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Abstract

The Abstraction and Reasoning Corpus (ARC) is a set of tasks that tests an agent’s
ability to flexibly solve novel problems. While most ARC tasks are easy for
humans, they are challenging for state-of-the-art AI. How do we build intelligent
systems that can generalize to novel situations and understand human instructions
in domains such as ARC? We posit that the answer may be found by studying how
humans communicate to each other in solving these tasks. We present LARC, the
Language-annotated ARC: a collection of natural language descriptions by a group
of human participants, unfamiliar both with ARC and with each other, who instruct
each other on how to solve ARC tasks. LARC contains successful instructions for
88% of the ARC tasks. We analyze the collected instructions as ‘natural programs’,
finding that most natural program concepts have analogies in typical computer
programs. However, unlike how one precisely programs a computer, we find that
humans both anticipate and exploit ambiguities to communicate effectively. We
demonstrate that a state-of-the-art program synthesis technique, which leverages
the additional language annotations, outperforms its language-free counterpart.

1 Introduction

A long-term goal of Artificial Intelligence (AI) is to build agents that can flexibly solve new problems,
understand human instructions, and communicate with human collaborators. Although current AI
systems achieve super-human proficiency at certain narrowly specified tasks [1, 2], their reasoning
is often highly domain-specific, and fails to generalize, explain, or adapt flexibly to novel and out-
of-domain situations [3]. The Abstraction and Reasoning Corpus (ARC) introduced by [4] presents
a set of tasks constructed expressly to benchmark fundamental capacities associated with human
intelligence, including abstract reasoning and generalization [4]. The ARC tasks are presented
inductively: solving them entails inferring a pattern consistent with a small number of abstract
input-output examples and applying it to a new input to generate an unseen answer. Cognitive
research suggests that humans leverage a rich array of general reasoning strategies on tasks like these,
including prior knowledge about object categories; the ability to infer structured rules from small
numbers of examples; and the explanatory capacity to communicate these rules to themselves and to
others [3, 5–10]. We focus on ARC because it is demonstrably challenging for machines: results
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Figure 1: Tasks from the ARC dataset (above) and the corresponding natural programs from LARC
(below). Given input-output examples (2 shown here per task), the ARC task is to extrapolate the
output on a new input. In LARC, a describer describes the rule present in the examples so that a
different person, a builder, can generate the correct output using the description alone.

from a recent Kaggle competition 2 find that the best AI systems solve at most 20% of the tasks, while
a study benchmarking human performance found that most humans easily solve over 80% [11]. 3

How can we build intelligent systems that achieve human-level performance on challenging and
structured domains (like ARC), with or without additional human guidance? The internal mental
representations humans use to solve a given task are not directly observable; instead, we look to
natural programs – instructions that humans give to each other – as a window into the cognitive
representations that inform downstream behavior. Much like computer programs, these instructions
contain expressions that can be reliably interpreted and ‘executed’ (by another human) to produce
intended outputs. Unlike computer programs, which must be stated in a specific style, natural
programs can be stated in any form – verbal instructions, hand gestures, doodles – as long as
another human can successfully execute them. In this work, we study a particular form of natural
programs, that of natural language instructions, building on a long tradition in cognitive, linguistic,
and computational sciences that seeks to model the structure and semantics of natural language
using formal symbolic systems [12, 13]. We suggest that analyzing human-interpretable linguistic
instructions as natural programs – with explicit comparisons to formal programming languages – can
both shed light on how humans generate, communicate, and interpret structured information [14–17]
and inform how AI systems approach and interface with human users on challenging domains.

We present the Language-annotated Abstraction and Reasoning Corpus (LARC), which aug-
ments the original inductive tasks in [4] with human-provided natural programs expressed in natural
language (Figure 1) elicited from a two-player communication game. We find that language provides
an effective channel for communicating the structure of each task: human participants can successfully
communicate at least 88% of the tasks in our dataset using language descriptions alone (i.e., without
any of the original inductive examples). A linguistic analysis on this dataset (Sec. 4) comparing nat-
ural programs to computer programs reveals that, like computer programs, humans relied on general
algorithmic concepts, such as conditional statements and loops, and on ARC-specific concepts, such
as objects. However, unlike computer programs, the majority of human phrases provided examples,

2The solutions are hosted on GitHub: https://github.com/top-quarks/ARC-solution
3Humans were evaluated on a subset of the training tasks; the Kaggle competition used a private test set.
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Figure 2: Four ways humans and machines communicate with each other: instruction (top-left),
programming (top-right), interaction (bot-left), and synthesis (bot-right). In the case of synthesis, the
machine serves both as the programmer and the interpreter as a form of self-communication.

clarifications, and verifications, providing context to the instructions. This suggests that humans
both anticipate and exploit ambiguity when communicating natural programs. Finally, we present
results showing that this language can be leveraged by learned program synthesis models to improve
search-based synthesis in the absence of any ground-truth program supervision on the ARC domain.

In sum, we present the following contributions:

1. We introduce the natural programming framework for using human instructions to inform
machine behavior in difficult domains. We present the Language-annotated Abstraction
and Reasoning Corpus, gathered with a human communication game.

2. We present a linguistic analysis of the corpus that compares human natural language
instructions to concepts from computer programming. We find that while most concepts in
natural programs have analogies in computer programs, unlike computer programs, humans
both account for and leverage ambiguities to communicate effectively.

3. We present a simple method for leveraging compositional relationships between natural
language and programs in search-based program synthesis, showing that incorporating
language this way can yield significant improvements on the ARC tasks.

2 Communication Using Natural and Computer Programs

Humans instruct each others on a range of procedural tasks, from cooking (step-by-step recipes) to
detailed technical tasks (manuals with diagrams). In this setting, a person first solves the task, then
describes the solution using instructions. These instructions are then interpreted by another person,
producing the desired output (Fig. 2 top-left). This two-person communication process can also serve
as a common framework for how we typically use machines to solve tasks. For instance, one might
directly program a machine to solve tasks (Fig. 2 top-right), or have the machine interacts with an
end-user (Fig. 2 bot-left) in collaboration, or develop program synthesis algorithms that solve tasks
alone (Fig. 2 bot-right). In all four instances, one agent functions as a programmer, who constructs a
program for a different agent, the interpreter, who executes the program.

How do we build machines that are programmable, interact well with end-users, and are capable
of synthesizing solutions for challenging tasks? Typically, one follows a “DSL-first” approach.
In the DSL-first approach, one first defines a domain-specific language (DSL), so that a skilled
programmer may program a machine interpreter. To build an interactive system on top of a DSL, one
can naturalize the initial DSL through language annotations [18–23], and translate them into programs
for the interpreter. Similarly, program synthesis systems that automatically solves tasks [24–26]
typically start with a well defined DSL, then attempt to search for a program within the DSL that
satisfies the task specification. While this DSL-first workflow has yielded impressive results, the
DSL itself is also a single point of failure. A key challenge for designing any DSL is determining
its scope: a good DSL should make it easy to construct programs for the domain, without bloating
the language with redundant concepts [27–29]. For systems that seek to understand human natural
language, extensive effort is often necessary to ensure that the DSL aligns reasonably to human
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instructions [30, 31]. Finally, for program synthesis systems, the choice of DSL has a drastic impact
on whether the synthesizer can find a solution within a reasonable computation budget [24, 32].

In this work, rather than immediately constructing a formal DSL, we suggest that starting with human
instructions (Fig 2 (top-left)) can yield important benefits for machine systems on otherwise difficult
domains. We define a natural program as a set of instructions constructed by a person that can
be interpreted by another person to produce a specific output. This program is natural–it can be
understood by speakers of the language4 without a prior consensus–but behaves as a program, in that
it produces a definitive output, which can be checked for correctness. Our work builds on prior work
studying program-like natural language used for building shared algorithmic representations [15]
and understanding cooperative communications [17], although such studies have often worked with
much simpler domains than the one we examine here. Contrary the DSL-first approach, by starting
with natural programs, one can focus exclusively on understanding the sets of concepts underlying
a domain (such as ARC) without having to first building and committing to an interpreter that is
capable of understanding these concepts. Further, as natural programs are readily constructed and
effectively interpreted by humans, studying natural programs will provide insights on how to build
interactive and program synthesis systems.

Figure 3: a describer instructs a builder how to solve an ARC task using a natural program

3 The Language-Annotated Abstraction and Reasoning Corpus (LARC)

We present a dataset that augments the original inductive ARC tasks from [4] with human natural

language instructions that satisfy the natural programs definition from Sec. 2; they can be demon-
strably interpreted by other human users to correctly produce intended outputs on a provided input,
without any additional context (including the original inductive examples). This ensures that the
language functions as a complete specification sufficient for each task. To collect this dataset, we
introduce a communication game framing (Sec. 3.2) in which human describers produce linguistic
instructions for unseen downstream human builders asked to solve the same tasks; and deploy this
experiment using a novel bandit algorithm to efficiently collect verifiable natural programs 5.

The final dataset augments 88% of the original tasks (354/400) with at least one verifiable natural

program description that could be successfully interpreted by another human participant in order to
solve the task. The bandit algorithm described in Sec. 3.3 redelegates human annotators and solvers
to each task based on joint estimates of the current correctness of a task’s linguistic description and
the total time spent on each task; Fig. 4(C-D) shows the distribution of success rates for participants
acting as describers and builders over time.

3.1 Human annotation details

We recruited 373 subjects via Amazon Mechanical Turk who were paid for 45 minutes of work. 50
individuals were excluded for failing to complete the task, so the final analysis included 323 subjects.
The study was approved by our institution’s Institutional Review Board, did not collect personally
identifiable information, and did not pose risks to participants. Subjects were paid $6.00 and a $0.25
bonus for every successful communication. Subjects averaged 5.5 communications, bringing their
expected hourly wage to $9.83. User interface and consent form are in the supplement materials.

4language here is to be understood loosely as any medium of communication, including gestures and diagrams
5For the dataset and its collection procedure, see https://github.com/samacqua/LARC
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Figure 4: A. Describer improves at verifying their own descriptions as a they describe more tasks. B. Builders
do not improve at constructing the correct outputs as they build more tasks (likely due to having no control over
the qualities of their given descriptions). C. The rate of describers verifying their own descriptions. The
average accuracy per task was 75%. D. The success rate of builders constructing the correct output.
The average accuracy per task was task was 50%.

3.2 Two-player communication game

For each task, a participant may be assigned one of two roles: a describer or a builder. The describer
sees all input-outputs examples for a task, but not the test-input. The describer is instructed to solve
the task and provide instructions to the builder, who can see only the test-input (and their received
instructions) and must construct the correct output (See Figure 3). The description is structured into
three sections to incentivize some consistency in the information conveyed: (1) what the builder
should expect to see in the input, (2) the output grid size, and (3) what the builder should do to create
the output (Figure 1). After the description was submitted, we verify the describer’s understanding
by revealing to them the test-input and asking them to produce the correct output. If the describer
fails the verification task, the submitted natural program is deemed incorrect and discarded. Since we
are primarily interested in communicating rather than solving ARC tasks (as opposed to [11]), each
describer was shown all previous verified descriptions for a task, allowing the describer to focus on
constructing an informative natural program. This results in generations of descriptions, forming a
chain of improving natural programs written by a group of humans in collaboration.

3.3 The Bandit Algorithm for Data Collection

Collecting valid natural programs requires a significant human effort. For each task, natural programs
must first be proposed by a number of describers, and then validated by a number of builders, where
both the describers and builders can make mistakes. In addition, the tasks vary in difficulty, requiring
different amounts of effort per task. Thus, a naive data-collection process, that simply collects a fixed
number of descriptions and builds per task would be expensive.

To address this issue, we propose the following multi-bandit, infinite-arm, best-arm identification
problem: multi-bandit – each ARC task is a different bandit, there are 400 bandits total. infinite-
arm – for each task, each natural program is a different arm, and there are infinitely many natural
language descriptions (arms); best-arm identification – once a natural program is proposed, we
validate it by asking builders to build it. To our best knowledge, there are no known bandit algorithms
that solve this problem. We use [33] to solve the infinite-arm, best-arm identification problem and a
heuristic that ranks the uncertainties of a particular bandit’s best arm’s to address the multi-bandit
problem (See Appendix). Our bandit algorithm dynamically allocates all MTurk participants to a
set of appropriate efforts, which could either be generating a new description for an ARC task, or to
validate an existing description, given by a previous describer. The LARC dataset was collected for
an overall cost of $3667, and we estimate that a naive collection scheme would cost at least $10,800,
assuming subjects would be paid the same hourly rate to produce 20 annotations per task.

4 Linguistic Analysis of Natural Program Phrases

How do people actually use language in our dataset in order to produce robustly interpretable
descriptions for each task? In this section, we describe results from a manual linguistic analysis

of verified natural program phrases in our dataset – natural language phrases that were correctly
interpreted by another human to produce a correct output. We focus on two domains of conceptual
content: language that conveys concepts from Core Knowledge [34] (such as object cohesiveness and
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Figure 5: Words used in successfully built descriptions, sorted by their frequency in the corpus. The words
were singularized. Colors names, numbers, and pronouns were grouped together.

physical interactions, hypothesized to offer innate inductive priors for human reasoning); and language
that conveys concepts consistent with programming languages (such as loops and assertions).

Our analysis codes individual phrases with manual tags corresponding to relevant concepts from both
domains, derived from an initial analysis for a random subset of the dataset. The details on the expert
tagging procedure appears in the Supplement. In total, we manually label 532 randomly sampled
phrases (22% of the phrase corpus) using 17 conceptual tags (in which multiple tags can be applied
to each phrase); Fig 6A. shows a frequency of these tags across the labeled phrases.

4.1 Core Knowledge in Natural Programs

Spelke’s theory of Core Knowledge systems [34] posits that humans posses innate inductive priors,
which support flexible and efficient learning. Specifically, the Object system, one of the most well
studied of the Core Knowledge systems, is defined by the principles of cohesion, persistence, and
influence via contact. The ARC task corpus was designed to leverage Core Knowledge principles [4]:

The ARC priors are designed to be as close as possible to Core Knowledge priors,
... a fair ground for comparing human intelligence and artificial intelligence (47).

Our tags reflect the core knowledge of objects in the following way: object_detection implies
the localization of any cohesive, bounded objects; contact_transform refers to descriptions that
can be interpreted as one object imparting a change onto another object through contact; physi-
cal_interaction refers to object persistence in physical scenarios – objects colliding, occluding each
other, or attracting each other by an imparted ‘magnetic force’ or ‘gravity’. About a half of the phrases
referenced objects, three quarters of which described spatial relations of one object relative to another
(Fig.6B). Fig.6D shows the relative frequencies of operations performed on objects. While objects are
prevalent in LARC, most operations on objects were of the category visual_graphical_transform –
such as recolouring and creating new objects, and affine_transform – such as scaling and displace-
ment. In contrast, only 5% of phrases could also be read as influence via physical_interaction. This
suggests that Objects behaviours in ARC are rooted more in abstract graphical operations, than in
physical interactions, possibly because that it is difficult to represent time in the input-ouput format
of ARC, which makes depicting physical interactions challenging.

4.2 Programmatic Concepts in Natural Programs

We study how natural programs can be understood as computer programs. First, we study the relative
frequencies of executable commands – procedure, in contrast to “meta information”, which can
be analogized roughly as: framing – comments and setting up which library to use, validation –
checks and assertions to ensure correct execution, and example – test cases. Notably, only about a
third of the LARC phrases are procedure, while the tags framing and validation occur at roughly
the same frequency (see Fig.6 C). This is in stark contrast with computer programs, where 86% of
the executable functions are not commented [35]. This suggests that natural programs are more
declarative (what should happen) rather than procedural (how to make it happen).
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Figure 6: A. The frequencies of all tags occurring in human phrases. Each phrase can have multiple tags.
B. More than half of the phrases described objects, of which, 75% described spatial relations. C. Relative
frequencies of code (procedures) against non-code (example, framing, clarification, validation). The fraction
of framing, procedure, and clarification occur at roughly the same frequency. D. Relative frequencies of core
knowledge topics in phrases that referenced objects. More than a half of phrases referred to object modifications
(such as extending, colouring, merging or dividing an object), and about a quarter described an affine transform
(such as translating, rotating, or scaling). A small number of phrases could be read as influence via contact, or
physical interaction (about 0.05 each)

The high frequency of framing tags in the LARC corpus suggests that humans carefully establish
context and resolve uncertainty over which programmatic concepts may be relevant: natural programs
spend roughly a third of the times identifying which library function to run, and how to parse the
current task. This corroborates a key claim in [11], where they state that unlike a typical interpreter
that understands only a handful of programmatic concepts, the human interpreter contains a multitude
of concepts useful in solving ARC tasks. Thus, if we were to build a rich system capable of solving
complex tasks such as ARC with a multitude of concepts, it might be challenging to refer to these
concepts via function names in a way similar to computer programs. Instead, we must communicate
with such a system carefully to ensure that the right concepts are in context at the right time.

We find that natural programs are ambiguous, as suggested by frequent validations and clarifications
(restating the same procedure in different words). Specifically, validation is meant to actively help
the interpreter in forming a correct interpretation. This is in contrast to conventional computer
programs that use assertions, which catches an incorrect interpretation by crashing the interpreter. The
clarification amends the initial ambiguous explanation, with another, also ambiguous explanation,
resulting in an interpretations that are consistent with both. We posit that a better analogy to natural
programs are not imperative programs, but program synthesis [25]. In program synthesis, the user
specifies a rough sketch of what the correct program should look like (framing, procedure), leaving
the details ambiguous. To resolve these ambiguities, user provides a list of constraints (validation)
that must be satisfied for the program to be correct. Overall, we conclude that humans share (to
some degree) knowledge of a large, domain-general language, and readily anticipate and exploit
ambiguities to effectively communicate in this language.

5 Leveraging Language for Program Synthesis

Our empirical results (Sec. 3) and linguistic analysis (Sec. 4) suggest that humans flexibly use and
interpret structured, program-like information in natural language. In this section we show that this
language can be used to guide learning in machine models in the same domain. Given the parallels
between human language, programs, and program synthesis suggested by Sec. 3-4, we focus on
learned program synthesis models, where a learned synthesizer infers computer programs for a given
task that can be executed by a machine (Fig 2 (bot-right)).

Most prior work in learned program synthesis has focused on solving tasks specified inductively by
a set of input/output examples [32, 36–38]. Here we show how leveraging relationships between
language and programs can inform a key learning problem in program synthesis: learning effective
search models for programs that solve tasks in a provided domain-specific language (DSL) [27,37,39,
40]. We show that simple techniques for incorporating linguistic information can improve learning
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performance. Our results support the conclusions of recent studies that leverage the structure and
compositionality of human language to inform programmatic representations [20, 41–45] .

5.1 Language-guided program search

To explore the use of natural language to inform search models in program synthesis, we build on
recent neurally-guided search algorithms, which train neural models to predict distributions over
solution programs to improve search [27, 37, 38, 40, 41, 46, 47]. We focus on learning in the distant

supervision setting – domains without initial ground-truth programs (like ARC), where natural
language is likely to provide the most value as an alternative source of prior information. In all of our
experiments, we train models using the iterative approach used in [32, 48, 49] that alternates between
searching for solutions with a current trained model, and using the solutions to supervise learning for
the next training iteration.

We implement two techniques for incorporating natural language to inform training. Both are general
methods that could be used with any neurally-guided synthesis model (e.g. [37, 38]) that conditions
on a vector-based task encoding. All language-guided and baseline models are trained using a base
neural search architecture from [32,49] (a variant on the DeepCoder model in [37]), which conditions
on a task embedding and predicts a distribution over tree bigrams in a DSL. All model, training
details and a full code release are available in the Supplement.

1. Language-guided search with pre-trained language model encoding: our most basic
language-guided search model simply uses a pre-trained language model to encode the
language annotations for each task, which we provide as additional input during training to
the neural synthesizer. We implement this as the standard first approach for incorporating
language to guide neural program search. In our experiments we use a pre-trained T5 Trans-
former model to encode language [50], taking a mean over contextual token embeddings to
produce a single sentence embedding for each task based on its annotations.

2. Language-guided search with pre-trained language model encoding and pseudoanno-
tation generation: methods like (1) face a challenging learning problem in the distant
supervision setting – even with pre-trained language representations, we aim to learn com-
positional relationships between language and an unknown program DSL from only distant
supervision. Therefore, we introduce an additional technique for leveraging relationships be-
tween language and programs – we annotate each function in the program DSL with a phrase
that gives a natural language ‘gloss’ of its behavior (e.g. annotating a flood_fill(color)
function with the gloss fill with the color). During training, we use these to generate addi-
tional paired language and program examples, by generating programs from the DSL and
mapping the flattened program trees to their token-wise natural language glosses to produce
a full “pseudo natural language annotation”.
This approach is similar to recent methods that have leveraged engineered or learned
synchronous grammars [23, 31, 49, 51] for data augmentation. We find our approach to be
simple but effective: we see natural language glosses as an easy way for human engineers to
provide additional information about how language corresponds to code, similar to linguistic
comments for each function. Our full set of function annotations appears in the supplement,
along with example programs and their pseudo-annotations.

We compare these language-guided approaches to two non-linguistic baselines. Any of these language-
guided techniques could also augment multimodal search (eg. by concatenating CNN and linguistic
features, or through a mixture of experts); we train them separately here to evaluate the specific con-
tributions of linguistic data. All training details on these models are also available in the supplement.

1. Fitted bigram enumeration: we fit a PCFG using the inside-outside algorithm over tree
bigrams in the DSL to the solution programs [52]. This provides a fitted prior over tasks
learned from the domain, but does not use task-conditional information.

2. CNN-guided search: we train a 4-layer CNN to encode the ARC I/O example grids as input.
This provides an alternative task encoding feature embedding to the language embeddings.

We evaluate search performance in the distant supervision setting, using a matched time budget for
search per task at each iteration (720s) and fixed number of training iterations overall (n=5). All
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Table 1: Tasks solved by language and non-language-guided models, with learned search and learned
libraries. Iterative distant supervision training (n=5 iterations). To compare performance with
different amounts of initial supervision, we initialize models with (left) 720s of initial search, yielding
11 initial solved tasks; (middle) 1 hour and 26 solved tasks; and (right) 8 hours and 57 solved tasks.

Model
Total solved

(720s init.
enum)

Total solved
(1hr init.
enum)

Total solved
(8hr init.
enum)

No language – initial enumeration from the base DSL 11/400 26/400 57/400

No language – fitted bigram baseline 33/400 44/400 58/400
No language – CNN task encoder for neural search 36/400 43/400 64/400
Language – T5 language encoder for neural search 29/400 41/400 64/400
Language – T5 + pseudoannotation training 59/400 66/400 70/400

models are initialized using a basic DSL containing primitives to select and transform grids of colored
pixels. As with prior work [32, 48, 49] we initialize iterative search by first enumerating for a fixed
budget of time from the DSL before beginning iterative training. We vary this initial amount of time
in order to better explore how and when different methods are able to best bootstrap learning with
varied initial amounts of solution tasks.

Table 1 shows that across all initial enumeration settings – including our weakest enumeration setting,
in which we search for 720s in the DSL to initialize models with only 11 initial tasks – the language-
guided model trained with "pseudoannotations" achieves significant performance gains, both over
the baselines and over the initial solution state. In contrast, the basic language-supervised model
becomes more effective only with greater amounts of starting supervision.

We see leveraging function annotations compositionally and generatively – as in the pseudoannotation
generation procedure – as an important avenue for future work in introducing language to guide
machine behavior. We suggest that language can provide a powerful interface between humans and
machines when used not only to describe individual tasks, but the behavior of program components,
leveraging the natural productivity of both human and machine languages to learn relationships
between domain-general, pre-trained linguistic priors and domain-specific, structured programming
languages with little ground truth supervision.

6 Discussion

We proposed natural programs, instructions that can readily be interpreted by other humans in order
to produce a verifiable output, as a pathway to building intelligent systems that can generalize to novel
situations and understand human instructions. To this end, we curated and presented the Language-
Annotated Abstraction and Reasoning Corpus (LARC), a new dataset containing natural language
descriptions of tasks from the ARC domain [4] that can be used to study both human and machine
behavior in a difficult inductive reasoning setting. We outlined a novel data collection procedure
(Sec. 3.3) to efficiently collect natural program annotations, using a bandit algorithm to delegate data
collection and framing individual annotations as a communication game.

Our linguistic analysis (Sec. 4) of communication strategies suggests that there are rich connections
between the natural language participants use in this setting and formal concepts from machine-
interpretable programming languages, though we also find important differences between natu-
ral language and most current programming languages. We conclude by presenting results from
language-guided program synthesis experiments (Sec. 5), which suggest that natural language
programs can be used to significantly improve search-based program synthesis in the ARC domain,
with no other ground-truth program data.

We see the communication strategies used by humans to solve tasks as a rich source of structured
knowledge for program-inspired cognitive analyses (such as [3, 9]), and for developing AI systems
augmented with natural language to guide machine behavior (e.g. semantic parses and models of
structured search and representation learning [18–20, 45, 49, 53, 54]). We propose that studying the
differences between natural programs and current state-of-the-art programming languages, such as the
framing and validation devices used to resolve ambiguity, can lend valuable guidance for developing
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future machine learning systems. Developing systems that leverage human-like use of language
can lead to improving the effectiveness of language-based interfaces, and to more flexible formal
representations with enhanced ability to generalize across domains.

Limitations The ARC domain consists of a single, constrained task format that assays human
intelligence in a highly controlled setting. While we also present synthesis models informed by
natural language, our synthesis model leaves important aspects of human language, such as giving and
controlling ambiguities, unexplored. Future cognitive and computational work should extend these
findings to other domains – especially tasks that directly invoke ‘core’ competencies and explore
tighter couplings between program synthesis and natural language.

Potential negative impact The long-term goal of this work is to ‘reverse-engineer’ how humans
think and communicate, in order to jointly inform cognitive research – how do people solve and
learn from structured tasks – and computational systems, that can learn and collaborate with humans.
While this work takes constrained steps in these directions, it assumes both of these aims as important
end goals. Any system that seeks to accurately use and interpret human language raises concerns
regarding safe deployment for downstream applications, for instance, non-experts operating safety-
critical equipment using natural language. Further, AI could exploit ambiguity in human language to
write legally-binding agreements that can be read in different ways.
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7 Appendix

The appendix serves as a complimentary document to the paper detailing the data collection process,
analysis, and program synthesis. It should be used in conjunction with the following:

1. the LARC dataset and its annotation workflow, and bandit algorithm can be found in:
https://github.com/samacqua/LARC
Which contains an explore gui that allows one to browse the entire dataset within the browser.

2. program synthesis using language codes is at this URL :
https://anonymous.4open.science/r/ec-28F5

7.1 Consent Form and Annotation Workflow

Consent Form In this study, you will interpret descriptions of an abstract pattern that you observe
in grids. By answering the following questions, you are participating in a study performed by
cognitive scientists in [author institution]. If you have questions about this research, please contact
[author] at [author email]. Your participation in this research is voluntary. You may decline to
answer any or all of the following questions. You may decline further participation, at any time,
without adverse consequences. Your anonymity is assured; the researchers who have requested your
participation will not receive any personal identifying information about you. By clicking ’I AGREE’
you indicate your consent to participate in this study.

Annotation Workflow Then, the user is given tutorials about communicating ARC tasks, and
dynamically assigned a sequence of describe and/or build tasks until they have completed 45 minutes
of work. Figure 7 shows the build and describe interface. For full workflow see LARC/collection.

Figure 7: A. The builder interface. B. The describer interface.
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7.2 LARC Linguistic Analysis Tagging Scheme

The phrases were codified by expert coders using a set of 17 binary tags. For each tag, a phrase can
either be a positive instance (+) or a negative instance (-) 6. The following table details the tags and
coding scheme used:

Tag Description Examples

Procedure
Directly commands the builder to do
something; If you were to delete it,
the program will fail to execute.

(+) Fill each enclosed hole with yellow
(-) look at the color that form the design in
the input.

Metaphor
A metaphor can be an analogy or
reference to human common sense
knowledge – e.g. spiral.

(+) A random green pattern
(+) A pattern like a long A

Clarification
A phrase made following a previ-
ous statement that attempts to clarify
misinterpretations.

(+) Then, copy and paste each colored
square in the input grid 4 times – once in
each "quadrant"
(+) (or 5 rows or whatever the number of
rows is before it repeats).
(+) Where there’s a dark blue square, put
orange squares directly above and below it
(4 total).

Example Gives a concrete instance. (+) The opposite is also true (for example
if it is light blue, change to dark red).

Array
Makes a comment about a collec-
tion of objects sharing some com-
mon property.

(+) Where there’s a dark blue square, put
orange squares directly above and below it
(4 total).
(+) Leave the magenta and light blue
squares as they are; do not add anything
to them if they are present.

Validation
After the builder executes a proce-
dure, check if they got the right an-
swer (i.e. asserts, test-cases, verifi-
cation, or error handling).

(+) You should end up with all blue boxes
touching each other
(+) Fill in all of the black boxes to complete
the pattern until there are no more black
boxes.

Loop
Includes a looping procedure, such
as the use of while, for, until, for

each, or repeat.

(+) Continue coloring green until you reach
the center of the grid.
(+) Reduce the grid size so that one square
is available for each group.

Start_Stop Talks about the process or duration
of some operations.

(+) start at the upper right corner
(+) the red shape needs to move until it is
touching the blue cube

Conditional Of the form if X then Y. (+) If they do not match, make the output
square green.

Logic Includes first-order logic, such as
same, and, or, or not.

(+) The same size as the input (+) You will
not use dark blue squares at all (-) A 4x4
pattern

Framing
Sets up the problem by offering a
particular point of view, defining
some objects to be referred to later.

(+) four colored area.
(+) 1 or 2 squares filled in with the same
color on a black background.

6marked by 1 and 0 respectively in the csv
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Tag Description Examples

Spacial Re-
lation

Any reference to a relative position
in space to some other component.
Positive examples include: under,
reaches, touches, angle, outer, down-
ward, parallel, near, after, in be-
tween, central, etc.

(+) The red shape next to the blue shape
(+) Put yellow inside the green

Physical In-
teraction Any reference to an imaginary force. (+) The red object falls

(+) Blue slides to the left towards red

Contact
Transform

Influence via contact, i.e. any spe-
cialized version of physical interac-
tion that involves at least two objects

and some type of contact causality.

(+) Move X until contact with Y
(+) Set X touching Y and turn it the color
of Y
(-) Red moves left one square

Affine
Transform

Any reference to a affine transforma-
tion over an object, such as rotation,
translation, etc.

(+) Rotate 90 degrees
(+) Extend the square into a line

Visual-
Graphical
Transform

Any other visual or graphical modi-
fication other than a geometric one,
such as coloring, flood-fill, or draw-
ing a new shape.

(+) Make it gray
(+) Draw a line

Object De-
tection

The localization of a cohesive,
bounded object.

(+) The red shape
(+) Move it to the left
(+) The pattern

These tags can also be grouped hierarchically into the following categories:

Programmatic: procedure, array, validation, loop, start_stop, conditional, logic

Human/Mechanisms for Domain General Communication: metaphor, clarification, example,
framing

Objects and Object Manipulation: spacial_relation, physical_interaction, contact_transform,
geometric_transform, visual_graphical_transform, object_detection

The tagged phrases can be found at LARC/dataset
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7.3 Supplement to Sec. 5: Leveraging Language for Program Synthesis

Here we describe model and experimental details for the program synthesis experiments in Sec. 5.
The full DSL, model implementations, and commands to replicate the experiments here are available
at https://anonymous.4open.science/r/ec-28F5/Readme.md.

7.3.1 Supplement to Sec. 5.1: Model and training details for Experiment 1

All neural search models use a base model architecture shown to be effective in the small data,
minimal supervision setting we study here, drawn from [32, 49] (a variant on the DeepCoder model
in [37]), which conditions on a task embedding and predicts a distribution over tree bigrams in a DSL.
In particular, this model can be described as an amortized inference model Q(⇢|t,L) where ⇢ is a
program, t is a task-specific vector encoding of task features (such as language or I/O examples), and
L is a DSL containing function primitives. This is parameterized by two modular components:

1. A domain-specific task encoder E(t). This encodes task and program specific information
(eg. images or language) that are input to the neural model. This task encoder architecture
is defined domain-specifically based on the form of the task examples (e.g. a CNN for the
graphics domain). It outputs a fixed dimensional embedding for any given task as input to
the model. The encoder component varies across each of our models, and is described in
more detail below.

2. A conditional model over programs Q(⇢|E(t)). This component receives the task encoding
as input and outputs a distribution over programs. Following [32], this is a 2-layer fully-
connected MLP (with 64 hidden units and a final tanh activation layer) that outputs a fixed-
dimensional real-valued tensor encoding a distribution over programs in the library L as
output. The real-valued tensor corresponds to weights over program primitives conditioned
on their local context in the syntax tree of the program, consisting of the parent node in the
syntax tree and which argument is being generated. This functions as a ‘bigram transition
model’ over trees that encodes the likelihood of transitions from one primitive to the next.
Q returns this as a (|L|+ 1)⇥ (|L|+ 2)⇥A-dimensional tensor, where A is the maximum
arity of any primitive in the library.

This parameterization supports fast sampling of programs during conditional synthesis: the neural
model runs once per task (to encode the task examples and produce the bigram transition model)
and the resulting parameterization can then be used to sample programs during synthesis (e.g. by
enumerating programs by expanding trees (as ‘bigrams’ over parent and children primitives) ranked
in order of their likelihood starting from the program root.)

Following [32], the neural model is trained to optimize the following MAP inference objective on the
solved training tasks (where (L, ✓L) is the base PCFG prior fit to the solved programs, as in [32]),
as well as (in the case of the pseudoannotation model trained with a generative model), sampled
programs and accompanying feature vectors:

L
MAP=Ex⇠(L,✓L)

2

4logQ

0

@argmax⇢ P[⇢|x,L,✓L]

���� x
1

A

3

5
(1)

Using this base model, we now describe the specific encoders E(t) we implement for the models
described in 5:

1. Language-guided search with pre-trained language model encoding: This uses a large-
scale language model as an encoder over descriptions: in particular, an encoder E(d) where
d is a set of all sentences in the ‘output‘ descriptions for each task. We find that using
a modified tokenization heuristic to pre-process the language data into sentences that are
encoded individually (rather than encoding the entire, multi-sentence annotation produced
by each annotator during the communication experiment at once) is more effective. We use
the t5-small parameterization of the T5 pre-trained transformer model from [50], which
produces contextual embeddings for each token in the sentence; we take a mean-reduction
over all tokens to produce a single embedding vector per sentence, and then an additional
mean-reduction over all sentences in d to produce a final 512-dimensional embedding for
each task.
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2. Language-guided search with pre-trained language model encoding and pseudoanno-
tation generation: This uses the same encoder model E(d) as model (1). However, as
described in the main text, this model incorporates additional sampled ’pseudoannotation’
language and programs (d’, ⇢0) generated using a simple generative model based on lin-
guistic function annotations of each function in the DSL L. In particular, we annotate each
function l 2 L with a corresponding natural language gloss dl that describes its behavior
(example annotations are shown in Table X below.) To generate new training data, we
sample programs ⇢0 from the fitted PCFG prior (L, ✓L) over training tasks (similar to the
generative steps used in [32, 49], and then generate a corresponding pseudoannotation d’
by taking a left-order traversal of the functions in ⇢

0 to produce a flattened program tree,
and then mapping each function to its corresponding gloss. These naturalistic pseudoan-
notations are provided interchangeably as training data – that is, we encode E(d0) using a
pre-trained language model, as if it were a true human-provided annotation, to produce a
512-dimensional embedding for each true task annotation and pseudo annotation training
datapoint.

3. CNN-guided search: This baseline uses a CNN encoder E(x) to encode the I/O examples x
in the ARC tasks. This baseline is a re-implementation of the CNN encoder used previously
in [32, 49]: it uses a 4-layer CNN consisting of 4 stacked convolution blocks; except for
the initial input (which takes in a full grid for each task as input), each convolutional layer
has a 64 input/output channels with a kernel size of 3, and is followed by a RELU and
max-pooling (dim=2) block. We concatenate the input-output grids before encoding, and
mean-reduce over the encodings over all I/O examples in x to produce a 64-dimensional
embedding for each task.

4. Language-guided search with pre-trained language model encoding and few-shot
learned semantic parsing features (not included in main paper): We also experiment
with using the function annotations from (2) to explore one additional means of relating
language and programs with minimal superivsion, inspired by recent work [31, 55, 56]
suggesting that very large-scale language models (such as GPT-3) can "few shot" parse struc-
tured patterns from a few linguistic examples. We develop a simple approach to use GPT-3
as a ‘binary classifier’ over individual functions in the DSL (using [57]). Using functions
present in solution programs as positive examples (and randomly sampled other tasks as
noisy negative examples), we present a large-scale language model with paired {task anno-

tation, positive/negated natural language function gloss} examples and ask it to infer the
appropriate pattern for unsolved task annotations (e.g. to classify the flood_fill(color)
from above, we ask GPT-3 to predict the phrase fill with color or do not fill with color based
on a task annotation.) While these predictions could be in principle used directly place a
distribution over functions to guide search, we find that they are somewhat noisy and instead
better provided as an additional feature vector E2(d) – concatenated with the full task anno-
tation encoding E(d) – and provided as input to the same base model as above producing a
distribution over programs. For a given task annotation, encoder E2(d) produces a length 6
feature vector. Each of the 6 features correspond to a specific DSL function, and specifically
the feature value is the probability GPT-3 assigns to the corresponding function’s positive
natural language gloss. To generate every such prediction, a maximum of 20 paired {task

annotation, positive/negated natural language function gloss} examples are selected based
on a measure of semantic similarity with the task annotation (as measured by GPT-3) to
be classified and are used to create the few-shot classification language-model prompt (see
Figure 8 for an example prompt).
In the preliminary pilot experiments we find that this approach does not outperform (1). We
hypothesize this is due to the small sample size of the initial solved tasks and because we
only use 6 features when in principle we could create a feature for every one of the 103 DSL
elements (assuming every element appears in at least one of the initial solved task programs).
Although the E2(d) features did not lead to more task solved than in (1), we find that that
the few-shot learned classifiers are better than chance at classifying the natural language
function gloss (as either positive or negated) of unseen task annotations. Specifically, the
leave-one out AUC scores for the initial 57 solved tasks were 0.92, 0.71, 0.96, 0.76, 0.80
and 0.84 for each of the 6 DSL functions used to create the E2(d) features (although note
the small sample size from which these were calculated). Based on the above we believe it
is a promising avenue for future work.
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Example DSL Functions and Natural Language Gloss Function Annotations
DSL Function Natural Language Gloss

map_blocks ‘for every block’
filter_block_tiles ‘only keep tiles that’
fill_with_color ‘color the block’
blocks_to_min_grid ‘get the smallest grid containing the blocks’
has_at_least_n_tiles ‘does the block have at least n tiles’

Example Sampled Programs and Pseudoannotations
Sampled Program Natural Language Pseudoannotation

(lambda (to_original_grid_overlay (remove_color
(grid_to_block $0) yellow) false))

‘place block on input grid remove color from block
yellow’

(lambda (extend_towards_until_edge
(block_to_tile (grid_to_block $0)) south_east)
true))

‘extend tile towards a direction until it touches the
edge bottom right’

(lambda (blocks_to_min_grid (tiles_to_blocks
(find_tiles_by_black_b $0)) true true))

‘get the smallest grid containing the blocks find
the tiles based on if they are separated by the black
background’

The other baseline model, Fitted bigram enumeration, only produces a prior P [⇢] over programs.
This uses a PCFG fit using the inside-outside algorithm over tree bigrams in the DSL to the solution
programs [52], but does not use task-conditional information.

Program DSL and function annotations: All experiments used a hand-designed DSL for the ARC
domain consisting of 103 primitives (implemented as a set of polymorphically typed �-calculus
expressions) intended to be broadly and basically applicable to all tasks on the domain – the DSL
operates over grids of pixels, and contains simple functions designed to repeatedly perform image
transformations over pixel grids to produce an output grid. The complete DSL is available at the
released code repository; below we provide representative example functions and the accompanying
natural language glosses of their behavior used in the pseudoannotations generative procedure; as
well as sampled program expressions and their generated pseudoannotations.

Search details: We train all models using the iterative training procedure previously reported
in [32, 49]: at each iteration, we alternate between a training step in which models are fit to the set
of existing solved tasks from prior iterations (along with any data augmented examples from the
generative model), and a search step in which the models are used to guide search for a fixed time
budget per task. All experiments for were conducted on a high-powered computing cluster using
a fixed training budget of wall-clock search time per task of 720s for all models and baselines in a
given domain (determined via hyperparameter search using the baseline model per domain); and with
24 CPUs per experiment.

As reported in the main text, all iterative training began with an initial, unbiased search for a fixed
budget of time from the starting DSL to yield an initial set of solved tasks (with accompanying
programs) used to begin iterative learning; we varied this initial search duration to explore training
under different amounts of starting supervision, as reported in Sec 5.1.
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Figure 8: GPT-3 prompt for classifying natural language annotation "replicate one of the patters in
one of the corners. Bottom right, bottom, left, top right, or top left." for DSL function fill_color
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8 Appendix : multi-bandit, infinite-arm, best-arm identification

Imagine there are N different magical casinos, where each has an infinite number of slot machines
(arms). While each individual arm has its own probability p (Bernoulli) of generating an outcome
of either 0 or 1, the arms are related to each other depending on the casinos they belong to. Some
casinos are easier than others, in a sense that for some, it is easier to find a “good” arm whereas for
others, most arms will have a small chance of success. Moreover, each casino i has one (or multiple)
best arm, whose probability of generating a 1 is p⇤i . Your job is to identify the best arm within each
casino. This is in essence the multi-bandit, infinite-arm, best-arm identification problem.

You can take observations in the casinos, where each observation involves selecting a casino, and
trying one of its arms (either one of the arms you already tried, or trying a new one out of its
infinite possibilities), observing an outcome of either 0 or 1. We seek an online algorithm that, given
any observation budget, propose a set of N arms. Let p1 . . . pN denote the ground-truth Bernoulli
parameters of the proposed arms. We seek to minimize the following regret:

L =
X

i

(p⇤i � pi)

Where each term p
⇤
i � pi is the “gap” between the proposed arm and the best arm in a given casino.

8.1 Application to LARC

Our goal is to collect a working natural program for each of the 400 ARC tasks. Natural programs
are difficult to collect, because it involves both: 1) obtaining a natural program from a describer and
2) validating this natural program by having a builder build from it. Thus, rather than exhaustively
studying each task to estimate its difficulty, we are content with just getting a “good enough” natural
program for each task. In another words, given a certain annotation budget, we want to find a single
good natural program for each of the 400 tasks.

If we take the 400 tasks as 400 casinos, then each casino would have an intrinsic difficulty, which
corresponds to how easy it is to communicate a particular task. Within each task, there are an
infinitely many possible natural programs (i.e. all natural language strings), which correspond to the
infinite-arm aspect. For each task, we are interested in finding as good of a description as we can,
which correspond to the best-arm identification aspect.

Specifically, we are seeking an online algorithm that at any budget can propose a set of natural
programs, and this set of proposed programs should improve with added budget (budget here
is synonymous with total participants’ time). To use the bandit algorithm in conjunction with
the annotation process, we divide the 45 minutes of a participant’s time into several “units” of
participation, where each unit can be assigned to one of two jobs: 1) The participant can either give a
new description to an ARC task, then immediately build from it (in the form of describer verification)
or 2) The participant can be given an existing description of a task, and build from it to to assess if it
is a good description. See Figure 9. We estimate how many minutes would this particular unit take,
and dynamically allocate additional units until the full 45 minutes are exhausted.

Figure 9: How a “unit” of a participant’s time can be utilized
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8.2 Reinforcement Learning Formulation

A great way to formalize a bandit problem is casting it as an instance of a Markov Decision Process:

A state consists of all the observations (the 0, 1 outcomes) on all the arms thus far. Let there be N

bandits/casinos, then the observation is a collection of all casinos’ outcomes C1 . . . CN where for
each casino Ci, we have observation for its K arms that we already sampled: c1i . . . cKi . Each arm’s
observation, cji is simply a tuple (A,B) where A denotes the number of 1s observed from arm c

j
i and

B denotes the number of 0s. Thus, the space of observation is O(N ⇥K ⇥ (A+B)). See Figure 10.

There are two kinds of actions – the arm-selection action, and the best-arm-proposal action. Arm
selection consists of a tuple (i, j) where i selects a casino, and j selects from which of the arms
within that casino to sample an additional observation. We will use j = 1 . . .K to denote sampling
from the K arms within a particular bandit i, and use j = 0 to denote sampling a new arm from
bandit i. When the interaction budget is exhausted, the agent must make a best-arm-proposal action,
in which the agent picks one sampled arm from each casino to be calculated in the regret. For arm
proposal, we use a simple heuristic that selects the arm with the highest estimated mean using a
beta distribution with (1,1) prior. For the remainder of this section, action will refer exclusively to
arm-selection.

Transition modifies the state to include the new observation. See Figure 10.

Reward is the sum of the Bernoulli parameters for the set of proposed arms. p1 + · · ·+ pN .

Figure 10: an example transition where there are 3 casinos

8.3 A Heuristically Defined Agent

To the best of our knowledge, there is no bandit algorithm that address the specific bandit problem
we are solving. However [33] solves the infinitely many armed bandit problem for a single bandit,
where they explicitly model the difficulty of the underlying bandit. We take their algorithm as
inspiration. Note that [33] prescribe a solution to the regret-minimization problem, which is not
exactly best-arm-identification. However, in the limit, the two are equivalent as minimizing regret is
equivalent to finding the optimal arm. We will first state the result of [33], which applies to the case
of a single casino/bandit, then extend it to the case of multi-bandit.

arm selection Suppose we know that we want to generate an action in casino i. [33] proposed the
following rule for selecting which arm to interact with. Let � be the difficulty parameter of the task,
defined as: P (p⇤ � pj < ✏) = ⇥(✏�). Which is to say, if you were to sample a new arm with ground
truth parameter pj , the probability that this arm lies within ✏ of the optimal arm, is approximately ✏

� .
For instance, if � = 1, the task is very difficult as ✏1 is a tiny number, meaning it is almost impossible
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for you to sample an arm pj that is ✏ close to optimum. Conversely, if � = 0, the task is very simple,
as ✏0 = 1, so any arm you sample will be optimal.

[33] states that, if you let M be the total number of observations on a bandit, and K be the total
number of arms currently sampled, if K  M

� , then you should sample a new arm. Otherwise,
you should perform the standard UCB algorithm on the set of existing arms. In our bandit RL
environment, M and K are well defined, but how do we estimate �? We use the following heuristic
to estimate difficulty: Let j be the best arm in the current casino w.r.t. its sampled mean p̃j , then we
define � = 1� p̃j . For instance, if the best arm has a sampled mean of 0.9, then we are in an “easy”
casino, and the difficulty will be 1� 0.9 = 0.1, which is fairly close to 0, implying we should NOT

be sampling new arms, as the best arm we have currently is likely to be good. Conversely, if the best
arm has a sampled mean of 0.1, then we are in a “difficult” casino, where we stand a better chance of
finding a good arm by sampling more arms.

casino selection To adopt the infinitely-many arm algorithm to a multi-bandit setting, we use the
following heuristic: selecting the casino where we have the least information about p⇤ of a casino. In
practice, we rank all K arms based on their sampled mean, and take the top-half of the arms, and
aggregate a beta distribution of the total number of 1s and 0s of these arms, and use the variance of
the beta distribution as a proxy for uncertainty. For instance, if a casino whose top-half arms have in
total many observations, and most of them are 1s, then we are certain about its p⇤. Conversely, if a
casino whose top-half arms have few observations, and it is an even split of 1s and 0s, we are unsure
of its p⇤.

8.4 Simulated Evaluation

With both arm selection and casino selection, we have a functioning agent. We can evaluate this
agents’ performance against several baseline agents in the bandit RL environment to verify that it
is indeed more efficient. We consider the following baseline agents, rand is the random agent that
select an action at random, tile is the agent that tries to evenly spread out the observation budget,
tile-inf is the agent that uses the infinitely many arm algorithm, and tries to spread the budget evenly
across casinos, cas-inf(ours) is the agent that selects the casino using uncertainty of p⇤, and use
infinitely many arm algorithm.

The algorithms performance over 100 casinos with a total of 600 interaction budgets is in Figure 11

Figure 11: performance of various bandit policies, of 100 casinos and a budget of 600, averaged
across 100 repetitions. horizontal bar is average, whiskers indicate standard deviation

As one can see, for the simulated environment, which makes several simplifications, such as not taking
in the generation aspect of description making, and modeling difficulty of a casino as a truncated
gaussian, our proposed bandit algorithm out-performs the other baselines. The implementation of the
bandit environment and the bandit policies can be found at LARC/bandit
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