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Abstract Recentadvances in computational cognitive science (i.e., simulation-
based probabilistic programs) have paved the way for significant progress
in formal, implementable models of pragmatics. Rather than describing a
pragmatic reasoning process in prose, these models formalize and imple-
ment one, deriving both qualitative and quantitative predictions of human
behavior—predictions that consistently prove correct, demonstrating the
viability and value of the framework. The current paper provides a practical
introduction to and critical assessment of the Bayesian Rational Speech Act
modeling framework, unpacking theoretical foundations, exploring tech-
nological innovations, and drawing connections to issues beyond current
applications.
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1 Introduction

Much work in formal, compositional semantics follows the tradition of
positing systematic but inflexible theories of meaning. In practice, however,
the meanings listeners derive from language are heavily dependent on nearly
all aspects of context, both linguistic and situational. To formally explain
these nuanced aspects of meaning and better understand the compositional
mechanism that delivers them, recent work in formal pragmatics recognizes
semantics not as one of the final steps in meaning calculation, but rather as
one of the first. Within the Bayesian Rational Speech Act (RSA) framework
(Goodman & Frank 2016, Franke & Jager 2016), speakers and listeners reason
about each other’s reasoning about the literal interpretation of utterances.
The resulting interpretation necessarily depends on the literal interpretation
of an utterance, but is not necessarily wholly determined by it. This move—
reasoning about likely interpretations—provides ready explanations for



complex phenomena ranging from metaphor (Kao et al. 2014a) and hyperbole
(Kao et al. 2014b) to the specification of thresholds in degree semantics
(Lassiter & Goodman 2013).

The probabilistic pragmatics approach leverages the tools of structured
probabilistic models formalized in a stochastic A-calculus to develop and
refine a general theory of communication. The framework synthesizes the
knowledge and approaches from diverse areas—formal semantics, Bayesian
models of reasoning under uncertainty, formal theories of measurement,
philosophy of language, etc.—into an articulated theory of language in
practice. These new tools yield improved empirical coverage and richer
explanations for linguistic phenomena through the recognition of language
as a means of communication, not merely a vacuum-sealed formal system.
By subjecting the heretofore off-limits land of pragmatics to articulated
formal models, the rapidly-growing body of research both informs pragmatic
phenomena and enriches theories of linguistic meaning.

These models are particularly well-suited for capturing complex patterns
of pragmatic reasoning, especially cases that integrate multiple sources of
uncertainty. For example, in order to infer what a speaker has meant by
an utterance in a given context, listeners may have to reason about lexical
or syntactic ambiguity (Bergen et al. 2016, Savinelli et al. 2017, Franke &
Bergen 2020), resolve underspecification in semantic meaning (Lassiter &
Goodman 2013), or consider the possibility of non-literal interpretation (Kao
et al. 2014a,b). Listeners may also have to reason about the speaker’s own
likely epistemic state (Goodman & Stuhlmiiller 2013, Scontras & Goodman
2017, Herbstritt & Franke 2019) or motives the speaker might entertain other
than pure information exchange (Yoon et al. 2016, 2017). Probability calculus
provides a well-understood method for formalizing such complex patterns
of reasoning, grounded in norms of rational belief formation and action
choice. Recent advances in computer science provide accessible computa-
tional methods for implementing complex models of probabilistic reasoning,
enabling us to naturally formulate and conveniently test pragmatic theories
at a level of complexity and formal rigor that far exceeds what was possible
before.

The current paper offers a practical introduction to the modeling frame-
work, serving as a companion piece to the hands-on web-book at www.problang.org
(Scontras et al. electronic). We begin in Section 2 with a high-level overview of
RSA, walking through its basic implementation and the philosophical foun-
dations that informed the architectural choices. We then explore variations to
the basic architecture in Section 3, surveying technological innovations that
have allowed for broader empirical coverage. After a brief excursus on the
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relative benefits of “thinking in math” vs. “thinking in code” in Section 4, in
Section 5 we discuss common practical considerations facing the modeler. In
Section 6, we explore limitations of the current framework, which also serve
as guidance for future extensions. Section 7 concludes.

2 High-level overview of RSA

The RSA framework views language understanding as a process of recursive
social reasoning between speakers and listeners: listeners interpret the
utterances they hear by reasoning about how speakers generate them;
speakers choose their utterances by reasoning about how listeners interpret
them. In the basic RSA model from Frank & Goodman (2012) (hereafter,
“Vanilla RSA”), this recursion involves three layers of inference.! Typically
formulated as statements of conditional probability, as in (1), (3), and (4),
these inference layers correspond to models of speakers and listeners. We
will go over these definitions step by step.

The reasoning grounds out in the naive, literal listener, Ly, who interprets
utterances according to their literal semantics.

1) Ppry(s | u) oc Pry(s)- [[ull(s)

The semantics of utterance u is captured in the meaning function [[u]]: s -
[0;1], which maps states to truth values. We assume binary truth-values
here, but the formalism works just as well for non-binary, fuzzy values (e.g.,
Degen et al. 2020). Given a binary truth-conditional semantics, the rule in
Equation (1) is equivalent to the following formulation in terms of belief
update with the set of states where u is true:

() Pry(s|u) = Pry(s [{s | [ull(s) = 1)

According to Equation (1), Lo hears some utterance u, and updates their prior
beliefs Py (s) about the world states s with the information that u is true. If,
as we will assume throughout unless noted otherwise, the prior beliefs of
the literal listener are a uniform distribution (i.e., equal probability for all
states), (1) returns a uniform probability distribution over the states s that u
maps to true.?

1 For an earlier proposal of this architecture, see Benz & van Rooij (2007).

2 For more discussion on using flat priors for the literal listener, at least in referential-
communication games, see Qing & Franke (2015). Some models may wind up using an
informative prior at the level of Ly, as in the context-inference models presented in Section
3.3 below.



One layer up, a pragmatic speaker, S1, chooses utterances in proportion
to their utility Us,:

3) Pg, (u]s) «c exp(a - Us, (1;5)), where
Us, (u;5) =logPr (s | u) — C(u)

Utterances are useful to the extent that they maximize the probability that L
will infer the correct s on the basis of u (i.e., informativity), while minimizing
the cost C(u) of u (speakers aim to be efficient). So, when selecting utterances,
S1 considers their effect on interpretation (i.e., on Ly’s resulting beliefs);
utterances that are most likely to lead L to the correct belief are most likely
to be chosen by S;. The numerical utilities are mapped onto discrete choice
probabilities by a soft-max function with parameter a. The larger «a is, the
more the speaker’s choice probabilities converge to a strict maximization of
utility.

At the top layer of inference, the pragmatic listener, L, interprets utter-
ances to update their prior beliefs Py (s) by taking into account how likely
the speaker would have been to produce the observed utterance u in various
states:

(4) Pp,(s|u)ocPry(s)- Ps,(u]s)

In other words, unlike Ly, who reasons directly about the utterance semantics,
L1 reasons instead about the process that generated the utterance; that process
is the speaker S;. L; thus infers s on the basis of u by considering which
states are a priori likely and reasoning about the probability that S; would
have chosen u to signal s to L. Because L; reasons about S;, who in turn
reasons about the literal semantics in Ly, L1’s interpretation is affected by the
semantics of u, albeit only indirectly via the S; layer.

To understand the Vanilla RSA model better, it will help to consider a
concrete example. In its initial formulation, Frank & Goodman (2012) used
the RSA framework to model referent choices in efficient communication.
Suppose we are in a context as in Figure 1 (panel A) with three objects:
a blue square, a blue circle, and a green square. Suppose further that a
speaker is trying to signal a single object in this world to a cooperative
listener, and that the speaker can only use a single-word utterance to do so.
The utterances available to the speaker are “blue”, “green”, “square”, and
“circle”; the possible states the listener might infer correspond to the three
objects: blue-square, blue-circle, and green-square. We have the expected
truth-functional semantics for the utterances: “blue” maps blue-square and
blue-circle to true but green-square to false, “green” maps blue-square and
blue-circle to false but green-square to true, etc.
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A: context B: literal listener
[ | o |
“blue” 05 05
“green” 1
“square” 0.5 0.5
“circle” 1
C: speaker D: pragmatic listener
“blue” | “green” “square” “circle” . . D
“blue” 0.6 0.4
[ | 0.5 0.5
“green” 1
® ox 0.66 “square” 0.6 0.4
i 066 0.33 wcircle” ;
Figure1 An example of the Vanilla RSA model applied to a referential-

communication game from Frank & Goodman (2012). Panel A
shows the context of conversation with three potential referents.
Panel B shows the interpretation probabilities of the literal listener.
Panel C shows the production probabilities predicted for the
pragmatic speaker when assuming a = 1. Panel D shows the
interpretation probabilities of the pragmatic listener, based on
the production probabilities in panel C. All calculation assume
flat priors, for the literal and the pragmatic listener.

With the semantics as stated, Ly interprets utterances to return uniform
probability distributions over the compatible states (see Figure 1 panel B).
Hearing the utterance “blue”, Ly returns a belief distribution over states that
divides probability equally between blue-square and blue-circle, the only
objects compatible with the semantics of “blue”. Hearing “circle”, Ly returns
a distribution with 100% of the probability on blue-circle—L is certain that
the speaker intends to signal blue-circle. With Ly formulated in this way,
we have an agent who interprets utterances naively, according to the literal
semantics.

S1 chooses utterances by simulating their effect on Ly. Suppose the
speaker wants to communicate blue-circle to Ly. Two utterances, “green” and
“square”, stand no chance of communicating the intended state to Ly and so



they are ruled out entirely. The other two utterances, “blue” and “circle”, are
both literally compatible with blue-circle, but one of the utterances is more
likely to lead Ly to the correct belief state. If the speaker were to utter “blue”,
we saw that Ly’s belief distribution would be evenly split between blue-
square and blue-circle. In other words, “blue” has a 50% chance of leading Lo
to the correct state. On the other hand, “circle” has a 100% chance of leading
Ly to the correct state. Assuming equal utterance costs, “circle” is thus twice
as useful to the speaker as “blue” for communicating blue-circle to Ly, and
51 reflects this asymmetry in utility by, if we assume « = 1, assigning twice
as much probability to “circle” in the posterior distribution over utterance
choices (see Figure 1 panel C). For communicating the blue-square state, both
“blue” and “square” have a 50% chance of leading Ly to the correct state,
so both utterances are equally useful and thus equally probable in the S;
posterior.

Within this simple reference-game scenario, L1 reasons pragmatically
about S; to break the symmetry in the semantics (see Figure 1 panel D).
Hearing “blue”, L; will invert the S; model to determine which state (i.e.,
which object) the speaker is most likely trying to communicate. Had the
speaker wanted to communicate the blue-circle state, we saw above that the
speaker would have been more likely to utter “circle”. But the speaker did
not utter “circle”; she uttered “blue” instead. This counterfactual reasoning
leads L; to down-weight the probability of the state that “circle” would have
uniquely picked out, since the speaker could have said “circle” but chose not
to. As a result, more probability gets assigned to the blue-square state, the
other state compatible with the semantics of the utterance. In this way, we
capture the Gricean specificity implicature associated with uttering “blue”
in a scenario as in Figure 1: the speaker probably intends the blue square
because if she wanted to communicate the blue circle she could have said
“circle”.

Prior beliefs & pragmatic content A key component of the RSA framework
is the updating of prior beliefs: listeners use the utterances they hear as signal
with which to update their beliefs about the world. In walking through the
reference-game example above, we assumed a uniform prior over world
states: before hearing the speaker’s utterance, L; had no reason to suspect
that any object was more or less likely to get referenced. With a different,
more informative prior, it is possible to shift the qualitative predictions of
L;. Suppose that L; has reason to suspect that the blue-circle state is most
likely to get referenced. Now there are two opposing pressures operating
on L;’s interpretation of the utterance “blue” (i.e., on L;’s posterior beliefs):
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the prior belief favoring blue-circle over blue-square, and the specificity
inference discussed above that favors blue-square over blue-circle (if the
speaker had wanted to reference blue-circle, she could have said “circle”).
With a sufficiently strong prior in favor of blue-circle, it is possible that the
most likely interpretation of “blue”, according to an a priori biased Ly, is
blue-circle after all.

To dissect the impact of prior beliefs and genuine pragmatic interpretation
at the level of the pragmatic listener, we must therefore compare the pragmatic
listener’s beliefs under a literal interpretation P, (- | {s | [[u]l(s) = 1}) against
the pragmatic listener’s beliefs under a pragmatic interpretation Py, (- | u),
both of which are probability distributions over states. Following Skyrms
(2010), we might look at the information about each state s carried by the
pragmatic interpretation of u on top of its semantic interpretation, like so:

Info(s,u) = Pr, (s | u) = Pr,(s | {s | [ull(s) = 1})

Dropping quantitative aspects from the picture, we may then say that utterance
u pragmatically conveys s iff Info(s, u) > 0; that the pragmatic content conveyed
by utterance u is the set {s | Info(s, u) > 0}; and that an uttering of u implicates
the negation of {s | Info(s, u) < 0}. The purpose of sketching these qualitative
definitions is merely to underline how the RSA framework makes it possible
that a listener computes a pragmatic inference but still puts strong credence
in a state that is implicated to be false.

Relation to Gricean maxims. The vanilla RSA model, as described above
in Equations (1)—(4), is a direct formalization of Grice’s idea that listeners
can infer pragmatic meaning based on the assumption that speakers adhere
to certain rules of behavior, the so-called “Maxims of Conversation” (Grice
1975). This relationship to Grice’s maxims becomes more transparent if we
rewrite the speaker’s utterance-choice probability, starting from the definition
in (3).

()
Ps, (1| 5) oc exp | ar(log Py (s | 1) = C(u) ] [definition (3)]
= (PLO (s|u) logif(u)) [rules exponential & log]
_ [[u1I(s) 1\ L . o
= (| CTTa® =111 logC(u)) [definition (1) & uniform priors]



The reformulation in (5) shows how the speaker’s choice probabilities
are a product of three factors, each corresponding to a central postulate
concerning how cooperative and, arguably, rational speakers should tailor
their contributions to a conversation. Suppose we recast the components as
follows: (i) we realize that the expression [[u]](s) just gives us the truth-value
of u in state s, so we write this explicitly as Truth(u,s) = [[u]l(s); we identify
the expression | {s | [[u]l(s) = 1} |~! as a measure of the logical strength of
u, because it gives us the number of states in which u is true, so that we
explicitly write this quantity as Informativity(u) = | {s | [[u]l(s) = 1} |=1; (iii) we
consider the cost C(u) of utterance u as a measure of efficiency of economy to
optimize during production, and so explicitly write Economy(u) = log C(u),
using the logarithm for mathematical convenience. We can then rewrite the
speaker rule as:®

(6) Ps, (ujs) o Truth(u,s) Informativity(u)* Economy(u)"

These three factors directly capture (a formalization of) the Gricean maxims
of Quality, Quantity, and Manner. In effect, the RSA speaker assumes that
speakers (i) maximize truth (i.e., they utter no falsehoods if they can select at
least one true message; Quality), (ii) maximize informativity all else equal
(Quantity), and (iii) maximize utterance economy all else equal (Manner).
The more rational a speaker (i.e., the higher the value of the scaling parameter
a), the more pronounced the latter two optimization tendencies become.
This behavior reflects the special status that Grice bestowed on the Maxim
of Quality: (binary) truthfulness is not affected by the speaker’s degree of
optimizing informativity and costs.

Informativity from alignment of beliefs. We saw above that the Vanilla
RSA model’s definition of speakers’ choice probabilities can be interpreted
as a product of three factors that correspond closely to Gricean maxims of
Quality, Quantity, and Manner. To better understand the motivation behind
the speaker production rule in Equation (3), we now show how it can be
derived from an intuitive picture of belief alignment. This formal exercise
will also immediately pave the way for understanding variations of the RSA
model (to be discussed below), which do not assume that the speaker knows
the true world state (Goodman & Stuhlmiiller 2013, Scontras & Goodman
2017, Herbstritt & Franke 2019).

Suppose that the speaker has some belief about the relevant world states
that gets captured in a probability distribution Ps, _p,;; after hearing utterance

3 For binary truth-values, a can be dropped from the factor Truth.
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u, the literal listener’s beliefs about the relevant world states are represented
as another probability distribution Py, _g.(1). An utterance u is more useful
than another utterance u” to the extent that Py, _p.(u) (i.e., the listener’s beliefs
after hearing u) is more closely aligned with Pg g (i.e., the speaker’s beliefs)
than P, _p;(u’) (i.e., the listener’s beliefs after hearing u”) is. Vanilla RSA
corresponds to an implementation of alighment in terms of an information-
theoretic notion of divergence between probability distributions. Behind it all
is simply the idea that the speaker prefers utterances that best align speakers’
and listeners’ relevant beliefs about the world.

A useful notion of alignment of probability distributions is the information-
theoretic measure of Kullback-Leibler (KL) divergence. KL-divergence is not
symmetric, but considers one of two to-be-compared probability distributions
as the ground-truth, or the objective function to be approximated. This asym-
metry makes sense in language understanding because it is the speaker’s
beliefs to which the listener should align. KL-divergence then measures
divergence in terms of, essentially, the expected number of extra bits needed
to encode a signal that was generated from the true distribution with the
approximate distribution. The Kullback-Leibler divergence between (base-
line/true) probability distribution Pg,_p,; and (approximate/to-be-optimized)
probability distribution Py, _g.(u) is defined as:

Ps, _pei(s)
7 KL(Ps, e || Pp,- =— ) P pe(s) log —————
) (Ps,-pet || Pro-e() Z sia(s) log 5
Using KL-divergence, we can then state a more general definition of
utterance utilities, to replace the formulation in (3):

(8) Us, (1;8) = KL(Ps,-gei | Pry-er(1)) — C(u)

The formulation in (3) is a special case of the more general (8) that follows if
the speaker’s beliefs about the relevant world states are degenerate, that is,
whenever the speaker knows the true world state s*, so that Pg_p,(s*) = 1. In
that case, we have:

Ps, ei(s)

KL(P<._ ”p_ (u):— Pc . (slo—
( Sq-Bel Lo-Bel ) Zs‘ S1-Bel ) gPLO-Bel(Slu)

—log —————— =logPr, (5"

% Propals u) o 10 s 110

This derivation of the speaker production rule in Equation (3) in terms of
belief alignment shows how to generalize the Vanilla RSA model to contexts
in which the speaker might not be fully knowledgable about the true world
state.



3 Variations on Vanilla

We have seen how Vanilla RSA can be used to model pragmatic reasoning in
simple reference games, as well as specificity implicatures more generally.
However, pragmatic reasoning involves much more complexity than Vanilla
RSA captures. In particular, there are many different aspects of uncertainty
that must be included in order to handle a broader range of language
phenomena. In this section, we explore recent extensions of RSA meant
to handle such complex language phenomena; each variation introduces
reasoning about different sources of uncertainty:

e contextually-relevant semantic parameters (e.g., degree thresholds;
Section 3.1),

e the Question Under Discussion (Section 3.2),

e aspects of the linguistic context (e.g., what counts as relevant or
expected; Section 3.3),

e the speaker’s access to knowledge (Section 3.4), and

e the speaker’s utility calculus (e.g., whether it concerns informativity,
politeness, etc.; Section 3.5).

We organize our discussion around deviations from Vanilla RSA, high-
lighting novel technology in language-understanding computation and the
phenomena it captures. While we hope to cover a good deal of ground in
this brief overview, it is important to note that the RSA modeling framework
is an active area of research with new developments continually arising.

As a point of reference for Vanilla RSA, we repeat the S; utterance-choice
rule below in (9), where a pragmatic speaker selects utterances in proportion
to their utility in conveying some observed state of affairs to a naive listener
who interprets the utterance according to its literal semantics—all while
minimizing utterance cost. As we shall see, many of the extensions of RSA can
be characterized in terms of their deviation from this simple utterance-choice
rule.

) Pg, (u|s) oc exp(a(logPr,(s | u) — C(u))), where
Pry(s | u) oc Pry(s)- [[ull(s)

10
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3.1 Meaning inference

Vanilla RSA assumes that the speaker and listener possess the same model
of language, with a fixed, context-independent utterance semantics that is
shared by both speakers and listeners. In this way, the speaker and listener
are assumed to understand language in the same way regardless of the
context in which the language is used. But what happens when there is
uncertainty about the meanings of words, either because they are sensitive
to context or because speakers and listeners are uncertain about the other’s
language model, such that the meaning of words might not be shared across
the two? We can capture this flavor or uncertainty in RSA by parameterizing
the interpretation function such that the utterance semantics is subject to
change. This move is illustrated in (10), where the variable x modulates the
truth-functional mapping for an utterance u. Once named, this interpretation-
fixing variable x becomes subject to active pragmatic reasoning, resolved by
the revised L; in (11). In other words, we can allow for uncertainty around
x, such that the precise semantics of u might be vague or underspecified in
context. What results is the class of lexical uncertainty RSA models.

(10) Pg (u]s,x) oc exp(a(log Pr, (s | u,x) — C(u))), where
Ppy(s [u,x) oc P (s) - [[ul*(s)

(11) P, (s,x|u)oc Pg (u]s,x)-P(s) - P(x)

Lassiter & Goodman (2013) use this technology to model the interpretation
of vague gradable adjectives, whose meaning depends crucially on properties
of the context, both linguistic and extra-linguistic. Take the adjective heavy,
which is true of some state (i.e., a weight) just in case the weight exceeds the
relevant threshold for heaviness. However, we conclude that a heavy elephant
weighs substantially more than a heavy backpack; moreover, the weight we
attribute to the backpack is likely to vary depending on whether the speaker
is a preschooler or an olympian. Thus, the threshold above which some state
counts as heavy is unlikely to be a fixed, context-invariant value.

Lassiter & Goodman handle the uncertainty around the threshold value
by parameterizing the meaning of utterances containing gradable adjectives:
heavy will be true of some state just in case the weight exceeds the relevant
threshold (as before), where this threshold (x in (10)) gets fixed by pragmatic
reasoning:

(12) [[heavy]* = As.weight(s) > x

11



It is up to the pragmatic listener, L1, to resolve the uncertainty surrounding x.
To do so, L1 hears the utterance and jointly infers both the state of the world
(i.e., the relevant weight) and the relevant heaviness threshold. L; performs
this inference just as in the vanilla model: which state and threshold would
have been most likely to lead S; to select the utterance that L; encountered?
In other words, L; simulates S1’s behavior for the possible combinations
of states and thresholds, then weights states and thresholds in proportion
to the probability that they would lead S; to choose the utterance that was
encountered.

A similar threshold-inference mechanism can be used to formalize the
truth conditions of generic statements (e.g., Birds fly), whose relation to the
within-category property prevalence (i.e., the % of birds that fly) has been
historically hard to pin down (e.g., not all birds fly). Similar to the gradable
adjectives model, the generics model adopts a threshold semantics where the
generic is true just in case the prevalence of the feature f within the category
k exceeds the relevant threshold:

(13) [[generic]l* = A f.Ak.P(f | k) > x

Then, pragmatic reasoning can be used to jointly determine the prevalence
P(f | k) as well as the threshold x (Tessler & Goodman 2019).*

This technology—parameterization of the utterance semantics subject to
pragmatic reasoning—allows for a recasting of the division of labor between
semantics and pragmatics. With lexical uncertainty, the semantic content of
an utterance can be (at least partially) determined via pragmatic inference.
Bergen et al. (2016) seize on this innovation to model M-implicatures (Horn
1984) and certain embedded implicatures (Hurford 1974, Chierchia et al.
2012). Rather than uncertainty around the semantics of a single utterance
(e.g., a gradable adjective, as in the example above), Bergen et al. assume un-
certainty around entire lexica. The lexical uncertainty approach to embedded
implicatures is picked up, extended by, and evaluated alongside empirical
data by Potts et al. (2016) and Franke & Bergen (2020).

Meaning inference also serves as a useful tool for modeling ambiguity
resolution. Scontras & Goodman (2017) use an utterance-choice rule as in (10)

4 Tessler & Goodman (2019) actually use a reduced version of this model where the threshold
inference occurs at the level of Ly, as opposed to L;. Goodman & Lassiter (2015) argued via
simulation that threshold inference at the level of Ly results in interpretations that are too
weak. Their simulations, however, did not consider the kinds of state priors that are relevant
for generics (see Section 5.1 for further details on state priors for generics). It remains an
open empirical question whether threshold inference at the level of the literal vs. pragmatic
listener is preferred. For related conceptual criticism of the approach of Lassiter & Goodman
(2017), see also Qing & Franke (2014).

12
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to model the resolution of distributive-collective ambiguities in plural predi-
cation. If a listener hears that the boxes are heavy, the listener must jointly infer
both the intended interpretation of the utterance (i.e., distributive, comment-
ing on individual box weight, or collective, commenting on the total weight
of the set) and the state of the world (i.e., the weights of the boxes). Returning
to (10), Scontras & Goodman treat x as the interpretation-resolving variable
that determines whether u receives a distributive or collective interpretation.
Savinelli et al. (2017, 2018) use this technology to model the resolution of
scope ambiguity, as in utterances like every horse didn’t jump over the fence.
For Savinelli et al., x in (10) serves to determine the relative scope of logical
operators elements at LF. Both of these applications—plural predication and
quantifier scope ambiguity—highlight how meaning inference in RSA can
serve as a useful shorthand for providing computational-level descriptions
of the process of ambiguity resolution. However, while these models offer
a promising hypothesis for how listeners reason pragmatically to resolve
ambiguity, it bears noting that neither application attempts to model the
compositional processes that give rise to the relevant ambiguities in the first
place. We return to this issue in Section 6.

3.2 QUD inference

The technology we have considered up to now allows for the pragmatic
enrichment of utterances: from “blue” to “blue square” or from vague
“expensive” to “expensive” with a contextually-determined price threshold.
However, given that S;’s utility relies on successfully communicating the
observed state to Ly (i.e., on informativity), our enrichments can only ever be
literal—we have no way for “blue” to be interpreted as “green”.> But many
instances of everyday language use are, strictly speaking, non-literal. For
example, if you hear that someone paid “a million dollars” for their coffee at
some hipster hangout, you are unlikely to infer that the actual price paid was
$1,000,000. Rather, you infer that the price was high and that the speaker is,
to put it mildly, less than thrilled.

To allow for enrichments beyond the literal meaning, we must broaden
S1’s goals beyond informativity with respect to s. One way of conceiving of

5 Formally, this outcome is a direct consequence of grounding the speaker’s production
utilities in information theoretic surprisal and KL-divergence, as described in Section 2. The
Vanilla RSA model, as based on rules (3), entails that if [[u]](s) = 0, while the speaker’s belief
assigns positive probability to s, there is zero probability of the speaker choosing utterance
u. In other words, Vanilla RSA predicts that the speaker never chooses an utterance when
the speaker is not certain that the utterance is true of the relevant state.

13



speaker goals is in terms of the Question Under Discussion (QUD) the speaker
aims to answer. Under certain theories of pragmatics, all discourse proceeds
with respect to some QUD (Roberts 2012); utterances in the discourse must
at least partially answer the QUD in order to be cooperative and felicitous.
By allowing for a broader range of QUDs and uncertainty around which
QUD is intended, Vanilla RSA may be extended to capture uses of non-literal
language.

As was the case with meaning inference in the previous subsection, we can
illustrate this innovation by highlighting its effect on the vanilla utterance-
choice rule. In (14), S1’s utility continues to break down into informativity
and economy components. However, now x determines what it is that S;
endeavors to communicate to Ly. Viewing x as the QUD, F(s, x) serves to map
s to the answer to x that S; would like to communicate to L.

(14) Pg, (u | s,x) oc exp(a(log P, (F(s,x) | u) — C(u))), where
Pry(s|u) oc Py (s) - [ull(s) and
F(s,x) is a set of states

Kao et al. (2014b) use this technology to model hyperbole, as in the
coffee-price example above. To see how, consider some possible states of the
world about which a speaker might want to communicate:

(1)  Possible states of the world for the coffee-price scenario:
s1: {affect: positive, price: $3}
sy: {affect: positive, price: $7}

s3: {affect: positive, price: $1,000,000}

s4: {affect: negative, price: $3}

s5: {affect: negative, price: $7}

se: {affect: negative, price: $1,000,000}

Notice that the world states in (1) have two properties: the affect of the
speaker (i.e., whether the speaker feels positive or negative about the price
paid), together with the actual price paid. A speaker talking about s might
have the goal of communicating about their affect and the price paid, or
they may want to communicate only their affect or only the price paid.
Viewed in terms of QUDs, these goals serve to partition the state space. With
an affect? QUD, we partition the state space into two cells, corresponding
to positive vs. negative affect. With a price? QUD, we partition the state
space into three cells, corresponding to the three possible prices. With a
QUD asking after both affect-and-price?, we partition the state space into
the six cells listed in (1).
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With the utterance-choice rule in (14), S1’s goals are QUD-specific: for
communication to succeed, Ly must simply arrive at the correct cell of the
relevant partition; whatever Ly infers about what happened within that
partition is irrelevant to S;’s goals. For example, if S has a negative affect
and is addressing the affect? QUD, utility depends on whether or not Ly
correctly arrives at the negative cell of the affect? partition, regardless of
whether Ly infers the full state to be sy, s, or s3. It is at this point where
non-literal language suddenly becomes rational for a speaker. To see how,
we have to say more about the prior knowledge speakers and listeners bring
to bear on their communication scenarios.

World knowledge tells us that states in which the speaker actually paid
$1,000,000 (i.e., s3 and s¢) are extraordinarily improbable, while states in
which the coffee cost $3 (i.e., s; and s4) are the most likely; this knowledge gets
reflected in L;’s prior over world states, P(s). We also have prior knowledge
about how probable a speaker is to have a positive vs. negative affect given a
specific price paid for a cup of coffee: as prices increase, the probability of
negative affect increases along with it. Now, return to a speaker addressing
the affect? QUD: if S;’s primary objective is to communicate negative affect
to Lo, and, crucially, if the available utterances only concern price (i.e., “I
paid $3/$7/$1,000,000”), then the rational thing for S; to say is that the coffee
cost “$1,000,000”; given the extremely strong association between $1,000,000
coffee and negative affect, Ly is all but certain to arrive at the correct answer
to the QUD: the speaker holds negative affect.

We have identified how non-literal utterances can be useful to a speaker,
but we have yet to capture the non-literal aspect of their meaning. It is at the
level of L; where utterances suddenly become non-literal. Hearing that the
speaker paid “$1,000,000”, L; uses the informative priors on prices and their
associated affects to arrive at a plausible interpretation. Given that coffee is
sure to cost less than $1,000,000, L; considers the possible QUDs the speaker
might be addressing when selecting u. The price? and price-and-affect?
QUDs are highly unlikely, given that $1,000,000 is a highly unlikely price to
pay for a cup of coffee. That leaves the affect? QUD. So, L; considers the
possible full states that would have led S; to utter “$1,000,000” in response to
the affect? QUD. Via this counterfactual reasoning, L1 arrives at a reasonable
interpretation: Sy is likely to have paid more than usual, so s; and s4 are
downweighted, but we are still on earth, so s3 and s¢ remain highly unlikely.
Of the remaining states, S; is most likely to have wanted to communicate
negative affect with “$1,000,000”, so L; concludes that s5 is more probable
than sy. In other words, L1 hears that the speaker paid “$1,000,000” for a cup
of coffee and concludes (i) that the speaker is likely addressing the affect?
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QUD, (ii) that the speaker is likely trying to communicate negative affect,
and (iii) that the price is higher than usual (which led to the negative affect)
but still within the realm of possibility. This last conclusion—a hyperbolic
interpretation of the price—is where non-literal meaning enters.

Kao & Goodman (2015) use an extension of the hyperbole model to
capture ironic interpretations of weather descriptions (e.g., “It’s terrible out”
to describe a beautiful sunny day). In addition to inferring speaker affect, the
irony model incorporates an additional dimension of meaning that a speaker
might want to communicate: their arousal about the weather (i.e., whether
they feel strongly about it). The non-literal interpretation mechanism remains
the same: if a speaker describes the weather as “terrible” but we know that
terrible weather is extremely unlikely (the authors situate their imagined
conversation in California, where the weather is rarely objectionable), then a
listener will not conclude that the unlikely literal state (i.e., terrible weather)
holds, but rather that the speaker must be addressing some other dimension
of meaning, namely the strong arousal they feel in their positive affect toward
the normal state of affairs: good weather. Similarly in Kao et al. (2014a), who
model the interpretation of metaphors like “John is a whale”. Rather than
inferring that John is an aquatic mammal (a highly unlikely state of affairs),
the listener concludes that the speaker chose the utterance to communicate
about some other dimension of meaning, for example John's physical stature,
which has whale-like properties.

3.3 Context/Prior inference

We now have technology to model vagueness and ambiguity on the basis
of an underspecified semantics, as well as shifting goals and the non-literal
language that addresses them on the basis of uncertainty around the QUD.
So far, all of this reasoning has happened with respect to a fixed context,
or common ground. What happens when a listener is unsure of the context
a speaker has in mind in the production of their utterance? For example,
upon hearing that a person is “tall”, how does a listener identify the relevant
comparison class against which to evaluate tallness? Does the speaker mean
tall for a young child or tall for a basketball player?

In an analogous manner to the way we treat uncertainty regarding the
literal meaning and uncertainty regarding the QUD, a listener can have
uncertainty about (aspects of) the relevant context. In the case of “tall”,
perhaps the listener is unsure of the appropriate comparison class. Or maybe
the listener is unsure of the facts of the world: what is the general prevalence

16



Practical introduction to RSA

of tall-ness? In (15) we amend the speaker choice function to reason about x,
a variable that influences the relevant/likely states of the world s.

(15) Pg, (u|s,x) o< exp(a(log P, (s | u,x) — C(u))), where
Pr(s [ u,x) oc Pry(s | x) - [[ull(s)

Viewing x as the comparison class for a gradable adjective, we can build
on the Lassiter & Goodman adjectives model mentioned in Section 3.1 to
describe the formal mechanism by which listeners reason about the context
against which an adjective like tall receives a context-specific interpretation.
The adjectives model fixes the vague meaning of a gradable adjective by
computing the relevant threshold via reference to the state prior, the prior
distribution over heights within some comparison class. In a model that
incorporates uncertainty about the comparison class, the prior over world
states is treated as a conditional probability distribution that depends upon
the comparison class x: P, (s | x).

Tessler et al. (2017) use this parameterization to model comparison class
inferences when listeners hear only an adjective applied to an individual
(e.g., when describing a basketball player, “He is tall”). The model assumes
that the listener has access to the fact that the referent is a basketball player
and knows that a basketball player is a person. Then, the listener’s prior
distribution of comparison classes is the set of all categories of which the
referent is a member, weighted by the prior probability. The prior probability
of different comparison classes is an unknown theoretical construct and
the original comparison class inference model only uses two comparisons
classes: the subordinate category (e.g., basketball players) and a basic or
superordinate category (e.g., people). The inference proceeds by imagining
the conditions under which a speaker would use the adjective heard (e.g.,
tall) with each of the comparison classes (e.g., for a person vs. for a basketball
player).

The uncertainty over the comparison class is a special case of uncertainty
over contexts, about which an appropriately-constructed L1 model can reason.
Degen et al. (2015) use this technology to model the stubbornness of scalar
inferences in the face of strong prior beliefs that would have made the
implicature-calculated meaning false. In that study, the authors investigated
listener interpretations of quantified statements involving “some” in a set
of stimuli with diverse prior expectations concerning the probability of the
all-state. For example, “John threw 15 marbles into the pool. Kevin, who
observed what happened, said Some of the marbles sank.” In this scenario,
the prior probability of a marble sinking in water is close to 1; thus, one
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would expect a priori that all of the marbles would sink. However, the authors
observe across multiple dependent measures that participants still draw the
implicature—some but not all of the marbles sank. Degen et al. account for this
behavior using the context-inference mechanism that allows listeners to revise
their prior beliefs when the utterances heard are sufficiently unexpected,
positing a world that is somehow strange or wonky—for example, a world in
which marbles sometimes float.®

3.4 Epistemic inference

By now it should be clear that a productive way of extending the RSA
framework is to take into account various sorts of uncertainty that enter into
communication scenarios: uncertainty about the semantics, the goals, or the
context itself. Another common source of uncertainty concerns the epistemic
states of the agents who are communicating. Speakers commonly describe
states of the world without total knowledge of those states. For example, a
speaker might observe an empty plate on John's desk with pizza crumbs on
it and describe the scenario with “John ate some of the pizza.” As far as the
speaker knows, John could have eaten all of the pizza, but, without seeing
the pizza box, the speaker lacks evidence to make this stronger claim. A
hungry listener will interpret the speaker’s utterance to infer just how much
pizza John has eaten. Importantly, whether the speaker saw the pizza box
or just the crumb-covered plate is likely to influence the listener’s inference
about the full state of the pizza. The mechanism involves reasoning about the
knowledge that the speaker used to make her utterance (i.e., the speaker’s
epistemic state), and the implications that the knowledge has for likely states
of the world.

We can model this inference by once again amending our speaker model.
Section 2 already introduced a way of extending the speaker production rule
in Equation (3) to also cover the case where the speaker is uncertain about the
world state. To allow the pragmatic listener to reason in a structured manner
about the speaker’s beliefs, we model the speaker’s belief state Ps(s | x) as a
function of some observation x the speaker may have made to arrive at her

6 If we construe the pragmatic content of an utterance of “some” as in Section 2 in terms of the
degree to which the utterance changes the pragmatic listener’s beliefs about each state, it is
still feasible to speak of a “some but not all” implicature of “some” even with heavily biased
beliefs. In effect, this means that we should understand the wonky worlds model not as an
explanation of how the implicature persists in the light of heavy prior biases, but rather as
addressing the mechanism by which, on top of the usual implicature, prior beliefs about the
world can be revised.
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beliefs. The following formulation is equivalent to the previous formulation
of speaker utilities in terms of KL-divergence, thus similarly motivated by
the idea that the speaker favors utterances based on how closely they help
align the beliefs of a literal listener with their own:

(16) Pg, (u | x) oc exp(aEp(sp(log Pr, (s | u) — C(u)))

Goodman & Stuhlmdiller (2013) use this approach to model rates of scalar
implicature for the quantifier “some.” In the pizza example, the relevant
inference concerns how likely it is for the listener to strengthen the “some”
utterance to “some but not all.” Goodman & Stuhlmiiller hypothesize that
rates of scalar implicature should decrease as the speaker has less information
that would verify whether the all-state obtains (e.g., whether John in fact
ate all of the pizza); the authors present behavioral data supporting this
claim. The amended RSA model offers an articulated analysis of why speaker
knowledge access (and listeners” awareness of it) should have the effect it
does on interpretation.

In the case of full knowledge access, L1 reasons upon hearing “some” that
if the speaker had wanted to communicate the all-state, she could have said
“all;” but the speaker did not utter “all,” so she must know that the all-state
does not hold. This reasoning leads L; to reassign the probability that would
have been assigned to the all-state to the other states compatible with the
semantics of “some,” namely the some-but-not-all states. This decrease in
posterior probability assigned to the all-state serves as our index of scalar
implicature. With partial knowledge access, the speaker may believe she is
in the all-state, but she can never know for sure; similarly, upon observing
only a plate with pizza crumbs, the speaker will never know that the all-state
(i.e., that all the pizza was eaten) does not hold. L; knows this about the
speaker, and therefore is aware that, when hearing “some” from a speaker
with partial knowledge access, the speaker is less likely to be in position
to know that the all-state does not hold, thus canceling the counterfactual
reasoning mechanism driving scalar implicature.

In their model of distributive-collective ambiguities in plural predica-
tion, Scontras & Goodman (2017) use this same sort of speaker knowledge
manipulation to modulate rates of distributive interpretations. Hearing “the
boxes are heavy” from a speaker who was unable to access the weights of
individual boxes—because, for example, the speaker used a dolly to move
all the boxes at once, and so accessed only their collective weight—a listener
is less likely to interpret the utterance distributively, as commenting on
the individual box weights. Rather, the listener is more likely to assign the
utterance a collective interpretation, commenting on the total weight of the
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set of boxes. The reasoning comes straight from Grice (1975): “Do not say that
for which you lack adequate evidence.” In Scontras & Goodman’s model,
the pragmatic listener is reasoning about a speaker who lacks the knowledge
to verify a distributive interpretation on the basis of the (partial) observation
she has made about the state of the boxes.

Once we have a model of variably uncertain speakers as in Equation (16),
it is also feasible to investigate the pragmatic listener’s inferences about the
likely observation x that helps explain the speaker’s utterance. Conceptually,
this task amounts to inferring the speaker’s level of expertise or competence.
While non-probabilistic models of Gricean inference often make reference to
a monolithic (though defeasible) assumption of speaker competence (Geurts
2010, Schulz & van Rooij 2006, Spector 2006), holistic probabilistic inference
allows a more gradient picture. For example, after an utterance of a logically-
stronger expression like “all”, the pragmatic listener will put more credence
in the proposition that the speaker has made an observation x that makes
the speaker knowledgable, than they would after hearing a logically-weaker
expression like “some”.

3.5 Complex utility/utility inference

So far, the different variations of RSA that we have considered all proceed
with the assumption that speakers want to convey information to the listener;
their utility concerns informativity with respect to the QUD. Though infor-
mational uses of language are arguably the bread-and-butter of a successful
communicative system, speakers do not always say what they mean. We
dawdle, prevaricate, and sometimes outright lie, and this behavior is often
in the service of maintaining our social relationships. Perhaps rather than
telling your friend that their haircut is ugly, you could say “it’s an interesting
look”. Why do speakers deviate from choosing the maximally-informative
utterance? We can model non-informational uses of language by augmenting
the speaker’s utility function:

(17)  Ps,(u|s,x) oc exp(a(x-log Pry(s | u) + (1 =x) - Ep, 5[V (s)] = C(w)))

Now, S; chooses an utterance on the basis of the true state s (e.g.,
the speaker’s true feelings about the haircut), where the standard RSA
information utility is one component of the utility function. This informational

7 Generalizations of the speaker’s goals for communication exist. We could, for example,
model a speaker’s utility function in terms of closeness to the true state, for example, for
state spaces with a clear similarity ordering (Franke 2014b).
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utility is weighted by a mixture parameter x, where the second utility
component receives the opposite weight (1 —x). The second component is
what Yoon et al. (2016) call social utility, and is a function of the literal listener’s
subjective value V of the state of the world they believe they are in given the
utterance. Yoon et al. (2016) deploy this generalization of speaker utility to
account for polite language use. It formalizes a version of Brown & Levinson’s
(1987) politeness theory, in which cooperative speakers have social goals
to minimize any potential damage to the hearer’s (and the speaker’s own)
self-image (called face), in addition to standard informational goals. Thus,
S1’s utility is a mixture of two-utilities: standard epistemic utility defined
in (3) and a social utility: Uspeia(4) = Eryup[V(s)]. This social utility term
increases S1’s production probabilities for utterances that convey states with
high subjective value (e.g., “it’s beautiful”, “your talk was amazing”), thereby
incentivizing white lies.

The pragmatic consequences of this complex utility function can be
realized at the higher levels of pragmatic recursion. The pragmatic listener L;
can reason jointly about the state of the world and about the speaker’s utility
function (specifically, what is the speaker’s trade-off between informativity
vs. social goals?). Yoon et al. (2016) show that with information about the
true state of the world and the utterance, the model can recover the speaker’s
likely goals, and, vice versa, with information about the speaker’s goals and
the utterance, the model recovers the likely true state of the world.

4 Pragmatic agents as probabilistic programs

Our exposition of the framework so far has centered on descriptions of
the models in terms of mathematical notation, more concretely in terms of
formulae characterizing conditional probability functions (mass or density,
depending on the case). We tried to motivate and explain the ideas behind
these formulae, for example by showing how the speaker’s utility function
in the Vanilla RSA model can be derived from a picture of communica-
tion in which the speaker is trying to minimize the distance (measured in
information-theoretic terms) between the speaker’s and a literal listener’s
beliefs.

While it is most common to communicate a probabilistic model in terms
of such formulae-based representations in scientific writing, this approach
is not the only way of conceptualizing a probabilistic model (be it an agent
model, a statistical model, or otherwise). Indeed, one very intuitive way
of thinking about a probability distribution focuses not on a high-level,
abstract description of the overall probability of events, but on the stochastic
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generative process that we conceive of as the source of these events. The
web-book “Probabilistic Language Understanding”, for which this paper is
an introductory and complementary companion, uses probabilistic programs
to implement RSA-style probabilistic agent behavior in terms of explicitly-
formalized stochastic generative processes (Scontras et al. electronic). The
main motivation of this section is to: (i) highlight the distinction between
“thinking in math” and “thinking in code” when it comes to developing
probabilistic models, (ii) to demonstrate the usefulness of “thinking in code”
and thereby underlining the added value of the web-book, and (iii) to
argue that, ideally, researchers should develop models by flexibly exploring
conceptually-reasonable ideas in terms of both a mathematical and a code-
based algorithmic perspective.

To see the difference between a mathematical and a process-based rep-
resentation of a probability distribution, consider the following definition
of a probability density function on some x € [4;b] parameterized by some
integer-valued n > 0:

n-1 .
P(x ; I’Z) — ZZ:O(_l)k(z)(% - %) Sgn(% - %) ifxe [(1; b]
0 otherwise.

Unless you are already intimately familiar with the Bates distribution,
chances are that this mathematical representation tells you very little about
what is captured here. Yet, despite the complex math, the Bates distribution
derives from a very simple procedural idea: sample 7 times from a uniform
distribution in the interval [4;b] and look at the mean x over all of these n
values. The Bates distribution gives the probability of sampling any concrete
value of x by that process. The upshot of this example is that a formula-
based mathematical representation of a probability distribution can be highly
useful for some applications, but it might not be useful for all purposes, one
such purpose being to think about a possible process that could generate a
particular output in a certain (stochastic) manner.

Probabilistic programming languages like WebPPL (Goodman & Stuhlmidiller
2014), in which the examples from the accompanying web-book are written,
help to make the process-based perspective explicit. Complex probability
distributions, even those for which no closed-form mathematical representa-
tion is known, can be approximately represented by a large-enough set of
representative samples. These approximate representations are good enough
for most common practical purposes. Even more useful than a large set
of fixed samples is a function that returns samples every time it is called.
Considerations like these are why probabilistic programming languages
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like WebPPL allow the user to define probability distributions in terms of
a sampling function, formulated simply as a process that would generate a
single sample (if executed once). For example, the Bates distribution could
be written down in WebPPL-inspired pseudo-code as follows:
var Bates_sampling_function = function(n, a, b) {
// take n samples from a uniform distribution on [a;b]
var unif_samples = sample_from_uniform(n, a, b)
return(mean(unif_samples))

}

This sampling function is sufficient to work with the Bates distribution
(at least for most common applications). Indeed, the web-book defines the
RSA speaker and listener protocols, which we explicated above in terms of
formulae, in exactly these kinds of sampling functions.

Adopting a perspective on language production and interpretation in
terms of sampling functions is what we here refer to as “thinking in code.”
To “think in code” is particularly useful in the context of cognitive modeling
because it enables a sampling-based perspective of an agent’s reasoning and
decision-making process in line with recent accounts of resource-bounded
rationality (Griffiths et al. 2015, Lieder & Griffiths 2020). We will walk
through two example cases where “thinking in code” and the adoption of a
resource-bounded rationality perspective can add interesting flexibility to
the modeling of pragmatic agents.

4.1 Utterance priors & utterance salience

The Vanilla RSA model defines the speaker’s utterance-choice probability in
terms of utterance costs, C(u), which we identified as a potential formalization
of Gricean Manner or a general constraint of utterance economy. Here is the
original definition and the suggested refactorization from Section 2:

(18) P, (1| s) ccexp(a(log Pry(s | ) — C(u)))
= Truth(u,s) Informativity(u)® Economy(u)*

In this formulation, the cost C(u) of an utterance u affects the speaker’s
choice of expression: the higher the cost of u, all else equal, the lower the
probability that the speaker picks this utterance. This design is motivated
by the idea that speakers economize production effort, preferring to utter
shorter or otherwise more efficient words or phrases. Consequently, in line
with this interpretation of minimization of utterance effort, the strength of
the impact of utterance costs is modulated by a: the higher the value of a, the
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stronger the speaker’s tendency to minimize utterance costs, all else equal.
This outcome is intuitive if we think of a as a rationality parameter: the
more rational an agent, the more sensitive that agent should be about the
minimization of effort.

Adopting a sampling-based perspective inspired by resource-bounded
rationality, we can conceive of a natural alternative to the speaker model
in (18), in which differences between utterances are not treated as costs to
be rationally economized, but rather as differences in salience—that is, the
ease with which utterances comes to mind. The latter factor of differential
salience is arguably not subject to optimization: it is not the case that the more
rational a speaker is, the more she would tend to select only the utterances
that come to mind most easily. We can implement differential salience (ease
of retrieval) with a mathematical formulation as follows:

(19) Pg?her‘ce(u | s) oc Truth(u, s) Informativity(u)® Salience()

The speaker model in (19) includes the factor Salience(u) as an utterance prior,
suggesting an algorithmic picture of utterance choice: the speaker searches
for utterances to choose, based on a gradient of how easily these utterances
come to mind, then compares the available options (weighted by their
salience/prominence) based on the other factors relevant for communication:
truth and informativity (see van Tiel et al. 2021 for an example application of
salience priors to the choice of quantity expressions).

The salience-based speaker model in (19) is implemented very naturally in
WebPPL (or other probabilistic programming languages); WebPPL-inspired
pseudo-code looks as follows:
var speaker = function(state) {

// sample an utterance from an utterance prior

// (= ’see what comes to mind’)

var utt = sample_from_utterance_prior()

// weigh sampled utterance by how true and informative it is
adjust_score(truth(utt, state) * informativity(utt)*alpha)
// return utterance

return(utt)

}

Notice that, for technical reasons, WebPPL indeed requires the specification
of an utterance prior even if we do not use it to implement salience.’

8 WebPPL requires the inclusion of an utterance prior because it minimally needs to know the
set of all available utterances. If no differential salience is to be modeled, the utterance prior in
a WebPPL program must still be specified but should then just be uniform.
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4.2 Uncertainty from sampling

Another example of a case where “thinking in code” makes a plausible
conceptual idea much more readily available than a formula-based approach
arises when we model a speaker who is uncertain about the true state of the
world. In Section 3.4, we described the model of Goodman & Stuhlmiiller
(2013), the speaker component of which is repeated here:

(20) Ps, (u | x) o< exp(alEp(sp (log Pry (s | u) — C(u)))

The speaker is assumed to choose utterances proportionally to how much
they minimize the Kullback-Leibler divergence between the speaker’s own
belief and the literal listener’s belief after each utterance. This model is easily
written out in concise mathematical notation like in Equation 20, but the
WebPPL code to implement it is rather clumsy (see accompanying web-book)
and its calculation can be very costly for large sets of possible world states.
However, “thinking in code” and conceptualizing a resource-limited reasoner
suggests a different model, one that is difficult to write down in mathematical
notation but that is much easier to write down in a probabilistic program—
and also much more efficient to approximate. This alternative speaker model
looks as follows in WebPPL-like pseudo-code, where belief_state is a
probability distribution capturing the speaker’s belief state:
var speaker = function(belief_state) {

// sample an utterance from an utterance prior

var utt = sample_from_utterance_prior()

// sample a possible world state from the speaker’s beliefs

var state = belief_state()

// weigh sampled utterance by how true and informative it is

// based on the current sample of a possible world state

adjust_score(truth(utt, state) * informativity(utt)“ralpha)

// return utterance

return(utt)

3

This algorithmic speaker model imagines that, instead of globally reasoning
about all possible world states and weighing each one in terms of how
probable they are to the speaker, the speaker just samples a random world
state from her beliefs and then chooses a true and informative utterance for
the sampled state.”

9 In fact, it is this easier model that Goodman & Stuhlmidiller (2013) implemented, as is
apparent from the plots of the model’s predictions given in the paper. The key difference
between the KL-based and the sampling-based model is that the former will never have
an agent choose an utterance for which she cannot rule out that it might be false. See the
accompanying web-book for more on this topic.
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This example serves to highlight how the available tools—being able to
both “think in math” and to “think in code”—help to shape the resulting
theories. By having a multiplicity of tools handy, the modeler enlarges the
space of conceivable (and practically-realizable) theories. While our focus in
the current paper is RSA from a mathematical perspective, much of the work
in implementing an RSA model involves conceiving of the relevant agents
as sampling-based probabilistic programs; the accompanying web-book
offers a hands-on introduction to this skill. In the following section, we
dive more deeply into the practical considerations faced in the design and
implementation of an RSA model.

5 Modeling practicalities

Section 3 presented a menu of options to the would-be modeler: given a
language-understanding phenomenon, which pieces of technology are likely
to prove most useful in a formal treatment? Non-literal phenomena might
benefit from a treatment via QUD inference or complex utility; vague or
underspecified language suggests meaning inference, combined perhaps with
uncertainty about the relevant context/prior; in cases where the speaker is
unknowledgeable or behaves in an unexpected manner, we can try epistemic
inference and/or context inference. Having introduced the basics of the RSA
modeling framework, as well as useful additions and amendments, our
focus now turns to the practical considerations involved in designing and
implementing an RSA model, and testing the predictions of that model
against human behavior.

We focus in this section on practical issues arising during model develop-
ment and testing. Concretely, we will address questions like: which discrete
choice options (e.g., world states and utterances) to include in a model;
which priors to assign to world states; how to set other (numerical) model
parameters (e.g., the rationality parameter «); how to link model predictions
and empirical data for (Bayesian) data analysis.

5.1 Determining world states, utterances etc.

One of the most important modeling decisions concerns setting up the
conversational scenario: how do we represent the states of the world and
utterances that can be described in our model? In other words, what consti-
tutes a world-state, and at what level of linguistic description will utterances
be treated? Answering these questions often entails specifying the universe
of possibilities of states and utterances (i.e., the support of the prior distri-
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butions). In the reference game from Frank & Goodman (2012) depicted in
Figure 1, we equate states with individual objects, and the set of possible
states corresponds to the set of objects present in the visual array. But only
certain features of the objects are relevant: their shape and color. Properties
like size or position do not enter into the reasoning about shape and color
in this reference game (or at least we do not think they do), and so they
need not enter into the representation of states in the model. In (1), we saw
possible states from the hyperbole model of Kao et al. (2014b); of all the
various facts of the world, the authors narrowed in on two for their model:
the price paid for some object and the valence of the affect of the person who
paid it. But the authors did not consider all possible prices ranging from $0 —
$5 trillion (roughly the total amount of money in the world); they narrowed
the possible prices to a set that is probably reasonable for the conversational
scenario at hand.

One of the more ingenious—and abstract—state implementations comes
from the generics model (Tessler & Goodman 2019). Generic statements
update beliefs about the prevalence of a feature in a category (e.g., the
prevalence of egg-laying among robins upon hearing that “robins lay eggs”).
The prior, then, is a distribution over possible prevalences. Tessler & Goodman
treat this distribution as a distribution over alternative kinds (e.g., bluejays,
horses, tarantulas, etc.), akin to the implementation of the comparison class
in the vague adjectives models (Lassiter & Goodman 2013, Tessler et al. 2017).
Each kind is then modeled as having its prevalence for the relevant property.

The choice of what possibilities to include is relevant to every aspect of
the model where alternatives must be specified: alternative states, alternative
utterances, alternative QUDs, etc. There are several options for determining
these internal parameters. First, if a model’s foremost purpose is the analysis
of data from a concrete experiment, then it may be that the stimuli and
available choice options of the experiment suggest, if not necessitate, a
precise set of states, utterances, or other model ingredients. The experiments
of Frank & Goodman (2012), for example, present exactly three objects as
potential referents and offer only a small set of discrete choice options for
utterances in each trial. So here, and in many other cases, the logical design
of the experiment to be modeled dictates the nature and scope of some or all
internal parameters.

Without obvious constraints from an experimental setup (or in order to
determine those constraints), another reasonable approach is to incorporate
an experiment in the model-development pipeline to determine empirically
what reasonable state distinctions might be. For example, in developing
their model of metaphors like “John is a whale”, Kao et al. (2014a) began
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by eliciting the most salient features for a set of animals (e.g., large, graceful,
and majestic in the case of whales). Another possibility is, when dealing with
numerical world states (e.g., in the interpretation of adjectives or other vague
expressions), to use a pre-test to elicit likely ranges of numbers for particular
experimental items (e.g., Scholler & Franke 2017).

Determining the set of alternative utterances is an open issue in pragmatic
theories broadly (Chemla & Singh 2014, Katzir 2007, Fox & Katzir 2011),
and the literature on RSA has not yet arrived at a set of best practices
for determining alternative utterances. A few general considerations can
still be mentioned. First, where linguistic theory makes clear indications
of which alternatives are reasonable (e.g., from lexical association or from
focus mechanisms), the RSA modeler should take this insight into account.
In some domains of application, however, no such clear predictions exist
(e.g., for situated referential language, generics, or tropes). In these cases,
it is important to minimally ensure that the presented RSA model is prima
facie plausible as a representation of the speaker’s or listener’s subjective
conceptualization of the decision situation (production or interpretation,
depending on what we focus on; Franke 2014a). For example, this perspective
on what an RSA model represents can make it plausible to also include an
informationless “silent” or “null” utterance. Conceptually, a “null” utterance
can be plausible in cases where speakers may reasonably be assumed not to
want to say anything at all. Technically, a “null” utterance can be useful for
understanding the meaning of an utterance even without reasoning about
explicit alternatives (e.g., in the study of vagueness; Lassiter & Goodman
2013).

5.1.1 Prior probabilities of world states

Having decided what the relevant alternatives are and how to model them,
the task then turns to implementing the appropriate priors: beliefs about
which alternatives are more or less likely a priori. Some priors can be
estimated empirically. With state priors, it is sometimes possible to ask
people explicitly about the relevant probabilities. For example, Kao et al.
(2014b) asked participants to rate the probability of paying various prices
for certain objects and how likely it is that someone would consider a given
price expensive; those ratings were normalized and served as the state prior
probabilities in the hyperbole model. In the reference game model, Frank
& Goodman (2012) got at the state prior probabilities using a less direct
method. To determine which objects in Figure 1 were more likely to get
referenced a priori, the authors told participants that someone had used an
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unknown word to signal one of the objects; based on participants’ guesses
at which object the speaker was intending, Frank & Goodman were able to
estimate the relevant state prior. In the experimental tests of the generics
model, Tessler & Goodman (2019) employ two alternative techniques: one
has participants freely generate categories and then rate the prevalence of a
target feature for those categories; another has participants answer targeted
questions about the abstract parameters of the prior distribution and then
uses Bayesian data analysis to reconstruct the appropriate priors.

In some cases—for example, an analytic demonstration of a qualitative
prediction—prior estimation might be unnecessary or infeasible. In such
cases, one ought to make minimal assumptions, for example by assuming an
uninformative, uniform prior. Better yet, the modeler may want to demon-
strate the qualitative predictions under a number of different assumptions
about the shape of the prior to show the model’s (in)sensitivities to choice of
prior.

5.2 Further (numerical) parameters

Like the specific probabilities assigned in the various priors, other free
parameters of the model must be fixed in order to generate predictions. Free
parameters common to RSA include a, which controls speaker optimality,
and the various utterance cost parameters. These parameters are often not
of direct theoretical interest but sometimes can be informed by domain
knowledge. For instance, it is often natural to assume that the cost of an
utterance is a function of either its length (which could be measured in
terms of number of words, syllables, or characters) or that the salience of an
utterance is related to its frequency (estimated from a corpus).

Unfortunately, no comparable motivation exists for the setting of the
speaker optimality parameter «, and efforts to convince a participant that a
speaker is more or less rational may lead to unintended pragmatic inferences.
For these reasons, the value of a is generally not directly theoretically
interpretable. In practice, however, a tends to be greater than or equal to 1,
and not very high (< 50). The interpretation of an « less than 0 is that (the
listener believes that) the speaker behaves irrationally, preferably chosing
the options which minimize expected utility. If such a value of « is needed
to obtain otherwise reasonable model predictions, this is a signal that the
model is in some way mis-specified, which may prompt a closer look at the
state and utterance parameterization. See Zaslavsky et al. (2020) for a fuller
discussion of the role of a in RSA.
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For the Vanilla RSA model, the number of layers of recursion can also be
thought of as a free parameter. Empirically, it has been observed that levels
of recursion and speaker optimality trade-off with one another and hence
lead to unidentifiability of the parameters (Frank et al. 2016). Recent analytic
analyses have shown, however, that speaker optimality determines a tradeotf
between the expected utility optimized by RSA recursion and a conception
of communicative effort (Zaslavsky et al. 2020).

5.3 Linking functions

A fully-specified RSA model makes qualitative, probabilistic predictions that
can be tested against empirical data. Interpreting those predictions, however,
requires a clear linking function from the model output to human behavior,
and the specific linking function needed will depend on the human behavior
to be modeled.

RSA returns predictions in terms of the probability of either a state and/or
other variables inferred by the listener (e.g., QUDs, thresholds, etc.) or a
choice of expression or utterance (for speaker models). Thus, if the behavioral
data is in the form of a particular state or a particular utterance (e.g., in a
forced-choice task), then the model can be related to the data directly; the
model provides the probability of the observed outcomes and it is possible
to compute statistics such as the likelihood of the data under the model (and
compare to the likelihood of the data under different models).

In cases where the response variable is not a particular state or utterance,
a linking function will need to be specified. One common response variable
for experimental semantics/pragmatics researchers is a truth-value judgment
(Crain & McKee 1985, Crain & Thornton 1998). These judgments are used to
identify the situations that a sentence can truthfully describe. Assuming that
the truth conditions of a sentence—what it takes to make the sentence true—
are at least constitutive of sentence meaning (e.g., Chierchia & McConnell-
Ginet 2000), then truth-value judgments inform how it is that speakers
understand sentences. But how can we model such judgments? Given that
truth-value judgments are used to inform our understanding of sentences,
there is a temptation to treat the process that goes into generating these
judgments as one of language comprehension, corresponding to the listener
layer of an RSA model (e.g., Potts et al. 2016). However, several authors
have suggested that truth-value judgments are better modeled as a form of
language production: whether a speaker would use the sentence to describe
a given scenario (e.g., Degen & Goodman 2014, Franke 2016, Savinelli et al.
2017, Tessler & Goodman 2019, Jasbi et al. 2019). In RSA terms, this decision
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links to the probability of uttering the sentence of interest given some
observed state—predictions from a speaker layer of the model. In models
where the 51 predictions depend on more than merely the observed state
(as in the extensions discussed Section 3), generating speaker predictions
that correspond to truth-value judgments may require an additional layer
of recursion: an S, who observes a state s and chooses an utterance to
communicate s to L, who in turn does the work of resolving any additional
variables that S1’s calculation uses (e.g., the interpretation-resolving x in (10)
and (11); Savinelli et al. 2017).

Other common experimental measures include slider-bar or likert-scale
ratings (e.g., of the probability of a state) or betting procedures (e.g., eliciting
the probability of all states simultaneously as in Frank & Goodman 2012).
Though there is the temptation to interpret these measures as directly relatable
to the model output (e.g., they may both be treated as probabilities which
sum to 1), the correct way of handling these data is by articulating a linking
function. For example, likert-scale ratings should ideally be analyzed with
a cumulative logit or cumulative probit linking function used for ordinal
regression (Franke 2014b, 2016). Or, when a participant places ratings via
sliders on all states, a logit-transformed Gaussian may be an appropriate
link so that the model places a probability on the actual responses that
participants provide (see Franke et al. 2016 for an analysis of different linking
functions in the context of a prior-elicitation task).

5.4 Parameter estimation and model comparison

Besides actually building the RSA model of a linguistic phenomenon, the
modeler is often tasked with evaluating (or criticizing) the model, as well as
comparing it to alternative models. These evaluations and comparisons may
be informal when examining whether relevant qualitative phenomena (e.g.,
symmetry-breaking) are exhibited by a model. Comparisons and evaluations,
however, like the modeling of the pragmatic phenomenon itself, can be
formalized. In this regards, Bayesian data-analytic methods are regarded
as the gold-standard, in addition to being theoretically-synergistic with the
Bayesian pragmatic views of language understanding. Instead of a listener
asking “what did a speaker likely intend given their utterance (and my
internal model of the speaker)?”, the question of parameter estimation for the
scientist is “what are credible values of the model’s parameters given the data
we’ve observed (and our model of the data [i.e., the RSA model])?” Many
resources are available for learning Bayesian data analysis; we recommend:
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Gelman et al. (2013), Kruschke (2014), Lee & Wagenmakers (2014), Lambert
(2018).

For each of the above modeling practicalities, the modeler will find herself
with additional decisions about variables of the model. For example, the
speaker optimality parameter « is generally considered a free parameter of the
model that may be fit to the empirical data (i.e., it adds a degree-of-freedom
to the model). The most straightforward Bayesian approach to addressing
what value to set for a involves setting a prior over plausible values of that
parameter and then performing Bayesian inference, conditioning on the
observed behavioral data in order to infer what the most believable values
of a are given the RSA model and the observed data. Plausible a priori values
of parameters can be gleaned by reviewing other related RSA models. For
example, at the time of this writing, we observe that most RSA models use
a values between 0 and 20, though the actual plausible range of values
will differ depending on model architecture (see Tessler & Goodman 2019,
Yoon et al. 2020 for some examples). Parameter estimation is particularly
interesting when targeting model parameters that are themselves of some
theoretical relevance. For example, Yoon et al. (2016) use empirical data to
infer plausible values of the parameter x from Equation (17), which models
the relative importance of a speaker’s informational and social goals during
language production. Scholler & Franke (2017) infer plausible semantic
threshold variables for the vague quantifiers many and few, one pair for each
of several different contexts, in order to address the question of whether
it is plausible that the same threshold parameter explains the use of these
expressions across different contexts of use. Schuster & Degen (2020) perform
a similar Bayesian data analysis to infer semantic variables over uncertainty
expressions (e.g., probably, might), finding that listeners entertain quite a bit of
uncertainty about the semantic threshold for uncertainty expressions. Degen
et al. (2020) infer semantic “noise” values for color and size modifiers, tracing
speakers’ propensity to over-modify with color adjectives back to differential
semantic noise parameters for size vs. color adjectives.

In addition to estimating model parameters, Bayesian methods can be used
to arbitrate between competing hypotheses (so-called “model comparison”).
At a high level, the approach is the same: we are asking which of two (or,
n) models is the most likely explanation of the observed data. In practice,
this aim is accomplished using what are called Bayes Factors (or BF for short),
which compare the average (marginal) likelihood of the observed data under
each model (Jeffreys 1961, Kass & Raftery 1995). Here, a “model” is considered
both the RSA model and the prior distribution over parameter values (e.g.,
that a is sampled from a Uniform prior between 0 and 20). Since BFs take into
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account the prior distribution over parameters, models with more parameters
will have broader prior distributions, and thus the average likelihood of the
observed data under such models will intuitively be watered down by these
broad priors (e.g., when the model makes very good predictions but only for
a small set of values of the parameters). In this way, BFs take into account
model complexity (i.e., more complex models will be penalized if the gains
in model fit do not compensate for the increased complexity of the model)
when deciding which is the best model. Examples of comparisons of RSA
models based on empirical data include the work of Potts et al. (2016) (albeit
in this case the authors do not use Bayesian model comparison), Qing &
Franke (2015), Franke & Bergen (2020), Yoon et al. (2020), and Bohn et al.
(2019b).

6 Extensions/limitations

With a better sense of the many aspects of probabilistic language understand-
ing that the RSA framework has been used to capture, we turn now to current
limitations of the framework and opportunities for further extensions.

6.1 Compositionality

All of the models we have considered operate at the utterance level, taking as
their starting point whatever the compositional semantics delivers to them as
the meaning of a proposition; the models deliberately avoid the composition
of the literal interpretations over which they operate. This move is made
primarily for convenience. However, one of the most remarkable aspects
of natural language is its compositionality: speakers generate arbitrarily-
complex meanings by stitching together their smaller, meaning-bearing parts.
The compositional nature of language has served as the bedrock of semantic
(indeed, linguistic) theory since its modern inception; Montague (1973)
builds this principle into the bones of his semantics, demonstrating with his
fragment how meaning gets constructed from a lexicon and some rules of
composition. Since then, compositionality has continued to guide semantic
inquiry: what are the meanings of the parts, and what is the nature of the
mechanism that composes them? Put differently, what are the representations
of the language we use, and what is the nature of the computational system
that manipulates them?

We have seen how formalizing pragmatic reasoning in the form of compu-
tational cognitive models both informs pragmatic phenomena and enriches
theories of semantics. Still, by operating primarily at the level of propositions,
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the RSA approach necessarily eschews much of the compositional machinery
that generates those propositions in the first place. In principle, this semantic
leveling is unnecessary; our models of meaning can take into account the
rich compositionality of the communicative system they are meant to charac-
terize. The many sources of uncertainty in semantic composition are ripe for
a probabilistic treatment, and we now have the tools to deliver one. The basic
functionality we are after is already built into the system: lambda abstraction,
functional application, declarative memory and thus the possibility for a
lexicon.

Indeed, some initial steps have already been taken toward incorporating
compositionality within RSA. Goodman & Lassiter (2015) show how to
use the tools of probabilistic programming—the backbone of many RSA
applications—to deliver a stochastic lambda calculus that composes the
meanings of utterances out of their component parts. Goodman & Stuhlmiiller
(2014) go one step further, developing a semantic parsing system based on
combinatory categorial grammar that exists internal to the Ly layer of RSA;
the parser constructs literal interpretations and verifying worlds from the
semantic atoms of sentences. However, neither of these approaches has been
scaled up to the full RSA reasoning chain.

By incorporating semantic composition into the RSA framework (rather
than approximating it), we further shrink the theoretical and practical distance
between semantics and pragmatics by incorporating both within a single
model of meaning in language. Explicitly modeling semantic composition
may also help us address the largely ad hoc nature of specifying utterance
alternatives inherent to the design of current models. By incorporating a
generative grammar, the alternative utterances are those that the grammar
may generate; and by dynamically constructing the verifying worlds along
the way, we may be able to move past hand-coded priors and toward a more
general theory of alternatives and state priors. To that end, future work in
RSA should examine the ways that a semantic compositional mechanism
may be modeled dynamically and probabilistically, within the broader
framework of computational cognitive science. A comprehensive approach
to modeling language meaning, which treats semantics and pragmatics jointly
as a process of probabilistic inference, not only increases the validity of our
semantic and pragmatic theories, but more directly informs the psychological
underpinnings of language.
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6.2 Adaptation

In a Bayesian model, the computation of a posterior distribution can be
viewed as a specification of the prior distribution in anticipation of the next
update. In other words, “today’s posterior is tomorrow’s prior”. The fact that
RSA is a Bayesian model opens the door to formal treatments of adaptation
and learning.

A form of adaptation is at play in the formation of conventions. Speakers
and listeners must coordinate on how to refer to things in the world. Such con-
vention formation is studied using so-called “tangram” experiments, where
participant dyads take turns referring to abstract shapes (the “tangrams”)
with the intention of getting their partner to pick out the same referent. Over
repeated rounds of this game, participants converge on conventional names
for the referents, which are often reduced forms from how they originally
refered to them (Clark & Wilkes-Gibbs 1986, Hawkins et al. 2020). This
lexical adaptation process can be formalized in the RSA framework through
interlocutors’ reasoning about each others’ lexica, as in the meaning-inference
models surveyed in Section 3.1 above (Hawkins et al. 2017). Beyond the
lexicon, adaptation can occur at the level of pragmatics: listeners may adapt
to how others are using language (e.g., what utterances certain speakers
prefer). Schuster & Degen (2020) examined listeners” interpretations of un-
certainty expressions (might, probably) and found that listeners update their
expectations about the usage of such expressions after minimal evidence
from a speaker. Using a model-comparison approach within the RSA frame-
work, the authors found that this kind of semantic/pragmatic adaptation is
explained by listeners adapting their representations of the speaker’s lexicon
(i.e., word—-meaning mappings) and the utterances a speaker prefers to say.

6.3 Language development

The RSA modeling framework puts forth a particular hypothesis about how
language understanding unfolds, and the model components and parameters
can be taken to correspond to a hypothesis about the representations that may
vary across the population of speakers or develop with age. For example, at
a young age, children are sensitive to various information sources that help
them learn the meanings of new words (e.g., an understanding of common
ground, informativity, and their extant lexical knowledge; Markman &
Wachtel 1988, Schulze et al. 2013, Akhtar et al. 1996). In naturalistic contexts,
multiple information sources may be present, raising the question of how
these sources are integrated. RSA provides a hypothesis about this integration:
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informativity is captured by the speaker rationality parameter; common
ground influences the prior over states. Building on a paradigm pioneered by
Frank & Goodman (2014), Bohn et al. (2019a,b) interrogated this hypothesis
by studying 2-to-5 year old children in word learning tasks. They use the
RSA architecture to formalize a space of hypotheses about the integration
process and its development (e.g., a rational integration process, or a biased
integration process that deviates from RSA’s Bayesian logic). They find
the developmental trajectories in word learning inferences trace back to
the improved reliability of the various information sources and not the
integration mechanism itself. Similarly, Savinelli et al. (2017, 2018) use RSA to
model child and adult behavior on ambiguity resolution, thereby providing
computational evidence in favor of developmental continuity.

Probabilistic speaker and listener behavior, as captured by RSA models,
also helps build more realistic scenarios for language change or language
evolution. Abstractly put, language learners mainly observe pragmatic
language use, but need to reconstruct the underlying semantic structure that
likely generated the speech they observed. When this learning or inference
task is carried out repeatedly across (stylized) generations, transmission
inefficiencies (e.g., through learning biases) can accumulate and shape the
cultural evolution of language (e.g. Brochhagen et al. 2018, Carcassi et al.
2019, Carcassi 2020). Woensdregt et al. (2020) apply the combination of
iterated learning and RSA modeling to address questions after the potential
co-evolution of language and mindreading through numerical simulations.
Ohmer et al. (2020) show how pragmatic language use, modelled in terms of
RSA speaker and listener protocols, shapes and speeds up the emergence of
conventional semantic meaning through reinforcement learning. Lund et al.
(2019) use RSA to model the engine of pragmatic reasoning in the diachronic
development of linguistic meaning.

6.4 Levels of analysis

In our characterization of RSA reasoning, we have described agents perform-
ing various reasoning steps, talking about L; reasoning about S;’s reasoning
about Ly, etc. However, this language can sometimes prove misleading.
RSA models are intended to deliver a computational-level description of
the problem speakers face as they use language to communicate. As a
computational-level analysis (Marr 1982), these models intentionally avoid
pronouncements about the specific mechanisms involved in solving the
problem of language understanding. In other words, the RSA framework is
not conceived as a model of language processing.
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Indeed, one may wonder about the psychological validity of the rational
agents operating within an RSA model. Language users face limits on their
cognitive abilities—limitations of memory, attention, and general processing
resources—yet it may not be obvious where such resource limitations enter
into RSA. One avenue through which resource limitations may enter is the
optimality parameter a, which control’s S;’s utility-maximizing behavior.
For example, one may posit that a actually varies across demographic
features of the data set (e.g, age of participant); then, one may model a via
linear regression (predicting a as a function of age) to see how pragmatic
competence develops (Bohn et al. 2019b). As a decreases, S; is less likely to
choose actions (i.e., utterances) with higher utility. Another avenue through
which resource limitations may enter RSA is the number of layers of recursive
reasoning (Franke & Degen 2016). Moreover, as detailed in Section 4, by
taking direct inspiration from probabilistic programs, we may see sampling
approximations to inference processes as another factor in which RSA-like
behavior is a form of resource-bounded rationality (Griffiths et al. 2015).

As a computational-level model operating over full utterances, RSA,
at least in the formulations we have considered, also eschews the highly
incremental nature of human language processing. Rather than waiting for
utterances to terminate before reasoning about them, language users begin
integrating information as soon as it arrives during the linear unfolding of
time (e.g., Tanenhaus et al. 1995). This incremental processing is not limited
to word recognition or syntactic parsing; pragmatic reasoning has also been
shown to be incrementally engaged (e.g., Sedivy et al. 1999, Sedivy 2007). We
might wonder, then, whether RSA should incorporate incremental pragmatic
reasoning, and, if so, how such reasoning may be implemented. Cohn-Gordon
etal. (2019) offer one path forward for incremental RSA, amending the speaker
and listener models so that they reason about individual words and potential
continuations, showing how this advance is beneficial for natural language
processing applications. In psycholinguistics, Werning & Cosentino (2017)
and Augurzky et al. (2019) show how probabilistic predictions about the
whole utterance derived from RSA-style modeling can be broken down to
next-word expectation, a finding which is supported even by quantitative
aspects of EEG measurements.

6.5 Natural language processing

The final extension we discuss concerns the utility of RSA reasoning to
current applications in language technologies. Probabilistic formalizations of
Gricean pragmatics lend themselves directly to integration into probabilistic
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models used in natural language processing. One line of research focuses
on how a semantic meaning representation can be learned from data, based
on the assumption that the data was generated by an RSA-style pragmatic
agent. For example, Monroe & Potts (2015) explore how to set up a model
in which RSA-style literal and pragmatic language agents learn underlying
semantic meaning associations based on data from the TUNA corpus (van
Deemter et al. 2006), which provides human data from tasks similar to the
reference game from Section 2. Monroe & Potts show that pragmatic agents
outperform literal language users in their set-up. Monroe et al. (2017) apply
a similar strategy of learning semantic representations through the lens of a
pragmatic agent to a novel corpus of color descriptions.

Another line of recent research that brings together probabilistic pragmatic
reasoning and computational linguistics centers around the realization that
we can increase system performance by taking into account a pragmatic
perspective for generation and interpretation. Early work in this vein comes
from Andreas & Klein (2016), who show how to wrap RSA-style probabilistic
reasoning around “ground-truth” listener and speaker models, which are
trained on human data, and how the resulting pragmatic models improve
descriptions of visual scenes in a target-distractor setting. This general idea
of grounding semantic meaning in a data-trained module and building
a context-aware pragmatic RSA agent on top of it has been shown to
boost performance also in a number of further applications, such as route
descriptions (Fried et al. 2018), summarization and abstraction (Shen et al.
2019), image captioning (Cohn-Gordon et al. 2018, Nie et al. 2020), and
machine translation (Cohn-Gordon & Goodman 2019).

7 Conclusion

As the title of the current work promises, our aim has been a practical
introduction to the RSA modeling framework: what would the would-
be modeler need to design their own computational cognitive model of
probabilistic language understanding? We began with a high-level overview
of the modeling framework, which treats language understanding as a
process of probabilistic, recursive social reasoning; we also stressed how the
formalization offers an articulated implementation of Gricean pragmatics.
With an understanding of Vanilla RSA from Frank & Goodman (2012),
which was used to model communication behavior in simple coordinated
reference games, we then expanded our sights to a broader range of language
phenomena, taking note of the technology used to capture them. We showed
how expanding the empirical coverage of RSA often involves taking into
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account additional sources of uncertainty: uncertainty about the semantics
or lexicon, uncertainty about the QUD, uncertainty about the appropriate
context, uncertainty about the epistemic states of conversational participants,
and uncertainty about the speaker’s utility calculus.

After considering the practical and theoretical benefit of thinking through
models both “in math” and “in code”, we then shifted our focus to issues
that commonly arise in model development: how to set parameters and how
to link model predictions to the empirical data they are meant to model.
While these considerations occupy a significant portion of the modeler’s
time, they rarely feature prominently in model write-ups, which means that
best practices can be hard to identify without an exercise in trial-and-error.

Finally, we explored current limitations of the modeling framework,
together with areas where the framework is being actively extended.

Although our focus has been on the modeler, we hope to have offered
valuable insight into the framework, which ought to provide even passive
consumers with the ability to better evaluate and appreciate the growing
RSA literature.
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