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ABSTRACT
Triangle counting is a fundamental technique in network analysis,

that has received much attention in various input models. The

vast majority of triangle counting algorithms are targeted to static

graphs. Yet, many real-world graphs are directed and temporal,
where edges come with timestamps. Temporal triangles yield much

more information, since they account for both the graph topology

and the timestamps.

Temporal triangle counting has seen a few recent results, but

there are varying definitions of temporal triangles. In all cases,

temporal triangle patterns enforce constraints on the time inter-

val between edges (in the triangle). We define a general notion

(𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal triangles that allows for separate time con-

straints for all pairs of edges.

Our main result is a new algorithm, DOTTT (Degeneracy Oriented
Temporal Triangle Totaler), that exactly counts all directed vari-

ants of (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal triangles. Using the classic idea

of degeneracy ordering with careful combinatorial arguments, we

can prove that DOTTT runs in 𝑂 (𝑚𝜅 log𝑚) time, where 𝑚 is the

number of (temporal) edges and 𝜅 is the graph degeneracy (max

core number). Up to log factors, this matches the running time of

the best static triangle counters. Moreover, this running time is

better than existing.

DOTTT has excellent practical behavior and runs twice as fast

as existing state-of-the-art temporal triangle counters (and is also

more general). For example, DOTTT computes all types of temporal

queries in Bitcoin temporal network with half a billion edges in

less than an hour on a commodity machine.
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1 INTRODUCTION
Triangle counting is a fundamental problem in network analy-

sis. There has been a rich line of work on counting triangles in

graphs [2, 3, 15, 22, 43]. The triangle counts appear in form of dif-

ferent parameters such as clustering coefficient [55] and transitivity
ratios [54]. Triangle counting has many applications such as social

networks analysis [36], indexing graph databases [18], community

discovery [32], and spam detection [4].

Much of the rich history of triangle counting has focused on

static graphs. But many real-world networks, such as communi-

cation networks, message networks, and social interaction net-

works are fundamentally temporal. Every edge has an associated

timestamp [11, 12, 20]. We can model these attributed networks as

temporal networks where edges have timestamp. For example, in

cryptocurrency transaction networks and email networks, each link

is between a sender and a receiver and has a timestamp that could

be represented as a directed edge with a timestamp in a temporal

network.

Temporal triangle counts provide a far richer set of counts than
standard counts. These counts take into account the temporal or-

dering of edges in a triangle, and potentially impose constraints

on the timestamp difference among edges. Temporal triangle and

motif counting has applications in graph representation learn-

ing [48], expressivity of graph neural networks (GNNs) [7], network

classification [47], temporal text network analysis [52], computer

networks [50], and brain networks [9]. Recently, there has been

significant interest in temporal triangle and motif counting algo-

rithms [6, 7, 25, 27, 35, 46–48, 53].

Counting temporal triangles in (directed) temporal networks

introduces new challenges to that of triangle counting in static

graphs. The first challenge is actually defining types of temporal

triangles (or motifs). In essence, all definitions specify constraints

on the time difference between edges of a triangle. For example,

Kovanen et al. [20] restrict temporal triangles to cases where the gap

between two consecutive edges in the temporal ordering is at most

Δ time unit, and the two edges incident to each node are consecutive

event of that node. Paranjape-Benson-Leskovec (henceforth PBL)

introduce 𝛿-temporal triangles, where all edges of the triangle/motif

have to occur within 𝛿 timesteps [33]. These varying definitions

necessitate different algorithms. Our first motivating question is
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whether one can design algorithms for a more general notion of

temporal triangles.

Secondly, there is a significant gap between the best static trian-

gle counting algorithms and temporal triangle counters. Specifically,

the classic and immensely practical triangle counting algorithm

of Chiba-Nishizeki runs in time 𝑂 (𝑚𝜅), where𝑚 is the number of

edges and 𝜅 is the graph degeneracy (or max core number). The

current state-of-the-art temporal triangle counting algorithm of

PBL runs in 𝑂 (𝑚
√
𝜏) time, where 𝜏 is the total triangle count (of

the underlying static graph). There is a large gap between 𝜅 (which

is typically in the hundreds and thought of as a constant) and 𝜏

(which is superlinear in𝑚).

These twin issues motivate our study. Can we define a more
general notion of temporal triangles, and give an algorithm whose
asymptotic running time is closer to that of static triangle counting?

1.1 Problem Description
The input is a directed temporal graph 𝑇 = (𝑉 , 𝐸). Each edge is a

tuple of the form (𝑢, 𝑣, 𝑡) where 𝑢 and 𝑣 are vertices in the temporal

graph, and 𝑡 is a timestamp. For notational convenience, we assume

all timestamps in a temporal network are unique integers.

We introduce our notion of (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal triangles.

Definition 1.1. Let 𝑒1 = (𝑢1, 𝑣1, 𝑡1), 𝑒2 = (𝑢2, 𝑣2, 𝑡2), and 𝑒3 =

(𝑢3, 𝑣3, 𝑡3), be three directed temporal edges where the induced

static graph on them is a triangle, and 𝑡1 < 𝑡2 < 𝑡3.

(𝑒1, 𝑒2, 𝑒3) is a (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal triangle if 𝑡2 − 𝑡1 ≤ 𝛿1,2,

𝑡3 − 𝑡2 ≤ 𝛿2,3, and 𝑡3 − 𝑡1 ≤ 𝛿1,3.

Thus, we specify timestamp differences between every pair of

edges. When one also considers the direction of edges, there exist

eight different types of temporal triangles as shown in Fig. 2. These

types are distinguished by temporal ordering of edges and their

direction. Thus, for any choice of (𝛿1,3, 𝛿1,2, 𝛿2,3), there are eight
different types of temporal triangles (one corresponding to each

figure in Fig. 2).

We observe that the notion in Definition 1.1 subsumes most

existing temporal triangle definitions. Specifically, a (𝛿1,3, 𝛿1,3, 𝛿1,3)-
temporal triangle becomes a 𝛿1,3-temporal triangles as defined in

PBL [33]. Temporal triangles with respect to the temporal motif def-

inition by by Kovanen et al. in [20] consider timestamp differences

between consecutive edges in temporal ordering. By our defini-

tion, (2Δ,Δ,Δ)-temporal triangles capture these types of temporal

triangles. Although, the definition in [20] is more restrictive and

requires that all edges incident to a node are consecutive events of

that node. Most existing temporal triangle counting literature uses

these definitions [25, 27, 46, 53].

We describe a simple example to see how Definition 1.1 of-

fers richer temporal information. Let us measure time in hours,

so (2, 1, 1)-temporal triangle is one where the first and second edge

(of the triangle) are at most 1 hour apart, and similarly for the sec-

ond and third edge. Now consider (1.5, 1, 1)-temporal triangles. The

time gap between the first and second edge (as well as the second

and third) is again 1 hour, but the entire triangle must occur within

1.5 hours. There is a significant difference between these cases, but

previous definitions of temporal triangles would not distinguish

these.

We note that more general temporal motifs, beyond triangles,

have been defined. Yet, to the best of our knowledge, most fast

algorithms that scale to millions of edges have been designed for

triangles. Paranjape et al. specialized algorithm for 3-edge triangle

motifs (temporal triangles) is up to 56x faster than their general mo-

tif counting algorithm [33]. Our focus was on scalable algorithms,

and hence, on triangle counting. We believe that generalizing Defi-

nition 1.1 (and our DOTTT algorithm) for general motifs would be

compelling future work.

1.2 Main Contributions
Ourmain result is theDegeneracy Oriented Temporal Triangle Totaler
algorithm, DOTTT that counts (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal triangles as

defined in Definition 1.1. The running time is only a logarithmic

overhead over static triangle counting. We detail our contributions

below.

Theoretically bridging gap between temporal and static
triangle counting: Our main theorem is the following.

Theorem 1.2. Given 𝛿1,3, 𝛿1,2 and 𝛿2,3, the DOTTT algorithm ex-
actly counts each of the eight types of (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal tri-
angles (Fig. 2) in a temporal graph in 𝑂 (𝑚𝜅 log𝑚) time. (Here,𝑚 is
the total number of temporal edges, and 𝜅 is the degeneracy of the
underlying static graph.)

Observe that, up to a logarithmic factor, our theoretical running

time for temporal triangle counting matches the 𝑂 (𝑚𝜅) bound for

static triangle counting. As mentioned earlier, the previous best

bound was𝑂 (𝑚𝜏1/2). We stress that there is no dependence on the

time intervals (𝛿1,3, 𝛿1,2, 𝛿2,3).
The idea of degeneracy orientations is tailored to static graphs,

and one of our contributions is to show it can help for temporal

triangle counting. A key insight in DOTTT is to process (underlying)
static edges in the exact order of the Chiba-Nishizeki algorithm,

but carefully consider neighboring edges to capture all temporal

triangles. By a non-trivial combinatorial analysis, we can prove

that number of times that a temporal edge is processed is upper

bounded by 𝜅. We need additional data structure tricks to get the

counts efficiently, leading to an extra logarithmic factor.

Excellent practical behavior of DOTTT: DOTTT consistently de-
termines temporal triangle counts in less than ten minutes for

datasets with tens of millions of edges. We only use a single com-

modity machine with 64GB memory, without any parallelization.

We directly compare DOTTTwith the state-of-the-art PBL algorithm.

Our algorithm is consistently faster, and as illustrated in Fig. 1a we

typically get a factor 1.5 speedup for larger graphs. (We note that

DOTTT can count a more general class of temporal triangles.)

We note that for the largest dataset in our experiments, Bitcoin

(515.5M edges), DOTTT only uses 64GB memory and runs in less

than an hour, while existing methods ran out of memory (details

in §6).

Richer triadic information from (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal
triangles: We demonstrate how (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal triangles

can give a richer network analysis method. Consider Fig. 1b. For a

collection of temporal datasets, we generate the counts of (1 hr, 30

min, 30 min)-temporal triangle counts, as well as those for (1 hr, 10

min, 50 min)-temporal triangles. We plot these numbers as a ratio

of (1 hr, 1 hr, 1 hr)-temporal triangles. Across the datasets, the ratios
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(c) Triadic closure over time

Figure 1: (a): The Speedup of DOTTT for counting (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal triangles over the PBL algorithm for counting 𝛿1,3-
temporal triangles. (b): We fix 𝛿1,3 to 1 hr. Blue bars show the ratio of (1 hr, 30 mins, 30 mins)-temporal triangles to (1 hr, 1
hr, 1 hr)-temporal triangle. The red bars illustrate the ratio for the case of (1 hr, 10 mins, 50 mins)-temporal triangles and is
more restrictive. (c): We fix 𝛿1,3 = 2 hrs and 𝛿1,2 = 1 hr. At 𝑡 we plot the ratio of (2 hrs, 1 hr, t)-temporal triangles to (2 hrs, 1 hr,
1hr)-temporal triangles.
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Figure 2: All possible temporal triangle types. The start point of
the first edge (in temporal ordering of edges) is shown in red and
the end point in green.

are at most 75%. The red bars are typically at most 25%, showing the

extra power of Definition 1.1 in distinguishing temporal triangles.

We note here that for each dataset, DOTTT has the same running

time for obtaining the counts for (1 hr, 30 min, 30 min)-temporal

triangle and (1 hr, 10 min, 50 min)-temporal triangles, as it has no

dependency on the time intervals (𝛿1,3, 𝛿1,2, 𝛿2,3).
An interesting study is presented in Fig. 1c. The transitivity and

clustering coefficients are fundamental quantities of study in net-

work science. In temporal graphs, in addition to these measure, the

time it takes for a wedge (2-path) to close could also be of impor-

tance. (Zingnani et al. proposed the triadic closure delay metric that

capture the time delay between when a triadic closure is first possi-

ble, and when they occur [58].) In Fig. 1c, we fix 𝛿1,3 = 2 hrs and 𝛿1,2
= 1 hr. We then vary 𝛿2,3 from zero to 60 minutes, and plot the ratio

of (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal triangles to (2hrs, 1hr, 1hr)-temporal

triangles. We can see the trends in triadic closure with respect to

the time for the third edge. We observe that, by and large, half

the triangles are formed within 20 minutes of the first two edges

appearing. And by 30 minutes, almost 75% of these triangles are

formed. These are examples of triadic analyses enabled by DOTTT.

1.3 Main challenges
In a temporal graph, the number of temporal edges is typically two

to three times the number of underlying static edges. Since most

triangle counting algorithms are based on some form of wedge

enumerations, this leads to a significant increase in the number of

edges. One method used for temporal triangle counting is to simply

prune the temporal edges based on the time period [27, 45]. But

such algorithms have a dependency on the time period and are

inefficient for large time periods.

Another significant challenge is the multiplicity of an individual

edge can be extremely large. The same edge often occurs many

hundreds to thousands of times in a temporal network (in the

BitCoin network, there is an edge appearing 447K times Tab. 2).

These edges create significant bottlenecks for enumerationmethods.

It is not clear how efficient methods on the underlying static graphs

(which ignores multiplicities) can help with this problem. Triangle

counting often works by finding a wedge (2-path) and checking for

the third edge. With multiple temporal edges between the same pair

of vertices, this method requires many edge lookups. Paranjape et

al. used a clever idea to process edges on a pair of vertices 𝑂 (𝜏1/2)
times. The challenge is to bound it by the degeneracy of the graph.

The time constraints expressed by (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal tri-

angles create additional challenges. A clever wedge enumeration

exploiting the degeneracy may produce wedges containing the first

and second edges of the triangle, the first and third, or the second

and third. This makes the lookup (or counting) of possible "matches"

for the remaining edge challenging, since it appears we need to

look at all multiple edges. On the other hand, if we enumerated

wedges that only involved the first and second edge, we cannot

benefit for the efficiencies of degeneracy-based methods. Some of

these problems can be circumvented for (𝛿, 𝛿, 𝛿)-temporal triangles,

but the general case is challenging.

Overall, we can state the main challenge as follows. Fast triangle

counting methods (such as degeneracy based methods) necessarily

ignore time constraints while generating wedges, making it hard

to look for the "closing" edge. On the other hand, a method that

exploits the timestamps by (say) pruning cannot get the efficiency



gains of degeneracy based methods. One of the insights of DOTTT
is a resolution of this tension.

2 RELATED WORK
There is rich history of work on triangle counting in static graphs.

Various algorithm for triangle and motif counting in attributed

graphs have also been proposed [13, 30, 37, 41, 42, 56]. Here we

only focus on temporal networks and refer the reader to [2] and

the tutorial [44] for a more detailed list of related work.

Graph orientation, in particular degeneracy ordering, is a classic

idea in counting triangles and motifs in static graphs, pioneered

by Chiba-Nizhizeki [8]. Recently, there has been a number of tri-

angle counting and motif counting algorithms inspired by these

techniques [10, 16, 17, 31, 34, 38]. The main benefit of degeneracy

ordering is that the out-degree of each vertex becomes small when

we orient the static graph based on this ordering.

Kovanen et al. called two temporal edges Δ𝑇 -adjacent if they
share a vertex and the difference of their timestamps are at most

Δ𝑇 [20]. In their definition of temporal motifs, temporal edges must

represent consecutive events for a node. Redmond et al. gave an

algorithm for counting 𝛿-temporal motifs but their algorithm does

not take the temporal ordering of edges into account [39], and only

counts motifs where incoming edges occur before outgoing edges.

Gurukar et al. present a heuristic for counting temporal motifs [14].

More related to our work, Paranjape-Benson-Leskovec defined

the 𝛿-temporal motifs where all edges occur inside a time period 𝛿

and also the temporal ordering of edges are taken into account [33].

They gave a general algorithm for counting 𝑘-node ℓ-edge motifs

in temporal networks. The main idea behind their algorithm is a

moving time window of size 𝛿 over the sequence of all temporal

edges for each static motif matching the underlying static motif

of the temporal motif of interest. For temporal triangles, their al-

gorithm runs in 𝑂 (𝜏𝑚) time where 𝜏 is the number of triangles in

the underlying static graph of the input temporal graph 𝑇 , as it

might enumerate temporal edges on static edges with high multi-

plicity 𝑂 (𝜏) time. They also presented a specialized, more efficient

algorithm for counting 3-edge temporal triangles that runs in time

𝑂 (𝜏1/2𝑚). We call their algorithm 𝑃𝐵𝐿 and use it as our baseline.

Mackey et al. presented a backtracking algorithm for counting

𝛿-temporal motifs that maps edges of the motif to the edges of the

host graph one by one in temporal (chronological) ordering. For

each edge, it only searches through edges that occur in the correct

temporal ordering and respect the time gap restriction. [27]. Unlike

the PBL algortihm and ours, this algorithm could be inefficient for

large values of 𝛿 as its runtime depends on the value of 𝛿 .

Liu et al. [26] introduced a comparative survey of temporal motif

models. Boekhout et al. gave an algorithm for counting 𝛿-temporal

multi-layer temporal motifs [6]. Li et al., developed an algorithm

for counting temporal motifs in heterogeneous information net-

works [24]. Petrovic et al. gave an algorithm for counting causal

paths in time series data on networks [35].

There has also been recent progress on approximating the counts

of temporal motifs and triangles [46, 53]. Particularly , Liu et al.

presented a sampling framework for approximating the counts of

𝛿1,3-temporal motifs [25].

3 PRELIMINARIES
The input graph is a directed temporal graph that we denote by

𝑇 (𝑉 , 𝐸). Let |𝑉 | = 𝑛 and |𝐸 | = 𝑚. Temporal graph 𝑇 is presented

as a collection of 𝑚 directed temporal edges 𝑒 = (𝑢, 𝑣, 𝑡) where
𝑢, 𝑣 ∈ 𝑉 , and 𝑡 is the timestamp for edge 𝑒 where 𝑡 ∈ R. We use

𝑡 (𝑒) to denote the timestamp of a temporal edge 𝑒 . Note that there

could be multiple temporal edges on the same pair of nodes. We

assume that all the timestamps in 𝑇 are unique. This assumption

leads to the clean definition of different types of temporal triangles

( Fig. 2), but is not a necessity of our algorithm. To be more specific,

our algorithm also works for temporal graph including temporal

edges with equal timestamp.

We denote the underlying undirected static graph of 𝑇 as 𝐺 =

(𝑉 , 𝐸𝑠 ) and put |𝐸𝑠 | = 𝑚𝑠 . Two vertices in the static graph 𝐺 are

connected if there is at least one temporal edge between them.

Formally, 𝐸𝑠 = {{𝑢, 𝑣} | ∃𝑡 : (𝑢, 𝑣, 𝑡) ∈ 𝐸 ∨ (𝑣,𝑢, 𝑡) ∈ 𝐸}. For
𝑣1, 𝑣2 ∈ 𝑉 , let 𝜎 ((𝑣1, 𝑣2)) denote the temporal multiplicity, that is

the number of temporal edges on {𝑣1, 𝑣2} directed from 𝑣1 to 𝑣2.

As shown in Fig. 2, there are eight different types of temporal

triangles. The time restrictions 𝛿1,3, 𝛿1,2, and 𝛿2,3 is not involved

in definition of these types and could be applied to each of them.

Note that these different types account for all possible ordering of

temporal edges in the triangle in addition to their directions.

In a directed graph 𝐺 , we use 𝑁 + (𝑣) : {(𝑣,𝑢) ∈ 𝐸 (𝐺)} to denote

the out-neighborhood and 𝑁− (𝑣) : {(𝑢, 𝑣) ∈ 𝐸 (𝐺)}) to denote the

in-neighborhood of a vertex 𝑣 . For a vertex 𝑣 ∈ 𝑉 (𝐺), we define
out-degree as 𝑑+ (𝑣) = |𝑁 + (𝑣) | and in-degree as 𝑑− (𝑣) = |𝑁− (𝑣) |.

Vertex ordering is a central idea in triangle counting and motif

analysis in general [5, 8, 16, 31, 34, 38, 49]. Let 𝐺 be an undirected

static simple graph. Given any ordering ≺ of𝑉 (𝐺), we can construct
a DAG𝐺≺ by orienting each edge {𝑢, 𝑣} ∈ 𝐸 (𝐺) from𝑢 to 𝑣 iff𝑢 ≺ 𝑣 .

Next we define degeneracy and degeneracy ordering formally.

Definition 3.1. The degeneracy of a graph 𝐺 , denoted by 𝜅, is

the smallest integer 𝑘 such that there exists an ordering ≺ of 𝑉 (𝐺)
where 𝑑+𝑣 (𝐺≺) ≤ 𝑘 for each 𝑣 ∈ 𝑉 (𝐺).

Definition 3.2. Degeneracy ordering of an undirected simple

static graph 𝐺 is obtained by removing a vertex with minimum

degree repeatedly. The order of the removal of vertices is the de-

generacy ordering of 𝐺 .

There is an algorithm for finding the degeneracy ordering of

a graph 𝐺 in 𝑂 ( |𝐸 (𝐺) |) time [28]. Let ≺ denote the degeneracy

ordering.

4 MAIN IDEAS
Our algorithm first enumerates static triangles in 𝐺 , the under-

lying static graph of the input temporal graph 𝑇 . Let {𝑢, 𝑣,𝑤} be
a static triangle. We consider all possible temporal orderings as

shown in Fig. 3, and all possible orientations as shown in Fig. 4, for

a temporal triangle corresponding to {𝑢, 𝑣,𝑤}. A temporal order-

ing and a temporal orientation together determine the type of the

temporal triangle. For example 𝜋1 and 𝜌8 correspond to T1. Tab. 1
lists all possible pairs of temporal ordering and orientations and

their corresponding type of temporal triangle as a function𝜓 .

We store the input temporal edges of the input temporal graph

𝑇 in a data structure in the CSR format. Thus, we can assume that



we have constant time access to temporal edges on each pair of

vertices for each direction in the order of increasing timestamps. Let

𝜋 denote the temporal ordering, and 𝜌 denote the orientation for

which we want to count the temporal triangles. In this section, from

here we only consider temporal edges that follow the orientation 𝜌 .

Assume that the timestamps of two of the edges of a temporal tri-

angle corresponding to the static triangle {𝑢, 𝑣,𝑤} is given. WLOG,

assume that these temporal edges correspond to {𝑢, 𝑣} and {𝑢,𝑤}.
We can use a binary search to find the number of temporal edges

on the pair {𝑣,𝑤} that are compatible with the two given temporal

edges. Note that compatibility of timestamps is determined by the

timestamp of edges and the temporal ordering 𝜋 . Thus, all we need

is to enumerate all possible pairs of temporal edges on {𝑢, 𝑣} and
{𝑢,𝑤}. This could be an expensive enumeration if both these static

edges have high multiplicity of temporal edges.

We show that we can obtain the counts of temporal triangles on

{𝑢, 𝑣,𝑤}without enumeration of all possible pairs of temporal edges

on {𝑢, 𝑣} and {𝑢,𝑤}. Let 𝑒1, . . . , 𝑒𝜎 (𝜌 ( {𝑢,𝑣 })) denote the sequence
of temporal edges in the order of increasing timestamp on {𝑢, 𝑣},
and 𝑒 ′

1
, . . . , 𝑒 ′

𝜎 (𝜌 ( {𝑢,𝑤 })) denote that of {𝑢,𝑤}. We enumerate each

of these sequences of temporal edges separately, and for each edge

we store cumulative counts of compatible temporal edge on {𝑣,𝑤}.
In other words, for each edge 𝑒 in these two sequence, we store the

counts of edges 𝑒3 on {𝑣,𝑤} that are compatible with 𝑒 or any other

temporal edge in the same sequence with a smaller timestamp.

Then we enumerate the temporal edges on {𝑢, 𝑣}, and for each

edge 𝑒𝑖 we use binary search to find the sequence of temporal

edges 𝑒 ′
𝑗
, . . . , 𝑒 ′

𝑘
, in increasing order of timestamp, on {𝑣,𝑤} that

are compatible with 𝑒𝑖 . We use the cumulative counts of compatible

edges on {𝑣,𝑤} that we stored for 𝑒𝑖 , 𝑒
′
𝑘
, and 𝑒 ′

𝑗
to compute the

counts of all temporal triangles on {𝑢, 𝑣,𝑤} that include 𝑒𝑖 .
Although we avoid the enumeration of pairs of temporal edges

on {𝑢, 𝑣} and {𝑢,𝑤}, our algorithm could still be inefficient. The

reason is that static edges {𝑢, 𝑣} could have high multiplicity of

temporal edges and also participate in a large number of static

triangles. Here is where we use the power of vertex ordering and

graph orientation techniques.

DOTTT enumerates static triangles in 𝐺≺ , and when processing

a static triangle {𝑢, 𝑣,𝑤} where 𝑢 comes first in the degeneracy

ordering ≺ of 𝐺 , it only enumerates temporal edges on {𝑢, 𝑣} and
{𝑢,𝑤}. Thus, each temporal edge on a pair {𝑥,𝑦} where 𝑥 ≺ 𝑦, is

processed only for static triangles where the third vertex is in the

out-neighborhood of 𝑥 . But we know that the out-degree of each

vertex is bounded by 𝜅 in 𝐺≺ . Therefore, each such temporal edge

on {𝑥,𝑦} is processed 𝑂 (𝜅) times.

5 OUR MAIN ALGORITHM
In this section we describe our algorithm for getting (𝛿1,3, 𝛿1,2, 𝛿2,3)-
temporal triangles counts. Let𝑇 = (𝑉 , 𝐸) be the input directed tem-

poral graph given as a list of temporal edges sorted by timestamps.

Although not necessary for our algorithm, assuming that edges

are given in increasing order of timestamp is common in temporal

networks as the edges are recorded in their order of occurrence [33].

We first extract the static graph𝐺 (𝑉 , 𝐸𝑠 ) from𝑇 . Then, we obtain

the degeneracy ordering of𝐺 , denoted by ≺ using the algorithm by

Matula and Beck [28], and orient the edges of 𝐺 with respect to ≺
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Figure 3: All possible ordering of temporal edges of a tem-
poral triangle corresponding to a static triangle {𝑢, 𝑣,𝑤}.
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Figure 4: All possible orientations of temporal edges of a
temporal triangle corresponding to a static triangle {𝑢, 𝑣,𝑤}.

Table 1: Conversion from temporal ordering and orientation
to temporal triangle type.

𝜓 𝜌1 𝜌2 𝜌3 𝜌4 𝜌5 𝜌6 𝜌7 𝜌8

𝜋1 T7 T6 T5 T8 T3 T2 T4 T1
𝜋2 T5 T3 T7 T4 T6 T1 T8 T2
𝜋3 T3 T2 T1 T4 T7 T6 T8 T5
𝜋4 T1 T7 T3 T8 T2 T5 T4 T6
𝜋5 T6 T1 T2 T8 T5 T3 T4 T7
𝜋6 T2 T5 T6 T4 T1 T7 T8 T3

to get the DAG𝐺≺ . We start by enumerating static triangles in𝐺≺ .
This can be done in𝑂 (𝑚𝑠𝜅) where 𝜅 is the degeneracy of𝐺 [8, 38].

Note that all triangles in 𝐺≺ are acyclic as 𝐺≺ is a DAG, so each

triangle in 𝐺 correspond to an acyclic triangle in 𝐺≺ . In order to

enumerate all triangles in 𝐺 , we enumerate all directed edges in

𝐺≺ , and for each directed edge (𝑢, 𝑣) we enumerate 𝑁 + (𝑢). For
each vertex𝑤 ∈ 𝑁 + (𝑢), we check whether {𝑢, 𝑣,𝑤} is a triangle by
checking the existence of an edge between 𝑣 and𝑤 .

We call vertex 𝑢 in a static triangle {𝑢, 𝑣,𝑤} the source vertex if

𝑢 ≺ 𝑣 and𝑢 ≺ 𝑤 . Let {𝑢, 𝑣,𝑤} be the triangle being processed while
enumerating triangles in𝐺≺ . WLOG, assume 𝑢 is the source vertex



in {𝑢, 𝑣,𝑤}. Thus, the number of times we visit {𝑢, 𝑣} or {𝑢,𝑤} in
a static triangle are limited by 𝑑+

𝐺≺
(𝑢) that is bounded by 𝜅. But

the number of times we visit the static edge {𝑣,𝑤} is not bounded
by 𝜅, so we want to avoid enumerating temporal edges on {𝑣,𝑤}.
Next, we show how to count the number of (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal

triangles corresponding to the static triangle {𝑢, 𝑣,𝑤}.
We define the temporal ordering of a temporal triangle corre-

sponding to a static triangle {𝑢, 𝑣,𝑤} as a mapping 𝜋 : {1, 2, 3} →
{{𝑢, 𝑣}, {𝑢,𝑤}, {𝑣,𝑤}}. There are six different possible temporal

orderings as shown in Fig. 3.

We define the orientation of a temporal triangle corresponding to

a static triangle {𝑢, 𝑣,𝑤} as a mapping 𝜌 from each pair of vertices

of {𝑢, 𝑣,𝑤} to one of the two possible ordered pairs of the same

pair of vertices. For example, 𝜌1 ({𝑢, 𝑣}) = (𝑢, 𝑣) for 𝜌1 in Fig. 4. The

orientation of a temporal triangle simply determines the direction of

its temporal edges. Each such temporal edge can take two possible

directions, so there are eight types of orientation such a temporal

triangle can take as shown in Fig. 4. Note that orientation of a

temporal triangle is independent of its temporal ordering.

It is easy to see that the temporal ordering and orientation deter-

mine the type of the temporal triangle. But different combinations

of temporal orderings and orientation could result in the same

type. The temporal triangle type for all possible pairs of temporal

ordering and orientation are shown in Tab. 1.

For a temporal ordering 𝜋 and for 𝑖 ∈ {1, 2, 3}, we use 𝑆𝑖 (𝜋, 𝜌)
to denote the sequence of temporal edges between the pair of

vertices 𝜋 (𝑖) that have the direction 𝜌 (𝜋 (𝑖)), in sorted order of

timestamp. When 𝜋 and 𝜌 are clear from the context, we use 𝑆𝑖
instead of 𝑆𝑖 (𝜋, 𝜌). We assume that we have access to 𝑆1, 𝑆2, and

𝑆3 in constant time. Let 𝜎𝑖 denote the length of 𝑆𝑖 . We use 𝑆𝑖 [ℓ] to
denote the ℓ-th edge in the sequence 𝑆𝑖 , and 𝑆𝑖 [ℓ : ℓ ′] to denote the
consecutive subsequence of 𝑆𝑖 ranging from 𝑆𝑖 [ℓ] to 𝑆𝑖 [ℓ ′].

For a sequence 𝑆 of temporal edges in increasing order of times-

tamp and timestamps 𝑡 and 𝑡 ′ where 𝑡 ≤ 𝑡 ′, let EC( [𝑡, 𝑡 ′], 𝑆) denote
the number of edges in 𝑆 with a timestamp in the time window

[𝑡, 𝑡 ′]. For given 𝛿1,3, 𝛿1,2, and 𝛿2,3, let TTC({𝑢, 𝑣,𝑤}, 𝜋, 𝜌) denote
the number of (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal triangles corresponding to

the static triangle {𝑢, 𝑣,𝑤}, temporal ordering 𝜋 , and orientation 𝜌 .

Lemma 5.1. For a static triangle {𝑢, 𝑣,𝑤}, a temporal ordering 𝜋 ,
and an orientation 𝜌 ,

TTC({𝑢, 𝑣,𝑤}, 𝜋, 𝜌) =
∑
𝑒2∈𝑆2

∑
𝑒1∈𝑆1

𝑡 (𝑒1) ∈[𝑡 (𝑒2)−𝛿1,2,𝑡 (𝑒2) ]
EC( [𝑡 (𝑒2),min(𝑡 (𝑒2) + 𝛿2,3, 𝑡 (𝑒1) + 𝛿1,3)], 𝑆3)

Proof. If temporal edge 𝑒1 ∈ 𝑆1 is in a (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal

triangle with edge 𝑒2 ∈ 𝑆2, then 𝑡 (𝑒1) ∈ [𝑡 (𝑒2) − 𝛿1,2, 𝑡 (𝑒2)]. Fix
a pair of temporal edges (𝑒1, 𝑒2) in 𝑆1 × 𝑆2 = {(𝑒1, 𝑒2) | 𝑒1 ∈
𝑆1 ∧ 𝑒2 ∈ 𝑆2} where 𝑡 (𝑒2) ∈ [𝑡 (𝑒1), 𝑡 (𝑒1) + 𝛿1,2]. A temporal edge

𝑒3 ∈ 𝑆3 composes a (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal triangle with 𝑒1 and

𝑒2 iff 𝑡 (𝑒3) ∈ [𝑡 (𝑒2),min(𝑡 (𝑒2) + 𝛿2,3, 𝑡 (𝑒1) + 𝛿1,3)]. □

For a triangle {𝑢, 𝑣,𝑤} where𝑢 is the source vertex, we divide all

six possible temporal orderings into three categories based on the

place of {𝑣,𝑤} in them. Recall that we want to avoid enumerating

temporal edges on {𝑣,𝑤}. In 𝜋1 and 𝜋2, {𝑣,𝑤} is assigned to the

third place. {𝑣,𝑤} is assigned to the second place in 𝜋3 and 𝜋4, and

finally to the first place in temporal ordering 𝜋5 and 𝜋6.

Temporal orderings 𝜋1 and 𝜋2: Using Lemma 5.1, one can

compute TTC({𝑢, 𝑣,𝑤}, 𝜋, 𝜌) by enumerating pairs of temporal

edges in 𝑆1 × 𝑆2 = {(𝑒1, 𝑒2) | 𝑒1 ∈ 𝑆1 ∧ 𝑒2 ∈ 𝑆2}. For each pair

we compute EC( [𝑡 (𝑒2),min(𝑡 (𝑒2) + 𝛿2,3, 𝑡 (𝑒1) + 𝛿1,3), 𝑆3) using bi-
nary search. To get the final counts we sum EC( [𝑡 (𝑒2),min(𝑡 (𝑒2) +
𝛿2,3, 𝑡 (𝑒1) + 𝛿1,3), 𝑆3) over all pairs (𝑒1, 𝑒2) ∈ 𝑆1 × 𝑆2. But enumerat-

ing 𝑆1 × 𝑆2 could be expensive and this process overall runs in time

𝑂 (𝜎1𝜎2 log(𝜎3)). Next, we show that we can compute the same

count by enumerating edges in 𝑆1 and 𝑆2 separately and storing

cumulative counts of compatible edges on 𝑆3 for each edge.

For 𝑖, 𝑗 ∈ {1, 2, 3} where 𝑖 ≠ 𝑗 , and ℓ, ℓ ′ ∈ {1, . . . , 𝜎𝑖 } where

ℓ ≤ ℓ ′ we use CEC+𝛿1,3 (𝑆𝑖 [ℓ : ℓ ′], 𝑆 𝑗 ) to denote the cumulative

count of edges in 𝑆 𝑗 with a timestamp in [𝑡 (𝑒), 𝑡 (𝑒) +𝛿1,3] for edges
𝑒 in the sequence 𝑆𝑖 [ℓ : ℓ ′]. Formally

CEC+𝛿1,3 (𝑆𝑖 [ℓ : ℓ
′], 𝑆 𝑗 ) =

∑
ℓ≤𝑟 ≤ℓ′

EC( [𝑡 (𝑆𝑖 [𝑟 ]), 𝑡 (𝑆𝑖 [𝑟 ]) + 𝛿1,3], 𝑆 𝑗 ).

Cumulative counts CEC∞, CEC−𝛿1,3 , and CEC−∞, are defined

the same way with time intervals [𝑡 (𝑒),∞), [𝑡 (𝑒) − 𝛿1,3, 𝑡 (𝑒)], and
(−∞, 𝑡 (𝑒)], respectively.CEC−𝛿1,2 ,CEC+𝛿1,2 ,CEC−𝛿2,3 , andCEC+𝛿2,3
are defined similarly. Note that we can compute CEC(𝑆𝑖 [1 : ℓ], 𝑆 𝑗 )
for each ℓ ∈ {1, . . . , 𝜎𝑖 } with one pass over 𝑆𝑖 , and once we have

these counts, we can get the cumulative countsCEC(𝑆𝑖 [ℓ ′ : ℓ ′′], 𝑆 𝑗 ),
for each consecutive subsequence 𝑆𝑖 [ℓ ′ : ℓ ′′] of 𝑆𝑖 as follows.

CEC+𝛿1,3 (𝑆𝑖 [ℓ
′
: ℓ ′′], 𝑆 𝑗 ) = CEC+𝛿1,3 (𝑆𝑖 [1 : ℓ

′′], 𝑆 𝑗 )
− CEC+𝛿1,3 (𝑆𝑖 [1 : ℓ

′ − 1], 𝑆 𝑗 ).

where CEC+𝛿1,3 (𝑆𝑖 [1 : 0], 𝑆 𝑗 ) = 0.

We first enumerate edges in 𝑆1. For each edge 𝑒1 ∈ 𝑆1 we com-

pute CEC+𝛿1,3 (𝑆1 [1 : ℓ], 𝑆3) and CEC∞ (𝑆1 [1 : ℓ], 𝑆3) for each

ℓ ∈ {1, . . . , 𝜎1} and store them for 𝑒1. Next, we enumerate edges in

𝑆2 and compute CEC∞ (𝑆2 [1 : ℓ], 𝑆3) for each ℓ ∈ {1, . . . , 𝜎2}.
Fix an edge 𝑒2 ∈ 𝑆2. Let ℓ𝑓 and ℓℓ be the indices of the first and

last edges in 𝑆1 with a timestamp in [𝑡 (𝑒2) − 𝛿1,2, 𝑡 (𝑒2)]. Also let

ℓ𝛿2,3 be the index of the last edge in 𝑆1 with a timestamp at most

𝑡 (𝑒2) − 𝛿1,3 + 𝛿2,3. We can find ℓ𝑓 , ℓ𝛿2,3 , and ℓℓ using a binary search

on 𝑆1. Note that 𝛿1,3 ≤ 𝛿1,2 + 𝛿2,3, thus ℓ𝑓 ≤ ℓ𝛿2,3 ≤ ℓℓ .

First consider the temporal edges 𝑆1 [𝑖] where ℓ𝑓 ≤ 𝑖 ≤ ℓ𝛿2,3 . For

any such edge 𝑡 (𝑆1 [𝑖])+𝛿1,3 ≤ 𝑡 (𝑒2)+𝛿2,3, so the timestamp of com-

patible edges in 𝑆3 lie in the interval [𝑡 (𝑒2), 𝑡 (𝑆1 [𝑖]) + 𝛿1,3]. Having
stored the cumulative counts described above, we can compute the

number of pairs of temporal edges (𝑒1, 𝑒3) ∈ 𝑆1 [ℓ𝑓 : ℓ𝛿2,3 ] × 𝑆3 that

compose a (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal triangle on {𝑢, 𝑣,𝑤} with 𝑒2,

complying with 𝜋1 and 𝜌 , as follows.∑
ℓ≤𝑖≤ℓ𝛿

2,3

EC( [𝑡 (𝑒2), 𝑡 (𝑆1 (𝑖)) + 𝛿1,3], 𝑆3) =

CEC+𝛿1,3 (𝑆1 [ℓ𝑓 : ℓ𝛿2,3 ], 𝑆3) − CEC∞ (𝑆1 [ℓ𝑓 : ℓ𝛿2,3 ], 𝑆3)
+(ℓ𝛿2,3 − ℓ𝑓 + 1) · EC( [𝑡 (𝑒2),∞), 𝑆3)

Now, we count the number of temporal edges in 𝑆3 that compose

a trianglewith 𝑒2 and 𝑆1 [𝑖], where ℓ𝛿2,3 < 𝑖 ≤ ℓℓ . For a temporal edge

𝑆1 [𝑖] where ℓ𝛿2,3 < 𝑖 ≤ ℓℓ , we have 𝑡 (𝑆1 [𝑖])+𝛿1,3 > 𝑡 (𝑒2)+𝛿2,3. Thus,
there are EC( [𝑡 (𝑒2), 𝑡 (𝑒2) + 𝛿2,3], 𝑆3) edges on 𝑆3 that compose a

trianglewith 𝑒2 and 𝑆1 [𝑖]. So the final count of pairs (𝑒1, 𝑒3) ∈ 𝑆1×𝑆3



that are in a temporal triangle with 𝑒2 corresponding to the static

triangle {𝑢, 𝑣,𝑤} can be computed as follows.∑
𝑒1∈𝑆1,𝑡 (𝑒1) ∈

[𝑡 (𝑒2)−𝛿1,2,𝑡 (𝑒2) ]

EC( [𝑡 (𝑒2),min(𝑡 (𝑒2) + 𝛿2,3, 𝑡 (𝑒1) + 𝛿1,3)], 𝑆3)

=
∑

ℓ𝑓 ≤𝑖≤ℓ𝛿
2,3

EC( [𝑡 (𝑒2), 𝑡 (𝑆1 (𝑖)) + 𝛿1,3], 𝑆3)

+(ℓℓ − ℓ𝛿2,3 ) · EC( [𝑡 (𝑒2), 𝑡 (𝑒2) + 𝛿2,3], 𝑆3)

By Lemma 5.1, to get TTC({𝑢, 𝑣,𝑤}, 𝜋, 𝜌), we only need to sum

these counts over edges in 𝑆2. Let ⟨𝑢, 𝑣,𝑤⟩ denote a static triangle
where 𝑢 ≺ 𝑣 ≺ 𝑤 . Alg. 1 formalizes the procedure described above

for computing TTC(⟨𝑢, 𝑣,𝑤⟩, 𝜋, 𝜌) where 𝜋 is either 𝜋1 or 𝜋2.

Algorithm 1 Counting (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal triangles corre-

sponding to a static triangle and temporal orientation 𝜋1 or 𝜋2

1: procedure TTC-vw3(𝛿1,3, 𝛿1,2, 𝛿2,3,⟨𝑢, 𝑣,𝑤⟩, 𝜋 , 𝜌)
⊲ 𝜋 ({𝑣,𝑤}) = 3

2: Enumerate 𝑆1 and compute CEC+𝛿1,3 and CEC∞ on 𝑆3.

3: count = 0

4: for 𝑖 = 1, . . . , 𝜎2 do
5: Let ℓ𝑓 = lowerBound(𝑡 (𝑆2 [𝑖]) − 𝛿1,2, 𝑆1)
6: Let ℓ𝛿2,3 = upperBound(𝑡 (𝑆2 [𝑖]) − 𝛿1,3 + 𝛿2,3, 𝑆1)
7: Let ℓℓ = upperBound(𝑡 (𝑆2 [𝑖]), 𝑆1)

⊲ Edges in 𝑆1 [ℓ𝑓 : ℓ𝛿2,3 ]
8: count + = CEC+𝛿1,3 (𝑆1 [ℓ𝑓 : ℓ𝛿2,3 ], 𝑆3)
9: count − = CEC∞ (𝑆1 [ℓ𝑓 : ℓ𝛿2,3 ], 𝑆3)
10: count + = (ℓ𝛿2,3 − ℓ𝑓 + 1) · EC( [𝑡 (𝑆2 [𝑖]),∞), 𝑆3)

⊲ Edges in 𝑆1 [ℓ𝛿2,3 + 1 : ℓℓ ]
11: count + = (ℓℓ − ℓ𝛿2,3 ) · EC( [𝑡 (𝑆2 [𝑖]), 𝑡 (𝑆2 [𝑖]) + 𝛿2,3], 𝑆3)

12: return count

The algorithms for the category of 𝜋3 and 𝜋4 and the category

of 𝜋5 and 𝜋6 are similar to Alg. 1, so we defer these to Appendix A.

Here, we suffice to say that similar to Alg. 1, in algorithms for

the remaining temporal orderings, for each static triangle {𝑢, 𝑣,𝑤}
where 𝑢 is the source vertex, we only enumerate temporal edges

on {𝑢, 𝑣} and {𝑢,𝑤}. And for each temporal edge we perform a

constant number of binary searches on temporal edges on the other

two static edges of the static triangle {𝑢, 𝑣,𝑤}.

5.1 Getting the Counts for All Temporal
Triangle Types

Now that we can count (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal triangles for each

combination of temporal ordering and orientation, it only remains

to get the counts for each temporal triangle type ( Fig. 2). Let𝜓 (𝜋, 𝜌)
denote the triangle type for 𝜋 and 𝜌 . Alg. 2 gets the counts for all

eight types. Now, we can finally prove Theorem 1.2.

Proof of Theorem 1.2. Extracting the static graph 𝐺 from 𝑇

can be done in𝑂 (𝑚) time. We simply enumerate all temporal edges

Algorithm 2 Counting (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal triangles for each

temporal triangle types

1: procedure Count-temporal-triangles(𝑇 , 𝛿1,3, 𝛿1,2, 𝛿2,3)
2: Extract the static graph 𝐺 of 𝑇 .

3: Find the degeneracy ordering ≺ of 𝐺 .

4: Derive 𝐺≺ by orienting 𝐺 with respect to ≺.
5: Initialize Counts to 0 for T1, . . . ,T8.
6: for all Static triangles {𝑢, 𝑣,𝑤} do

⊲ WLOG let 𝑢 ≺ 𝑣 ≺ 𝑤

7: for all Temporal ordering 𝜋 and orientation 𝜌 do
8: Counts(𝜓 (𝜋, 𝜌)) += TTC(⟨𝑢, 𝑣,𝑤⟩, 𝜋, 𝜌) ⊲ Tab. 1

⊲ Using Alg. 1, Alg. 3, and Alg. 4

of 𝑇 and for each temporal edge 𝑒 = (𝑣1, 𝑣2, 𝑡), we add an static

edge between {𝑣1, 𝑣2} in 𝐺 if they are not connected already. The

degeneracy ordering of 𝐺 could be obtained in 𝑂 (𝑚𝑠 ) time [28],

and𝐺≺ could also be derived in time𝑂 (𝑚𝑠 ). For enumerating static

triangles we first enumerate each edge in 𝐺≺ . For each edge (𝑢, 𝑣),
we enumerate 𝑁 + (𝑢) which takes 𝑂 (𝜅) as 𝑑+

𝐺≺
(𝑢) ≤ 𝜅. We can

lookup if there is an edge between 𝑣 and𝑤 in constant time. Thus,

enumerating triangles take 𝑂 (𝑚𝑠 · 𝜅) time overall.

Note that for each static triangle we only enumerate temporal

edges on static edges incident to the source vertex. So for the static

triangle ⟨𝑢, 𝑣,𝑤⟩, we only enumerate temporal edges on the pairs

{𝑢, 𝑣} and {𝑢,𝑤}. While processing a temporal edge during enu-

meration of temporal edges on {𝑢, 𝑣} or {𝑢,𝑤}, we either perform a

constant time operation, or spend𝑂 (log(𝜎max)) time for a constant

number of binary searches over the temporal edges of the other

two static edges in the static triangle ⟨𝑢, 𝑣,𝑤⟩. Thus,

𝑇 (A) = 𝑂 (𝑚𝑠 · 𝜅 +
∑

⟨𝑢,𝑣,𝑤 ⟩
(𝜎 (𝑢, 𝑣) + 𝜎 (𝑢,𝑤)) log(𝜎max))

where A denotes Alg. 2, and 𝑇 (A) denotes the worst case time

complexity of A.

For each vertex𝑢 ∈ 𝑉 , 𝑑+
𝐺≺

(𝑢) ≤ 𝜅 , so each edge (𝑢, 𝑣) in𝐺≺ , is a
part of at most 𝜅 static triangles where𝑢 is the source vertex. There-

fore, the temporal edges on each edge {𝑢, 𝑣} in 𝐺 are enumerated

at most 𝑂 (𝜅) times. Thus,

𝑇 (A) = 𝑂 (𝑚𝑠 · 𝜅 +
∑

{𝑢,𝑣 }∈𝐸𝑠
(𝜎 (𝑢, 𝑣) + 𝜎 (𝑣,𝑢)) · 𝜅 log(𝜎max)) .

Hence,

𝑇 (A) = 𝑂 (𝑚𝜅 log(𝜎max)).
□

6 EXPERIMENTAL EVALUATIONS
We implemented our algorithm in C++ and used a commodity ma-

chine from AWS EC2: R5d.2xlarge to run our experiments. This EC2

instance has Intel(R) Xeon(R) Platinum 8175M CPU@ 2.50GHz and

64GB memory. On this AWS machine, PBL runs out of memory for

the Bitcoin graph, so we used one with more than 256GB memory

for this case. The implementation of DOTTT is available at [1].

We performed our experiments on a collection of temporal

graphs from SNAP [23], KONECT[21], and the Bitcoin transac-

tion dataset from [19], consisting of all transactions up to Feb 9,



Table 2: Descriptions of the datasets and runtime of DOTTT and PBL .

dataset #vertices #edges #static edges #static triangles degeneracy max multiplicity time span (years) DOTTT runtime PBL runtime
CollegeMsg 1.9K 59.8K 13.8K 14.3K 20 98 0.51 0.09 0.07

email-Eu-core 986 332K 16.1K 105K 34 2.8K 2.2 2.31 3.37

MathOverflow 24.7K 390K 188K 1.4M 78 225 6.46 3.17 3.6

SMS-A 44.1K 545K 52.22K 10K 9 5.3K 0.92 0.45 0.81

AskUbuntu 157K 727K 456K 680K 48 154 7.09 2.23 5.08

SuperUser 192K 1.11M 715K 1.54M 61 78 7.59 4.41 8.84

WikiTalk 1.09M 6.11M 2.79M 8.12M 124 1.1K 6.21 34 56

StackOverflow 2.58M 47.9M 28.18M 114.2M 198 549 7.60 347 678

Wikipedia-DE 2.17M 86.21M 39.71M 169.9M 265 347 10.18 576 987

Bitcoin 59.61M 515.5M 366.4M 706.2M 604 447K 5.98 2923 4374
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Figure 5: (a):The distribution of (1 hr, 1 hr, 1 hr)-temporal triangle counts over all eight temporal triangle types as shown
in Fig. 2. (b):We fix 𝛿1,3 to 2 hrs. We vary 𝛿1,2 from 0 to 60 minutes and plot the ratio of (2 hrs, 𝛿1,2, 𝛿2,3)-temporal triangles to
(2hrs, 𝛿1,2, 1hr)-temporal triangles for 𝛿2,3 ranging from 0 to 60 minutes. (c) We plot the ratio of (2 hrs, 1 hr, 𝛿2,3)-temporal
triangles to (2hrs, 1hr, 1hr)-temporal triangles for 𝛿2,3 ranging from 0 to 60 minutes, for cyclic and acyclic triangles.

2018. The timestamp of each transaction is the creation time of the

block on the blockchain that contains it[40].

Running time: All the running times are shown in Tab. 2. We

ran all experiments on a single thread. In most instances, DOTTT
takes a few seconds to run. For graphs with tens of millions of

temporal edges, DOTTT runs in less than ten minutes. Even for the

Bitcoin graph with 515M edges, DOTTT takes less than an hour.

Running time independent of time periods: The running

time of both DOTTT and PBL algorithms are independent of the

time periods. DOTTT has the same running time for time restrictions

ranging from 0 to the time span of the input dataset. For comparison

with 𝑃𝐵𝐿, we set 𝛿1,3 = 𝛿1,2 = 𝛿2,3 = 1 hr.

Comparison with PBL :We compare our algorithm with the

PBL algorithm that counts 𝛿1,3-temporal triangles, as it is the closest

to our work. We typically get a 1.5x-2x speedup over PBL for large

graphs (more than 0.5M edges) as shown in Fig. 1a. Note that DOTTT
computes (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal triangle counts while PBL only

gets the counts of 𝛿1,3-temporal triangles.

Distribution of counts over types of triangles: The distribu-
tion of (1 hr, 1 hr, 1 hr)-temporal triangle counts for our datasets

are shown in Fig. 5a. As we expected [29, 33, 51, 57], networks from

similar domains have similar distributions. It is easy to see in Fig. 5a,

that all the stack exchange networks have similar distributions. The

same holds for the message networks CollegeMsg and SMS-A.

We observe that cyclic temporal triangles, T4 and T8, have a

larger share in temporal triangle counts in messaging networks

than in stack exchange networks.

Triadic closures in temporal networks: In static triangles,

the transitivity measures the ratio of number of static triangles

to the number of all wedges. In temporal graphs, in addition to

transitivity, the time it takes for a wedge to appear and close is of

importance [58]. In Fig. 5b, we study the effect of the time it takes

for a wedge to appear from an edge, on the time it takes to close for

CollegeMsg graph. We fix 𝛿1,3 = 2 hrs. For 𝛿1,2 ranging from zero to

60 minutes (10 minute steps), we vary 𝛿2,3 from zero to 60 minutes

and plot the ratio of (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal triangles over (2hrs,

𝛿1,2, 1hr)-temporal triangles. We observe that the set of ratios for

all values of 𝛿2,3 are almost identical for different values of 𝛿1,2. For

instance, for all values of 𝛿1,2, roughly half the triangles are formed

in 10-20 minutes. This implies that once a wedge is formed, the

time it took to appear does not affect the time it takes to close.

As another demonstration of DOTTT, for 𝛿1,3 = 2 hrs and 𝛿1,2 = 1

hrs, we plot the ratio of (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal triangles to (2hrs,

1hr, 1hr)-temporal triangles, this time separately for cyclic and

acyclic temporal triangles in Fig. 5c. We observe that for stack ex-

change networks, acyclic temporal triangles tend to take a shorter

time to close from the moment their second edge appears than

cyclic temporal triangles. As we see in Fig. 5c, this is not the case

for message networks.
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A MISSING ALGORITHMS FROM SECTION 5
Here we will provide the algorithms for counting (𝛿1,3, 𝛿1,2, 𝛿2,3)-
temporal triangles for temporal orderings 𝜋3, 𝜋4, 𝜋5, and 𝜋6.

Temporal orderings 𝜋3 and 𝜋4: Consider an orientation 𝜌 , and
a static triangle on vertices {𝑢, 𝑣,𝑤} enumerated in 𝐺≺ , where 𝑢 is

the source vertex. The category of temporal orderings 𝜋3 and 𝜋4
is more intricate because 𝜋3 ({𝑣,𝑤}) = 𝜋4 ({𝑣,𝑤}) = 2. Recall that

we want to avoid enumerating temporal edges on {𝑣,𝑤}, so we do

not enumerate edges on 𝑆2 as in the case of 𝜋1 and 𝜋2. Instead, we

enumerate edges on 𝑆1, and compute the counts of edges on 𝑆2 that

form a temporal triangle with compatible edge in 𝑆3.

We start by enumerating edges on 𝑆1. Consider an edge 𝑒1 ∈ 𝑆1.

Let ℓ𝑓 and ℓℓ denote the indices of first and last edge in 𝑆3 with

a timestamp in [𝑡 (𝑒1), 𝑡 (𝑒1) + 𝛿1,3]. Also, let ℓ𝛿1,2 denote the index
of the first edge in 𝑆3 with a timestamp greater than 𝑡 (𝑒1) + 𝛿1,2,

and ℓ𝛿2,3 be the index of the first edge in 𝑆3 that has a timestamp

greater than 𝑡 (𝑒1) + 𝛿2,3. Note that ℓ𝛿1,2 and ℓ𝛿2,3 divide 𝑆3 [ℓ : ℓℓ ]
into three consecutive subsequences. We show how to count tem-

poral triangles that involve temporal edges in each of these three

subsequences.

For a temporal edge 𝑆3 [𝑖] where ℓ𝑓 ≤ 𝑖 < min(ℓ𝛿1,2 , ℓ𝛿2,3 ), each
edge 𝑒2 ∈ 𝑆2 where 𝑡 (𝑒2) ∈ [𝑡 (𝑒1), 𝑡 (𝑆3 [𝑖])] form a (𝛿1,3, 𝛿1,2, 𝛿2,3)-
temporal triangle with 𝑒1 and 𝑆3 [𝑖]. To obtain the counts of these

edges in 𝑆2, it suffices to store CEC−∞ on 𝑆2 for each edge 𝑒3 ∈ 𝑆3.

Now, consider the temporal edges 𝑆3 [𝑖] wheremax(ℓ𝛿1,2 , ℓ𝛿2,3 ) <
𝑖 ≤ ℓℓ . The timestamp of these edges are in time window [𝑡 (𝑒1) +
max(𝛿1,2, 𝛿2,3), 𝑡 (𝑒1) + 𝛿1,3], and together with temporal edge 𝑒1
form a (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal triangle with each temporal edge

𝑒2 ∈ 𝑆2 where 𝑡 (𝑒2) ∈ [𝑡 (𝑆3 [𝑖]) − 𝛿2,3, 𝑡 (𝑒1) + 𝛿1,2]). To count the

number of such temporal edges in 𝑆2 we only need to storeCEC−𝛿2,3
and CEC−∞ on 𝑆2 for each temporal edge 𝑒3 in 𝑆3.

Finally, consider a temporal edge 𝑆3 [𝑖] where min(ℓ𝛿1,2 , ℓ𝛿2,3 ) ≤
𝑖 ≤ max(ℓ𝛿1 , ℓ𝛿2,3 ). The number of compatible edges in 𝑆2 depend

on how 𝛿1,2 compares to 𝛿2,3. There are two cases: (𝑎) : 𝛿1,2 <

𝛿2,3 and (𝑏) : 𝛿2,3 < 𝛿1,2. In case (𝑎) edges in 𝑆2 have to have

a timestamp in [𝑡 (𝑒1), 𝑡 (𝑒1) + 𝛿1,2] to form a triangle with 𝑒1 and

𝑆3 [𝑖], and in case (𝑏) their timestamps should be in the timewindow

[𝑡 (𝑆3 [𝑖]) − 𝛿2,3, 𝑡 (𝑆3 [𝑖])]. Alg. 3 give the step by step procedure for

counting temporal triangles for temporal orderings 𝜋3 and 𝜋4.

Temporal orderings 𝜋5 and 𝜋6: This case is similar to the case

of temporal ordering 𝜋1 and 𝜋2. The difference is that while enu-

merating edges in 𝑆2, we will first find the compatible edges in 𝑆3
instead of 𝑆1, and then count edges in 𝑆1 that complete a temporal

triangle. Consider a static triangle {𝑢, 𝑣,𝑤} and orientation 𝜌 . Fix a

temporal edge 𝑒2 in 𝑆2. Let ℓ𝑓 and ℓℓ denote the indices of the first

and last temporal edges in 𝑆3 with a timestamp in the time period

[𝑡 (𝑒2), 𝑡 (𝑒2) + 𝛿2,3]. Let ℓ𝛿1,2 be the first temporal edge in 𝑆3 such

that 𝑡 (𝑆3 (ℓ𝛿1,2 )) > 𝑡 (𝑒2) +𝛿1,3−𝛿1,2. Since 𝛿1,3 ≤ 𝛿1,2+𝛿2,3, we have
ℓ𝑓 ≤ ℓ𝛿2,3 ≤ ℓℓ . Consider a temporal edge 𝑆3 [𝑖] where ℓ𝑓 ≤ 𝑖 < ℓ𝛿1,2 .

The number of edges in 𝑆1 that form a triangle with 𝑒2 and 𝑆3 [𝑖]
is EC(𝑆1, [𝑡 (𝑒2) − 𝛿1,2, 𝑡 (𝑒2)]). For each temporal edge 𝑆3 [𝑖] where
ℓ𝛿1,2 ≤ 𝑖 ≤ ℓℓ , there are EC(𝑆1, [𝑡 (𝑆3 [𝑖]) − 𝛿1,3, 𝑡 (𝑒2)]) edges that

complete a temporal triangle. This is the same as in the case of 𝜋1
and 𝜋2 with different time windows. We need to get CEC−∞ and

CEC−𝛿1,3 on 𝑆1 for each edge 𝑒3 ∈ 𝑆3.

Algorithm 3 Counting (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal triangles corre-

sponding to a static triangle and temporal orientation 𝜋3 or 𝜋4

1: procedure CTT-vw2(𝛿1,3, 𝛿1,2, 𝛿2,3,⟨𝑢, 𝑣,𝑤⟩, 𝜋 , 𝜌)
⊲ 𝜋 ({𝑣,𝑤}) = 2

2: count = 0

3: Enumerate 𝑆3 and compute CEC−∞ and CEC−𝛿2,3 on 𝑆2

4: for 𝑖 = 1, . . . , 𝜎1 do
5: Let ℓ𝑓 = lowerBound(𝑡 (𝑆1 [𝑖]), 𝑆3)
6: Let ℓ𝛿1,2 = upperBound(𝑡 (𝑆1 [𝑖]) + 𝛿1,2, 𝑆3)
7: Let ℓ𝛿2,3 = lowerBound(𝑡 (𝑆1 [𝑖]) + 𝛿2,3, 𝑆3)
8: Let ℓℓ = upperBound(𝑡 (𝑆1 [𝑖]) + 𝛿1,3, 𝑆3)
9: Let ℓmin = min(ℓ𝛿1,2 , ℓ𝛿2,3 )
10: Let ℓmax = max(ℓ𝛿1,2 , ℓ𝛿2,3 )

⊲ Edges in 𝑆3 [ℓ𝑓 : ℓmin]
11: count + = CEC−∞ (𝑆3 [ℓ𝑓 : ℓmin], 𝑆2)
12: count − = (ℓmin − ℓ𝑓 + 1) · EC((−∞, 𝑡 (𝑆1 [𝑖])], 𝑆2)

⊲ Edges in 𝑆3 [ℓmin + 1 : ℓmax − 1]
13: if 𝛿1,2 ≤ 𝛿2,3 then
14: count + = (ℓ𝛿2,3 − ℓ𝛿1,2 )
15: · EC( [𝑡 (𝑆1 [𝑖]), 𝑡 (𝑆1 [𝑖]) + 𝛿1,2], 𝑆2)
16: else if 𝛿2,3 ≤ 𝛿1,2 then
17: count + = CEC−𝛿2,3 (𝑆3 [ℓ𝛿2,3 : ℓ𝛿1,2 ], 𝑆2)

⊲ Edges in 𝑆3 [ℓmax : ℓℓ ]
18: count + = CEC−𝛿2,3 (𝑆3 [ℓmax : ℓℓ ], 𝑆2)
19: count − = CEC−∞ (𝑆3 [ℓmax : ℓℓ ], 𝑆2)
20: count += (ℓℓ − ℓmax) · EC((−∞, 𝑡 (𝑆1 [𝑖]) + 𝛿1,2], 𝑆2)
21: return count

Algorithm 4 Counting (𝛿1,3, 𝛿1,2, 𝛿2,3)-temporal triangles corre-

sponding to a static triangle and temporal orientation 𝜋5 or 𝜋6

1: procedure TTC-vw1(𝛿1,3, 𝛿1,2, 𝛿2,3,⟨𝑢, 𝑣,𝑤⟩, 𝜋 , 𝜌)
⊲ 𝜋 ({𝑣,𝑤}) = 1

2: count = 0

3: Enumerate 𝑆3 and compute CEC−𝛿1,3 and CEC−∞ on 𝑆1

4: for 𝑖 = 1, . . . , 𝜎2 do
5: Let ℓ𝑓 = lowerBound(𝑡 (𝑆2 [𝑖]), 𝑆3)
6: Let ℓ𝛿1,2 = lowerBound(𝑡 (𝑆2 [𝑖]) + 𝛿1,3 − 𝛿1,2, 𝑆3)
7: Let ℓℓ = upperBound(𝑡 (𝑆2 [𝑖]) + 𝛿2,3, 𝑆3)

⊲ Edges in 𝑆3 [ℓ𝛿1,2 : ℓℓ ]
8: count + = CEC−𝛿1,3 (𝑆3 [ℓ𝛿1,2 : ℓℓ ], 𝑆1)
9: count − = CEC−∞ (𝑆3 [ℓ𝛿1,2 : ℓℓ ], 𝑆1)
10: count + = (ℓℓ − ℓ𝛿1,2 + 1) · EC((−∞, 𝑡 (𝑆2 [𝑖])], 𝑆1)

⊲ Edges in 𝑆3 [ℓ𝑓 : ℓ𝛿1,2 − 1]
11: count + = (ℓ𝛿1,2 − ℓ𝑓 ) ·EC( [𝑡 (𝑆2 [𝑖]) −𝛿1,2, 𝑡 (𝑆2 [𝑖])], 𝑆1)
12: return count
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