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Abstract

Human reasoning can often be understood as an interplay between two systems: the
intuitive and associative (“System 1) and the deliberative and logical (“System 2”).
Neural sequence models—which have been increasingly successful at performing complex,
structured tasks—exhibit the advantages and failure modes of System 1: they are fast
and learn patterns from data, but are often inconsistent and incoherent. In this work, we
seek a lightweight, training-free means of improving existing System 1-like sequence
models by adding System 2-inspired logical reasoning. We explore several variations on
this theme in which candidate generations from a neural sequence model are examined
for logical consistency by a symbolic reasoning module, which can either accept or
reject the generations. Our approach uses neural inference to mediate between the neural
System 1 and the logical System 2. Results in robust story generation and grounded
instruction-following show that this approach can increase the coherence and accuracy of
neurally-based generations.

1 Introduction

Despite recent success, neural sequence models often fail to produce consistent and coherent generations.
When generating stories, language models may forget the attributes of specific characters (such as per-
sonality and background information) (Welleck et al.,|2018)), ignore previously established relationships
between characters (such as family relationships) (Sinha et al., 2019), or otherwise contradict prior
statements (Brown et al.,|2020). Similarly, neural models can make statements that contradict basic
world knowledge or the logical entailment structure of known facts.

Lake & Murphy|(2020) illustrated several of these issues with GPT-2 (Radford et al.,2019). When given
prompts of the form “A dolphin is a ___”, GPT-2 predicts that the most likely answer is “mammal”,
“fish”, or “bird” depending on small differences in the wording of the prompt. In another example,
GPT-2 states that unicorns have “four horns,” directly after implying that unicorns only have one
horn. Upon diagnosing such issues, it is unclear how to apply a targeted fix to the model, especially if
retraining or fine-tuning is impractical.

In this work, we draw on insights from cognitive science, especially from “dual process” theories
of reasoning (Evans, [2003), to explore how neural sequence models can better interface with prior
knowledge and be made more coherent and consistent. According to dual process theories, human
cognition can be understood as an interplay between a more intuitive and associative “System 1” and a
more deliberative and logical “System 2.” Within this broad framework, automatic actions are driven by
System 1, whereas System 2 engages for more deliberative control: for example, judging the validity of
a logical argument that requires multiple steps of reasoning (Kahneman, 2013)).

The prominent neural language models of today are single systems, with weaknesses akin to those
exhibited by the human System 1. For example, the cognitive reflection test (CRT) (Frederickl |[2005)
is a classic probe of System 1 vs. System 2 reasoning in humans. Participants answer a set of simple
questions that have superficially compelling, but logically invalid, answers. These incorrect answers are
often generated as a first “gut” response (putatively, by System 1 intuitive thinking); upon reflection,
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Story so far Candidate next sentences

Mary dropped the apple there.
Daniel went to the garden.
Mary traveled to the office. —
Daniel grabbed the apple.

Generate
(ex. GPT-3)

System 1

. = Daniel went back to the garden.
fast and intuitive

Daniel went to the patio. . .
Final generation

- P ¢ P ¢ Daniel went to the garden.
N ( G:tli:) ( G:I:I?-:) Mary traveled to the office.

Daniel grabbed the apple.
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slow and logical
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(symbolic) go(Daniel, garden)

Daniel.location = garden
apple.holder = Daniel
Mary.location = office

<]

go(Daniel, patio)

Figure 1: Schematic of dual-system approach to text generation. Conditioned on previous text, a “System 1” neural
generation model produces candidate next sentences. Semantic parses for each candidate are generated via few-shot
parsing from GPT-3 and compared to a minimal world model to check consistency. Only candidates consistent
with the world model state are incorporated into the final generation.

however, participants often realize that their responses were not logically or mathematically consistent
(via more explicit System 2 reasoning). Consider the CRT problem on the left below:

Total cost in prompt  GPT-3 response

A ball and a bat cost $1.10. $1.10 10 cents

The bat costs one dollar more than the ball. $1.20 20 cents

How much does the ball cost? $1.30 $0.30
$1.70 $0.70

Reading quickly, you might be tempted to say the ball costs 10 cents. Most participants give this
response, in fact, especially if they are under time pressure or have limited attention (Kahneman, 2013).
Of course, if the bat is $1.00 more than the ball, and the ball costs 10 cents, then the fotal cost would be
$1.20. The correct answer is that the ball costs 5 cents. Notably, in this and other classic CRT problems,
GPT-3 (Brown et al., |2020) predicts the same “gut” response (prediction in red above; the table above
shows that adjusting the price in the prompt also leads to similar effects; see Appendix Figure [§]for
more CRT examples). GPT-3 appears vulnerable to the same sort of intuitive, unsystematic pattern
recognition errors as humans—in this case, incorrectly subtracting one dollar from $1.10, without
confirming that the answer satisfies each of the problem constraints.

Numerous studies have shown that engagement of System 2-style effort can help “override or inhibit
default responses emanating from System 1 (Evans| 2003), correcting inconsistent or un-systematic
intuitive impulses. For example, when System 2 is engaged by asking people to take more time to
respond, people’s accuracy improves on the CRT task above (Kahneman, 2013). It has been argued that
integrating System 2 processing could similarly improve Al systems (Goyal & Bengio| [2020; |Garcez &
Lamb, 2020), and here we explore this idea as applied to neural sequence models.

In this work, we take inspiration from dual process theories to explore a neuro-symbolic generation
system, wherein predictions from a neural model are treated as System 1 proposals, and a logical,
deliberative System 2 filters these proposals for consistency and soundness (see Figure[I)). We further
take inspiration from the fact that humans often do not need explicit supervision to reason about new
problems or domains (e.g., see human evaluation task in Section f.2)) and require that the System
2 module not need additional problem-specific training, especially on example contradictions or
commonsense violations. People can handle novelty by reconfiguring, rather than retraining, their
internal models (Lake et al., [2017), and we strive to build machine systems capable of the same.
We show how a lightweight, easy-to-implement System 2 model can help improve coherence and
consistency by adding a small amount of symbolic reasoning.

We tackle two kinds of domains: text generation and instruction following. In both cases, we construct
generative models over sequences by using a neural generation model to propose candidate generations
and a symbolic world model that can accept or reject the generations and resample proposals if necessary.
We first illustrate the approach by generating short stories based on the bAbI dataset (Weston et al.|
2015); this pedagogical, synthetic example illustrates how basic commonsense knowledge of objects,
agents, and places can inform a text generation model. We then test our approach on rich, natural
language vignettes based on CLUTRR (Sinha et al., 2019), focusing on ensuring consistency of family
and interpersonal relationships. In both text generation domains, we interface between the explicit
logical knowledge/reasoning of System 2 and generations of System 1 using a few-shot learning
approach with state-of-the-art neural language models (GPT-3), which requires no additional training
or fine-tuning. Even using off-the-shelf transformers and symbolic solvers, our dual-system model
improves the consistency and coherence of text generations as measured by human judges. We test our
approach also on instruction following, showing how goal-prediction models and execution models can

2



easily be combined to achieve improved performance in low-data regimes. We show improvements
over previous work in the gSCAN grounded compositional challenge (Ruis et al., 2020); a dual-system
model requires much less data to train than previous models, and achieves higher accuracy and stronger
generalization. Overall, our findings indicate that neuro-symbolic, dual process models are a promising
means of addressing longstanding problems of robustness and consistency in neural sequence models.

2 Related Work

Our approach incorporates semantic parsing (Liang,|2016) as a component of a generative process,
where neural generation is used in conjunction with parsing techniques. In our text generation exper-
iments, we employ GPT-3 to perform few-shot semantic parsing without fine-tuning. Related work
includes few or zero-shot semantic parsing using pre-training techniques and paraphrasing (Su &
Yan, 2017;|Herzig & Berant| [2020). It also includes semantic parsing systems trained either without
supervision (Liang et al., 2017; Mou et al., 2017; [Muhlgay et al., 2019), or with synthetic language data
(Marzoev et al.,|[2020; |Xu et al., 2020b).

One popular technique for improving neural generations is generate-and-rerank, wherein one model
generates proposals and another reranks them. This broad approach has been used in image generation
(Ramesh et al., |2021), text generation (Holtzman et al.,[2018; [Shen et al., 2019; |Deng et al., [2020),
dialogue systems (for control, coherence and safety (Welleck et al., |2018}; [Smith et al., 20205 Nie et al.|
2020; | Xu et al.,2020a)), and instruction following (Kurita & Cho,[2020). Reranking is generally used to
improve outputs with respect to relatively broad, holistic criteria. Here, our goal is to make generation
robust to particular types of logical errors by pruning with respect to explicit symbolic constraints. Our
approach can thus be considered closely related to techniques which employ explicit search to find
generations satisfying particular logical constraints. Similar methods, such as guess-and-check or beam
search pruning, have had success in neural program synthesis (Devlin et al.,[2017; Nye et al., 2020).

Recent work in NLP has used template-based planning, in which a model generates text by first
generating a plan or skeleton, and filling in the missing words to produce naturalistic text (Xu et al.|
2018; Hua & Wang, 2020). To generate stories, [Martin et al. (2018) parses previous sentences into
events and does planning in event space. Our work extends previous entity/relation/event planning
in that the world model is not used for planning, but rather for post-checking candidate generations.
Structured parsing of this type is also related to dialog tracking techniques such as slot-filling (Pieraccini
et al.,|1992). In our work, fully compositional logical facts are extracted from utterances. It is therefore
more closely related to systems which extract programs from dialogue, such as/Andreas et al. (2020).

Recent work has also studied incorporating symbolic constraints into a neural decoding strategy in the
context of natural language. Miao et al.|(2019) introduce an MCMC-based inference-time propose-and-
reject strategy for satisfying constraints. They test on constraints such as paraphrase and grammatical
error correction. [Lu et al.[(2020) introduces “NeuroLogic decoding,” which uses logical constraints on
neural language models to produce generations which contain (or do not contain) required (or forbidden)
keywords. In these works, the constraints are lexical or based on word/sentence similarity (and provided
in the problem setup for [Lu et al.| (2020)), whereas we study logical constraints on the world state
decoded directly from observations or generations at test time.

3 Integrating System 1 and System 2

We introduce our dual-system approach using examples from the bAbl domain (Weston et al.,2015),
which we also use to perform diagnostic experiments. Consider generating a simple story involving
people, places and objects, such as (from Figure|[I)):

Daniel went to the garden. Mary traveled to the office. Daniel grabbed the apple.

A model tasked with generating such stories must juggle several simultaneous demands: staying on
topic and maintaining consistency of style and other textural elements (for which people rely on System
1), as well as maintaining consistency with previous statements and commonsense knowledge (for
which people rely on both systems). Consider continuing the story with one of the following:

(a) Daniel went to the patio. (b) Mary dropped the apple there.

Sentence (a) is reasonable; sentence (b) is not because it is Daniel, not Mary, who has the apple. During
generation, how might a model distinguish between these candidates? Perhaps a well-trained neural
language model could track constraints of these sorts. Neural language models to date, however, often
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violate these types of commonsense, hard constraints without a large high-quality corpus or explicit
training on detecting violations of commonsense (Sinha et al., [2019).

We address this problem by decomposing text generation into two parts: candidate generation facilitated
by deep neural networks and a logical pruning process implemented via a separate symbolic module.
Consider again the example above. To ensure consistency, our model would extract from the text the
features of the world that are subject to the hard, logical constraints, such as the location of objects and
who is holding them. These constraints can then be checked against an explicit representation of current
state of the world. For sentences (a) and (b), the system would extract and go (Daniel, patio)
and drop (Mary, apple), respectively. A minimal world model would track the state of the
apple, such that it maintains apple.holder = Daniel (or equivalently, Daniel.inventory
= [apple]). When such a model is given a parse of a candidate generation, drop (Mary, apple),
the mismatch between the current state and the proposed change would cause a violation, and the
candidate generation will be rejected.

The main steps of our general approach are illustrated in Figure|L: generate proposals from a System
1 proposal model, extract facts with a fact extraction model, and filter proposed generations by
ensuring that they satisfy the constraints given by the extracted facts and the minimal world model.

System 1: Generation. We use neural sequence models to produce System 1 generations. In text
generation domains, we use a large, pre-trained model that can be fine-tuned or conditioned via a short
prompt to generate relevant text. Text sampled from the System 1 model will be treated as candidate
utterances, which will be parsed and filtered by System 2 (described below). For the bAbI examples,
we use GPT-3 as our System 1 proposal model through few-shot prompting with 10 example bAbI
stories as context, generating a new story one candidate sentence at a time.

System 2: Fact extraction. A fact extractor, or parser, is used to mediate between the System 1
candidate proposals and the minimal world model within System 2. In our text generation domains, we
use a pre-trained GPT-3 model without fine-tuning to perform parsing.

For bADI, our prompt consist of an initial descriptive sentence “Please parse the following statements
into commands. The available commands are pickup, drop, and go.” and a small set (< 10) of
representative semantic parsing examples (input = sentences; output = correct parses, such as go (Bob,
roof)). The parse of each utterance is produced via few-shot prompting (Brown et al., [2020): the
utterance is added to the end of the prompt, and the subsequent GPT-3 generation is interpreted as the
target parse. We found that this simple parsing technique works well and could easily be applied to
other parsing-based tasks, as in|Shin et al.|(2021). The parsing prompts are reproduced in full in the
Appendix. As discussed in Section|[5, for the gSCAN instruction following domain, fact extraction is
performed with a learned goal location prediction model.

System 2: Minimal world model. We use a lightweight, incomplete description of the state of the
world as a world model in each domain, e.g., commonsense information about the people, objects and
locations (Figure[T). The goal is not to track and verify all the possible information; instead, we aim
for minimalism, capturing just a few commonsense (or application-critical) variables that we want to
ensure are correct. The world model facilitates tracking of long-range logical dependencies and logical
consequences, especially those which are not readily decodable from surface forms. The world model
also lets us integrate rule-based world-knowledge without retraining (and without the need for a large
set of labeled examples).

For the bAbI examples, the minimal world model keeps track of the people, locations and objects
introduced in the story so far (Figure[I). This encodes constraints on possible actions related to human
core knowledge competencies (objects, agents, places) present early in human development (Spelke &
Kinzler| [2007); specifically, a person or object can only be in one place at a time, an object can only be
possessed by a single person at a time, a person cannot “go” to a room they are already in, and a person
cannot pick up an object if it is in a different room. See the Appendix for details.

Search. At generation time, the interaction between System 1 generation and System 2 parsing yields
a neuro-symbolic, guess-and-check search strategy. In a text generation scenario, where text is sampled
from the model, our dual-system model improves upon a naive, neural-only sampling method by using
the System 2 model to reject candidate utterances which are incompatible with the current state. When
a candidate is rejected, a new candidate utterance is sampled from the System 1 model, which is again
checked by System 2. This process repeats until a candidate utterance is accepted by System 2 (i.e., the
utterance is compatible with the world state). This procedure allows the model to effectively search the
space of candidate utterances, guided by the logical constraints from the minimal world model. In this
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work, we use straightforward probabilistic sampling to illustrate that the approach works with even a
very simple search mechanism. We imagine that the search procedure could be further optimized by
applying, for example, beam search or stochastic beam sampling.

Diagnostic bAbI experiments. We use GFPT3only: GPT:3 + world model:
. . John went to the bedroom. John went to the bedroom.

Task #2 from bAbI as a diagnostic test joju picked up the apple there. John picked up the apple there.
for our neuro-symbolic dual-system model. Mary ook the apple there. Mary travelled to the office.
As shown above, this task consists of Mo travelled io the office. Daniel went back fo the garden.

. A aniel went back to the garden. Mary went to the bedroom.
synthetically-generated short stories involv-  Mary went to the bedroom. Sandra went to the bedroom.
ing people, places and Ob_] ects, and questions John went to the bedroom. Sandra travelled to the office.

. . . . Sandra went to the bedroom. Mary went back to the office.

concerning the locations of objects in these g, 1a travelied 1o the office. Where is the apple? A: bedroom

stories. We investigate performance on both  Mary went back to the office.
question answering (QA) tasks and story Whereisthe apple? A: office

generatlop. For the QA tasks, we parse qach Figure 2: Example bAbI stories generated by GPT-3 only (left)
sentence in the story to encode each fact lpto and our dual-system model (right). Logically inconsistent lines
the world model and parse the final question e written in red text, and are removed from the story-so-far at
to query the world model, returning the an-  generation time.

swer given by the world model. We compare

with two alternative models (Table[3)in the Appendix): GPT-3 by itself and a dual-system baseline
that uses a neural Natural Language Inference (NLI) model as its System 2. The NLI-based dual-
system model generates 10 candidates from GPT-3 and selects the candidate with the highest predicted
probability of entailment under the NLI model given the context. We use the RoOBERTa MNLI model
as our off-the-shelf neural NLI model (Liu et al.| 2019), which operates as a System 2 that does not
use additional problem-specific data or ﬁne—tuning On 200 held-out tasks, our GPT-3-based “fact
extractor” achieves 100% QA accuracy, far exceeding the performance of GPT-3 alone (29.0%) or
GPT-3 generation with neural NLI scoring (32.5%; also see Table[3 in the Appendix). These results
show that GPT-3 can be made to answer questions successfully when used for parsing with a world
model, even when GPT-3 alone does not achieve high QA accuracy.

To test story generation, we use our GPT-3-based System 1 proposal model (few-shot prompted on
10 example stories) to sample a new bADbI story, line-by-line. If a generated utterance is inconsistent
with the current state as indicated by the System 2 world model, a new utterance is sampled from
System 1 (repeating until a consistent utterance is sampled). Figure [2 shows how the dual-system
approach generates stories that mimic the statistical structure of bAblI stories, while remaining logically
sound In contrast, GPT-3 alone was not able to maintain logical coherence. In a set of 50 generated
stories, all stories required at least one sentence to be resampled to maintain coherence, and over
half of the generated sentences (53.1%) were rejected by our System 2 model to maintain logical
consistency. These results demonstrate that equipping GPT-3 with a minimal world model produces
logically coherent stories that mimic the textural structure of the bAbl domain. In the next section, we
apply this approach to mimicking human-generated short stories in natural language.

4 Coherent Language Generation - CLUTRR

We apply our dual-system approach to a dataset of natural language using the CLUTRR dataset.
CLUTRR contains human-written stories about people and their family relationships (see example
in Figure [3). As with bAbI, CLUTRR was originally designed as a Question Answering challenge;
instead, we use it to evaluate coherent language generation by querying models to generate complete
CLUTRR-style stories or to complete partially-generated stories. Our particular aim is to produce stories
with coherent and logically consistent family relationships. As above, our language generation setup
consists of pre-trained language models acting as our System 1 proposer, a minimal world model
as System 2, and a neural semantic parser (implemented via few-shot GPT-3 prediction) as a bridge
between the two systems. We use human judgments to assess whether our neuro-symbolic, dual-system
model produces more consistent and coherent stories relative to a baseline.

. . Kristin and her son Justin went to visit X . .
4.1 Model SPeCIﬁcatlon her mother Carol on a nice Sunday Q: How is Carol related to Justin ?
afternoon. They went out for a movie A: Carol is the grandmother of Justin
As our System 1 proposal model, we used pre- together and had a good time.

trained neural models to produce candidate gen- Figure 3: Sample story from the CLUTRR dataset. Each
erations one sentence at a time. We experimented ~story consists of a sequence of human-generated sen-

with GPT-3 as our System 1 model (which we tences concerning family relationships. Adapted from
Sinha et al. (2019).

"Previous work has used domain-specific entailment/contradiction data to train reranking models (Welleck
et al.,[2018), however, this requires collecting a dataset of domain-specific entailment and contradiction data.

5



Table 1: Statistics from CLUTRR story generation. We report the percentage of generations (on both a per-line and
per-story basis) for which the System 2 world model did not detect an error. The dual-system model is able to
detect many inconsistencies in the neural single-system generations, and most can be corrected by re-sampling new
candidates (up to a limit of ten).

% wi/out error detected (per line) % wi/out error detected (per story)
single-system  dual-system single-system  dual-system
(neural gen. only) (neural gen.+world model) (neural gen. only) (neural gen.+world model)
prompt from dataset | 82.8 97.1 60 96.1
prompt from model | 71.9 96.3 ‘ 36.4 93.5

used above for bAbI), but found generations too unreliable, often outputting the empty string. Instead,
we used a BART model (Lewis et al., 2019) that was fine-tuned on the CLUTRR training corpus. This
model also gives us an opportunity to compare against a best-case neural “single-system” baseline,
specifically fine-tuned on story data. To maintain a state of family relations, we use a constraint solver
in our “System 2” to encode family relationships (e.g., child (x, vy), spouse (x, z))and check
that the candidate utterances do not contradict the previous statements (e.g., a person cannot be their
own child or married to their sibling). We implemented the world model as a set of logical relations and
constraints using the Z3 solver (De Moura & Bjgrner, 2008). For instance, we require that the parent
of x cannot also be the uncle of x: Forall x, y,uncle(x, y) = —-child(y, x).Tochecka
candidate utterance, we query the solver to determine if the set of constraints is satisfiable or if there is
a contradiction. The full set of constraints and other details can be found in the Appendix. We again
used GPT-3 as our semantic parser, extracting parses for each candidate utterance via few-shot learning.
This parsing approach worked well, even for the natural language in this domain. We observed that
parsing with GPT-3 was more successful when the target parse was naturalistic, i.e., “Bob is Joe’s father.”
rather than “father(Bob, Joe)”. The parsing prompt is reproduced in full in the Appendix.

4.2 Human judgments

We test our dual-system neural generation + world model method in its ability to generate stories that
are deemed by naive human participants to be more naturalistic and coherent than those generated from
the baseline models. Specifically, we asked participants to select which of two continuations made the
most sense to them, where one continuation was generated from the neural model alone (single-system)
and the other from a dual-system model (either the world model System 2 or the neural NLI System 2).

Participants. Participants (N = 101) were recruited on the crowd-sourcing platform Prolific| and
compensated $2 for the task (~15 minutes, so roughly $8/hour). Participants gave informed consent,
and the study was approved by MIT’s IRB. 21 participants were excluded for failing an instruction quiz,
incorrectly answering more than one of five filler questions, or finishing the task too quickly. The data
we collected contains no personally identifiable information or offensive content.

Procedure. Participants began the experiment by reading a set of instructions and answering compre-
hension questions. On each main trial, participants were shown a prompt consisting of several sentences

o
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Tracy went to dinner with her daughter Shantel. & s - :Ir.
cF o8

They then went to the park afterwards. 25 o
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g 06 System 2 type
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Prompt Condition

Figure 4: Example trial from CLUTRR human judge-
ment experiment. Participants were instructed to
select which of two options makes the most sense
given the prompt. One option was generated by the
System 1 model only (“single-system”), while the
other was generated by the dual-system model.

Figure 5: CLUTRR human judgment experiment results.
Bars denote proportions of dual-system generations se-
lected as making more sense over single-system genera-
tions, in each of four conditions. Error-bars denote boot-
strapped 95% confidence intervals of the item means. The
points denote means for each individual item in the exper-
iment and are jittered horizontally for clarity.
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and were asked to choose which of two possible continuations made the most sense (an example trial is
shown in Figure ). Participants were instructed that if a name appeared multiple times within a trial,
then it referred to the same person, whereas if a name appeared across trials, then it was not referring to
the same person. For each trial, one continuation option was generated by the neural only single-system
baseline, while the other was a dual-system generation. We selected generations from the neural only
baseline that were rejected by the System 2 model in order to maximize the differences between the
models’ generations; thus, human judgments pertain to generations that the models disagreed on. Each
participant performed between 20 and 26 trials.

Materials. Participants were randomly assigned to one of four between-participant conditions,
which varied according to the kind of prompt and the kind of dual-system model. The prompt was
either generated from the model (up to the point of disagreement between System 1 and System 2
models; “Prompts from model” condition) or taken completely from the length 4 CLUTRR systematic
generalization test dataset (“Prompts from dataset” condition). To generate prompts for the “from
model” condition, we took the first sentence of each story from the CLUTRR test dataset and generated
subsequent prompt sentences from the dual-system model; sentences were generated until the two
systems disagreed (i.e., System 1 generated a sentence that System 2 rejected), at which point the
“rejected sentence” served as the neural only (single-system) baseline generation and the first resampled
sentence that System 2 accepted served as the dual-system generation. Prompts were sampled to a
maximum length of four sentences. The dual-system model shown to participants used a System 2
based on either our constraint-based “world model” or the neural NLI baseline.

Table[I catalogs critical statistics from the stimulus generation process. We generated vignettes from
the System 1 model and report the percentage of System 1 generations which are deemed correct by
the System 2 model We also report the percentage of generations corrected by the System 2 model
(i.e., if System 1 made an error, could System 2 fix it within 10 attempts?). We report these statistics on
both a per-story and per-line basis. According to System 2, the System 1 generation model makes a lot
of errors (only 36.4% of stories and 71.9% of lines were error-free, in the “from model" condition).
In most instances, re-sampling new generations yields stories that, according to System 2, no longer
contain logical errors within a budget of 10 samples (93.5% of stories and 96.3% of lines were error-free,
respectively).

Results. The human evaluation indicates that System 2 is indeed correcting genuine errors in the
stories. As summarized in Figure[5} participants strongly preferred the dual-system neural generation +
world model continuations in comparison to the neural only single-system continuations (proportion
preferring dual-system = 0.84; bootstrapped 95% confidence interval [0.77, 0.89] and 0.79 [0.77, 0.89]
for the “from dataset” and “from model” prompt conditions, respectively). The dual-system approach,
however, did not improve generation quality when the System 2 was based on an off-the-shelf neural
NLI model (Proportion preferring dual-system = 0.51; [0.40, 0.64] for “from dataset”; 0.58 [0.48, 0.68]
for “from model”). Thus, when using a minimal world model, the dual-system approach dramatically
improves logical consistency without any need for additional training or fine-tuning. People clearly
prefer neuro-symbolic generations from the dual-system model over purely neural generations from a
single-system model.

5 Grounded Instruction Following

The dual-system approach offers a general-purpose means of improving upon generative, neural
sequence models by incorporating logical constraints. To highlight its generality, we examine how the
dual-system perspective can be deployed in a very different domain: grounded instruction following.
In|Heinze-Deml & Bouchacourt (2020), a learned target location predictor was used to increase the
accuracy of a neural action sequence generation model. Here, we show how to increase performance
further by enforcing consistency between the target location predictor and the action sequence generator
in our dual-system framework.

We use the gSCAN benchmark (Ruis et al.| 2020), a recently proposed grounded instruction following
dataset designed to measure compositional generalization in neural systems. Given an initial gridworld
state and an instruction, e.g., “walk to the big square,” an agent must predict the sequence of low-level
actions which achieve the goal, e.g., “TURN LEFT, WALK, TURN LEFT, WALK’ (See Figure @) The
dataset contains several test splits, each testing different aspects of compositional generalization.

2For all System 1 generations, we used model temperature of 1.0. For the neural NLI baseline, we used 0.9
probability of contradiction as the cutoff for rejection. Our dual-system model uses a sampling budget of 10 System
1 samples per sentence. Contradictions remaining after 10 samples are considered dual-system errors.
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Table 2: Accuracy on gSCAN splits. Models were trained
on 5000 examples (only 2.5% of the gSCAN training
data). See Appendix TableE]for additional results.)

Candidate action sequences

TURN LEFT,  TURN LEFT,
—» CGenorale —» VALK, TURN ~ WALK, TURN
(LSTM) RIGHT, WALK  LEFT, WALK

System 1

Test split: single-systenf)| dual-system | e ! \TJ::“E"EC:T,
dev 71.7 833 .0 i
random 572 747 ' l

yellow squares | 68.1 81.3 ’ Lot g chesk

red squares 64.9 78.1 L A

novel direction | 0.0 0.01 Figure 6: Schematic of our dual-system approach to
relativity 41.0 53.6 gSCAN. We train a neural sequence model to predict both
class inference | 68.1 76.2 a distribution over action sequences, and a distribution
adverb (k=1) 0.0 0.0 over target locations. At test time, we decode candidate
adverb to verb | 20.8 21.8 action sequences from the model, execute them on the

3From [Heinze-Deml & Bouchacourt| (2020) gridworld, and qnly accept a sequence that. brings the
agent to the predicted target location (shown in green).

Our model builds on Heinze-Deml & Bouchacourt (2020) by using an LSTM to predict the correct
action sequence and target location. Given a command c and an initial gridworld state s, the neural
network defines two distributions: a distribution over action sequences ¢, (a|c, s) and a distribution
over target grid locations ¢;o.(I|c, s). [Heinze-Deml & Bouchacourt (2020) showed that when these
distributions share parameters, using location prediction as an auxiliary loss improves the accuracy of
the action sequence prediction model. We can further exploit these two models by noticing that when
a predicted action sequence is not consistent with a predicted target location, then either the action
sequence or the target location must be incorrect. Since the target location is much simpler to predict,
and thus much more likely to be correctly predicted, if a predicted action sequence is not consistent
with the predicted target location, then the action sequence is most likely incorrect. Our dual-system
framework can use this property to increase action sequence prediction accuracy. Consider the initial
state and command in Figure[6] Our model predicts candidate action sequences, and also predicts that
the most likely target location is the grid containing the bigger yellow square (highlighted in red). The
model then executes the candidate action sequences, and only accepts a sequence which results in the
agent standing in the target location.

In the language of our dual-system approach, we treat the distribution over actions ¢, (alc, s) as our
System 1 proposal model. The distribution over target locations ¢;..(I|c, s) serves as a fact extractor
model, which extract a location constraint [. As a minimal world model, we use a deterministic
gridworld execution model T'(a, s9) — s, which takes a state and action and predicts the resulting
state. At test time, we first extract the predicted location as | = arg max;, gjoc(I’|c). We then search
through the possible action sequences from g, (-|¢), conditioned on agreement with [. In our experiments,
we use a sample-based search with a maximum budget of 50 samples. We trained models on random
subsets of the gSCAN training set of varying sizes: 5000 datapoints, 8000 datapoints, and 20000
datapoints (2.5%, 4% and 10% of the original training set, respectively).

Results. The results show that the System 2 execution model improves performance without the
need for any additional training (see Table 2 for results training on 5000 examples). In contrast to the
single-system model, the dual-system model allows for sampling many candidate action sequences
from the neural network, accepting only consistent sequences. This guess-and-check approach greatly
increases the evaluation accuracy, improving upon prior work on gSCAN, particularly in low-data
regimes.

6 Limitations

In its current form, our approach is most useful in domains where naturalistic, learned generation is
necessary and where a small number of mission-critical logical constraints can be explicitly articulated.
Our system will be less useful when constraints are more difficult to articulate (e.g., creative domains
such as writing poetry) or when there are many constraints, since the minimal world model must
be hand-engineered. Enforcing strict constraints may also pose risks: if the constraints are not only
logical but cultural, they may be harmful if misapplied. However, these constraints must be articulated
explicitly in a symbolic model, and are thus easier to identify and correct.

The current few-shot parsing technique may also suffer from a limited capacity. For more complex
domains, the number of examples required to specify the desired parsing behavior may be too large
(i.e., they may not fit in the input window) or too complex for a model to perform parsing accurately.
While some tasks may not be suitable, the complexity of the world model need not necessarily increase



hand-in-hand with the complexity of the application domain. A dual-system model will be most
successful when tracking just a few critical variables (e.g., tracking consistency in family relations, as
in our experiments, or tracking scheduling constraints when discussing a team plan).

A promising direction for future work is to incorporate learning into the System 2 world model.
Currently, the minimal world knowledge that exists in System 2 can be easily modified, but changes
must be made by hand. Improvements would come from automatically learning and updating this
structured knowledge, possibly by incorporating neuro-symbolic learning techniques (Ellis et al., 2020
Mao et al., 2019).

Learning could improve our dual-system approach in other ways, e.g., by training a neural module to
mimic the actions of a symbolic System 2. The symbolic System 2 judgments could be used as a source
of supervision; candidate utterances rejected by the symbolic System 2 model could be used as examples
of contradictory sentences, and accepted utterances could be used as examples of non-contradictory
statements. This oversight could help train a neural System 2 contradiction-detection model capable
of more subtleties than its symbolic counterpart, especially in domains where labeled examples are
otherwise unavailable. This approach may also help us understand aspects of human learning, where
certain tasks that require slower, logical reasoning can be habitualized over time and tackled by faster,
more intuitive reasoning.

Recent work (Li et al.,[2021) has shown that large pre-trained neural models learn to approximately
represent certain types of structured semantic information. However, it is not yet clear how represen-
tational fidelity translates to logical coherence during generative tasks. Our current approach allows
us to explicitly fix logical errors in generation, which may ultimately be caused by representational
errors. Understanding how we might leverage our approach to improve the representation of structured
knowledge within neural models is a promising direction for future work, which could lead to increased
generation consistency and coherence.

7 Conclusion

Inspired by dual process theories from cognitive science, we combine the respective strengths of neural
and symbolic approaches to build more robust models that can more effectively incorporate domain
knowledge. For language generation, we showed that equipping neural generation with a minimal
symbolic world model increased language coherence and consistency. For grounded instruction
following, we showed that requiring test-time consistency between predicted action sequences and goal
locations led to improved performance, especially in low-data regimes. Our neuro-symbolic approach
can readily be applied to other domains and types of prior knowledge, as a lightweight way of improving
the coherence and consistency of powerful neural sequence models.

This paper just scratches the surface of how structured knowledge can make neural systems more
robust; we hope to inspire further work into neuro-symbolic systems which possess the robustness and
commonsense necessary for human-level intelligence.
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A Additional CRT experiments

Figure [§]shows additional cognitive reflection test (CRT) experiments using GPT-3. For each question
type, the original is displayed along with a table containing the responses for several variants. Prompt
text is in black, and response text is in color (green for correct, red for incorrect). Since it is unknown
whether the CRT tasks are within the GPT-3 training set, we test several conceptually similar variants.
All experiments were performed with the “davinci" model using temperature 0 and the newline token
set as the stop sequence. For each question, GPT-3 often (but not always) makes the same mistakes as
humans, even when the numbers are modified from the original CRT task.

B Experimental Details

For all experiments using GPT-3, we used the largest available “davinci" model. All other models were
implemented in PyTorch. All testing and training was performed on one Nvidia GTX 1080 Ti GPU.
Language generation experiments generally took less than 4 hours to run, and gSCAN experiments took
less than 48 hours.

B.1 bAbI

Table 3: Question answering results on bAbI.

Model Acc.
GPT-3 generation only 29.0%
GPT-3 generation, neural NLI scoring 32.5%

parsing (via GPT-3) + Sys 2 world model ~ 100%

The full text of the parsing prompts for the bAbI domain can be found in Figure[9. QA results are
shown in Table[3]

Minimal world model. The minimal world model for bAbI is implemented via simple Python code
and performs three functions:

1. Tracks the people, objects and locations which have been mentioned so far.
2. Modifies the world state changes as a result of parsed actions.
3. Checks if the candidate action violates the current world state, as defined by (1) and (2).

Tracking the people, objects and locations is performed by maintaining a lookup table which maps the
string representing a name (e.g., football’) to the Python object that represents the corresponding person,
object or location. The Python objects inherit from one of three small classes, Person, Location,
or Obj. When a new person, object or location is referenced, a new corresponding Python object is
initialized and added to the lookup table. The logic for possible actions (in our experiments, pickup,
go, and drop) are implemented to carry out the intended action. For instance, pickup (person,
obj) adds obj to the inventory of person. Likewise, go (person, location) changes the
location of person and person’s inventory to 1ocation. Each action checks whether the current
world state satisfies necessary preconditions for the action. If the current world state violates the action
preconditions, an error is thrown, and the candidate action is rejected. For example, if the location
of obj (obj.location) has been specified and is not the same as the location of person, then
pickup (person, obj) will fail.

The full world model used for bAbI (including code for interpreting the output of the GPT-3 fact
extractor) consists of fewer than 200 lines of code, and can be found in wor1dModel . py.

B.2 CLUTRR

For our CLUTRR experiments, we used a BART-base model (Lewis et al., [2019), which
was fine-tuned on the “systematic generalization" training corpus with story lengths of 2-
4 sentences from the CLUTRR dataset (folder data_db9b8f04 from the dataset found at
github.com/facebookresearch/clutrr). BART models were retrieved from Hugging Face
and fine-tuned with the Hugging Face default AdamW (Loshchilov & Hutter, |2017) optimizer with a
learning rate of le-5 and dropout of 0.1. The full text of the parsing prompt for the CLUTRR domain
is shown in Figure[T0. Statistics for the CLUTRR story generation for both the symbolic world model
and neural NLI System 2 models are shown in Table[5. Additional trials from the human judgement
experiment are shown in Figure [T T]
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Table 4: Results for each gSCAN split, showing exact match accuracy. The dual-system model outperforms
baselines in nearly all test splits, and is especially beneficial in the low-data regime.

5000 examples 8000 examples 20000 examples
test split: single—syste dual-system | single-system dual-system | single-system dual-system
dev 71.7 83.3 81.0 90.7 92.6 96.9
random 57.2 74.7 69.1 84.6 88.6 95.2
yellow squares | 68.1 81.3 77.2 89.3 89.1 94.2
red squares 64.9 78.1 76.3 88.1 87.8 93.2
novel direction | 0.0 0.01 0.0 0.1 0.0 0.02
relativity 41.0 53.6 40.0 50.1 62.5 68.9
class inference | 68.1 76.2 78.1 87.6 89.4 96.6
adverb (k=1) 0.0 0.0 0.0 0.0 0.0 0.0
adverb to verb | 20.8 21.8 20.2 20.6 19.9 214

4From [Heinze-Deml & Bouchacourt| (2020)

The family relation constraints used for the world model can be found in Figure[7] The code implemented
these constraints using the Z3 solver can be found in clutrrZ3. py. All constraints are gender neutral,
and read left to right, e.g., child(z,y) — the child of x is y. We follow the notation used in |Sinha
et al. (2019), and use the term grand for grandchild, un for aunt/uncle, etc., and use the prefix inv_
for inverses of already-defined terms.

We accept the following terms as outputs of the GPT-3-based parsing system, mapping them to the
correct constraint: ‘spouse’, ‘husband’, ‘wife’, ‘parent’, ‘grandchild’, ‘granddaughter’, ‘grandson’,
‘grandparent’, ‘grandmother’, ‘grandfather’, ‘father’, ‘mother’, ‘uncle’, ‘aunt’, ‘nephew’, ‘niece’,
‘sister’, ‘brother’, ‘daughter’, ‘son’, ‘daughter in law’, ‘son in law’, ‘mother in law’, ‘father in law’,
mother-in-law’, ‘father-in-law’, ‘daughter-in-law’, ‘son-in-law.” All other terms output from the parsing
system (e.g., ‘Mark is Mary’s friend’) are ignored and do not lead to the addition of new constraints to
the current world state.

¢

B.3 gSCAN
Table 4] shows the accuracy results for gSCAN on training sets of size 5000, 8000, and 20000.

Architecture Our model architecture is identical to the “Both" attentional variant from Heinze-Deml
& Bouchacourt| (2020). In this model, a BILSTM encoder encodes the instruction sequence and a
CNN encoder encodes the initial gridworld state. To predict a target location, attention-weighted
gridworld state encodings (which also attend over the instruction sequence encoding) are passed to
a linear classification layer, which predicts softmax scores for each gridworld position. To predict
an action sequence, an LSTM decodes the action sequence based on attention weighted instruction
encodings and attention weighted gridworld encodings. The gridworld encoding vectors are additionally
weighted by the softmax scores from the target location prediction layer before being fed to the LSTM
decoder attention mechanism. We use the same hyperparameters as |Heinze-Deml & Bouchacourt
(2020), including a CNN dropout rate of 0.1, a dropout rate of 0.3, an auxiliary task weight of 0.3, and
LSTM sizes of 100. See [Heinze-Deml & Bouchacourt (2020) for more details.

Test-time search. At test time, the neural only single-system baseline from |Heinze-Deml & Boucha-
court (2020) performs greedy decoding. To directly compare to the single-system model, the dual-system
model performed greedy decoding to produce the first candidate action sequence. If this candidate
action sequence failed the consistency check, the model proceeded with a sample-based search, as
described above, with a sampling budget of 50 samples.

Consistency check. The target location prediction in [Heinze-Deml & Bouchacourt (2020) predicts
the initial location of the target object. However, to successfully complete some of the actions in the
gSCAN domain, such as “push" and “pull", the agent must move the target object to a different grid.
Therefore, the final grid of the agent is not always the same as the target location. To account for this,
the consistency check required only that the agent passes through the target location and does not move
outside the bounds of the gridworld. This is a strictly less stringent constraint than requiring that the
agent’s final location matches the target location; nevertheless, we see that this constraint is sufficient to
achieve significant accuracy gains.
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Relations:

Va,y,z.child(z, 2) A child(z,y) = grand(z,y)
Va,y,z.grand(z, z) A sibling(z,y) = grand(z,y)
Va,y,z.inv_child(z, z) A inv_child(z,y) = inv_grand(z,y)
Vx,y,z.sibling(x, 2) A inv_grand(z,y) = inv_grand(x,y)
Vx,y,z.child(z, z) A sibling(z,y) = child(z,y)
Vx,y,2.50(x,2) Achild(z,y) = child(z,y)
Vz,y,z.sibling(z,2z) A inv_child(z,y) = inv_child(x,y)
Va,y,z.child(z, z) A inv_grand(z,y) = inv_child(z,y)
Va,y,z.x #y A inv_child(z,z) Achild(z,y) = sibling(z,y)
Va,y,z.child(z, 2) A SO(z,y) = in_law(z,y)

Va,y,2.50(z,z) A inv_child(z,y) = inv_in_law(z,y)

Va,y,z.sibling(z, z) A child(z,y) = inv_un(z,y)
Va,y,z.inv_child(z, z) A sibling(z,y) = un(z,y)

Inverses:

Vx,y.child(x,y) <= inv_child(y,z)
Vz,y.inv_in_law(z,y) <= in_law(y,z)
Va,y.inv_grand(z,y) <= grand(y,z)
Va,y.inv_un(z,y) <= un(y,z)

Symmetric rules:
Vz,y.sibling(z,y) <= sibling(y,z)
Vx,y.50(x,y) < SO(y,x)

Definition of an ancestor:
Vz,y.child(z,y) = ancestor(y,z)
Vx,y.grand(z,y) = ancestor(y,x)

Sibling is transitive:
Va,y,z.x # z Asibling(z,y) A sibling(y,z) = sibling(z,z2)

You can’t be your own ancestor:

Vx,y.ancestor(z,y) = —ancestor(y,x) Ancestor transitivity:
Vx,y,z.ancestor(z,y) A ancestor(y,z) = ancestor(z,z)
You can’t be your own sibling:

Vx.msibling(z, )

Inverse of aunt/uncle:

Va,y.inv_un(z,y) = (Jz.sibling(x,2) A child(z,y))
Inverse of sibling:

Vx,y.sibling(z,y) = (3z.child(z,z) A child(z,y))

Parents can’t be aunts/uncles:

Va,yun(z,y) = —inv_child(z,y) Vz,y.inv_child(z,y) = —un(z,y)

Figure 7: Family constraints for CLUTRR world model. Based on constraints used in |Sinha et al.|(2019). All
constraints are gender neutral, and read as left to right, e.g., child(z,y) — the child of x is y.

Table 5: Statistics from CLUTRR story generation.

neural NLI System 2 minimal world model System 2
% w/out error detected (per line) per story per line per story
single-system  dual-system | single-system  dual-system | single-system  dual-system | single-system dual-system
prompt from model | 73.3 98.4 40.2 94.8 71.9 96.3 36.4 93.5
prompt from dataset ‘ 82.9 100 57.1 100 82.8 97.1 60 96.1
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A ball and a bat cost $1.10.

The bat costs one dollar more than the ball.
How much does the ball cost?

Answer: 10 cents

Total cost Response

$1.10
$1.20
$1.30
$1.70

10 cents
20 cents
$0.30
$0.70

If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines to make 100 widgets?

Answer: 5 minutes.

Value  Response
5 5 minutes

6 6 minutes

7 7 minutes

8 8 minutes

9 9 minutes
10 10 minutes
11 100 minutes
12 100 minutes
13 100 minutes

In a lake, there is a patch of lily pads.
Every day, the patch doubles in size.

If it takes 48 days for the patch to cover the entire lake, how long would it take for the patch to cover half of the

lake?
Answer: 24 days

# of days Response
8 (no output)
20 10 days
24 12 days
32 (no output)
25 (no output)
36 (no output)
48 24 days
100 50 days

Figure 8: GPT-3 responses to CRT problems and variants. Correct answers shown in green, and incorrect answers
shown in red. “(no output)” indicates that the model produced the newline token (set as the stop sequence) and did

not produce an output.
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Please parse the following statements into commands. The available commands are pickup, drop, and go.
Sentence: Max journeyed to the bathroom.
Semantic parse: go(Max, bathroom)

Sentence: Mary grabbed the football there.
Semantic parse: pickup (Mary, football)

Sentence: Bob picked up the apple.
Semantic parse: pickup (Bob, apple)

Sentence: Susan dropped the milk.
Semantic parse: drop(Susan, milk)

Sentence: Bob got the football there.
Semantic parse: pickup (Bob, football)

Sentence: Max left the cup.
Semantic parse: drop (Max, cup)

Sentence: Kevin put down the pie there.
Semantic parse: drop (Kevin, pie)

Sentence: John took the football there.
Semantic parse: pickup (John, football)

Sentence:

Please parse the following questions into queries using queryObjLoc:
Question: Where is the toothbrush?
Semantic parse: queryObjLoc (toothbrush)

Question: Where is the milk?
Semantic parse: queryObjLoc (milk)

Question: Where is the apple?
Semantic parse: queryObjLoc (apple)

Question: Where is the football?
Semantic parse: queryObjLoc (football)

Question:

Figure 9: Semantic parsing prompts for bAbI domain. Top: Statement semantic parsing prompt. Bottom: Question
semantic parsing prompt.
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The following sentences contain people and their family relationships. Please parse each sentence into family
The available relationships are sibling, parent, child, grandchild, uncle, spouse.
If a sentence has no relationship, say "None".

Sentence:

Semantic

Sentence:

Semantic

Sentence:

Semantic

Sentence:

Semantic

Sentence:

Semantic

Sentence:

Semantic

Sentence:

Semantic

Sentence:

Semantic

Sentence:

Semantic

Sentence:

Semantic

Sentence:

Semantic

Sentence:

Semantic

Sentence:

Semantic

Sentence:

Semantic

Sentence:

Semantic

Sentence:

Semantic

Sentence:

Semantic

Sentence:

Michael’s sister, Mary, was crying, so he told her a joke.
parse: Mary is Michael’s sister.

Joshua’s son, Clarence, loves trains.
parse: Clarence is Joshua’s child.

David is very lucky to have a husband who adores her and treats her like a queen.
parse: None

Lillian is married to Thomas and when she was 24, the couple welcomed April into the world.
parse: Thomas is Lillian’s spouse. April is Lillian’s child.

Bobby does n’t like his grandfather James.
parse: Bobby is James’s grandchild.

He loved spending time with her, and she loved it too.
Parse: None

Jerry asked his father George if he could borrow some money.
parse: Jerry is George’s child

Robert and his brother Louis watch Robert’s daughter Michelle in her school play.
parse: Louis is Robert’s sibling. Michelle is Robert’s child.

Bernardo got a cone and Antonio got a sundae.
parse: None

They had a wonderful time.
parse: None

Mary was playing in the sandbox with her brother Dennis.
parse: Mary is Dennis’s sibling.
parse: None

David is very lucky to have a husband who adores her and treats her like a queen.
parse: None

Dennis id Amy’s only child.
parse: Dennis is Amy’s child.

Michael laughed, and felt better.
parse: None

Angelica ca n’t wait to see her favorite aunt Tracy.
parse: Tracy is Angelica’s aunt.

Marie does n’t like having to babysit her younger brother, Pedro.
parse: Pedro is Marie’s sibling.

Figure 10: Semantic parsing prompt for CLUTRR domain.
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Marie and her husband Robert like to go fishing on the weekends.

Marie’s son Allan doesn’t go because he hates fishing.

Which of the following sentences makes the most sense given the information above?
O Allan and his uncle Robert went to the park.
@ Allan and his aunt, Beverly, went to Disney World.

Robert and his brother Antonio played harmonicas together.

Robert’s daughter, Elsie, asked him to play with her.

Which of the following sentences makes the most sense given the information above?
O Elsie doesn’t like having to babysit her younger brother, Antonio.
@ Elsie was playing hide-and-seek with her sister Tracy.

Tracy went to dinner with her daughter Shantel.

Shantel’s daughter, Lizzie, asked her mom to read her a story.

Which of the following sentences makes the most sense given the information above?
O Lizzie was playing hide-and-seek with her sister Tracy.
@ Lizzie loves hanging out with her uncle Antonio.

Figure 11: Additional trials from CLUTRR human judgement experiment (“prompt from model” condition).
Selected option was generated by the dual-system model, and the other option was generated by the neural only
single-system model.
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