
Age of Information Aware Cache Updating

with File- and Age-Dependent Update Durations

Haoyue Tang1, Philippe Ciblat3, Jintao Wang1,2, Michèle Wigger3, Roy Yates4

1Beijing National Research Center for Information Science and Technology (BNRist),

Dept. of Electronic Engineering, Tsinghua University, Beijing, China
2Research Institute of Tsinghua University in Shenzhen, Shenzhen, China

3Telecom Paris, Institut Polytechnique de Paris, Paris, France
4Rutgers University, New Brunswick, NJ, USA

{thy17@mails, wangjintao@}tsinghua.edu.cn, {ciblat, wigger}@telecom-paristech.fr, ryates@rutgers.edu

Abstract—We consider a system consisting of a library of time-
varying files, a server that at all times observes the current
version of all files, and a cache that at the beginning stores the
current versions of all files but afterwards has to update these files
from the server. Unlike previous works, the update duration is not
constant but depends on the file and its Age of Information (AoI),
i.e., of the time elapsed since it was last updated. The goal of this
work is to design an update policy that minimizes the average
AoI of all files with respect to a given popularity distribution.
Actually a relaxed problem, close to the original optimization
problem, is solved and a practical update policy is derived. The
update policy relies on the file popularity and on the functions
that characterize the update durations of the files depending on
their AoI. Numerical simulations show a significant improvement
of this new update policy compared to the so-called square-root
policy that is optimal under file-independent and constant update
durations.

I. INTRODUCTION

Caching, i.e., prestoring popular contents in cache memories

close to end users, has become a popular tool to reduce

congestion and latency in communication networks. For files

that are both time-varying and time-sensitive, i.e., users wish

to access recent versions of the files, the files have to be

updated regularly. The size of an update thereby depends on

the original size of the file and on the time elapsed since its

last update, i.e., on the file’s Age of Information (AoI). In

fact, if a file has been updated recently, then the data has not

changed significantly, and its update is small. Instead, if a file

has not been updated for a long time, then most of it needs

to be replaced and the update is large. The main contribution

of this work is to take account for this by letting the update

durations depend on the file and, more importantly, on the

file’s current AoI.

Since the seminal paper [1], various AoI-related optimiza-

tion problems have been studied recently for different systems

configuration, see e.g. [2]–[7]. In this paper, we consider a

single-server single-cache system where the remote server

stores the current version of all files and the cache user updates

—————–
This work was supported by the ERC (Grant No. 715111), the National
Key R&D Program of China (Grant No.2017YFE011230), Shenzhen basic
Research Project (No.JCYJ20170816152246879) and the Tsinghua University
Tutor Research Fund.

the files in its memory by downloading fresh versions from

this server. The goal is to minimize the average AoI of all the

files in the cache when the average is taken with respect to a

fixed popularity distribution. The current work assumes a non-

stochastic setup similar to [8]–[10] where the remote server

(which in practice may be distributed in the cloud) can always

access the current version of all the files but the link between

the remote server (or the cloud) and the cache is band-limited.

Unlike [8], the update duration depends on the file and its age.

The contributions of the paper are as follows. We first

formulate the optimization problem of minimizing the average

AoI under AoI-dependent update durations. Then, we slightly

relax and simplify the problem and solve this simplified

version. Inspired by the solution, we propose a new practical

cache update policy that respects all the original constraints.

Through numerical simulations, we finally characterize the

gain of this policy over the square-root policy obtained in [8].

The remainder of the paper is organized as follows. Section

II states both the original and the simplified optimization

problem. Section III solves the relaxed optimization prob-

lem through monotonic optimization and convex optimization

theory. Section IV provides a practical model for the update

duration. Section V presents a practical downloading policy

inspired by the solution of the simplified optimization prob-

lem. Section VI presents numerical simulations and Section

VII finally concludes the paper.

II. PROBLEM FORMULATION

A. System setup

The system consists of a remote server and a local server as

depicted in Fig. 1. The remote server has a real-time access

to N time-varying and time-sensitive files. The local server

starts at time t = 0 with a fresh version of all files in its

cache memory, and given the time-sensitivity of the files it

wishes to keep the files as up-to-date as possible. It will

therefore download and update fresh versions of the files from

the remote server, where at any given time it can only update

a single file. It is also assumed that a new file update can be

started only once the previous updates are completed.

We consider the observation window (0, T], for a fixed and

given T > 0. Let Kn, for n ∈ {1, . . . , N}, denote the number

2020 18th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt – CCDWN Workshop)

 ISBN 978-3-903176-29-4 © 2020 IFIP

Authorized licensed use limited to: Rutgers University. Downloaded on July 23,2021 at 19:16:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The server-cache-users model.

of updates of file n in this interval, and 0 < tn,1 < · · · < tn,Kn

the starting times of these updates. Define then the inter-update

intervals

τn,i :=

⎧

⎪

⎨

⎪

⎩

tn,1, i = 1;

tn,i − tn,i−1, i = 2, · · · ,Kn;

T − tn,Kn
, i = Kn + 1.

(1)

Given are also N functions f1(·), . . . , fN (·) which describe

the time that it takes to update the different files, as will

be made more clear in the following. Later in this paper we

restrict to specific choices of these functions, but for now we

only impose the following assumption:

Assumption 1 (Update function): Each function fn(·) is

assumed strictly positive, bounded, non-decreasing, concave,

and differentiable over R+.

We now explain the update procedures and the associated

age of information (AoI) process {Xn(t)}t≥0 of the files. At

time t = 0 the cache contains fresh versions of all the files,

and hence the AoI of each file is Xn(0) = 0. The AoI of

a given file n then grows as Xn(t) = t, until the cache has

finished downloading a fresh version of this file. The cache

starts the first update of file n at time tn,1 and the update is

finished at time tn,1+dn,1, where dn,1 denotes the first update

duration of file n. This update duration depends on the file’s

AoI at time tn,1 and the update duration function fn:

dn,1 := fn(Xn(tn,1)) = fn(tn,1) = fn(τn,1), (2)

where the equalities hold because the AoI at time tn,1 is

Xn(tn,1) = tn,1 and by Eq. (1).

At the end of this first update, at time t = tn,1 + dn,1,

the AoI of file n drops to the time elapsed since the fresh

version was created, i.e., to dn,1, and then grows again as

Xn(t) = t−tn,1 until the cache has finished the second update

of the file. This second update starts at time tn,2 and finishes

at time tn,2+dn,2 = tn,2+fn(τn,2). When the second update

ends, i.e., at time t = tn,2 + dn,2, the AoI drops to dn,2 and

then grows as Xn(t) = t− tn,2, and so forth. A sample path

of the AoI is depicted in Fig 2. To summarize, the AoI of file

n ∈ {1, . . . , N} is:

Xn(t) =

⎧

⎪

⎨

⎪

⎩

t , t ∈
[

0, tn,1 + dn,1
)

;

(t− tn,k) , t ∈
[

tn,k + dn,k,

tn,k+1 + dn,k+1

)

,

(3)

Fig. 2. A sample path of AoI evolution Xn(t) for file n.

where

dn,k := fn(τn,k), (4)

and the average AoI of a given file n is:

Xn =
1

T

∫ T

0

Xn(t)dt. (5)

The main focus of this paper is on the expected AoI X over a

file that is randomly chosen from the set {1, . . . , N} according

to a given file popularity distribution p1, . . . , pN considered

constant over a sufficiently large observation window,

X :=
N
∑

n=1

pnXn. (6)

The update times {tn,1, . . . , tn,N}Nn=1 have to ensure that at

each point in time only a single file is being updated. This is

equivalent to requiring that the intervals [tn,i, tn,i + dn,i) are

disjoint for all n ∈ {1, . . . , N} and i ∈ {1, . . . ,Kn}.

B. Optimization problem

The goal is to minimize the expected AoI X in (6) over

all feasible update times {tn,1, . . . , tn,Kn
}Nn=1. We exploit

the one-to-one correspondence in (1) and the functional re-

lationship in (4) to express the optimization problem in terms

of the inter-update intervals {τn,1, . . . , τn,Kn+1}n. Moreover,

we simplify the cost function by splitting the integral in the

computation of Xn into Kn + 1 subintervals:

Xn =
1

T

Kn+1
∑

i=1

∫ tn,i

t=tn,i−1

Xn(t)dt =
1

T

Kn+1
∑

i=1

Qn,i, (7)

where

Qn,i :=

∫ t=tn,i

tn,i−1

Xn(t)dt = τn,i−1 · fn(τn,i−1) +
1

2
τ2n,i. (8)

Here the second equality holds because the integral corre-

sponds to the sum of a parallelogram and a triangle as depicted

by the gray area in Fig. 2.

We reach the following optimization problem.

Problem 1 (Original problem):

min
{Kn,τn,i}

N
∑

n=1

pn

(

Kn+1
∑

i=1

1

2
τ2n,i +

Kn
∑

i=1

τn,i · fn(τn,i)
)

(9a)

Authorized licensed use limited to: Rutgers University. Downloaded on July 23,2021 at 19:16:21 UTC from IEEE Xplore. Restrictions apply.

where the minimum is over positive integers Kn and positive

real numbers τn,i that satisfy the following two conditions:

Kn+1
∑

i=1

τn,i = T, ∀n ∈ {1, . . . , N}, (9b)

and for all i, j, n, n′ satisfying (n, i) �= (n′, j):
(

i
∑

k=1

τn,k −
j

∑

k=1

τn′,k

)

/∈
(

− fn(τn,i), fn′(τn′,j)
]

. (9c)

Condition (9c) holds because the update in-

tervals
[
∑i

k=1 τn,k,
∑i

k=1 τn,k + fn(τn,i)
)

and
[
∑j

k=1 τn′,k,
∑j

k=1 τn′,k + fn′(τn′,j)
)

have to be disjoint.

III. A RELAXED SUBOPTIMAL SOLUTION

The presented optimization problem seems hard, even in the

asymptotic regime T → ∞, on which we will focus shortly.

We therefore relax constraint (9c) into the next constraint

N
∑

n=1

Kn
∑

i=1

fn(τn,i) ≤ T, (10)

i.e., several files can be updated simultaneously as long as the

global update duration remains smaller than the observation

window. We also choose (possibly suboptimally) uniform

inter-update intervals

τn,i = τn :=
T

Kn + 1
. (11)

The optimization problem then consists in finding the optimal

choices of {τn}, and is stated in Section III-A. To motivate

the choice in (11), notice that it is optimal when the update

durations are constant and identical across files [8]. Moreover,

in Section V we present a practical update policy that updates

only a single file at each time, and has a performance close

to the solution to our new optimization problem.

A. A Relaxed Suboptimal Problem

In what follows, consider the asymptotic regime T → ∞.

By (9a), the expected AoI X grows without bound unless for

all files n the number of updates Kn → ∞ as T → ∞. We

can therefore assume in the following

lim
T→∞

Kn

Kn + 1
= 1. (12)

Plugging (11) and (12) into (9a) and (10) results in the

following new optimization problem, which approximates the

original problem in the asymptotic regime where T → ∞.

Problem 2 (Relaxed suboptimal problem – version 1):

min
{τn}n

N
∑

n=1

pn

(

1

2
τn + fn(τn)

)

(13a)

s.t. τn ≥ 0, ∀n, and

N
∑

n=1

fn(τn)

τn
≤ 1. (13b)

We reformulate the optimization in terms of the file utilization

ratios, i.e., the fraction of time that each file is being updated,

λn :=
fn(τn)

τn
. (14)

For finite T , this fraction is (1/T)
∑

i∈{1,··· ,Kn}
fn(τn,i) =

Knfn(τn)/((Kn + 1)τn), which by (12) tends to
fn(τn)

τn
as

T → ∞. Due to Eq. (13b), we get λn ≤ 1 for the feasible

points of Problem 2, i.e., the duration spent for updating the

n-th file fn(τn) is smaller than the inter-update duration τn.

We have the following useful lemma on the function

gn(t) :=
fn(t)

t
. (15)

Lemma 1: Under Assumption 1, the function t 	→ gn(t)
for t ∈ R+ is strictly decreasing and its image is (0,∞).

Consequently, gn has an inverse function denoted by g
(−1)
n ,

which is also strictly decreasing.

Proof: The derivative can be upper bounded as:

g′n(t) =
tf ′

n(t)− fn(t)

t2

(a)

≤ −fn(0)

t2
(b)
< 0, (16)

where the inequality (a) is due to the concavity of the function

fn and the inequality (b) is due to its positivity. So gn is

strictly decreasing. Since limt→0 fn(t) = fn(0) > 0, we have

limt→0
fn(t)

t = ∞. As the function fn is upper-bounded, we

also have limt→∞
fn(t)

t = 0. Since fn is differentiable (and so

continuous) and strictly decreasing, its image is (0,∞). The

rest of the proof is straightforward.

Therefore, τ̄n = g
(−1)
n (λn), and Problem 2 is easily rewritten

as an optimization problem over {λn}Nn=1.

Problem 3 (Relaxed suboptimal problem – version 2): Let

hn(λ) := g(−1)
n (λ)

(

1

2
+ λ

)

. (17)

Problem 2 is equivalent to:

min
{λn}n

N
∑

n=1

pn · hn(λn) (18a)

s.t. λn ≥ 0, ∀n, and

N
∑

n=1

λn ≤ 1. (18b)

We finish this subsection by showing that the optimal solu-

tion must lie on the boundary of the feasible set. In subsequent

subsections we discuss numerical optimization methods that

can be used to solve our problem. We also present the KKT

conditions, which can be used to simplify the search of the

optimal solution when the function hn is convex.

We have the following auxiliary lemma, which will be

useful throughout the paper.

Lemma 2: The function hn(·) is strictly decreasing over R+.

Proof: According to Proposition 1, g
(−1)
n (λ) is strictly

decreasing. In addition, thanks to Eq. (15), we get

fn(g
(−1)
n (λ)) = g

(−1)
n (λ) · gn(g(−1)

n (λ)) = g
(−1)
n (λ)λ. Since

Authorized licensed use limited to: Rutgers University. Downloaded on July 23,2021 at 19:16:21 UTC from IEEE Xplore. Restrictions apply.

fn is non decreasing and g
(−1)
n is strictly decreasing, the

composition fn ◦ g(−1)
n is a non increasing function.

Proposition 1: Let {λ⋆
n}n be the optimal solution of Prob-

lem 3. It satisfies:
N
∑

n=1

λ⋆
n = 1, (19)

i.e., it lies on the boundary of the feasible set.

Proof: By contradiction, let us assume
∑N

n=1 λ
⋆
n < 1.

Then for an arbitrary n0, we replace λ⋆
n0

with λ⋆
n0

+ δn0
to

force equality in Eq. (19). As hn is strictly decreasing, we get

hn(λ
⋆
n0

+ δn0
) < hn(λ

⋆
n0
). And the point λ†

n0
= λ⋆

n0
+ δn0

and λ†
n = λ⋆

n for n �= n0 is better than the optimal one, which

concludes the proof.

B. Monotonic optimization solution

Problem 3 can be cast into the monotonic optimization

framework [11]–[13] because the constraints are linear (and

thus convex) and the cost function is strictly decreasing by

Lemma 2. The optimal solution can thus be found using the

so-called Branch-Reduce-Bound (BRB) [13]. Notice that the

function hn(λ) grows without bound when λ → 0 (In this limit

the file is not updated and its age diverges, see Eq. (26).). The

BRB algorithm therefore has to remove a tiny neighborhood

around the origin from the initially selected box.

C. KKT based algorithm

The function hn is determined by the update function fn
and is generally not convex. This makes that in general the

Karush-Kuhn-Tucker (KKT) conditions are only necessary but

not sufficient for an optimal solution. However, for many

practically relevant choices of the update function fn (see

Section ?? for more details), the function hn is convex. We

therefore derive the KKT conditions in this subsection.

Let us define the Lagrangian

L(λ1, . . . , λN , ν) =
N
∑

n=1

hn(λn) + ν

(

N
∑

n=1

λk − 1

)

with ν ≥ 0 the Lagrange multiplier. The KKT conditions then

state that the primal-dual optimal solutions (λ⋆
1, · · · , λ⋆

N , ν⋆)
must satisfy

pnh
′
n(λ

⋆
n) + ν⋆ = 0, ∀ n (20)

ν⋆

(

N
∑

n=1

λ⋆
n − 1

)

= 0, (21)

where h′
n denotes the first-order derivative of hn:

h′
n(λ) := g(−1)

n

′
(λ)

(

1

2
+ λ

)

+ g−1
n (λ). (22)

Notice that h′
n is invertible, and the image of this inverse

h
′(−1)
n is the set of all non-positive real numbers (−∞, 0]. This

latter property holds because hn is differentially continuous

and goes from +∞ to 0. We can thus rewrite (20) as

λ⋆
n = h′(−1)

n

(

−ν⋆

pn

)

, ∀n. (23)

Condition (21) is subsumed by the stronger condition
∑N

n=1 λ
⋆
n = 1, which was proved in Proposition 1. The

optimal primal variables λ⋆
1, . . . , λ

⋆
N are thus given by (23)

for some “waterlevel” ν⋆ ≥ 0 that needs to be chosen so that
∑N

n=1 λ
⋆
n = 1. Certain functions fn permit to find a closed-

form expression for h
′(−1)
n . For other functions one needs to

search over the entries of a Look Up Table to find the desired

values of h
′(−1)
n .

Sometimes it is more convenient to perform a change

of variables and express the KKT conditions in terms of

the optimal inter-update intervals τ⋆n = g
(−1)
n (λ⋆

n). Since,

g
(−1)
n

′
(λ⋆

n) = 1
g′

n(τ
⋆
n)

=
(τ⋆

n)
2

f ′

n(τ
⋆
n)τ

⋆
n−fn(τ⋆

n)
, Eq. (23) is equiv-

alent to

τ⋆n+
(τ⋆n)

2

f ′
n(τ

⋆
n)τ

⋆
n − fn(τ

⋆
n)

(

1

2
+

fn(τ
⋆
n)

τ⋆n

)

= −ν⋆

pn
, ∀n, (24)

where f ′
n denotes the derivative of fn. This equation can be

easier to solve because it does not include the inverse g
(−1)
n .

For instance, for fn(t) = Bn − (Bn − εn)/(1 + t) (with

Bn > εn > 0 well tuned in order to ensure the convexity of

hn), solving Eq (24) is equivalent to finding the positive real-

valued root of a fourth-order polynomial and thus a closed-

form solution exists.

IV. A PRACTICAL EXAMPLE FOR fn

In this section, we motivate a specific choice of fn, which

will extensively be used in the simulation part. The idea is that

in each unit of time, a certain portion of each file becomes

obsolete, and that the cache and the server know the obsolete

parts. These bits can thus be modeled as erasures, and we

model the evolution of file n as passing each bit through a

Binary Erasure Channel (BEC) with parameter ∆n. Assume

that the file n initially consists of Bn bits. Then, after t time

units without update, any given bit of the file n undergoes

t sequential applications of a BEC with parameter ∆n. This

transition can be modeled as a BEC with parameter 1− (1−
∆n)

t, and the average number of erased positions in the file

after t time units is Bn(1− (1−∆n)
t).

However, when limt→0 fn(t) = 0, then degenerate solutions

like τ̄⋆n = 0 could be optimal, which is not feasible in

practice. We therefore add an offset εn to each update function.

Combined with the arguments in the previous paragraph, we

obtain fn(t) = Bn − (Bn − εn)(1−∆n)
t or expressed in an

exponential form:

fn(t) = Bn − (Bn − εn)e
−βnt (25)

with βn = − log(1 −∆n). Notice that βn > 0 and that such

a function fn always satisfies Assumption 1.

For the choice in Eq. (25),

g(−1)
n (λ) =

Bn

λ
+

1

βn
W

(

−βn(Bn − εn)

λ
e−

βnBn
λ

)

, (26)

where W (·) denotes the Lambert function. Notice that the

associated function hn = g
(−1)
n (λ)(12+λ) is convex for certain

values of εn, Bn, βn (for instance, for the set of parameters

selected in Section VI). In this case the solution can be found

Authorized licensed use limited to: Rutgers University. Downloaded on July 23,2021 at 19:16:21 UTC from IEEE Xplore. Restrictions apply.

based on the KKT conditions. For other values of εn, Bn, βn

(for instance, for Bn = 1, εn = 0.02, and βn = 10) the

function hn is non-convex and we suggest to use the BRB

algorithm to find the optimal solution for the relaxed problem.

V. A PRACTICAL SCHEDULING ALGORITHM

The question now is: how to apply the result of the previous

sections to obtain a practical scheduling algorithm that satisfies

all the original constraints? In particular, only a single update

should be scheduled at any given point in time, and a new

update can only start once the previous update has terminated.

To describe the practical update algorithm, let {λ⋆
n} be an

optimal solution to Problem 3, which is either obtained with

the BRB algorithm or with the KKT-based algorithm (if hn

is convex). Then set τ⋆n := g
(−1)
n (λ⋆

n). If the algorithm has to

schedule a new update at a given time t (because the previous

file update just finished), it will choose the file that is currently

most urgent, i.e., whose AoI is closest to its maximum target

AoI τ̄⋆n . More precisely, the algorithm schedules any of the

files n0(t) ∈ {1, . . . , N} that satisfies

n0(t) = arg min
n∈{1,··· ,N}

τ⋆n −Xn(t).

VI. SIMULATIONS

In this Section, we numerically compare our idealized and

practical scheduling policies with the so-called square-root

(sqrt) strategy developed in [8], which is optimal when the

update duration equals the same constant value for all files

whose the utilization ratio is given by

λ⋆
n = λsqrt

n =

√
pn

∑N
i=1

√
pi
. (27)

We present numerical simulations for two choices of the

update functions: i) fn(t) = Bn, and ii) fn(t) given in

Eq. (25). In all the following figures, blue curves indicate

the performance under constant identical update durations

and orange curves the performance under one of the two

choices of functions {fn}. Solid curves indicate the solutions

of the relaxed problems (either Problem 3 for the proposed

scheduling policy or the optimization problem described in

[8]) and dashed curves correspond to the proposed practical

scheduling algorithms (see Section V) that avoid collisions.

A. File-dependent but age-independent update durations

Assume fn(t) = Bn. In this case, gn(t) = Bn/t and

g
(−1)
n (λ) = Bn/λ leading to:

hn(λ) =
Bn

2λ
+Bn.

This function is convex, and we just need to solve the KKT

conditions. According to Eq. (23), we obtain

λ⋆
n =

√
pnBn

∑N
i=1

√
piBi

. (28)

The work in [8] considered update ratios as optimization parameters and
not utilization ratios. For constant update durations the two notions coincide.

Notice that the policy given in Eq. (28) is a slight modification

of the one given in Eq. (27) by weighting the popularity of

a file with its update duration. According to Eq. (28), for

two files having the same update duration, the most popular

one will be updated more often. For two files with the same

popularity, the file with longer update duration will get a larger

utilization ratio. However, as the update ratio (proportion of

updates done within the observation window) is equal to

λn/Bn, the files with longer update duration will be updated

less frequently.

We split the files into two categories: for n ∈
{1, 2, · · · , N/2}, Bn = 1 with popularity pn =∝ 1/nα; for

n ∈ {N/2 + 1, 2, · · · , N}, Bn = 5 and pn = pn−N/2 ∝
1/(n−N/2)α. Each category thus obeys a Zipf-like distribu-

tion with parameter α. We fix α = 1.8.

In Fig. 3, we plot the average AoI versus the number of

files N . We observe that the proposed strategy outperforms

the square root law based strategy. For instance, the gain is

10% at N = 50. Moreover the loss in performance of the

practical algorithm (which prevents from collision, i.e., only

one file is scheduled) is small compared to the relaxed solution

(which does not prevent to schedule multiple files).

10 15 20 25 30 35 40 45 50

10

15

20

25

30

35

40

Fig. 3. Average AoI versus N (non-identical but constant update durations).

B. Age-dependent update durations

Throughout this section, assume fn as in Eq. (25) and fix

εn = 0.02, Bn = 1, for all files n. We will consider different

values for the parameters βn. In particular, we consider setups

where all βns are the same, and thus the update durations

depend only on a file’s age but not on the identity (index)

of the file, and setups with different βns. Throughout this

section, we assume that the popularity of the files follows

a Zipf-distribution with parameter α = 1.8, and we apply

the BRB algorithm as described in Section III-B to find the

optimal solution.

We consider βn = 0.015, ∀n, so all the files have the same

update function. In Fig. 4, we plot the average AoI versus N .

The proposed strategy achieves a smaller AoI compared to the

square root law. For N = 5, the gain is around 50% for the

practical algorithm.

Authorized licensed use limited to: Rutgers University. Downloaded on July 23,2021 at 19:16:21 UTC from IEEE Xplore. Restrictions apply.

2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 4. Average AoI versus N (non-constant update durations).

In Fig. 5, we plot the individual utilization ratios versus the

file indices (sorted by popularity’s order) when N = 5. We

observe that the optimal utilization ratio significantly differs

from the square root law. Actually, the most popular files are

updated more frequently and their update durations are shorter.

This finally leads to a smaller utilization ratio for the most

popular files than those obtained with the square-root law..

1 2 3 4 5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Fig. 5. Utilization ratio versus file index (non-constant update durations).

Now, all files have same popularity (pn = 1/N , ∀n) but

different update duration function with βn = 0.1 × n, ∀n. In

Fig. 6, we plot the AoI and the utilization ratio versus the

file index for N = 5. For large values of n, the parameter

βn is also large and the update function fn in Eq. (25) is

almost constant. For these files, the utilization ratios of the

proposed algorithms are close to the ones under the square

root law (which is optimal under constant update durations).

Instead for small n the parameter βn is small and the update

function fn is strictly increasing for small AoIs. For these

files the utilization ratios of our algorithms are significantly

smaller than under the square-root law. A closer inspection of

our simulations reveals that these files are updated frequently,

but each update is short. For moderate n the utilization ratio

is large because these are updated frequently and each update

is not very short.

VII. CONCLUSION

This paper proposes a practical algorithm for scheduling

updates from a remote server to a local cache when the update

1 2 3 4 5

0.1

0.15

0.2

0.25

1 2 3 4 5

0

1

2

3

Fig. 6. Average AoI (top) and Utilization ratio (bottom) versus file index
(non-identical and non-constant update durations).

duration depends on the file’s AoI. The proposed algorithm is

shown to have small performance loss compared to the optimal

scheduling policy of a relaxed problem. In all these results, a

given file popularity is taken into account.

REFERENCES

[1] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in 2012 Proceedings IEEE INFOCOM, March 2012, pp.
2731–2735.

[2] R. D. Yates and S. K. Kaul, “The age of information: Real-time
status updating by multiple sources,” IEEE Transactions on Information

Theory, vol. 65, no. 3, pp. 1807–1827, March 2019.
[3] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and

A. Ephremides, “Information freshness and popularity in mobile
caching,” in 2017 IEEE International Symposium on Information Theory

(ISIT), June 2017, pp. 136–140.
[4] B. Zhou and W. Saad, “Optimal sampling and updating for minimizing

age of information in the internet of things,” in 2018 IEEE Global

Communications Conference (GLOBECOM), Dec 2018, pp. 1–6.
[5] C. R. Talak, I. Kadota, S. Karaman, and E. Modiano, “Scheduling

policies for age minimization in wireless networks with unknown
channel state,” in 2018 IEEE International Symposium on Information

Theory (ISIT), June 2018, pp. 2564–2568.
[6] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano,

“Scheduling policies for minimizing age of information in broadcast
wireless networks,” Arxiv, vol. abs/1801.01803, 2018.

[7] B. Wang, S. Feng, and J. Yang, “When to preempt? age of information
minimization under link capacity constraint,” Journal of Communica-

tions and Networks, vol. 21, pp. 220–232, June 2019.
[8] R. D. Yates, P. Ciblat, A. Yener, and M. Wigger, “Age-optimal con-

strained cache updating,” in 2017 IEEE International Symposium on

Information Theory (ISIT), June 2017, pp. 141–145.
[9] M. Bastopcu and S. Ulukus, “Age of Information for Updates with

Distortion,” in IEEE Information Theory Workshop (ITW), Aug. 2019.
[10] G. Ahani, D. Yuan, and S. Sun, “Optimal scheduling of age-centric

cacinhg: tractability and computation,” submitted to IEEE Trans. on

Mobile Computing (arxiv/2001.00259), 2020.
[11] E. Jorswieck and E. Larsson, “Monotonic optimization framework

for the two-user MISO interference channel,” IEEE Transactions on

Communications, vol. 58, no. 7, pp. 2159–2169, July 2010.
[12] E. Björnson, G. Zheng, M. Bengtsson, and B. Ottersten, “Robust

monotonic optimization framework for multicell MISO systems,” IEEE

Transactions on Signal Processing, vol. 60, no. 5, pp. 1–16, May 2012.
[13] E. Björnson and E. Jorswieck, Optimal Resource Allocation in Coordi-

nated Multi-Cell Systems. Now Publishers, 2013, vol. 9, no. 2-3, pp.
113–381.

Authorized licensed use limited to: Rutgers University. Downloaded on July 23,2021 at 19:16:21 UTC from IEEE Xplore. Restrictions apply.

