3). (ii) stalling (20.65%), where the controller tem-
porarily freezes, and (iii) incorrect behavior (27.18%). Unlike
stalling or partial outages, incorrect behavior is difficult to de-
tect and diagnose because they do not generate error messages
or trigger any normal alerts.

Takeaway. These bugs, in general, highlight the need of
formal network verification; however, early works on veri-
fication [57]–[59] focus on the datapath or provide limited
validation of runtime behavior. Our analysis indicates a need
for more runtime verification of controller behavior.

Fail-stop (20%): Bugs that cause fail-stop failures or con-
troller crashes are the most dire bugs as they directly impact
the network’s availability and lead to production downtime. In
Figure 2, we analyze the root cause of these bugs. In FAUCET,
these bugs are caused by human mistakes or ecosystem inter-
actions. This implies that crashes are due to the edge cases re-
lated to certain external scenarios. In contrast with FAUCET, in
ONOS and CORD, a majority of the bugs are due to incorrect
controller-logic, e.g., load, memory, and missing code logic.
For example, a misconfiguration led to a null pointer exception
in CORD’s host and multicast handlers (CORD-2470 [60]),

Figure 2: Distribution of Root Causes of the (a) Fail-Stop (first three
bars) and (ii) Performance Bugs Across Controllers (last three bars).

Figure 3: Patch for FAUCET- 1623 [56], where interface mirroring
didn’t mirror output broadcast packets which was fixed by adding a
case for mirrored ports.

which crashed the CORD controller. Despite CORD being
based on ONOS, we observe a key difference between ONOS
and CORD: in general, CORD has significantly more bugs due
to “missing code logic,” demonstrating a level of immaturity
in the codebase.

Takeaway: Fail-stop bugs are the easiest to detect but
have disasterous consequences. Our initial analysis shows that
exploring designs to improve memory safety (e.g., memory
safe languages like RUST [61] and programming styles [62])
will significantly improve availability.

Error Message (14.7%): In general, we ignore these bugs
because they result in warnings that have no direct operational
impact. The main observation is that CORD has the best
exception handling, which leads to fewer error messages.

Performance (4%): From Figure 2, we observe that most
of the bugs that result in slow controller performance can be
triaged to one or two root causes. From the Figure, we also
observe that different controllers have different root causes. A
key surprise is that increased system load is not the main cause
of slow performance. Instead, increased-system load leads to
other failures, i.e., fail-stop and byzantine failures. We observe
that poor performance is due to FAUCET’s interactions with
the ecosystem, concurrency bugs in ONOS, and memory errors
in CORD. Thus broadly speaking, these bugs in FAUCET are
due to factors generally beyond the developer’s interactions,
whereas in ONOS and CORD, they are due to poor program-
ming logic.

Takeaway. Performance bugs [63] can cascade into a
variety of dire bugs, e.g., byzantine, crash, etc., that can
introduce SDN control plane instability. These bugs require
active monitoring and health check system; however, such
systems introduce significant overheads. For some of these

ONOS Version # VD High
ONOS-1.12.0 3 1
ONOS-1.13.0 28 17
ONOS-1.14.0 35 33
ONOS-2.0.0 50 24
ONOS-2.1.0 59 32
ONOS-2.2.0 62 33
ONOS-2.3.0 [72] 41 24

Table II: Dependency Analysis of ONOS versions. VD: vulnerable
dependencies, High: Dependencies with high severity level CVE.

bugs, e.g., Concurrency bugs, we can explore alternative and
potentially lighter-weight techniques, e.g., semantic explo-
ration techniques [64]. For example, a CORD concurrency bug
(CORD-1734 [65]) where multiple interleaved threads caused
performance degradation.

Figure 4: Patch for CORD-1734 [65], where multiple threads were
negatively impacting the performance of all API calls. This was
attributed to reliance of python on global locks, so as a fix the
maximum number of workers were reduced to 1.

New Research Directions: We summarize new research
areas based on our observations:
• There are still gaps between the industrial demands and

the modern invariant checkers as illustrated with FAUCET-
1623 [56] (discussed above). To tackle such bugs with more
complex behavior, we need more complex invariant checkers
because most existing checkers focus on reachability-based
and QoS-based invariants [57], [59].

• We identified a need for more fine-grained failure-indicators
and failure-detectors that detect component level availability
and correctness. These techniques need to be more expres-
sive than simple heart-beats; they should verify subcompo-
nent correctness. Specifically, for the failures that are due
to load and ecosystem interactions, we may predict these
crashes by analyzing metrics or existing syslogs. Given this,
it would be interesting to evaluate the potential of extending
existing log-based failure prediction systems [66]–[68] or
metrics-based systems [69], [70] to SDNs.

• We highlighted a need for research into extending fault
prediction based on system load to the SDN-domain to
address issues with load and cascading errors, e.g., ONOS-
4859 [71] that suffers from ineffective use of memory.

V. RQ3: BUG TRIGGERS AND CODE FIXES

This section analyzes the events that trigger a bug, the code
fixes applied to fix the bug(§ V-A), and the time to fix them
(§ V-B).

A. Analysis of Bug Triggers
Recall, in Section II-A, we showed that SDN controllers are

event-driven and, in general, these controllers only react to the

events listed in § II-A. Below we analyze each of these events
and discuss the implications for our study.

Configuration (38.8%): We observed that many bugs are
triggered when the controller attempts to process system
configurations. This fact is astounding because a critical moti-
vation for SDN is to move towards automation and eliminate
configuration-based errors [73]–[76].

In Table III, we analyze the type of configurations. We
observe that for ONOS and CORD, most of the configuration
bugs are due to the configuration of the controller and third-
party services.

Interestingly, we observe that only 25% of the configuration-
related bugs can be fixed by changing the controller config-
uration. This implies that research on misconfiguration [77]–
[79] It focuses on detecting the impact of an application’s
configuration on the system and will have limited applicability
because third-party code bases’ configuration impacts the
system.

Takeaway. These observations highlight a need for more re-
search on techniques for diagnosing and debugging the cross-
layer impact of configurations. These cross-layer approaches
should be coupled with preventive systems such as [80] which
detect latent configuration bugs by employing fuzzy-testing.

External Calls (33%): For the external calls, we observed
that 41.4% of the code fixes attempt to make the controller
more compatible with external libraries by changing function
calls or arguments to match the external API or by upgrading
the external packages. The use of code patches to fix this
interdependence highlights the highly dynamic open-source
ecosystem. Interestingly, we also observe that the miscon-
figuration of the communication between multiple modules
is a non-trivial source of these problems. For example, in
FAUCET-355 [81] (Figure 5), Guage crashed because of a
misconfigured data type between Gauge and InfluxDB [82].

Moreover, as highlighted in prior work [83], a majority
of open-source projects utilize outdated dependencies, which
often makes the system vulnerable to attacks. SDNs are
no exception; for example, in CVE-2018-1000615 [84] we
observe that an outdated version of OVSDB [85] lead to
a Denial of Service (DoS) attack on ONOS. In Table II,
we provide a broader analysis of vulnerabilities in ONOS
using dependency-check tool [86] and cross-checking with
NVD [87]. Our analysis shows that ONOS’ vulnerability
increased over time as more dependencies were added with
version updates. These vulnerabilities were fixed by changing
the libraries, which makes them more critical.

Takeaway. A strong implication of this analysis is a need
to design techniques to discover, track, and detect API mis-
matches. While techniques existing for tracking dependen-

Sub-categories of FAUCET ONOS CORD
Configuration Bugs
Controller 52.9% 60% 64.2%
Data Plane 11.7% 15% 14.2%
Third Party 35.4% 25% 21.6%

Table III: Sub-Categories for Configuration Bugs.

Figure 5: Patch for FAUCET- 355 [81], where InfluxDB [82] only
supports one integer type, int64. But initially OpenFlow stats were
logged as uint64 which were converted to float64 to prevent an
overflow.

cies [88], [89], these techniques do not update the code when
dependencies are intentionally updated.

Network Events (19.8%): Despite being designed to han-
dle network events explicitly, the controller contains a non-
trivial number of bugs (19.8%) that are triggered by when
it processes network events. Specifically, these bugs are tried
while the controller is attempting to process OpenFlow mes-
sages 2. These bugs are often addressed by adding additional
logic or adding exception handling code, indicating that the
existing code is missing crucial logic for handling edge cases.

Takeaways. These observations highlight a need for novel
fault tolerance techniques that either automatically rewrite
code, or alter properties of the network event such that
different code paths and cases are explored.

Hardware Reboots (8.4%): Hardware often reboots for
a variety of reasons. Unsurprisingly a non-negligible set of
bugs (8.4%) are due to these reboot events. Surprisingly, we
observed that hardware reboot-triggered bugs are related to
reboots of the optical components (e.g., ONU, OLT etc.),
which points to the importance of tracking bindings between
hardware configurations and their corresponding components
in the abstraction layer (e.g., VOLTHA [90]). For example, in
VOL-549 [91] (Figure 6), the VOLTHA core thread gets stuck
waiting for the adapter to connect if OLT reboots after initial
activation. This bug was fixed by adding a timeout variable.

Takeaways: Anecdotal evidence suggests that such bugs
exist because testing environments lack representative failures
and equipments [92]. This is a clear sign that emerging
approaches to apply Chaos-Monkey style [93] fuzz testing to
SDNs are needed, and more work should be done to extend
the practicality of such techniques.

Broader Takeaways for Research: A significant set of
bugs are due to interactions between the controller and external
services (e.g., configuration files, network events, or function
calls). These observations suggest that these controllers lack
sufficient code for checking for valid inputs. Additionally,

2In particular, we observe that 44.4% are due to processing link/switch
events (i.e., link-up or link-down), 33.3% due to Packet-In, and 22.3% due to
GetStatistics message (i.e., counter related information).

Figure 6: Patch for VOL-549 [91], where timeout was intro-
duced for the GRPC connection to prevent VOLTHA from
getting stuck when OLT was rebooted.

these bugs demonstrate a tight-coupling between the controller
and the broader environment. As the environment evolves, care
must be taken to ensure that the controller’s codebase evolves
accordingly. We need better tools to track dependencies and
highlighting mismatches. Additionally, the developers of the
SDN controllers need to introduce better error-guarding logic.
Finally, while there is significant work [94]–[97] on addressing
system misconfiguration, there is very little work within the
SDN space.

B. Resolution Time for Triggers

Figure 7 shows the CDF for resolution times for bugs
on the basis of the triggers categorised in Table I. In the
above analysis, we observed that most bugs are triggered by
configuration, but we also found it has the longest tail, which
reveals that they are the most severe bug trigger category that
could take considerable time to be resolved. It is observed
that ONOS has a longer tail as compared to CORD in most of
the trigger categories (Configuration, External call, Network
event) which could be attributed to its more complex structure
(LoC, classes, functionalities). For example, we found a seri-
ous ONOS-5992 [98] which impacted multiple versions before
it could be fixed, and the fix required addressing multiple bugs:
In this bug, killing one ONOS instance resulted in a cluster
failure. On the contrary, we observed that bugs triggered
by reboot have a longer tail for CORD than ONOS: this
was because CORD has specialized code for disaggregated
optical equipment, which involves complex configurations,
e.g., EPON, GPON [99] and complex logic for tracking the
state of these devices.

VI. ANALYSIS OF SOFTWARE ENGINEERING PRINCIPLES

In this section, we analyze the software engineering prac-
tices of the different controllers. We start with an analysis of
technical debt [100] (§ VI-A) and how it impacts code fixes.
Then we perform a burn analysis (§ VI-B) of FAUCET to
understand how changes to the codebase impact FAUCET’s
bugs and how they are triggered.

Figure 7: CDF of Resolution Time for Triggers.

A. Smell-Analysis for Code-quality

SDN controllers are subject to a large number of code
changes over time to meet the evolving demands and fix exist-
ing bugs; however, such changes eventually lead to software
technical debt [100] of software degradation. Code-smells is
a popular software engineering technique for analyzing code-
bases to determine and capture a form of software degradation
that is correlated to bugs [101]–[103]. We perform code-smell
analysis on several different release versions of ONOS and
analyze ONOS’ software degradation over time. Additionally,
we use the refactoring techniques [104] within the code-smell
analysis to co-relate and understand the type of bug fixes, i.e.,
No Logic Changes, Add New Logic, Change Existing Logic.

We use Designite [105] for our code-smell analysis:
Designite utilizes code-quality metrics, and it supports 19
architecture smells along with seven design smells. In Figure
8, we present the code-smell results for various ONOS
releases. Next, we describe the smells and focus on those
with the most variation across different versions of ONOS.

Broadly, there are two classes of smells: architecture and de-
sign. Architecture smells capture system-level impact spanning
across multiple components, whereas design smell captures
component level impact. Note: while plot Hub-like Modular-
ization [106] and Missing Hierarchy [107], we do not analyze
them because their numbers are low and they have slight
variation across controller versions.

1) Architecture smell [108]: We observe that while
the number of commits per release decreased or became
constant (Figure 10), the architecture smells scores (i.e., God
Component, and Unstable dependency smell, in Figure 8)
remain constant. This constant architecture smell score,
despite a decrease in commits, indicates constant technical
debt. We believe this constant debt is potentially due to a
gap between developer practices for developing patches and
refactoring techniques. Next, we elaborate on the specific

Figure 8: Distrubution of Six Code Smells. A: God Component,
B: Unstable Dependency, C: Insufficient Modularization, D: Hub-
like Modularization, E: Missing Hierarchy, F: Broken Hierarchy in
ONOS Cores Versions.

scores:

God component [109]. The God component captures the
division of functionality across components and indicates
code modularity, i.e., modularity of controller design. We
observe in Figure 8 that the God component metric is mainly
constant. Although the smell metric indicates the level of
controller modularity is not growing, we observe that the
average number of classes is growing for controllers; this
implies that the controller architecture consists of huge classes
that impact overall modularity. For example, while the metric
remains stable, the package net.intent.impl had an
increase in the number of classes from 49 to 107 from ONOS
1.12 to 2.3.0. We recommend that developers improve their
codebase by making logical changes by decomposing huge
classes and potentially changing the controller’s Control-Flow
graph.

Unstable dependency smells. This smell uses the State
Dependency Principle (SDP) [110] to capture the stability
of dependencies within the controller codebase. Unlike other
smells, these can be difficult to refactor because modifying
one dependency can lead to cascading changes to other
dependencies. Fortunately, we observe in Figure 8 that the
unstable dependency smells have decreased steadily from
versions 1.12–2.3: this implies that developers can more freely
make changes to dependencies without fear of introducing
bugs.

2) Design smells [111]: As with any software package,
ONOS’s initial code releases consist of burst in commits due
to prototyping new functionality with limited features and
potentially unstable codebase: this is reflected in Figure 8
as an initial spike between versions 1.12–1.14 in the

Design smells scores (Insufficient modularization, Hub-like
modularization, Missing hierarchy, and Broken Hierarchy).
However, after version 1.14, we observed a steady decrease
in the number of commits and that the Design smells
remained unchanged or largely constant. We note that
constant design smells are problematic because design smells
have a causal relationship with architecture smells [112]: in
short, design smells cause architecture smells, and thus to
improving design smells will also improve architecture smells.

Insufficient modularization [106]. This metric captures
the modularization of an individual class (Note: this differs
from the God component, which captures package-level
modularization features). In general, developers can improve
this score by changing existing logic and decomposing large
and complex classes.

Broken Hierarchy [107]. This smell analyzes the rela-
tionships between super-types and sub-types and checks to
ensure that sub-types do implement features of their types.
This smell is generally an indicator of missing logic. For
example, in Figure 9, we present Run class which has the
ElectorOperations super-type, note that the Run class doesn’t
include methods from its supertype ElectionOperation. After
a major upgrade (ONOS-6594 [113]) which addressed severe
architecture flaws, the Run class (and other related classes)
was changed to be a subtype of AsyncLeaderElector – this
change fixed the smell.

From Figure 8, we observe an initial spike in broken
hierarchy smells (versions 1.12–1.14) demonstrating poor code
modularization, and then we observe a reduction (versions
1.14–2.3) which indicates logic changes (add-logic, change
existing logic) and restructuring of the existing methods. This
conclusion supports the broad set of changes we observe for
many of our bug fixes.

Figure 9: Broken Hierarchy in class run as it doesn’t share
an IS-A Relation with it’s Super-type.

B. Burn Analysis

This section focuses our burn analysis on FAUCET because
of its size (1000’s LOC) and highly modular structure. Both

Figure 10: ONOS Github Analysis for number of Commits in each
Version Upgrade.

properties make FAUCET an ideal candidate for burn analysis.
Unfortunately, due to ONOS and CORD’s complexity and the
interleaving of components within individual source files, we
are unable to apply burn analysis.

We begin in Figure 11 by characterizing commits and
changes to FAUCET’s based on the functionality’s triggering
events: (1) Configuration (38%), (2) Network Functionality
(35%), (3) External Abstraction (27%).

Unsurprisingly, we observe that most commits focus on
increasing network function, which aligns with an SDN
controller’s central role, i.e., to provide control over the
network. In particular, we observed that most commits are
focused on fixing and adding new network functionalities.

The configuration-related commits are the second major
category of commits. We believe this can be attributed to
complex cross-layer configurations interactions identified in
Section V.

Finally, External Libraries’ dynamic nature poses a unique
challenge for developers who need to make continual modi-
fications to their code to ensure interoperability. To illustrate,
In Table IV, we present a list of external dependencies for
FAUCET and the number of version changes required. We ob-
serve that critical packages, e.g., RYU (network management
framework) and chewie (IEEE 802.1x implementation) are
subject to most changes and have shorter release cycles than
the controller itself. This mismatch implies that the controller
will always use outdated versions to introduce correct and
security problems (as illustrated in Section V). For example,
in FAUCET-2399 [114], an update to chewie prevented the
installation of FAUCET. A move towards flexible versioning
practices [115] with a balance between agility and predictabil-
ity in core packages could reduce these bugs.

Figure 11: Distribution of Commits in FAUCET Core Across Three
Functional Subsystems of a Controller. A: Configuration, B: Network
Functionality, C: External Abstraction.

Dependency Name # version changes Description
chewie 19 802.1X standard implementation
eventlet 5 networking library
influxdb 1 time series database
msgpack 2 binary serialization
networkx 1 Network Analysis
pbr 1 management of setuptools packaging
prometheus client 8 Monitoring system
pyyaml 6 YAML Parser
ryu 28 component-based SDN
beka 5 BGP Speaker
pytricia 1 IP Address Lookup

Table IV: Burn-down analysis for FAUCET dependency require-
ments.

VII. BROADER IMPLICATIONS

In this section, we take a step back to understand the
broader applicability and implications of our study on network
operators. We focus on providing guidelines for (1) selecting
controllers (§ VII-A), (2) debugging open issues (§ VII-B),
and (3) navigating emerging diagnosis frameworks (§ VII-C).

A. RQ4: Controller Selection Guideline

Inspired by our observations, we provide general guidelines
to aid operators in selecting controllers. Our guidelines focus
on completeness, functionality, and SDN use cases. We ob-
serve that most problems in FAUCET are due to missing logic
(specifically 52.5% of bugs), which makes it the least stable of
the controllers that we analyzed. Although, CORD and ONOS
are based on the same fundamental codebase, we observed
that CORD is susceptible to significantly more load-related
problems – 30% of bugs in CORD versus 16% in ONOS.

In Table VI, we show two critical use cases that SDN has
enabled and the symptoms that affect the core functionality
of these use cases. Building on the above observations, we
recommend ONOS as the most stable and performant among
the analyzed controllers. Unlike CORD, moving towards
ONOS will require developers to find appropriate or develop
applications due to a lack of rich applications. Moreover, we
observed that FAUCET is specialized for a specific use-case,
e.g., network slicing [131], [132]. Due to slicing’s inherent

����

����

����

����

��

���� �� ���� ���� ���� ���� ���� ����

�
�
�

��

Figure 12: CDF of Bug Category Correlation.

Figure 13: Trigger Distribution among the Whole Dataset. A:
Configuration, B: System Calls, C: Third Party Calls, D: Network
Events, E: Application Calls. B, C and E belong to External Calls.

isolation, we note that using it outside of this narrow use case
will often yield missing functionality and logic errors.

B. RQ4: Automating Operators Diagnosis

In the absence of a tool for holistically diagnosing and re-
solving bugs, we conclude this section by providing guidelines
for expediating root-cause diagnosis and resolution. We do this
by analyzing the correlations between the bugs and categories
(in Table I) and exploring the uniqueness of the keywords
(AKA labels) in the bug descriptions.

Correlation Analysis: Figure 12 shows the CDF of cor-
relations between all possible bug and category pairs. The
curve illustrates that while most bug-category pairs (93.72%
of bug) are fairly correlated, there is a long tail indicating
strong-correlated bug categories (6.28% of bugs). For example,
we observed that memory bugs are highly deterministic in
nature. More interestingly, the bugs triggered by third-party
service calls are highly correlated to the fix “add compatibil-
ity”, which fits with the observations that these bugs could
be caused by argument mismatch between library versions.
Surprisingly, unlike bugs in the core controller, these third-
party bugs are correlated with the outcomes “Error message”
and “Byzantine”.

Deterministic Bug Trigger
Yes

[116]
No

[117]
Configuration

[118]
Network Event

[116], [119]
External calls

[120]
Hardware Reboots

[121], [122]
LegoSDN [48]

Ravana [13]
SCL [14]

RoseMary [123]
SCOUT [124]
JURY [125]

DPQoAP [126]

Table V: Effectiveness of Existing Recovery Techniques. C: Configuration, N: Network Event, E: External calls, and H: Hardware Reboots.

SDN use case Symptoms
P

[71]
F

[60]
EM

[127]
B

[56]
Logically Centralized
([128], [129], [130])

Network Slicing
([131], [132])

Table VI: Symptoms of the bugs affecting SDN use case net-
work operation drastically. EM: Error Message B: Byzantine
F: Fails-stop P: Performance.

Figure 14: Unique Topic Percentage. A: Deterministic, B: Byzantine,
C: Add Synchronization, D: Third Party Calls.

Keyword Analysis: To further understand these correla-
tions, we analyzed the topics extracted by the NLP techniques.
We hypothesize that these correlations reflect that specific
classes of bugs have unique topics or keywords in the bug
description. For example, memory bugs often have a null
pointer and other similar exceptions in the bug description.
In Figure 14, we listed the top bug categories based on topic
uniqueness. We observe that these bug categories are the exact
bug categories that have a high correlation discussed earlier.
We observe that the uniqueness in topics spreads over all bug
classifications. Specifically, bugs with Byzantine symptoms
introduce significantly different topics and keywords in the
bug description. Similarly, some bug types, e.g., deterministic
bugs, have remarkably unique topics.

We also apply our NLP model, which is trained with the
manually labeled dataset, onto the whole dataset of critical
bugs we get from Jira to demonstrate NLP techniques’ poten-
tial further. This large dataset contains ∼5X bugs compared to
our manually labeled dataset. Figure 13 is the distribution of

predicted trigger from the whole dataset. The result indicates
that configuration error is the major trigger of SDN controller
bugs, and when troubleshooting an SDN controller, the op-
erator should pay more attention to potential configuration
glitches. Compared to configuration, the bugs triggered by
OpenFlow events only contribute a small part. Given the
complexity of capturing, replaying the network events to
reproduce a previous scenario, it is more clever to examine
the network events after ensuring other more critical potential
triggers. We also summarized the results for other aspects,
such as the deterministic bug is the dominant bug type. Due
to the limit of space, we skip the details in this paper.

Takeaway. These correlations and keyword analysis imply
that for a non-trivial amount of bugs, being able to identify
outcomes, symptoms, and extract keywords from the bug will
allow developers and operators to narrow down the potential
root causes and fixes. As part of future work, we anticipate that
a decision tree can be developed to help restrict and narrow
the developer and operator efforts in diagnosis.

C. RQ5: Selecting Recovery Frameworks

In Table V, we present a survey of existing fault tolerance
techniques for SDNs. A key observation here is that no
one technique can recover from bugs across all root causes
effectively. Unsurprisingly, most techniques [13], [14], [48],
[123]–[125] are able to recover from events triggered by
OpenFlow messages which is the main focus of most SDN
research. Yet, there are very few existing works within the
SDN domain for interactions with configuration and external
calls. We note that while non-SDN techniques, e.g., Lock-in-
Pop [133], can address external events or configuration, these
techniques need to be modified to address domain-specific
issues.

We observe that most existing systems can easily recover
from non-deterministic issues. However, there is very little for
deterministic issues that account for most of the problems (as
shown in Section III).

Category SDN Cloud [19] BGP [35]

Symptoms

Fail-stop 20% 59% 39%
Performance 4% 14% NA

Error Message 14.7% NA NA
Byzantine 61.33% 25% 58%

Table VII: Analysis of Bug Symptoms Accross Related Work.

Takeaway. Although we showed a plethora of systems
that can diagnose or recover from different types of bugs, in
practice, it is not trivial to combine these systems together to
form a holistic system for the following reasons:

• Simply layering the systems on each other may introduce
inefficiencies or impact accuracy. For example, while
SPHINX [134] requires that all input OpenFlow messages
to update a “flow graph”-based model, Bouncer [135]
proactively filters out some input which may lead to an
inconsistent flow graph and, thus, impacts accuracy 3.

• Additionally, their expected inputs and system models
are often fundamentally different; thus, integration is a
non-trivial task. For example, while SOFT [136] analyzes
output generated by different vendor implementations
and CHIMP [137] analyzes output from different SDN
applications, it is unclear how to compose the results
from SOFT and CHIMP to provide a holistic, cross-layer
approach to fault detection.

VIII. THREATS TO VALIDITY AND DISCUSSIONS

Generalizability. While limited, we believe that our
analysis generalizes to future controllers because related
work has shown that controllers follow a limited set of
design principles that are well represented in the controllers
that we studied. Specifically, the three controllers that we
analyzed provide coverage over the following design choices:
specifically, specialized (CORD) versus generalized (ONOS,
FAUCET); monolithic (FAUCET) versus modular (ONOS,
CORD); and distributed (ONOS, CORD) versus centralized
(FAUCET).

Automated SE Analysis. Our automated code analysis is
limited by the constraints of existing software engineering
analysis tools, which only support specific languages (JAVA)
or specific build systems (maven, gradle). For example, we
could not perform smell analysis for FAUCET because it
is written in Python, and the smell analysis codebase only
supports JAVA-based software. Unfortunately, this limitation
limits our ability to perform this analysis on a broader set of
controllers.

Different bug management systems. The controllers use
different bug management systems, e.g., GitHub (FAUCET),
JIRA (ONOS, CORD), which could lead to variation in the
type of information available. For example, JIRA provides
Gerrit reviews, bug status, timestamps, etc while GitHub
provides a different subset of data. These subtle differences
impact the set of techniques, tools, and analysis that we
could apply. For example, we could not analyze FAUCET’s
resolution times because their GitHub repository does not
provide this information.

3The whole point for flow graph is performing anomaly detection, which
requires all inputs including the bad ones.

Manual Classification. Our work involves both manual and
automated analysis. While the automated analysis is suscepti-
ble to noise and bias, we note that we only use the automated
analysis to support our manual analysis. In fact, most of our
takeaways are based on manual analysis, thus minimizing
the impact of learning-based noise on our observations. Our
manual analysis’s validity is predicated on the fact that the
bugs are accurately described and reported.

IX. RELATED WORKS

System-Research. In general, bug studies spanning
across various domains [18], [19], [35], [138]–[141] lay the
foundation for systems research. While prior studies have
focused on distributed systems, we lack similar in-depth and
comprehensive studies for SDN controllers. Unsurprisingly,
we observed that, despite using a similar classification as prior
work [18], [19], bugs in SDN controllers differ significantly in
their distributions, motivating the need for studies such as ours.

SDN Bug Studies. Prior work on SDN bugs [11], [12],
[142]–[145] analyze a smaller spectrum of bugs compared
with our study, which provides a holistic and in-depth
analysis of ‘critical’ SDN bugs. While our work focuses on
understanding bugs and their implications, others [143]–[145]
have developed stochastic models to help quantify the
reliability of existing controllers.

X. CONCLUSION

Bugs are a crucial aspect of any software ecosystem, yet
within the software-defined networking (SDN) community, we
have a poor understanding of our bugs. Without a thorough
understanding of these bugs, it is challenging to: (1) under-
stand the efficacy of existing SDN fault tolerance techniques,
(2) design representative fault injectors, or (3) identity key
areas that are ripe for research. In this paper, our goal is
to provide the knowledge required to fill this crucial gap
in the community’s understanding of the SDN ecosystem by
performing, to date, the largest bug study over three popular
controller platforms.

XI. ACKNOWLEDGEMENTS

We thank the anonymous reviewers and our shepherd,
Marco Vieira, for their helpful comments. This work was
supported by NSF award CNS-1749785.

REFERENCES

[1] “At&t sdwan details retrieved from,” https://www.business.att.com/
products/sd-wan.html, 2019, accessed: 10-6-2019.

[2] “Vodafone sdn details retrieved from,” https://www.vodafone.co.uk/
business/sdn, 2019, accessed: 13-11-2019.

[3] “How sdn simplifies managing digital experiences,”
https://www.orange-business.com/en/blogs/connecting-technology/
networks/how-sdn-simplifies-managing-digital-experiences, 2019,
accessed: 13-11-2019.

[4] “Nsx data center details retrieved from,” https://www.vmware.com/in/
products/nsx.html, 2019, accessed: 10-6-2019.

[5] “The andromeda cloud platform details retrieved from,” 2019, https:
//www.ngcsoftware.com/landing/ngcandromedacloudplatform/.

https://www.business.att.com/products/sd-wan.html
https://www.business.att.com/products/sd-wan.html
https://www.vodafone.co.uk/business/sdn
https://www.vodafone.co.uk/business/sdn
https://www.orange-business.com/en/blogs/connecting-technology/networks/how-sdn-simplifies-managing-digital-experiences
https://www.orange-business.com/en/blogs/connecting-technology/networks/how-sdn-simplifies-managing-digital-experiences
https://www.vmware.com/in/products/nsx.html
https://www.vmware.com/in/products/nsx.html
https://www.ngcsoftware.com/landing/ngcandromedacloudplatform/
https://www.ngcsoftware.com/landing/ngcandromedacloudplatform/

[6] J. Son and R. Buyya, “A taxonomy of software-defined networking
(sdn)-enabled cloud computing,” ACM Comput. Surv., vol. 51,
no. 3, pp. 59:1–59:36, May 2018. [Online]. Available: http:
//doi.acm.org/10.1145/3190617

[7] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat,
“Evolve or Die: High-Availability Design Principles Drawn from
Googles Network Infrastructure,” in Proceedings of the 2016
ACM SIGCOMM Conference, ser. SIGCOMM ’16. New York,
NY, USA: ACM, 2016, pp. 58–72. [Online]. Available: http:
//doi.acm.org/10.1145/2934872.2934891

[8] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,
S. Stuart, and A. Vahdat, “B4: Experience with a globally-deployed
software defined wan,” in Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, ser. SIGCOMM ’13. New
York, NY, USA: ACM, 2013, pp. 3–14. [Online]. Available:
http://doi.acm.org/10.1145/2486001.2486019

[9] T. Lei, Z. Lu, X. Wen, X. Zhao, and L. Wang, “Swan: An sdn based
campus wlan framework,” in 2014 4th International Conference on
Wireless Communications, Vehicular Technology, Information Theory
and Aerospace Electronic Systems (VITAE), May 2014, pp. 1–5.

[10] S. Choi, B. Burkov, A. Eckert, T. Fang, S. Kazemkhani, R. Sherwood,
Y. Zhang, and H. Zeng, “Fboss: Building switch software at scale,”
in Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, ser. SIGCOMM ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 342–356.
[Online]. Available: https://doi.org/10.1145/3230543.3230546

[11] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford, “A
NICE way to test openflow applications,” in NSDI. San Jose, CA:
USENIX, 2012, pp. 127–140. [Online]. Available: https://www.usenix.
org/conference/nsdi12/technical-sessions/presentation/canini

[12] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai,
E. Huang, Z. Liu, A. El-Hassany, S. Whitlock, H. Acharya, K. Zari-
fis, and S. Shenker, “Troubleshooting Blackbox SDN Control Soft-
ware with Minimal Causal Sequences,” ACM SIGCOMM Computer
Communication Review, vol. 44, 08 2014.

[13] N. Katta, H. Zhang, M. Freedman, and J. Rexford, “Ravana: Controller
Fault-tolerance in Software-defined Networking,” in Proceedings of the
1st ACM SIGCOMM Symposium on Software Defined Networking
Research, ser. SOSR ’15. New York, NY, USA: ACM, 2015, pp. 4:1–
4:12. [Online]. Available: http://doi.acm.org/10.1145/2774993.2774996

[14] A. Panda, W. Zheng, X. Hu, A. Krishnamurthy, and S. Shenker,
“SCL: Simplifying Distributed SDN Control Planes,” in Proceedings
of the 14th USENIX Conference on Networked Systems Design
and Implementation, ser. NSDI’17. Berkeley, CA, USA: USENIX
Association, 2017, pp. 329–345. [Online]. Available: http://dl.acm.org/
citation.cfm?id=3154630.3154657

[15] T. Xu and Y. Zhou, “Systems approaches to tackling configuration
errors: A survey,” ACM Comput. Surv., vol. 47, no. 4, Jul. 2015.
[Online]. Available: https://doi.org/10.1145/2791577

[16] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram,
and S. Pasupathy, “An empirical study on configuration errors
in commercial and open source systems,” in Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles,
ser. SOSP ’11. New York, NY, USA: Association for Computing
Machinery, 2011, p. 159–172. [Online]. Available: https://doi.org/10.
1145/2043556.2043572

[17] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[18] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake,
T. Do, J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman,
V. Martin, and A. D. Satria, “What bugs live in the cloud? a
study of 3000+ issues in cloud systems,” in Proceedings of the
ACM Symposium on Cloud Computing, ser. SOCC ’14. New
York, NY, USA: ACM, 2014, pp. 7:1–7:14. [Online]. Available:
http://doi.acm.org/10.1145/2670979.2670986

[19] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D.
Satria, J. Adityatama, and K. J. Eliazar, “Why does the cloud
stop computing?: Lessons from hundreds of service outages,” in
Proceedings of the Seventh ACM Symposium on Cloud Computing,
ser. SoCC ’16. New York, NY, USA: ACM, 2016, pp. 1–16.
[Online]. Available: http://doi.acm.org/10.1145/2987550.2987583

[20] S. Li, K. Han, N. Ansari, Q. Bao, D. Hu, J. Liu, S. Yu, and Z. Zhu,
“Improving sdn scalability with protocol-oblivious source routing:
A system-level study,” IEEE Transactions on Network and Service
Management, vol. 15, no. 1, pp. 275–288, March 2018.

[21] Y. Zhou, M. Zhu, L. Xiao, L. Ruan, W. Duan, D. Li, R. Liu,
and M. Zhu, “A load balancing strategy of sdn controller based on
distributed decision,” in 2014 IEEE 13th International Conference on
Trust, Security and Privacy in Computing and Communications, Sep.
2014, pp. 851–856.

[22] N. Paladi and C. Gehrmann, “SDN access control for the
masses,” CoRR, vol. abs/1811.08094, 2018. [Online]. Available:
http://arxiv.org/abs/1811.08094

[23] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[24] P. Saint-Andre, “Extensible Messaging and Presence Protocol
(XMPP): Core,” RFC 3920, Oct. 2004. [Online]. Available: https:
//rfc-editor.org/rfc/rfc3920.txt

[25] “Comcast leads trellis, an open source data center
switching fabric,” https://www.sdxcentral.com/articles/news/
comcast-leads-trellis-an-open-source-data-center-switching-fabric/
2018/12/, 2018, accessed: 27-04-2020.

[26] “Google joins cord, now a separate open source
group,” https://www.sdxcentral.com/articles/news/
google-joins-cord-now-separate-open-source-group/2016/07/, 2016,
accessed: 27-04-2020.

[27] “Taking seba to production,” https://www.youtube.com/
watch?v=IEGuXxwbbnQ&feature=youtu.be&ab channel=
OpenNetworkingFoundation, 2020, accessed: 5-12-2020.

[28] “M-cord,” https://opennetworking.org/m-cord/, 2020, accessed: 5-12-
2020.

[29] J. Bailey and S. Stuart, “Faucet: Deploying sdn in the enterprise,” ACM
Queue, vol. 14 Issue 5, pp. 54–68, 2016.

[30] “Details retrieved from,” https://github.com/faucetsdn/faucet, 2019, ac-
cessed: 6-5-2019.

[31] “Introduction to faucet,” https://docs.faucet.nz/en/latest/intro.html#
what-is-faucet, 2019, accessed: 10-6-2019.

[32] “Onos project details retrieved from,” https://onosproject.org/, 2019,
accessed: 10-11-2018.

[33] “Opencord details retrieved from,” https://opencord.org/, 2019, ac-
cessed: 10-11-2018.

[34] “Xos details retrieved from,” https://opennetworking.org/xos/, 2021,
accessed: 31-03-2021.

[35] Z. Yin, M. Caesar, and Y. Zhou, “Towards Understanding Bugs
in Open Source Router Software,” SIGCOMM Comput. Commun.
Rev., vol. 40, no. 3, pp. 34–40, Jun. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1823844.1823849

[36] L. Peterson, “Mysterious-Decision Release Notes,” https://wiki.
opencord.org/display/CORD/Mysterious-Decision+Release+Notes,
2017, accessed: 6-2019.

[37] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Proceedings of the 26th International Conference
on Neural Information Processing Systems - Volume 2, ser. NIPS’13.
USA: Curran Associates Inc., 2013, pp. 3111–3119. [Online].
Available: http://dl.acm.org/citation.cfm?id=2999792.2999959

[38] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003. [Online].
Available: http://dl.acm.org/citation.cfm?id=944919.944937

[39] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Hierarchical
dirichlet processes,” 2006.

[40] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in Advances in Neural Information Processing Systems
13, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. MIT Press,
2001, pp. 556–562. [Online]. Available: http://papers.nips.cc/paper/
1861-algorithms-for-non-negative-matrix-factorization.pdf

[41] J. E. Ramos, “Using tf-idf to determine word relevance in document
queries,” 2003.

[42] M. Serifovic, “ Image-to-Recipe Translation with Deep
Convolutional Neural Networks ,” https://towardsdatascience.com/
this-ai-is-hungry-b2a8655528be, 2018.

http://doi.acm.org/10.1145/3190617
http://doi.acm.org/10.1145/3190617
http://doi.acm.org/10.1145/2934872.2934891
http://doi.acm.org/10.1145/2934872.2934891
http://doi.acm.org/10.1145/2486001.2486019
https://doi.org/10.1145/3230543.3230546
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/canini
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/canini
http://doi.acm.org/10.1145/2774993.2774996
http://dl.acm.org/citation.cfm?id=3154630.3154657
http://dl.acm.org/citation.cfm?id=3154630.3154657
https://doi.org/10.1145/2791577
https://doi.org/10.1145/2043556.2043572
https://doi.org/10.1145/2043556.2043572
http://doi.acm.org/10.1145/2670979.2670986
http://doi.acm.org/10.1145/2987550.2987583
http://arxiv.org/abs/1811.08094
http://doi.acm.org/10.1145/1355734.1355746
https://rfc-editor.org/rfc/rfc3920.txt
https://rfc-editor.org/rfc/rfc3920.txt
https://www.sdxcentral.com/articles/news/comcast-leads-trellis-an-open-source-data-center-switching-fabric/2018/12/
https://www.sdxcentral.com/articles/news/comcast-leads-trellis-an-open-source-data-center-switching-fabric/2018/12/
https://www.sdxcentral.com/articles/news/comcast-leads-trellis-an-open-source-data-center-switching-fabric/2018/12/
https://www.sdxcentral.com/articles/news/google-joins-cord-now-separate-open-source-group/2016/07/
https://www.sdxcentral.com/articles/news/google-joins-cord-now-separate-open-source-group/2016/07/
https://www.youtube.com/watch?v=IEGuXxwbbnQ&feature=youtu.be&ab_channel=OpenNetworkingFoundation
https://www.youtube.com/watch?v=IEGuXxwbbnQ&feature=youtu.be&ab_channel=OpenNetworkingFoundation
https://www.youtube.com/watch?v=IEGuXxwbbnQ&feature=youtu.be&ab_channel=OpenNetworkingFoundation
https://opennetworking.org/m-cord/
https://github.com/faucetsdn/faucet
https://docs.faucet.nz/en/latest/intro.html#what-is-faucet
https://docs.faucet.nz/en/latest/intro.html#what-is-faucet
https://onosproject.org/
https://opencord.org/
https://opennetworking.org/xos/
http://doi.acm.org/10.1145/1823844.1823849
https://wiki.opencord.org/display/CORD/Mysterious-Decision+Release+Notes
https://wiki.opencord.org/display/CORD/Mysterious-Decision+Release+Notes
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=944919.944937
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
https://towardsdatascience.com/this-ai-is-hungry-b2a8655528be
https://towardsdatascience.com/this-ai-is-hungry-b2a8655528be

[43] T. U. of British Columbia, “ A Comparison of LDA
and NMF for Topic Modeling on Literary Themes ,”
https://wiki.ubc.ca/Course:CPSC522/A Comparison of LDA and
NMF for Topic Modeling on Literary Themes, 2018.

[44] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S.
Moebus, B. K. Ray, and M. . Wong, “Orthogonal defect classification-a
concept for in-process measurements,” IEEE Transactions on Software
Engineering, vol. 18, no. 11, pp. 943–956, 1992.

[45] L. Lamport, “The part-time parliament,” ACM Trans. Comput.
Syst., vol. 16, no. 2, pp. 133–169, May 1998. [Online]. Available:
http://doi.acm.org/10.1145/279227.279229

[46] D. Ongaro and J. Ousterhout, “In search of an understandable
consensus algorithm,” in Proceedings of the 2014 USENIX Conference
on USENIX Annual Technical Conference, ser. USENIX ATC’14.
Berkeley, CA, USA: USENIX Association, 2014, pp. 305–320. [On-
line]. Available: http://dl.acm.org/citation.cfm?id=2643634.2643666

[47] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou, “Flash-
back: A lightweight extension for rollback and deterministic replay
for software debugging,” in Proceedings of the Annual Conference
on USENIX Annual Technical Conference, ser. ATEC ’04. USA:
USENIX Association, 2004, p. 3.

[48] B. Chandrasekaran, B. Tschaen, and T. Benson, “Isolating and
tolerating sdn application failures with legosdn,” in Proceedings
of the Symposium on SDN Research, ser. SOSR ’16. New
York, NY, USA: ACM, 2016, pp. 7:1–7:12. [Online]. Available:
http://doi.acm.org/10.1145/2890955.2890965

[49] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou, “Rx: Treating bugs
as allergies—a safe method to survive software failures,” SIGOPS
Oper. Syst. Rev., vol. 39, no. 5, pp. 235–248, Oct. 2005. [Online].
Available: http://doi.acm.org/10.1145/1095809.1095833

[50] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and
W. S. Beebee, Jr., “Enhancing server availability and security
through failure-oblivious computing,” in Proceedings of the 6th
Conference on Symposium on Opearting Systems Design &
Implementation - Volume 6, ser. OSDI’04. Berkeley, CA, USA:
USENIX Association, 2004, pp. 21–21. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1251254.1251275

[51] Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo, “Automated
bug removal for software-defined networks,” in Proceedings of
the 14th USENIX Conference on Networked Systems Design and
Implementation, ser. NSDI’17. Berkeley, CA, USA: USENIX
Association, 2017, pp. 719–733. [Online]. Available: http://dl.acm.org/
citation.cfm?id=3154630.3154688

[52] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in Proceedings of the 2013
International Conference on Software Engineering, ser. ICSE ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 802–811. [Online].
Available: http://dl.acm.org/citation.cfm?id=2486788.2486893

[53] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in Proceedings of the 2013
International Conference on Software Engineering, ser. ICSE ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 772–781. [Online].
Available: http://dl.acm.org/citation.cfm?id=2486788.2486890

[54] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F.
Wong, Y. Zibin, M. D. Ernst, and M. Rinard, “Automatically patching
errors in deployed software,” in Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles, ser. SOSP ’09.
New York, NY, USA: ACM, 2009, pp. 87–102. [Online]. Available:
http://doi.acm.org/10.1145/1629575.1629585

[55] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A
systematic study of automated program repair: Fixing 55 out of
105 bugs for $8 each,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 3–13. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337225

[56] “Faucet issue #1623 details retrieved from,” https://github.com/
faucetsdn/faucet/pull/1623, 2019, accessed: 6-5-2019.

[57] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey,
“Veriflow: Verifying network-wide invariants in real time,” in
Proceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation, ser. nsdi’13. Berkeley, CA,
USA: USENIX Association, 2013, pp. 15–28. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2482626.2482630

[58] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu,
N. McKeown, and A. Vahdat, “Libra: Divide and conquer to
verify forwarding tables in huge networks,” in 11th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 14). Seattle, WA: USENIX Association, Apr. 2014, pp.
87–99. [Online]. Available: https://www.usenix.org/conference/nsdi14/
technical-sessions/presentation/zeng

[59] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown,
and S. Whyte, “Real time network policy checking using header
space analysis,” in Proceedings of the 10th USENIX Conference
on Networked Systems Design and Implementation, ser. nsdi’13.
Berkeley, CA, USA: USENIX Association, 2013, pp. 99–112. [Online].
Available: http://dl.acm.org/citation.cfm?id=2482626.2482638

[60] “Cord-2470 details retrieved from,” https://jira.opencord.org/browse/
CORD-2470, 2019, accessed: 6-5-2019.

[61] R. Jung, Germany, J.-H. Jourdan, R. Krebbers, and D. Dreyer, “Safe
systems programming in rust: The promise and the challenge,” 2020.

[62] H. Xu, Z. Chen, M. Sun, and Y. Zhou, “Memory-safety challenge
considered solved? an empirical study with all rust cves,” 2020.

[63] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman,
X. Lin, T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey,
G. Grider, P. M. Fields, K. Harms, R. B. Ross, A. Jacobson,
R. Ricci, K. Webb, P. Alvaro, H. B. Runesha, M. Hao, and
H. Li, “Fail-slow at scale: Evidence of hardware performance
faults in large production systems,” in 16th USENIX Conference
on File and Storage Technologies (FAST 18). Oakland, CA:
USENIX Association, Feb. 2018, pp. 1–14. [Online]. Available:
https://www.usenix.org/conference/fast18/presentation/gunawi

[64] P. Fonseca, C. Li, and R. Rodrigues, “Finding complex concurrency
bugs in large multi-threaded applications,” in Proceedings of the Sixth
Conference on Computer Systems, ser. EuroSys ’11. New York,
NY, USA: Association for Computing Machinery, 2011, p. 215–228.
[Online]. Available: https://doi.org/10.1145/1966445.1966465

[65] “Details retrieved from,” https://jira.opencord.org/browse/CORD-1734,
2019, accessed: 12-12-2020.

[66] X. Yu, P. Joshi, J. Xu, G. Jin, H. Zhang, and G. Jiang, “Cloudseer:
Workflow Monitoring of Cloud Infrastructures via Interleaved Logs,”
in ACM SIGPLAN Notices, vol. 51, no. 4. ACM, 2016, pp. 489–502.

[67] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly
Detection and Diagnosis from System Logs through Deep Learning,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2017, pp. 1285–1298.

[68] Z. Li, Z. Ge, A. Mahimkar, J. Wang, B. Y. Zhao, H. Zheng, J. Emmons,
and L. Ogden, “Predictive Analysis in Network Function Virtualiza-
tion,” in Proceedings of the Internet Measurement Conference 2018.
ACM, 2018, pp. 161–167.

[69] C. Streiffer, R. Raghavendra, T. Benson, and M. Srivatsa, “Learn-
ing to Simplify Distributed Systems Management,” in 2018 IEEE
International Conference on Big Data (Big Data). IEEE, 2018, pp.
1837–1845.

[70] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pin-
point: Problem Determination in Large, Dynamic Internet Services,”
in Proceedings International Conference on Dependable Systems and
Networks. IEEE, 2002, pp. 595–604.

[71] “Onos-4859 details retrieved from,” https://jira.onosproject.org/browse/
ONOS-4859, 2019, accessed: 6-5-2019.

[72] “Onos-2.3.0 details retrieved from,” https:
//github.com/opennetworkinglab/onos/tree/
ac329a787311c731aac4b7408e5749590bd816fe, 2019, accessed:
26-01-2020.

[73] N. Feamster, J. Rexford, and E. Zegura, “The Road to SDN: An
Intellectual History of Programmable Networks,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 2, pp. 87–98, 2014.

[74] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, “A Clean Slate 4D Approach
to Network Control and Management,” ACM SIGCOMM Computer
Communication Review, vol. 35, no. 5, pp. 41–54, 2005.

[75] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking Control of the Enterprise,” in ACM
SIGCOMM Computer Communication Review, vol. 37, no. 4. ACM,
2007, pp. 1–12.

[76] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe, “Design and Implementation of A Routing Control
Platform,” in Proceedings of the 2nd conference on Symposium on

https://wiki.ubc.ca/Course:CPSC522/A_Comparison_of_LDA_and_NMF_for_Topic_Modeling_on_Literary_Themes
https://wiki.ubc.ca/Course:CPSC522/A_Comparison_of_LDA_and_NMF_for_Topic_Modeling_on_Literary_Themes
http://doi.acm.org/10.1145/279227.279229
http://dl.acm.org/citation.cfm?id=2643634.2643666
http://doi.acm.org/10.1145/2890955.2890965
http://doi.acm.org/10.1145/1095809.1095833
http://dl.acm.org/citation.cfm?id=1251254.1251275
http://dl.acm.org/citation.cfm?id=1251254.1251275
http://dl.acm.org/citation.cfm?id=3154630.3154688
http://dl.acm.org/citation.cfm?id=3154630.3154688
http://dl.acm.org/citation.cfm?id=2486788.2486893
http://dl.acm.org/citation.cfm?id=2486788.2486890
http://doi.acm.org/10.1145/1629575.1629585
http://dl.acm.org/citation.cfm?id=2337223.2337225
https://github.com/faucetsdn/faucet/pull/1623
https://github.com/faucetsdn/faucet/pull/1623
http://dl.acm.org/citation.cfm?id=2482626.2482630
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/zeng
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/zeng
http://dl.acm.org/citation.cfm?id=2482626.2482638
https://jira.opencord.org/browse/CORD-2470
https://jira.opencord.org/browse/CORD-2470
https://www.usenix.org/conference/fast18/presentation/gunawi
https://doi.org/10.1145/1966445.1966465
https://jira.opencord.org/browse/CORD-1734
https://jira.onosproject.org/browse/ONOS-4859
https://jira.onosproject.org/browse/ONOS-4859
https://github.com/opennetworkinglab/onos/tree/ac329a787311c731aac4b7408e5749590bd816fe
https://github.com/opennetworkinglab/onos/tree/ac329a787311c731aac4b7408e5749590bd816fe
https://github.com/opennetworkinglab/onos/tree/ac329a787311c731aac4b7408e5749590bd816fe

Networked Systems Design & Implementation-Volume 2. USENIX
Association, 2005, pp. 15–28.

[77] A. Rabkin and R. H. Katz, “How Hadoop Clusters Break,” IEEE
software, vol. 30, no. 4, pp. 88–94, 2012.

[78] M. Attariyan and J. Flinn, “Automating Configuration Troubleshooting
with Dynamic Information Flow Analysis,” in OSDI, vol. 10, no. 2010,
2010, pp. 1–14.

[79] ——, “Automating configuration troubleshooting with confaid,” login
Usenix Mag., vol. 36, no. 1, 2011. [Online]. Available: https://www.
usenix.org/publications/login/february-2011-volume-36-number-1/
automating-configuration-troubleshooting-confaid

[80] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and
S. Pasupathy, “Early detection of configuration errors to reduce
failure damage,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). Savannah, GA: USENIX
Association, Nov. 2016, pp. 619–634. [Online]. Available: https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/xu

[81] “Faucet issue #355 details retrieved from,” https://github.com/
faucetsdn/faucet/pull/355, 2019, accessed: 6-5-2019.

[82] “Influxdb details retrieved from,” https://www.influxdata.com/, 2019,
accessed: 6-5-2019.

[83] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue,
“Do developers update their library dependencies?” Empirical Softw.
Engg., vol. 23, no. 1, p. 384–417, Feb. 2018. [Online]. Available:
https://doi.org/10.1007/s10664-017-9521-5

[84] “Cve-2018-1000615 details retrieved from,” https://www.cvedetails.
com/cve/CVE-2018-1000615/, 2019, accessed: 1-6-2020.

[85] “Ovsdb details retrieved from,” http://docs.openvswitch.org/en/latest/
ref/ovsdb.7/, 2019, accessed: 1-6-2020.

[86] “Dependency-check details retrieved from,” https://jeremylong.github.
io/DependencyCheck/, 2020, accessed: 26-06-2020.

[87] “Details retrieved from,” https://nvd.nist.gov/, 2020, accessed: 26-06-
2020.

[88] S. Mirhosseini and C. Parnin, “Can Automated Pull Requests En-
courage Software Developers to Upgrade Out-of-date Dependencies?”
in Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering. IEEE Press, 2017, pp. 84–94.

[89] M. Lungu, R. Robbes, and M. Lanza, “Recovering Inter-Project De-
pendencies in Software Ecosystems,” in Proceedings of the IEEE/ACM
international conference on Automated software engineering. ACM,
2010, pp. 309–312.

[90] “Voltha details retrieved from,” https://www.opennetworking.org/
voltha/, 2020, accessed: 26-06-2020.

[91] “Vol-549 details retrieved from,” https://jira.opencord.org/browse/
VOL-549, 2019, accessed: 6-5-2019.

[92] “Chaos monkey details retrieved from,” https://github.com/Netflix/
chaosmonkey, 2019, accessed: 14-3-2019.

[93] N. Shelly, B. Tschaen, K.-T. Förster, M. Chang, T. Benson, and L. Van-
bever, “Destroying Networks for Fun (and Profit),” in Proceedings of
the 14th ACM Workshop on Hot Topics in Networks. ACM, 2015,
p. 6.

[94] L. Keller, P. Upadhyaya, and G. Candea, “Conferr: A tool for assessing
resilience to human configuration errors,” in 2008 IEEE International
Conference on Dependable Systems and Networks With FTCS and
DCC (DSN), June 2008, pp. 157–166.

[95] M. Attariyan and J. Flinn, “Automating configuration troubleshooting
with dynamic information flow analysis,” in Proceedings of the
9th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’10. Berkeley, CA, USA: USENIX
Association, 2010, pp. 237–250. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1924943.1924960

[96] A. Whitaker, R. S. Cox, and S. D. Gribble, “Configuration debugging
as search: Finding the needle in the haystack,” in Proceedings of
the 6th Conference on Symposium on Operating Systems Design
& Implementation - Volume 6, ser. OSDI’04. Berkeley, CA,
USA: USENIX Association, 2004, pp. 6–6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251254.1251260

[97] C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang,
and W.-Y. Ma, “Automated known problem diagnosis with event
traces,” in Proceedings of the 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006, ser. EuroSys ’06. New
York, NY, USA: ACM, 2006, pp. 375–388. [Online]. Available:
http://doi.acm.org/10.1145/1217935.1217972

[98] “Onos-5992 details retrieved from,” https://jira.onosproject.org/browse/
ONOS-5992, 2020, accessed: 10-12-2020.

[99] “An analysis of xpon technology development,” https:
//www.zte.com.cn/global/about/magazine/zte-technologies/2007/
10/en 120/161896.html, 2021, accessed: 01-04-2021.

[100] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From
metaphor to theory and practice,” IEEE Software, vol. 29, no. 6, pp.
18–21, 2012.

[101] I. Ahmed, U. A. Mannan, R. Gopinath, and C. Jensen, “An empirical
study of design degradation: How software projects get worse over
time,” in 2015 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2015, pp. 1–10.

[102] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution
and impact of code smells: A case study of two open source sys-
tems,” in 2009 3rd International Symposium on Empirical Software
Engineering and Measurement, 2009, pp. 390–400.

[103] W. Li and R. Shatnawi, “An empirical study of the bad
smells and class error probability in the post-release object-
oriented system evolution,” Journal of Systems and Software,
vol. 80, no. 7, pp. 1120 – 1128, 2007, dynamic Resource
Management in Distributed Real-Time Systems. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121206002780

[104] “Front matter,” in Refactoring for Software Design Smells,
G. Suryanarayana, G. Samarthyam, and T. Sharma, Eds. Boston:
Morgan Kaufmann, 2015, p. iii. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/B9780128013977010018

[105] T. Sharma, P. Mishra, and R. Tiwari, “Designite: A software
design quality assessment tool,” in Proceedings of the 1st International
Workshop on Bringing Architectural Design Thinking into Developers’
Daily Activities, ser. BRIDGE ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 1–4. [Online]. Available:
https://doi.org/10.1145/2896935.2896938

[106] G. Suryanarayana, G. Samarthyam, and T. Sharma, “Chapter 5 -
modularization smells,” in Refactoring for Software Design Smells,
G. Suryanarayana, G. Samarthyam, and T. Sharma, Eds. Boston:
Morgan Kaufmann, 2015, pp. 93 – 122. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/B9780128013977000059

[107] ——, “Chapter 6 - hierarchy smells,” in Refactoring for Software
Design Smells, G. Suryanarayana, G. Samarthyam, and T. Sharma,
Eds. Boston: Morgan Kaufmann, 2015, pp. 123 – 192.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
B9780128013977000060

[108] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Toward a
catalogue of architectural bad smells,” in Architectures for Adaptive
Software Systems, R. Mirandola, I. Gorton, and C. Hofmeister, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 146–162.

[109] M. Lippert and S. Roock, “Refactoring in large software projects,”
2006.

[110] M. Noback, The Stable Dependencies Principle. Berkeley, CA:
Apress, 2018, pp. 217–235. [Online]. Available: https://doi.org/10.
1007/978-1-4842-4119-6 10

[111] G. Suryanarayana, G. Samarthyam, and T. Sharma, “Chapter 2
- design smells,” in Refactoring for Software Design Smells,
G. Suryanarayana, G. Samarthyam, and T. Sharma, Eds. Boston:
Morgan Kaufmann, 2015, pp. 9 – 19. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/B9780128013977000023

[112] T. Sharma, P. Singh, and D. Spinellis, “An empirical investigation on
the relationship between design and architecture smells,” Empirical
Software Engineering, vol. 25, no. 5, pp. 4020–4068, Sep 2020.
[Online]. Available: https://doi.org/10.1007/s10664-020-09847-2

[113] “Onos-6594 details retrieved from,” https://jira.onosproject.org/browse/
ONOS-6594, 2019, accessed: 26-01-2020.

[114] “Faucet codebase details retrieved from,” https://github.com/faucetsdn/
faucet/pull/2399, 2019, accessed: 6-5-2019.

[115] “Dependency versioning in the wild,” in 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR),
2019, pp. 349–359.

[116] “Onos-5309 details retrieved from,” https://jira.onosproject.org/browse/
ONOS-5309, 2019, accessed: 6-5-2019.

[117] “Vol-1201 details retrieved from,” https://jira.opencord.org/browse/
VOL-1201, 2019, accessed: 6-5-2019.

[118] “Onos-6893 details retrieved from,” https://jira.onosproject.org/browse/
ONOS-6893, 2019, accessed: 6-5-2019.

https://www.usenix.org/publications/login/february-2011-volume-36-number-1/automating-configuration-troubleshooting-confaid
https://www.usenix.org/publications/login/february-2011-volume-36-number-1/automating-configuration-troubleshooting-confaid
https://www.usenix.org/publications/login/february-2011-volume-36-number-1/automating-configuration-troubleshooting-confaid
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/xu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/xu
https://github.com/faucetsdn/faucet/pull/355
https://github.com/faucetsdn/faucet/pull/355
https://www.influxdata.com/
https://doi.org/10.1007/s10664-017-9521-5
https://www.cvedetails.com/cve/CVE-2018-1000615/
https://www.cvedetails.com/cve/CVE-2018-1000615/
http://docs.openvswitch.org/en/latest/ref/ovsdb.7/
http://docs.openvswitch.org/en/latest/ref/ovsdb.7/
https://jeremylong.github.io/DependencyCheck/
https://jeremylong.github.io/DependencyCheck/
https://nvd.nist.gov/
https://www.opennetworking.org/voltha/
https://www.opennetworking.org/voltha/
https://jira.opencord.org/browse/VOL-549
https://jira.opencord.org/browse/VOL-549
https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/chaosmonkey
http://dl.acm.org/citation.cfm?id=1924943.1924960
http://dl.acm.org/citation.cfm?id=1924943.1924960
http://dl.acm.org/citation.cfm?id=1251254.1251260
http://doi.acm.org/10.1145/1217935.1217972
https://jira.onosproject.org/browse/ONOS-5992
https://jira.onosproject.org/browse/ONOS-5992
https://www.zte.com.cn/global/about/magazine/zte-technologies/2007/10/en_120/161896.html
https://www.zte.com.cn/global/about/magazine/zte-technologies/2007/10/en_120/161896.html
https://www.zte.com.cn/global/about/magazine/zte-technologies/2007/10/en_120/161896.html
http://www.sciencedirect.com/science/article/pii/S0164121206002780
http://www.sciencedirect.com/science/article/pii/B9780128013977010018
http://www.sciencedirect.com/science/article/pii/B9780128013977010018
https://doi.org/10.1145/2896935.2896938
http://www.sciencedirect.com/science/article/pii/B9780128013977000059
http://www.sciencedirect.com/science/article/pii/B9780128013977000059
http://www.sciencedirect.com/science/article/pii/B9780128013977000060
http://www.sciencedirect.com/science/article/pii/B9780128013977000060
https://doi.org/10.1007/978-1-4842-4119-6_10
https://doi.org/10.1007/978-1-4842-4119-6_10
http://www.sciencedirect.com/science/article/pii/B9780128013977000023
http://www.sciencedirect.com/science/article/pii/B9780128013977000023
https://doi.org/10.1007/s10664-020-09847-2
https://jira.onosproject.org/browse/ONOS-6594
https://jira.onosproject.org/browse/ONOS-6594
https://github.com/faucetsdn/faucet/pull/2399
https://github.com/faucetsdn/faucet/pull/2399
https://jira.onosproject.org/browse/ONOS-5309
https://jira.onosproject.org/browse/ONOS-5309
https://jira.opencord.org/browse/VOL-1201
https://jira.opencord.org/browse/VOL-1201
https://jira.onosproject.org/browse/ONOS-6893
https://jira.onosproject.org/browse/ONOS-6893

[119] “Faucet issue #489 details retrieved from,” https://github.com/
faucetsdn/faucet/pull/489, 2019, accessed: 6-5-2019.

[120] “Cord-2687 details retrieved from,” https://jira.opencord.org/browse/
CORD-2687, 2019, accessed: 6-5-2019.

[121] “Onos-2015 details retrieved from,” https://jira.onosproject.org/browse/
ONOS-2015, 2019, accessed: 6-5-2019.

[122] “Vol-1122 details retrieved from,” https://jira.opencord.org/browse/
VOL-1122, 2019, accessed: 6-5-2019.

[123] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang, “Rosemary: A robust, secure, and
high-performance network operating system,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’14. New York, NY, USA: ACM, 2014, pp. 78–89.
[Online]. Available: http://doi.acm.org/10.1145/2660267.2660353

[124] P. Tammana, C. Nagarajan, P. Mamillapalli, R. Kompella, and M. Lee,
“Fault Localization in Large-Scale Network Policy Deployment,” in
2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2018, pp. 54–64.

[125] K. Mahajan, R. Poddar, M. Dhawan, and V. Mann, “Jury: Validat-
ing Controller Actions in Software-Defined Networks,” in 2016 46th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE, 2016, pp. 109–120.

[126] B. Yamansavascilar, A. C. Baktir, A. Ozgovde, and C. Ersoy,
“Fault tolerance in sdn data plane considering network and
application based metrics,” Journal of Network and Computer
Applications, vol. 170, p. 102780, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S108480452030254X

[127] “Onos-7758 details retrieved from,” https://jira.onosproject.org/browse/
ONOS-7758, 2019, accessed: 6-5-2019.

[128] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,
“Logically centralized? state distribution trade-offs in software defined
networks,” in Proceedings of the First Workshop on Hot Topics
in Software Defined Networks, ser. HotSDN ’12. New York, NY,
USA: Association for Computing Machinery, 2012, p. 1–6. [Online].
Available: https://doi.org/10.1145/2342441.2342443

[129] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “Openqos:
An openflow controller design for multimedia delivery with end-to-end
quality of service over software-defined networks,” in Proceedings of
The 2012 Asia Pacific Signal and Information Processing Association
Annual Summit and Conference, 2012, pp. 1–8.

[130] Y. Yu, C. Qian, and X. Li, “Distributed and collaborative
traffic monitoring in software defined networks,” in Proceedings
of the Third Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 85–90. [Online]. Available:
https://doi.org/10.1145/2620728.2620739

[131] R. Sherwood, G. Gibb, K. kiong Yap, M. Casado, N. Mckeown, and
G. Parulkar, “Flowvisor: A network virtualization layer,” Tech. Rep.,
2009.

[132] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, P. Ingram, E. Jackson, A. Lambeth, R. Lenglet,
S.-H. Li, A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan,
S. Shenker, A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt, A. Yip,
and R. Zhang, “Network virtualization in multi-tenant datacenters,”
in 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14). Seattle, WA: USENIX Association,
Apr. 2014, pp. 203–216. [Online]. Available: https://www.usenix.org/
conference/nsdi14/technical-sessions/presentation/koponen

[133] Y. Li, B. Dolan-Gavitt, S. Weber, and J. Cappos, “Lock-in-Pop:
Securing Privileged Operating System Kernels by Keeping on the
Beaten Path,” in ATC), 2017, pp. 1–13.

[134] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “SPHINX: Detect-
ing Security Attacks in Software-Defined Networks,” 01 2015.

[135] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado, “Bouncer:
Securing Software by Blocking Bad Input,” ACM SIGOPS Operating
Systems Review, vol. 41, no. 6, pp. 117–130, 2007.

[136] M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and D. Kos-
tic, “A SOFT Way for OpenFlow Switch Interoperability Testing,”
in Proceedings of the 8th international conference on Emerging
networking experiments and technologies. ACM, 2012, pp. 265–276.

[137] T. Nelson, A. D. Ferguson, and S. Krishnamurthi, “Static differential
program analysis for software-defined networks,” in FM 2015: Formal
Methods, N. Bjørner and F. de Boer, Eds. Cham: Springer International
Publishing, 2015, pp. 395–413.

[138] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A Comprehen-
sive Study on Deep Learning Bug Characteristics,” arXiv preprint
arXiv:1906.01388, 2019.

[139] J. Wang, W. Dou, Y. Gao, C. Gao, F. Qin, K. Yin, and J. Wei, “A
Comprehensive Study on Real World Concurrency Bugs in Node.
js,” in 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2017, pp. 520–531.

[140] H. Liu, S. Lu, M. Musuvathi, and S. Nath, “What Bugs Cause
Production Cloud Incidents?” in HotOS, 2019, pp. 155–162.

[141] Y. Gao, W. Dou, F. Qin, C. Gao, D. Wang, J. Wei, R. Huang, L. Zhou,
and Y. Wu, “An Empirical Study on Crash Recovery Bugs in Large-
Scale Distributed Systems,” in Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, 2018,
pp. 539–550.

[142] L. Xu, J. Huang, S. Hong, J. Zhang, and G. Gu, “Attacking the brain:
Races in the sdn control plane,” in Proceedings of the 26th USENIX
Conference on Security Symposium, ser. SEC’17. Berkeley, CA,
USA: USENIX Association, 2017, pp. 451–468. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3241189.3241225

[143] P. Vizarreta, K. Trivedi, B. Helvik, P. Heegaard, A. Blenk, W. Kellerer,
and C. Mas Machuca, “Assessing the maturity of sdn controllers with
software reliability growth models,” IEEE Transactions on Network
and Service Management, vol. 15, no. 3, pp. 1090–1104, 2018.

[144] P. Vizarreta, E. Sakic, W. Kellerer, and C. M. Machuca, “Mining soft-
ware repositories for predictive modelling of defects in sdn controller,”
in 2019 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), 2019, pp. 80–88.

[145] P. Vizarreta, K. Trivedi, V. Mendiratta, W. Kellerer, and C. Mas-
Machuca, “Dason: Dependability assessment framework for imperfect
distributed sdn implementations,” IEEE Transactions on Network and
Service Management, vol. 17, no. 2, pp. 652–667, 2020.

https://github.com/faucetsdn/faucet/pull/489
https://github.com/faucetsdn/faucet/pull/489
https://jira.opencord.org/browse/CORD-2687
https://jira.opencord.org/browse/CORD-2687
https://jira.onosproject.org/browse/ONOS-2015
https://jira.onosproject.org/browse/ONOS-2015
https://jira.opencord.org/browse/VOL-1122
https://jira.opencord.org/browse/VOL-1122
http://doi.acm.org/10.1145/2660267.2660353
http://www.sciencedirect.com/science/article/pii/S108480452030254X
https://jira.onosproject.org/browse/ONOS-7758
https://jira.onosproject.org/browse/ONOS-7758
https://doi.org/10.1145/2342441.2342443
https://doi.org/10.1145/2620728.2620739
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/koponen
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/koponen
http://dl.acm.org/citation.cfm?id=3241189.3241225

	INTRODUCTION
	Methodology
	Target Systems
	Data Set and Methodology
	Bug Autoclassification with NLP
	Bug Labeling
	Validation

	RQ1: Bug Type
	RQ2: Operational Impact of SDN Bugs
	RQ3: Bug Triggers and Code Fixes
	Analysis of Bug Triggers
	Resolution Time for Triggers

	Analysis of Software Engineering Principles
	Smell-Analysis for Code-quality
	Architecture smell architecturalsmells
	Design smells designSmellsdef

	Burn Analysis

	Broader Implications
	RQ4: Controller Selection Guideline
	RQ4: Automating Operators Diagnosis
	RQ5: Selecting Recovery Frameworks

	Threats to validity and discussions
	Related Works
	Conclusion
	Acknowledgements
	References

