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Abstract

Person Re-IDentification (P-RID), as an instance-level
recognition problem, still remains challenging in computer
vision community. Many P-RID works aim to learn faith-
Jul and discriminative features/metrics from offline train-
ing data and directly use them for the unseen online testing
data. However, their performance is largely limited due to
the severe data shifting issue between training and testing
data. Therefore, we propose an online joint multi-metric
adaptation model to adapt the offline learned P-RID mod-
els for the online data by learning a series of metrics for all
the sharing-subsets. Each sharing-subset is obtained from
the proposed novel frequent sharing-subset mining module
and contains a group of testing samples which share strong
visual similarity relationships to each other. Unlike existing
online P-RID methods, our model simultaneously takes both
the sample-specific discriminant and the set-based visual
similarity among testing samples into consideration so that
the adapted multiple metrics can refine the discriminant of
all the given testing samples jointly via a multi-kernel late
fusion framework. Our proposed model is generally suit-
able to any offline learned P-RID baselines for online boost-
ing, the performance improvement by our model is not only
verified by extensive experiments on several widely-used
P-RID benchmarks (CUHKO3, Marketl501, Duke MTMC-
relD and MSMTI7) and state-of-the-art P-RID baselines
but also guaranteed by the provided in-depth theoretical
analyses.

1. Introduction

Person Re-Identification (P-RID), aiming to retrieve the
same identity images of a query probe from a gallery set,
is not only an attractive research task in computer vision
community, but also a critical link to the practical applica-
tions such as public camera surveillance. A popular solu-
tion to P-RID is to perform supervised feature/metric learn-
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The normalized pair-wise distance distributions of
both training and testing samples based on the well-trained
HA-CNN model on Marketl501 dataset demonstrate the severe

Figure 1.

training-testing data distribution shifting issue, where the ex-
tremely challenging hard negative distractors (in blue box) will
significantly influence the retrieval accuracy (the Original top-10
retrieval results). Even using the state-of-the-art online re-ranking
method [45] (RR), the ground-truth (in red box) still has a lower
rank than the distractors. Our method succeeds in handling the
distractors so that the true-match is successfully re-ranked to the
top position in the list (Ours).

ing [2, 29, 18, 30, 6, 40, 12] from the offline training data,
then directly apply them to the online unsupervised testing
data for evaluation. However, due to the severe training-
testing data distribution shifting (testing data are drawn
from totally different classes against the training data as
shown in Fig. 1) caused by large variations in visual appear-
ance, human pose, camera viewpoint, illumination change,
and background clutter, the performance of offline learned
models is limited indeed.

The root of such a limited performance is its treatment
regardless of the information of online testing data them-
selves. So a straightforward solution is adapting the of-
fline learned models for the online testing data to nar-
row the distribution gap. Recently, various online P-
RID methods are proposed which can be roughly catego-
rized into two branches. The set-centric re-ranking ap-
proaches [35, 9, 43, 3, 1] focus on optimizing the ranking
list of queries based on the similarity relationships among
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testing samples. Their performances totally rely on the of-
fline learned models from training data while treat differ-
ent testing samples equally ignoring the individual charac-
teristics, hence the improvement is neither significant nor
stable. The other category is query-specific metric adapta-
tion [17, 38, 45] which aims to enhance the discriminant of
each query individually. The generic offline learned met-
ric is adapted to an instance-specific local metric for each
query. Compared with the set-centric ones, the individual
discriminant of queries is enhanced while the visual similar-
ity relationships among given testing samples are ignored.
Moreover, existing query-specific models [17, 38, 45] com-
pletely ignore the counterpart gallery data during adapta-
tion. Even a discriminative probe-specific metric can be
learned, the “hard” gallery samples with large intra-class
and small inter-class variances will tremendously degrade
its performance since they are still indistinguishable under
the learned query-specific metric ( Fig. 1).

In order to tackle the aforementioned issues, we pro-
pose a novel online joint multi-metric adaptation algorithm
which not only takes individual characteristics of testing
samples into consideration but also fully explore the vi-
sual similarity relationships among both query and gallery
samples. As shown by Fig. 2, at the online P-RID test-
ing stage, the redundant intrinsic visual similarity relation-
ships among unlabeled query (gallery) set are utilized by
our proposed frequent sharing-subsets mining model to au-
tomatically mine the concise and strong visual sharing as-
sociations of samples. Since a sharing-subset contains a
group of queries (galleries) sharing strong visual similar-
ity to each other, their local distributions will be jointly ad-
justed by efficiently learning a Mahalanobis metric for all
of them. Once a series of such kind of sharing-subset based
Mahalanobis metrics are learned, for each query (gallery),
its instance-specific local metric is obtained via a multi-
metric late fusion of all the sharing-subset based Maha-
lanobis metrics. Therefore, our proposed online joint Multi-
Metric adaptation model based on the frequent sharing-
subsets Mining (denoted as M?) is able to refine the ranking
performance online. The success of learning from sharing
relies on discovering the latent sharing relationships among
samples, which cannot be found by treating each instance
independently [4]. Learning from sharing is good at han-
dling such condition that only a limited number of learn-
ing data are available by taking the sharing relationships as
data augmentation. Therefore the sharing strategy is par-
ticularly suitable for online P-RID learning in where each
testing sample itself is the only positive sample available
for learning.

The main contributions of this paper are as follows: (1)
To handle the severe shifted training-testing data distribu-
tion issue in P-RID, we leap from offline global learning
to online instance-specific metric adaptation. We propose

a general and flexible learning objective to simultaneously
enhance the local discriminant of testing query and gallery
data. (2) By mining various frequent sharing-subsets, the
intrinsic visual similarity sharing relationships are fully ex-
plored. Therefore the online time cost of learning metrics
from sharing is much more smaller than learning local met-
rics independently. (3) To fulfill the time-efficient require-
ment of online testing, a theoretical sound optimization so-
lution is proposed for efficient learning which is also proven
to guarantee the improvement of performance. (4) Our
proposed model can be readily applied to any existing of-
fline P-RID baselines for online performance improvement.
The efficiency and effectiveness of our method are further
verified by the extensive experiments on four challenging
P-RID benchmarks (CUHKO03, Market1501, DukeMTMC-
reID and MSMT17) based on various state-of-the-art P-RID
models.

2. Related Work

Online Re-Ranking in P-RID: In recent years, increas-
ing efforts have been paid to online P-RID re-ranking. Ye
et al. [35] revised the ranking list by considering the near-
est neighbors of both the global and local features. An un-
supervised re-ranking model proposed by Garcia et al. [9]
takes advantage of the content and context information in
the ranking list. Zhong et al. [43] proposed a k-reciprocal
encoding approach for re-ranking, which relies on a hy-
pothesis that if a gallery image is similar to the probe in
the k-reciprocal nearest neighbors, it is more likely to be a
true-match. Zhou et al. [45] proposed to learn an instance-
specific Mahalanobis metric for each query sample by us-
ing extra negative learning samples at online stage. Barman
et al. [3] focused on how to make a consensus-based de-
cision for retrieval by aggregating the ranking results from
multiple algorithms, only the matching scores are needed.
Bai ef al. [1] concentrated on re-ranking with the capac-
ity of metric fusion for P-RID by proposing an Unified En-
semble Diffusion (UED) framework. However, the afore-
mentioned online re-ranking methods either simply treat
different testing samples equally without considering the
instance-specific characteristics or completely ignore the in-
trinsic visual similarity relationships among testing sam-
ples, so that the performance improvement is neither stable
nor significant.

CNN-based Feature Extraction in P-RID: CNN-based
feature extraction has achieved the state-of-the-art perfor-
mance in P-RID. A novel Harmonious Attention CNN (HA-
CNN) proposed by Li et al. [18] tries to jointly learn atten-
tion selection and feature representation in a CNN by max-
imizing the complementary information of different levels
of visual attention (soft attention and hard attention). Wang
et al. [30] proposed a novel deeply supervised fully atten-
tional block that can be plugged into any CNNs to solve
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Figure 2. The online testing query and gallery samples are fed into the offline learned baseline model to obtain the feature descriptors
firstly. The proposed frequent sharing-subset (SSSet) mining model is performed to the extracted features to generate multiple sharing-
subsets which are further utilized by the proposed joint multi-metric adaptation model (The same sample may be contained by multiple

SSSets since it shares different visual similarity relationships with different samples.). By fusing the learned matching metrics for each
query and gallery sample, our final ranking list is obtained by a bi-directional retrieval matching (Sec. 3.5).

P-RID problem, and a novel deep network called Mancs is
designed to learn stable features for P-RID. Hou ef al. [12]
proposed the Spatial Interaction-and-Aggregation (SIA)
and Channel Interaction-and-Aggregation (CIA) modules to
improve the representational capacity of deep convolutional
networks. Chen et al. [6] proposed an Attentive but Di-
verse Network (ABD-Net) which integrates attention mod-
ules and diversity regularizations throughout the entire net-
work to learn features that are representative, robust, and
more discriminative for P-RID. Zheng et al. [40] aimed
at improving the learned P-RID features by better leverag-
ing the generated data by designing a joint learning frame-
work that couples P-RID learning and data generation end-
to-end. However, these well-trained networks are directly
applied to the testing data for feature extraction and eval-
uation, the data distribution shifting between training and
testing samples definitely limits the performance of these
models. Therefore, our proposed method is suitable for any
CNNs for sample-specific local metric adaptation at infer-
ence stage aiming to address the data shifting issue well and
gain a further performance improvement.

3. M3: Online Joint Multi-Metric Adaptation
from Frequent Sharing-Subset Mining

3.1. Problem Settings and Notations

At the online testing stage of P-RID, two disjoint
datasets, a query set Q and a gallery set G are given as:

Q={(a:!}2, G=A(g:, 1)},

that ¢;,g; € R? are the extracted feature representations
from an offline baseline model, either handcraft features or
learned deep features. [7,17 € {1,2,...,c} are the labels
from c classes which are totally different from the training

Header Table

Figure 3. A CFI-Tree is constructed based on 7. The same iden-
tity may be contained by multiple ¢; so that there may be multiple
nodes for the same identity.

sample classes. P-RID aims to rank G for a query probe
q based on the pair-wise similarity distance to a gallery g,
d(q,9) = ||q, g||*. Our goal is to re-rank G for g by refining
d(q, g) to improve the rank of true-matches for g.

3.2. Unsupervised Frequent Sharing-Subset Mining

Although the identity label {I!} ({I{}) is unknown dur-
ing testing, the visual similarity relationships of Q (G) are
intrinsic and verified to be effective in investigating the un-
derlying similarity structure of samples by previous online
re-ranking methods [9, 43]. However, due to the large-scale
sample size (especially for G), the redundancy and repeata-
bility of visual similarity relationships significantly limit
the performance of previous online P-RID methods. In-
spired by the well-established frequent itemset mining tech-
nique [8], we propose an unsupervised frequent sharing-
subset (SSSet) mining algorithm to automatically mine fre-
quent SSSets {S;}'*; from Q, that all the samples in S;
share a Strong Association Rule on visual similarity [8].
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Therefore, the mined SSSets not only keep the strong and
reliable visual similarity sharing information but also signif-
icantly alleviate the redundancy. Compared with the origi-
nal combinatorial problem suffering from exponential com-
putation complexity O(2"), the time complexity of our pro-
posed algorithm is O(n?) which is much more efficient
when a large scale of testing samples are given.

Considering Q as the given Item set, we firstly prepare
a Transaction set T = {t;};, from Q where each ¢; is
a subset of Q. The affinity matrix A € R"a*" of Q is
defined as:

4= { exp( q“q] )/Z exp( d(qz,qa ) Y
’ 0, j=1

6]
where o is the variance parameter of distance matrix from
Q so that A; ; represents the soft-max normalized visual
similarity between ¢; and g;. The i-th row of A represents
the similarity distribution between g; and the other samples
in Q. To keep only the most reliable sharing relationships, a
threshold © defined as the average affinity of Q is used for
outlier filtering: © = >"17, Z”" A; j/ng - ng. Therefore,
a binary index map B is obtalned by:

1, Ay >0
Bi"j B { 07 Aiﬂ‘ <O (2)

The non-zero B; ; implies the strong similarity sharing re-
lationship between ¢; and g;. Therefor each non-zero row
B; of B can be considered as a Transaction t;.

T={t:}={B;}, ¥ ) B;>1 3)

Once the transaction set 7 is obtained, we propose to
mine the frequent sharing-subsets from 7 that each sharing-
subset is represented by a mined frequent pattern from
a classical FP-Close mining algorithm [10]. To do so,
a Closed Frequent Itemset Tree (CFI-Tree) is firstly con-
structed based on 7 under a minimum support 5 (Fig. 3),
then the FP-Close mining algorithm in [10] is performed to
the constructed CFI-Tree to obtain all the closed frequent
patterns {S; }-, that each S; represents a sharing-subset.

3.3. Joint Multi-Metric Adaptation From SSSets

Once all the frequent SSSets {S; };:*, are obtained, our
goal is to jointly learn n, SSSets-based local Mahalanobis
metrics for {S;};"*, by optimizing Eqn. 4:

L1 2
arg min — M,
¢ g 3 > IV
w.ort: M; =0
(sz — s{,)T(l\/Iz + M,) (sz

(SZ - sf})TML (31 -

u

—sl)>2, Vs, €8;,8] €S;

2y v

s) =0, Vs, €S;,8, €8;
“4)

The learned metric M; from Eqn. 4 is shared by all the
samples in S;. Suppose we have n; SSSets and O(n) sam-
ples in each S;, there are totally O(n?n?) inequality con-
straints and O(nsn?) equality constraints in Eqn. 4 which
are too difficult to deal with, so that we aim to reduce the
constraint size in Eqn. 4. We find out that Eqn. 4 has an
exactly equivalent form by only keeping the constraints re-
lated to one anchor sample s’ in S;, that s* can be any sam-
ple in §;. Therefore the equivalent form is shown by Eqn. 5:

RS 2
arg min — M;
i 5 2 1M
wort: M; =0
(s —s3) (M, + M) (s — 1) > 2, Vs’ €S0 €

1) “v

(si — si)TMi (s” — s;) =0, Vs'€ S5 €S;
)
Revisit Eqn. 4, its equality constraints propose to col-
lapse all s!, € S; together. Therefore keeping only the
equality constraints related to the anchor sample s’ achieves
the same collapsing performance. So as to the inequal-
ity constraints in Eqn. 4. Finally, we can reduce the con-
straint size by only keeping the constraints related to s
as in Eqn. 5. The re-formed objective Eqn. 5 has only
O(n2n) and O(nsn) inequality and equality constraints re-
spectively. An important merit of Eqn. 5 is that it can be
efficiently optimized:

Theorem 1 All the vectors s* — s, in Eqn. 5 form a span-
ning space H = span(z Ao(s' — 58)). Eqn. 5 is equiva-
lent to replace s' — s), by hi-, the projection of s* — sl in
H?*, that H* is the orthogonal space of H.

Proof 1 Since M, is positive semi-definite, we have
(s' = si)Tl\/Ii (s'=si) =0 ©M;(si—s) =0 &

v
M;h = 0, Yh € H. Projecting s* — sJ to H and H+
generates two orthogonal bases h, and hL respectively, so
s* — sJ = h, + h-. Replace the inequality constraints in
Eqn. 5 by hy + hf;

(si—sj) (M; +M;) (s* — s3)
= (hy + h5)" (M + M) (hy + h) (6)
=t (MG + M) bt
Now Egn. 5 has an equivalent form as:
arg min 237 |y 2
M} 2
wrt: M; =0 (7

RET (MG + M) hE > 2, Vsi e S8l € S,
M;h=0, YVhe H
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Finally, we prove that Eqn. 7 has the same solution to
Eqn. 4 by eliminating its PSD and equality constraints.

Theorem 2 The solution to Eqn. 4 is exactly the same as
solving the Eqn. 7 by relaxing its equality and PSD con-
straints, since they are indeed off-the-shelf.

Proof 2 [fwe get rid of the PSD and equality constraints in
Eqgn. 7, the new form is:

ng

1 2
arg min — M;
i 5 2 I

w.r.t: hUlT (Ml + Mj) hi > 2, Vst €S, 83) S 8]‘
(®)
Eqgn. 8 is exactly in the same form of a multi-kernel SVM
problem so that it can be efficiently solved.

Thus the positive semi-definiteness of M; is guaranteed
since M; = " a,o(ht) = S aph - th > 0. For the
equality constraints in Eqn. 7, given a member s of S, we
have:

Mih = (Z apht - hﬁT) h=> a,ht- (i h)=0
)
which proves that the solution to Eqn. 8 satisfies the equality
constraints as well.

3.4. Bi-Directional Discriminant Enhancement

At online testing stage, the gallery set G, the counterpart
of query set Q, also plays an important role. As shown
by Fig. 1, the re-ranking performance by using only the
query-centric metric adaptation may suffer from ambiguous
gallery distractors. The similar gallery images from differ-
ent identities will significantly degrade the discriminant of
M,, since these gallery distractors are still indistinguishable
under M,,. Therefore, we aim to handle these indistinguish-
able gallery samples by performing a gallery-centric local
discriminant enhancement method as Eqn. 4. The SSSets
of G and the corresponding joint metrics are obtained via
Sec. 3.2 and Eqn. 4 respectively.

3.5. Multi-Metric Late Fusion For Re-Ranking

For one query probe g, it may be contained by multiple
SSSets so that there will be multiple learned metrics M;
associated to g. The final metric M, for g is obtained via a
boosting-form multi-metric late fusion [24, 23]:

M, = (Z wM) /> (10)
=1

where v, = 1if ¢ € ;. For a gallery sample ¢, a similar
fused metric M can be obtained likewise. Therefor the
refined distance between ¢ and g is defined as Eqn. 11 based
on which the re-ranking list of ¢; is obtained.

d(g,9)=(g—9)" My + M) (g—g) (1)

4. Theoretical Analyses and Justifications

As demonstrated by Theorem. 2, the solution of our
joint multi-metric adaptation objective can be readily trans-
formed to the equivalent form as [45]. Therefore, the ap-
pealing theoretical properties in [45] can be inherited by our
learned M; as presented in Theorem. 3. Moreover, our late
multi-kernel fusion metric Eqn. 10 will guarantee a further
reduction of generalization error bound as in Theorem. 4.

Theorem 3 (The reduction of both asymptotic and prac-
tical error bound by the learned M;): As demonstrated by
the Theorem.2 in [45], for an input x, its asymptotic error
P4(e|x) by using extra negative data D® is:

C=OPel) _poy (12)

PHel) = 5 Pl =

where q is a probability scalar that 0 < ¢q < 1 and
P(e|z) is the Bayesian error. Moreover, the asymptotic er-
ror P*(e|x) can be best approximated by the practical error
rate P, (e|x) (n is finite) by finding a local metric M, which
turns out to be the one for our Eqn. 4.

Theorem 4 (The reduction of generalization error bound
by using M, in Eqn. 10): Our fused multi-kernel metric
M, = (31, viM;) | > v is a linear combinations of sev-
eral base kernels M; from the family of finite Gaussian ker-
nels: K& .= {Kuy : (v1,22) — e=(@1—2) " M(m1—=2) | pf ¢
RX4 M = 0} which is bounded by By.. Therefore, for a
fixed § € (0,1), ng < ny, is the number of metrics (kernels)
involved in our final joint multi-metric learning solution.
With probability at least 1 — § over the choice of a random
training set X = {x;}1_, of size n we have:

Eoet(My) = O (,/""’ZB’“> (13)

1 B 2n
gest(Mq)NO<\/0gnk+ k+ n) (14)

n

In our work, we have ng < ny, that the selected num-
ber of kernels is much fewer than the total kernel number,

1 B
o ) = 0 (D) o)
/ B
O ( nkj;k> The generalization error by using M is

much smaller than using only any M;. The same conclusion
can be obtained for M, likewise.

Proof 3 The classification rule of our learned M; can be
defined as (j (dTMii‘j — 1) > 1 so that the margin is 1.
Motivated by [25], the generalization error E.st(M;) of us-

/ B
ing kernel M; is bounded by O ( nk—;k> While by
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Figure 4. The visualization of rank improvement on CUHKO3 (1th, 2nd) and Market1501 (3rd, 4th) based on HA-CNN. For each case, its
top-10 (left to right) matches are presented and the true-match is labeled by the red box. The 1st row is the baseline result, the 2nd row is
the result only using M, and the 3rd row is the result using both M, and M.

using M, which is a linear combination of all M; from the
family of finite Gaussian kernel K&, its generalization er-

log ng + By + 2ng
n

ror Ecst(My) is bounded by O \/

which is guaranteed by the Theorem.2 in [14]. For the ker-
nel family K&, ny, ~ O(d?) and in our work, d ~ 103
so that ny, =~ 10°. The selected kernels for combination
is about 20 in average so that ns < ny which means
gest(Mq) < gest(Mi)~

5. Experiments
5.1. Experimental Settings

Datasets. We evaluate our proposed M>? model on
CUHKO3 [17], Market1501 [39], DukeMTMC-relD [41]
and MSMT17 [33] benchmarks. The statistic details of the
above datasets are summarized in Table. 1. For CUHKO03 !,
the new splitting protocol proposed by [43] is adopted in
our experiment so that 767 identities are used for training
as well as the left 700 identities are used for testing. As
for the other three benchmarks, Market1501, DukeMTMC-
reID and MSMT17, the pre-determined probe and gallery
sets are directly utilized with no modification.

Dataset cuhk03 market duke msmtl17
#T-IDs 767 751 702 1040
#Q-IDs | 700 750 702 3060
#G-IDs | 700 751 1110 3060
#cam 2 6 8 15
#images | 28192 32668 36411 126441

Table 1. The statistics of P-RID benchmarks. #T/Q/G-IDs denote
the number of training/query/gallery ids.

Baselines. Our proposed M3 method is evaluated
based on several state-of-the-art CNN-based P-RID mod-
els: ResNet50 [11], DenseNet121 [13], HA-CNN [1§],
MLEN [5] and ABDNet[6]. The general CNN mod-
els, ResNet50 and DenseNetl121, are well trained on each
benchmark for feature extraction. HA-CNN, MLFN and
ABDNet are the P-RID specific CNNs so that the original
works are directly utilized in our experiments. Besides, the

n our experiment, the CUHKO3 detected dataset is utilized.

other state-of-the-art P-RID methods [15, 21, 37, 27, 28, 5,
26, 40, 46, 6] are further compared. Moreover, related on-
line P-RID methods including [45] (OL) and [43] (RR) are
compared with our M? method.

Evaluation. We follow the same official evaluation pro-
tocols in [39, 41, 17, 33], the single-shot evaluation setting
is adopted and all the results are shown in the form of Cu-
mulated Matching Characteristic (CMC) at several selected
ranks and mean Average Precision (mAP). Various ablation
studies of our proposed model are explored in Sec. 5.5.
5.2. Comparison with the State-of-the-arts

Evaluation on CUHKO03: The comparison results on
CUHKO3 (767/700 splitting protocol) are presented in Ta-
ble. 2. Our M?® model significantly boosts the baseline
Rank@1(mAP) performance of ResNet50, DenseNetl2,
HA-CNN and MLFN to 66.9%(60.7%), 61.6%(54.4%),
69.8%(63.5%) and 73.4%(71.2%) with a 40.0%(29.7%),
50.2%(35.7%), 45.4%(33.4%) and 34.2%(44.7%) relative
improvement respectively. Even compared with the state-
of-the-art method MGN [31], our results outperform it by
5% at Rank@]1. The reason for such a large improvement
is that the “hard” gallery distractors which are still indis-
tinguishable under M, is well handled by our M® method
(Fig. 4), so the ranking of true-match gallery targets is sig-
nificantly improved.

Evaluation on Market1501: The superiority of our
M? method is further verified by the experiments on Mar-
ket1501. Table. 2 demonstrates that although the state-of-
the-art approach ABDNet [6] has achieved a pretty high
performance (> 94%) on Market1501, the improvement of
our M3 is still over 3.7%(10%) on Rank@ 1(mAP) based on
ABDNet (visualization results in Fig. 4).

Evaluation on DukeMTMC-reID: DukeMTMC-relD
is a recent benchmark proposed for P-RID, but the latest
methods have obtained promising performances. As shown
in Table. 2, the recently published OSNet [46] has raised
the state-of-the-art to 87.0%(70.2%). Our ABDNet+M? im-
proves the Rank@ 1(mAP) result to 87.5%(73.3%), which
beats OSNet by a large margin on mAP.

Evaluation on MSMT17: MSMT17 is the latest and
largest benchmark so far which is pretty challenging due to
the extreme large-scale identities and distractors. We eval-
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CUHKO03(767/700) Market1501 DukeMTMC-relD
Method R@1 mAP Method R@1 mAP Method R@1 mAP
ResNet50[11] 47.9 46.8 ResNet50[11] 88.5 71.3 ResNet50[11] 77.7 58.8
DenseNetl121[13] 41.0 40.1 DenseNet121[13] 88.2 69.2 DenseNet121[13] 78.6 58.5
HA-CNNJ 18] 48.0 47.6 HA-CNNJ 18] 90.6 75.3 HA-CNNJ 18] 80.7 64.4
MLFN]5] 54.7 49.2 MLFN][5] 90.1 74.3 MLFEN]5] 81.0 62.8
ABDNet[6] N/A N/A ABDNet[6] 93.7 85.5 ABDNet[6] 84.1 67.7
OSNet[46] N/A N/A OSNet[46] 94.2 82.6 OSNet[46] 87.0 70.2
PCB[28] 63.7 67.5 PCB[28] 83.3 69.2 PCB[28] 83.3 69.2
SVDNet[27] 41.5 37.3 SVDNet[27] 82.3 62.1 SVDNet[27] 76.7 56.8
DPFL[7] 40.7 37.0 DNSL[36] 61.0 35.6 DuATM[22] 81.8 64.6
PAN[42] 36.3 34.0 Part-aligned[26] 91.7 79.6 Part-aligned[26] 84.4 69.3
ResNeXt[34] 43.8 38.7 PN-GAN[19] 77.1 63.6 PAN[42] 71.6 51.5
DaRe[32] 55.1 51.3 DeepCC[20] 89.5 75.7 GANJ[41] 67.7 47.1
MGNI[31] 68.0 67.4 Mancs[30] 93.1 82.3 SPreID[16] 85.9 73.3
M?3+ResNet50 66.9 60.7 M?3+ResNet50 95.4 82.6 M3 +ResNet50 84.7 68.5
M3+DenseNet121 61.6 54.4 M3+DenseNet121 95.3 81.2 M3+DenseNet121 84.9 68.0
M3+HA-CNN 69.8 63.5 M3+HA-CNN 96.5 85.2 M3+HA-CNN 87.1 72.2
M3+MLFN 73.4 71.2 M3+MLFN 96.4 85.0 M3+MLFN 86.5 71.5
M3+ABDNet N/A N/A M3+ABDNet 97.9 92.6 M3+ABDNet 87.5 73.3

Table 2. Compared with the state-of-the-arts on CUHKO03, Market1501, and DukeMTMC-relD.
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Figure 5. The influence of A on (left) CUHKO3, (mid) Market1501 and (right) DukeMTMC-relD based on HA-CNN.

50

MSMT17 Baseline Baseline+M> Method CUHKO03 Market Duke
Method R@1 mAP R@1 mAP HA-CNN[ 18] 48.0(47.6) 90.6(75.3) 80.7(64.4)
ResNet50[ 1 1] 63.4 34.2 72.8 55.0 HA-CNN+RR [43]  54.8(55.7) 91.4(79.0) 82.5(69.9)
DenseNet121[13] 660 346 755  43.1 HA-CNN+OL [45]  62.3(56.5) 92.7(78.9) 83.7(67.8)
HA-CNN[ 18] 64.7 37.2 74.3 43.8 HA-CNN+M3 69.8(63.5) 96.5(85.2) 87.1(72.2)
MLEN[5] 66.4 37.2 72.8 434 Densel21[13] 41.0(40.1) 88.2(69.2) 78.6(58.5)
ABDNet[6] 823 608 857 642 Densel21+RR [43]  48.1(51.5) 90.2(85.0) 83.7(76.9)
Table 3. Compared with the state-of-the-arts on MSMT17. Densel21+OL [45]  53.1(49.3)  90.4(74.0) 80.2(64.1)
Dense121+M3 61.6(54.4) 95.3(81.2) 84.9(68.0)

uate the performance of selected baselines on the MSMT17
dataset with(w/) and without(w/o) our M3 model in Ta-
ble. 3. For all the baselines, our M® model significantly im-
proves their Rank @ 1 (mAP) performance. The performance
of ABDNet is boosted from 82.3%(60.8%) to a state-of-the-
art level of 85.7%(64.2%). Table. 3 verifies the scalability
of our proposed M? model, even for the extremely large-
scale query/gallery sets, our method is still able to consis-
tently improve the baseline performance.

Table 4. Compared with online P-RID refinement methods.

5.3. Comparison with Online P-RID Re-ranking

Two state-of-the-art online P-RID re-ranking methods,
OL [45] and RR [43], are compared with our M3 since
all the three methods can be readily utilized at online test-
ing stage for further performance improvement. The com-
parison results in Table. 4 show that the query-specific
method OL [45] works better on improving Rank@1 per-
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Method Market1501 — DukeMTMC DukeMTMC — Market1501
R@1 R@5 R@10 R@20 mAP R@1 R@5 R@10 R@20 mAP

MLEFN]5] 45.8 63.9 71.6 78.1 20.3 30.4 47.5 53.9 59.5 17.1
MLFN+M? 67.6 78.8 83.0 86.6 32.7 43.7 57.0 62.6 68.2 24.7
DenseNet121[13] | 41.0 56.6 62.8 68.5 23.2 55.0 71.3 78.5 84.3 25.3
DenseNet121+M? | 53.1 67.1 72.1 75.7 32.7 76.9 85.6 89.1 91.9 40.4
HA-CNNJ 18] 43.3 59.7 66.7 74.6 18.9 24.0 39.0 45.1 51.6 13.5
HA-CNN+M? 61.6 73.6 78.7 82.9 25.8 37.6 51.9 56.8 62.8 20.5

Table 5. Cross-dataset validation results with(+M?) our M® model on Market1501 and DukeMTMC-reID. Market1501 — DukeMTMC
mean using the model trained on Market1501 to evaluate DukeMTMC-relD.

Method CUHKO03 Market1501 DukeMTMC-relD MSMT17

R@1 R@20 mAP | R@1l R@20 mAP | R@l R@20 mAP | R@l R@20 mAP
HA-CNNJ 18] 48.0 85.4 47.6 90.6 98.3 75.3 80.7 94.3 64.4 64.7 87.1 37.2
Our only w/ M, | 63.4 87.6 63.5 93.8 98.8 81.2 83.9 95.3 69.0 68.7 88.7 40.6
Our only w/ M, | 65.4 86.2 57.3 94.2 98.4 79.1 83.6 94.4 65.7 66.3 86.4 37.5
Our-Full 69.8 88.8 63.5 96.5 98.9 85.2 87.1 95.8 72.2 74.3 90.0 43.8

Table 6. The influence of each component in our M algorithm.

formance but has little improvement on mAP due to the
lack of gallery-specific local discriminant enhancement. In
contrast, since RR [43] considers the k-reciprocal nearest
neighbors of both query and gallery data, it achieves a large
improvement on mAP but with limited improvement on
Rank @1 owing to the lack of instance-specific local adapta-
tion. Our M? outperforms the other two approaches signifi-
cantly at both Rank@1 and mAP due to the fully utilization
of both the group-level visual similarity sharing information
and instance-specific local discriminant enhancement.

5.4. Cross-Set Generalization Ability Validation

We explore the generalization ability of our proposed
M?3. We claim the improvement by M3 is from the test-
ing sample itself which is independent of how the baseline
models are trained. Therefore we conduct a cross-set gener-
alization ability validation experiment as shown in Table. 5.
Following the setting in [44], the baseline model trained by
Market1501 with our M? is evaluated on DukeMTMC-reID
and vice versa. The results show our M? model is able to
consistently and significantly improve the baseline perfor-
mance regardless of whether the baseline is trained by the
same-source data or not.

5.5. Ablation Study

The Influence of Model Components: The final re-
trieval performance of Eqn. 11 relies on a bi-directional
retrieval matching, so the influence of each component is
shown in Table. 6. As can be seen, by only keeping the
query-specific metric adaptation M, or the gallery-centric
one M, we still can achieve a significant improvement.
While by performing a full-model bi-directional matching,
the performance is further boosted by a large margin which
demonstrates the necessity of bi-directional local discrimi-
nant enhancement. More visualizations are shown in Fig. 4.

The Influence of A in Eqn. 11: The weighting parame-
ter A in Eqn. 11 aims to balance the importance of M, and
M,. The full CMC curves w.r.t A of HA-CNN on CUHKO3,
Market1501 and DukeMTMC-relD are plotted in Fig. 5 re-
spectively. As can be seen, setting A = 1 gives the best
performance since we perform a max-normalization to both
M, and M, over-weighting either side is prone to suppress
the other side’s impact.

6. Conclusion

Unlike previous online P-RID works, in this paper, we
propose a novel online joint multi-metric adaptation algo-
rithm which not only takes individual characteristics of test-
ing samples into consideration but also fully utilizes the vi-
sual similarity relationships among both query and gallery
samples. Our M method can be readily applied to any ex-
isting P-RID baselines with the guarantee of performance
improvement, and a theoretical sound optimization solution
to M? keeps a low online computational burden. Compared
with the other state-of-the-art online P-RID refinement ap-
proaches, our method achieves significant improvement on
Rank@ 1(mAP) performance. Moreover, by implementing
our method to the state-of-the-art baselines, their perfor-
mance is further boosted by a large margin on four chal-
lenging large-scale P-RID benchmarks.
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